2 * QEMU Sparc32 DMA controller emulation
4 * Copyright (c) 2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "sparc32_dma.h"
32 * This is the DMA controller part of chip STP2000 (Master I/O), also
33 * produced as NCR89C100. See
34 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
36 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/DMA2.txt
40 #define DPRINTF(fmt, args...) \
41 do { printf("DMA: " fmt , ##args); } while (0)
43 #define DPRINTF(fmt, args...)
47 #define DMA_SIZE (4 * sizeof(uint32_t))
48 /* We need the mask, because one instance of the device is not page
49 aligned (ledma, start address 0x0010) */
50 #define DMA_MASK (DMA_SIZE - 1)
52 #define DMA_VER 0xa0000000
54 #define DMA_INTREN 0x10
55 #define DMA_WRITE_MEM 0x100
56 #define DMA_LOADED 0x04000000
57 #define DMA_DRAIN_FIFO 0x40
58 #define DMA_RESET 0x80
60 typedef struct DMAState DMAState
;
63 uint32_t dmaregs
[DMA_REGS
];
69 /* Note: on sparc, the lance 16 bit bus is swapped */
70 void ledma_memory_read(void *opaque
, target_phys_addr_t addr
,
71 uint8_t *buf
, int len
, int do_bswap
)
76 DPRINTF("DMA write, direction: %c, addr 0x%8.8x\n",
77 s
->dmaregs
[0] & DMA_WRITE_MEM
? 'w': 'r', s
->dmaregs
[1]);
78 addr
|= s
->dmaregs
[3];
80 sparc_iommu_memory_read(s
->iommu
, addr
, buf
, len
);
84 sparc_iommu_memory_read(s
->iommu
, addr
, buf
, len
);
85 for(i
= 0; i
< len
; i
+= 2) {
86 bswap16s((uint16_t *)(buf
+ i
));
91 void ledma_memory_write(void *opaque
, target_phys_addr_t addr
,
92 uint8_t *buf
, int len
, int do_bswap
)
98 DPRINTF("DMA read, direction: %c, