4 * Copyright IBM, Corp. 2007
7 * Anthony Liguori <aliguori@us.ibm.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
19 //#define VIRTIO_ZERO_COPY
21 /* from Linux's linux/virtio_pci.h */
23 /* A 32-bit r/o bitmask of the features supported by the host */
24 #define VIRTIO_PCI_HOST_FEATURES 0
26 /* A 32-bit r/w bitmask of features activated by the guest */
27 #define VIRTIO_PCI_GUEST_FEATURES 4
29 /* A 32-bit r/w PFN for the currently selected queue */
30 #define VIRTIO_PCI_QUEUE_PFN 8
32 /* A 16-bit r/o queue size for the currently selected queue */
33 #define VIRTIO_PCI_QUEUE_NUM 12
35 /* A 16-bit r/w queue selector */
36 #define VIRTIO_PCI_QUEUE_SEL 14
38 /* A 16-bit r/w queue notifier */
39 #define VIRTIO_PCI_QUEUE_NOTIFY 16
41 /* An 8-bit device status register. */
42 #define VIRTIO_PCI_STATUS 18
44 /* An 8-bit r/o interrupt status register. Reading the value will return the
45 * current contents of the ISR and will also clear it. This is effectively
46 * a read-and-acknowledge. */
47 #define VIRTIO_PCI_ISR 19
49 #define VIRTIO_PCI_CONFIG 20
51 /* Virtio ABI version, if we increment this, we break the guest driver. */
52 #define VIRTIO_PCI_ABI_VERSION 0
54 /* How many bits to shift physical queue address written to QUEUE_PFN.
55 * 12 is historical, and due to x86 page size. */
56 #define VIRTIO_PCI_QUEUE_ADDR_SHIFT 12
58 /* The alignment to use between consumer and producer parts of vring.
59 * x86 pagesize again. */
60 #define VIRTIO_PCI_VRING_ALIGN 4096
62 /* QEMU doesn't strictly need write barriers since everything runs in
63 * lock-step. We'll leave the calls to wmb() in though to make it obvious for
64 * KVM or if kqemu gets SMP support.
66 #define wmb() do { } while (0)
68 typedef struct VRingDesc
76 typedef struct VRingAvail
83 typedef struct VRingUsedElem
89 typedef struct VRingUsed
93 VRingUsedElem ring
[0];
99 target_phys_addr_t desc
;
100 target_phys_addr_t avail
;
101 target_phys_addr_t used
;
108 uint16_t last_avail_idx
;
110 void (*handle_output
)(VirtIODevice
*vdev
, VirtQueue
*vq
);
113 #define VIRTIO_PCI_QUEUE_MAX 16
115 /* virt queue functions */
116 #ifdef VIRTIO_ZERO_COPY
117 static void *virtio_map_gpa(target_phys_addr_t addr
, size_t size
)
120 target_phys_addr_t addr1
;
122 off
= cpu_get_physical_page_desc(addr
);
123 if ((off
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
124 fprintf(stderr
, "virtio DMA to IO ram\n");
128 off
= (off
& TARGET_PAGE_MASK
) | (addr
& ~TARGET_PAGE_MASK
);
130 for (addr1
= addr
+ TARGET_PAGE_SIZE
;
131 addr1
< TARGET_PAGE_ALIGN(addr
+ size
);
132 addr1
+= TARGET_PAGE_SIZE
) {
135 off1
= cpu_get_physical_page_desc(addr1
);
136 if ((off1
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
137 fprintf(stderr
, "virtio DMA to IO ram\n");
141 off1
= (off1
& TARGET_PAGE_MASK
) | (addr1
& ~TARGET_PAGE_MASK
);
143 if (off1
!= (off
+ (addr1
- addr
))) {
144 fprintf(stderr
, "discontigous virtio memory\n");
149 return phys_ram_base
+ off
;
153 static void virtqueue_init(VirtQueue
*vq
, target_phys_addr_t pa
)
156 vq
->vring
.avail
= pa
+ vq
->vring
.num
* sizeof(VRingDesc
);
157 vq
->vring
.used
= vring_align(vq
->vring
.avail
+
158 offsetof(VRingAvail
, ring
[vq
->vring
.num
]),
159 VIRTIO_PCI_VRING_ALIGN
);
162 static inline uint64_t vring_desc_addr(VirtQueue
*vq
, int i
)
164 target_phys_addr_t pa
;
165 pa
= vq
->vring
.desc
+ sizeof(VRingDesc
) * i
+ offsetof(VRingDesc
, addr
);
169 static inline uint32_t vring_desc_len(VirtQueue
*vq
, int i
)
171 target_phys_addr_t pa
;
172 pa
= vq
->vring
.desc
+ sizeof(VRingDesc
) * i
+ offsetof(VRingDesc
, len
);
176 static inline uint16_t vring_desc_flags(VirtQueue
*vq
, int i
)
178 target_phys_addr_t pa
;
179 pa
= vq
->vring
.desc
+ sizeof(VRingDesc
) * i
+ offsetof(VRingDesc
, flags
);
180 return lduw_phys(pa
);
183 static inline uint16_t vring_desc_next(VirtQueue
*vq
, int i
)
185 target_phys_addr_t pa
;
186 pa
= vq
->vring
.desc
+ sizeof(VRingDesc
) * i
+ offsetof(VRingDesc
, next
);
187 return lduw_phys(pa
);
190 static inline uint16_t vring_avail_flags(VirtQueue
*vq
)
192 target_phys_addr_t pa
;
193 pa
= vq
->vring
.avail
+ offsetof(VRingAvail
, flags
);
194 return lduw_phys(pa
);
197 static inline uint16_t vring_avail_idx(VirtQueue
*vq
)
199 target_phys_addr_t pa
;
200 pa
= vq
->vring
.avail
+ offsetof(VRingAvail
, idx
);
201 return lduw_phys(pa
);
204 static inline uint16_t vring_avail_ring(VirtQueue
*vq
, int i
)
206 target_phys_addr_t pa
;
207 pa
= vq
->vring
.avail
+ offsetof(VRingAvail
, ring
[i
]);
208 return lduw_phys(pa
);
211 static inline void vring_used_ring_id(VirtQueue
*vq
, int i
, uint32_t val
)
213 target_phys_addr_t pa
;
214 pa
= vq
->vring
.used
+ offsetof(VRingUsed
, ring
[i
].id
);
218 static inline void vring_used_ring_len(VirtQueue
*vq
, int i
, uint32_t val
)
220 target_phys_addr_t pa
;
221 pa
= vq
->vring
.used
+ offsetof(VRingUsed
, ring
[i
].len
);
225 static uint16_t vring_used_idx(VirtQueue
*vq
)
227 target_phys_addr_t pa
;
228 pa
= vq
->vring
.used
+ offsetof(VRingUsed
, idx
);
229 return lduw_phys(pa
);
232 static inline void vring_used_idx_increment(VirtQueue
*vq
, uint16_t val
)
234 target_phys_addr_t pa
;
235 pa
= vq
->vring
.used
+ offsetof(VRingUsed
, idx
);
236 stw_phys(pa
, vring_used_idx(vq
) + val
);
239 static inline void vring_used_flags_set_bit(VirtQueue
*vq
, int mask
)
241 target_phys_addr_t pa
;
242 pa
= vq
->vring
.used
+ offsetof(VRingUsed
, flags
);
243 stw_phys(pa
, lduw_phys(pa
) | mask
);
246 static inline void vring_used_flags_unset_bit(VirtQueue
*vq
, int mask
)
248 target_phys_addr_t pa
;
249 pa
= vq
->vring
.used
+ offsetof(VRingUsed
, flags
);
250 stw_phys(pa
, lduw_phys(pa
) & ~mask
);
253 void virtio_queue_set_notification(VirtQueue
*vq
, int enable
)
256 vring_used_flags_unset_bit(vq
, VRING_USED_F_NO_NOTIFY
);
258 vring_used_flags_set_bit(vq
, VRING_USED_F_NO_NOTIFY
);
261 int virtio_queue_ready(VirtQueue
*vq
)
263 return vq
->vring
.avail
!= 0;
266 int virtio_queue_empty(VirtQueue
*vq
)
268 return vring_avail_idx(vq
) == vq
->last_avail_idx
;
271 void virtqueue_fill(VirtQueue
*vq
, const VirtQueueElement
*elem
,
272 unsigned int len
, unsigned int idx
)
277 #ifndef VIRTIO_ZERO_COPY
278 for (i
= 0; i
< elem
->out_num
; i
++)
279 qemu_free(elem
->out_sg
[i
].iov_base
);
283 for (i
= 0; i
< elem
->in_num
; i
++) {
284 size_t size
= MIN(len
- offset
, elem
->in_sg
[i
].iov_len
);
286 #ifdef VIRTIO_ZERO_COPY
288 ram_addr_t addr
= (uint8_t *)elem
->in_sg
[i
].iov_base
- phys_ram_base
;
291 for (off
= 0; off
< size
; off
+= TARGET_PAGE_SIZE
)
292 cpu_physical_memory_set_dirty(addr
+ off
);
296 cpu_physical_memory_write(elem
->in_addr
[i
],
297 elem
->in_sg
[i
].iov_base
,
300 qemu_free(elem
->in_sg
[i
].iov_base
);
306 idx
= (idx
+ vring_used_idx(vq
)) % vq
->vring
.num
;
308 /* Get a pointer to the next entry in the used ring. */
309 vring_used_ring_id(vq
, idx
, elem
->index
);
310 vring_used_ring_len(vq
, idx
, len
);
313 void virtqueue_flush(VirtQueue
*vq
, unsigned int count
)
315 /* Make sure buffer is written before we update index. */
317 vring_used_idx_increment(vq
, count
);
321 void virtqueue_push(VirtQueue
*vq
, const VirtQueueElement
*elem
,
324 virtqueue_fill(vq
, elem
, len
, 0);
325 virtqueue_flush(vq
, 1);
328 static int virtqueue_num_heads(VirtQueue
*vq
, unsigned int idx
)
330 uint16_t num_heads
= vring_avail_idx(vq
) - idx
;
332 /* Check it isn't doing very strange things with descriptor numbers. */
333 if (num_heads
> vq
->vring
.num
) {
334 fprintf(stderr
, "Guest moved used index from %u to %u",
335 idx
, vring_avail_idx(vq
));
342 static unsigned int virtqueue_get_head(VirtQueue
*vq
, unsigned int idx
)
346 /* Grab the next descriptor number they're advertising, and increment
347 * the index we've seen. */
348 head
= vring_avail_ring(vq
, idx
% vq
->vring
.num
);
350 /* If their number is silly, that's a fatal mistake. */
351 if (head
>= vq
->vring
.num
) {
352 fprintf(stderr
, "Guest says index %u is available", head
);
359 static unsigned virtqueue_next_desc(VirtQueue
*vq
, unsigned int i
)
363 /* If this descriptor says it doesn't chain, we're done. */
364 if (!(vring_desc_flags(vq
, i
) & VRING_DESC_F_NEXT
))
365 return vq
->vring
.num
;
367 /* Check they're not leading us off end of descriptors. */
368 next
= vring_desc_next(vq
, i
);
369 /* Make sure compiler knows to grab that: we don't want it changing! */
372 if (next
>= vq
->vring
.num
) {
373 fprintf(stderr
, "Desc next is %u", next
);
380 int virtqueue_avail_bytes(VirtQueue
*vq
, int in_bytes
, int out_bytes
)
383 int num_bufs
, in_total
, out_total
;
385 idx
= vq
->last_avail_idx
;
387 num_bufs
= in_total
= out_total
= 0;
388 while (virtqueue_num_heads(vq
, idx
)) {
391 i
= virtqueue_get_head(vq
, idx
++);
393 /* If we've got too many, that implies a descriptor loop. */
394 if (++num_bufs
> vq
->vring
.num
) {
395 fprintf(stderr
, "Looped descriptor");
399 if (vring_desc_flags(vq
, i
) & VRING_DESC_F_WRITE
) {
401 (in_total
+= vring_desc_len(vq
, i
)) >= in_bytes
)
405 (out_total
+= vring_desc_len(vq
, i
)) >= out_bytes
)
408 } while ((i
= virtqueue_next_desc(vq
, i
)) != vq
->vring
.num
);
414 int virtqueue_pop(VirtQueue
*vq
, VirtQueueElement
*elem
)
416 unsigned int i
, head
;
418 if (!virtqueue_num_heads(vq
, vq
->last_avail_idx
))
421 /* When we start there are none of either input nor output. */
422 elem
->out_num
= elem
->in_num
= 0;
424 i
= head
= virtqueue_get_head(vq
, vq
->last_avail_idx
++);
428 if (vring_desc_flags(vq
, i
) & VRING_DESC_F_WRITE
) {
429 elem
->in_addr
[elem
->in_num
] = vring_desc_addr(vq
, i
);
430 sg
= &elem
->in_sg
[elem
->in_num
++];
432 sg
= &elem
->out_sg
[elem
->out_num
++];
434 /* Grab the first descriptor, and check it's OK. */
435 sg
->iov_len
= vring_desc_len(vq
, i
);
437 #ifdef VIRTIO_ZERO_COPY
438 sg
->iov_base
= virtio_map_gpa(vring_desc_addr(vq
, i
), sg
->iov_len
);
440 /* cap individual scatter element size to prevent unbounded allocations
441 of memory from the guest. Practically speaking, no virtio driver
442 will ever pass more than a page in each element. We set the cap to
443 be 2MB in case for some reason a large page makes it way into the
444 sg list. When we implement a zero copy API, this limitation will
446 if (sg
->iov_len
> (2 << 20))
447 sg
->iov_len
= 2 << 20;
449 sg
->iov_base
= qemu_malloc(sg
->iov_len
);
450 if (!(vring_desc_flags(vq
, i
) & VRING_DESC_F_WRITE
)) {
451 cpu_physical_memory_read(vring_desc_addr(vq
, i
),
456 if (sg
->iov_base
== NULL
) {
457 fprintf(stderr
, "Invalid mapping\n");
461 /* If we've got too many, that implies a descriptor loop. */
462 if ((elem
->in_num
+ elem
->out_num
) > vq
->vring
.num
) {
463 fprintf(stderr
, "Looped descriptor");
466 } while ((i
= virtqueue_next_desc(vq
, i
)) != vq
->vring
.num
);
472 return elem
->in_num
+ elem
->out_num
;
477 static VirtIODevice
*to_virtio_device(PCIDevice
*pci_dev
)
479 return (VirtIODevice
*)pci_dev
;
482 static void virtio_update_irq(VirtIODevice
*vdev
)
484 qemu_set_irq(vdev
->pci_dev
.irq
[0], vdev
->isr
& 1);
487 static void virtio_reset(void *opaque
)
489 VirtIODevice
*vdev
= opaque
;
499 virtio_update_irq(vdev
);
501 for(i
= 0; i
< VIRTIO_PCI_QUEUE_MAX
; i
++) {
502 vdev
->vq
[i
].vring
.desc
= 0;
503 vdev
->vq
[i
].vring
.avail
= 0;
504 vdev
->vq
[i
].vring
.used
= 0;
505 vdev
->vq
[i
].last_avail_idx
= 0;
510 static void virtio_ioport_write(void *opaque
, uint32_t addr
, uint32_t val
)
512 VirtIODevice
*vdev
= to_virtio_device(opaque
);
518 case VIRTIO_PCI_GUEST_FEATURES
:
519 if (vdev
->set_features
)
520 vdev
->set_features(vdev
, val
);
521 vdev
->features
= val
;
523 case VIRTIO_PCI_QUEUE_PFN
:
524 pa
= (ram_addr_t
)val
<< VIRTIO_PCI_QUEUE_ADDR_SHIFT
;
525 vdev
->vq
[vdev
->queue_sel
].pfn
= val
;
529 virtqueue_init(&vdev
->vq
[vdev
->queue_sel
], pa
);
532 case VIRTIO_PCI_QUEUE_SEL
:
533 if (val
< VIRTIO_PCI_QUEUE_MAX
)
534 vdev
->queue_sel
= val
;
536 case VIRTIO_PCI_QUEUE_NOTIFY
:
537 if (val
< VIRTIO_PCI_QUEUE_MAX
&& vdev
->vq
[val
].vring
.desc
)
538 vdev
->vq
[val
].handle_output(vdev
, &vdev
->vq
[val
]);
540 case VIRTIO_PCI_STATUS
:
541 vdev
->status
= val
& 0xFF;
542 if (vdev
->status
== 0)
548 static uint32_t virtio_ioport_read(void *opaque
, uint32_t addr
)
550 VirtIODevice
*vdev
= to_virtio_device(opaque
);
551 uint32_t ret
= 0xFFFFFFFF;
556 case VIRTIO_PCI_HOST_FEATURES
:
557 ret
= vdev
->get_features(vdev
);
558 ret
|= (1 << VIRTIO_F_NOTIFY_ON_EMPTY
);
560 case VIRTIO_PCI_GUEST_FEATURES
:
561 ret
= vdev
->features
;
563 case VIRTIO_PCI_QUEUE_PFN
:
564 ret
= vdev
->vq
[vdev
->queue_sel
].pfn
;
566 case VIRTIO_PCI_QUEUE_NUM
:
567 ret
= vdev
->vq
[vdev
->queue_sel
].vring
.num
;
569 case VIRTIO_PCI_QUEUE_SEL
:
570 ret
= vdev
->queue_sel
;
572 case VIRTIO_PCI_STATUS
:
576 /* reading from the ISR also clears it. */
579 virtio_update_irq(vdev
);
588 static uint32_t virtio_config_readb(void *opaque
, uint32_t addr
)
590 VirtIODevice
*vdev
= opaque
;
593 vdev
->get_config(vdev
, vdev
->config
);
595 addr
-= vdev
->addr
+ VIRTIO_PCI_CONFIG
;
596 if (addr
> (vdev
->config_len
- sizeof(val
)))
599 memcpy(&val
, vdev
->config
+ addr
, sizeof(val
));
603 static uint32_t virtio_config_readw(void *opaque
, uint32_t addr
)
605 VirtIODevice
*vdev
= opaque
;
608 vdev
->get_config(vdev
, vdev
->config
);
610 addr
-= vdev
->addr
+ VIRTIO_PCI_CONFIG
;
611 if (addr
> (vdev
->config_len
- sizeof(val
)))
614 memcpy(&val
, vdev
->config
+ addr
, sizeof(val
));
618 static uint32_t virtio_config_readl(void *opaque
, uint32_t addr
)
620 VirtIODevice
*vdev
= opaque
;
623 vdev
->get_config(vdev
, vdev
->config
);
625 addr
-= vdev
->addr
+ VIRTIO_PCI_CONFIG
;
626 if (addr
> (vdev
->config_len
- sizeof(val
)))
629 memcpy(&val
, vdev
->config
+ addr
, sizeof(val
));
633 static void virtio_config_writeb(void *opaque
, uint32_t addr
, uint32_t data
)
635 VirtIODevice
*vdev
= opaque
;
638 addr
-= vdev
->addr
+ VIRTIO_PCI_CONFIG
;
639 if (addr
> (vdev
->config_len
- sizeof(val
)))
642 memcpy(vdev
->config
+ addr
, &val
, sizeof(val
));
644 if (vdev
->set_config
)
645 vdev
->set_config(vdev
, vdev
->config
);
648 static void virtio_config_writew(void *opaque
, uint32_t addr
, uint32_t data
)
650 VirtIODevice
*vdev
= opaque
;
653 addr
-= vdev
->addr
+ VIRTIO_PCI_CONFIG
;
654 if (addr
> (vdev
->config_len
- sizeof(val
)))
657 memcpy(vdev
->config
+ addr
, &val
, sizeof(val
));
659 if (vdev
->set_config
)
660 vdev
->set_config(vdev
, vdev
->config
);
663 static void virtio_config_writel(void *opaque
, uint32_t addr
, uint32_t data
)
665 VirtIODevice
*vdev
= opaque
;
668 addr
-= vdev
->addr
+ VIRTIO_PCI_CONFIG
;
669 if (addr
> (vdev
->config_len
- sizeof(val
)))
672 memcpy(vdev
->config
+ addr
, &val
, sizeof(val
));
674 if (vdev
->set_config
)
675 vdev
->set_config(vdev
, vdev
->config
);
678 static void virtio_map(PCIDevice
*pci_dev
, int region_num
,
679 uint32_t addr
, uint32_t size
, int type
)
681 VirtIODevice
*vdev
= to_virtio_device(pci_dev
);
685 for (i
= 0; i
< 3; i
++) {
686 register_ioport_write(addr
, 20, 1 << i
, virtio_ioport_write
, vdev
);
687 register_ioport_read(addr
, 20, 1 << i
, virtio_ioport_read
, vdev
);
690 if (vdev
->config_len
) {
691 register_ioport_write(addr
+ 20, vdev
->config_len
, 1,
692 virtio_config_writeb
, vdev
);
693 register_ioport_write(addr
+ 20, vdev
->config_len
, 2,
694 virtio_config_writew
, vdev
);
695 register_ioport_write(addr
+ 20, vdev
->config_len
, 4,
696 virtio_config_writel
, vdev
);
697 register_ioport_read(addr
+ 20, vdev
->config_len
, 1,
698 virtio_config_readb
, vdev
);
699 register_ioport_read(addr
+ 20, vdev
->config_len
, 2,
700 virtio_config_readw
, vdev
);
701 register_ioport_read(addr
+ 20, vdev
->config_len
, 4,
702 virtio_config_readl
, vdev
);
704 vdev
->get_config(vdev
, vdev
->config
);
708 VirtQueue
*virtio_add_queue(VirtIODevice
*vdev
, int queue_size
,
709 void (*handle_output
)(VirtIODevice
*, VirtQueue
*))
713 for (i
= 0; i
< VIRTIO_PCI_QUEUE_MAX
; i
++) {
714 if (vdev
->vq
[i
].vring
.num
== 0)
718 if (i
== VIRTIO_PCI_QUEUE_MAX
|| queue_size
> VIRTQUEUE_MAX_SIZE
)
721 vdev
->vq
[i
].vring
.num
= queue_size
;
722 vdev
->vq
[i
].handle_output
= handle_output
;
727 void virtio_notify(VirtIODevice
*vdev
, VirtQueue
*vq
)
729 /* Always notify when queue is empty */
730 if ((vq
->inuse
|| vring_avail_idx(vq
) != vq
->last_avail_idx
) &&
731 (vring_avail_flags(vq
) & VRING_AVAIL_F_NO_INTERRUPT
))
735 virtio_update_irq(vdev
);
738 void virtio_notify_config(VirtIODevice
*vdev
)
740 if (!(vdev
->status
& VIRTIO_CONFIG_S_DRIVER_OK
))
744 virtio_update_irq(vdev
);
747 void virtio_save(VirtIODevice
*vdev
, QEMUFile
*f
)
751 pci_device_save(&vdev
->pci_dev
, f
);
753 qemu_put_be32s(f
, &vdev
->addr
);
754 qemu_put_8s(f
, &vdev
->status
);
755 qemu_put_8s(f
, &vdev
->isr
);
756 qemu_put_be16s(f
, &vdev
->queue_sel
);
757 qemu_put_be32s(f
, &vdev
->features
);
758 qemu_put_be32(f
, vdev
->config_len
);
759 qemu_put_buffer(f
, vdev
->config
, vdev
->config_len
);
761 for (i
= 0; i
< VIRTIO_PCI_QUEUE_MAX
; i
++) {
762 if (vdev
->vq
[i
].vring
.num
== 0)
768 for (i
= 0; i
< VIRTIO_PCI_QUEUE_MAX
; i
++) {
769 if (vdev
->vq
[i
].vring
.num
== 0)
772 qemu_put_be32(f
, vdev
->vq
[i
].vring
.num
);
773 qemu_put_be32s(f
, &vdev
->vq
[i
].pfn
);
774 qemu_put_be16s(f
, &vdev
->vq
[i
].last_avail_idx
);
778 void virtio_load(VirtIODevice
*vdev
, QEMUFile
*f
)
782 pci_device_load(&vdev
->pci_dev
, f
);
784 qemu_get_be32s(f
, &vdev
->addr
);
785 qemu_get_8s(f
, &vdev
->status
);
786 qemu_get_8s(f
, &vdev
->isr
);
787 qemu_get_be16s(f
, &vdev
->queue_sel
);
788 qemu_get_be32s(f
, &vdev
->features
);
789 vdev
->config_len
= qemu_get_be32(f
);
790 qemu_get_buffer(f
, vdev
->config
, vdev
->config_len
);
792 num
= qemu_get_be32(f
);
794 for (i
= 0; i
< num
; i
++) {
795 vdev
->vq
[i
].vring
.num
= qemu_get_be32(f
);
796 qemu_get_be32s(f
, &vdev
->vq
[i
].pfn
);
797 qemu_get_be16s(f
, &vdev
->vq
[i
].last_avail_idx
);
799 if (vdev
->vq
[i
].pfn
) {
800 target_phys_addr_t pa
;
802 pa
= (ram_addr_t
)vdev
->vq
[i
].pfn
<< VIRTIO_PCI_QUEUE_ADDR_SHIFT
;
803 virtqueue_init(&vdev
->vq
[i
], pa
);
807 virtio_update_irq(vdev
);
810 VirtIODevice
*virtio_init_pci(PCIBus
*bus
, const char *name
,
811 uint16_t vendor
, uint16_t device
,
812 uint16_t subvendor
, uint16_t subdevice
,
813 uint16_t class_code
, uint8_t pif
,
814 size_t config_size
, size_t struct_size
)
821 pci_dev
= pci_register_device(bus
, name
, struct_size
,
826 vdev
= to_virtio_device(pci_dev
);
831 vdev
->vq
= qemu_mallocz(sizeof(VirtQueue
) * VIRTIO_PCI_QUEUE_MAX
);
833 config
= pci_dev
->config
;
834 pci_config_set_vendor_id(config
, vendor
);
835 pci_config_set_device_id(config
, device
);
837 config
[0x08] = VIRTIO_PCI_ABI_VERSION
;
840 pci_config_set_class(config
, class_code
);
843 config
[0x2c] = subvendor
& 0xFF;
844 config
[0x2d] = (subvendor
>> 8) & 0xFF;
845 config
[0x2e] = subdevice
& 0xFF;
846 config
[0x2f] = (subdevice
>> 8) & 0xFF;
851 vdev
->config_len
= config_size
;
852 if (vdev
->config_len
)
853 vdev
->config
= qemu_mallocz(config_size
);
857 size
= 20 + config_size
;
859 size
= 1 << qemu_fls(size
);
861 pci_register_io_region(pci_dev
, 0, size
, PCI_ADDRESS_SPACE_IO
,
863 qemu_register_reset(virtio_reset
, vdev
);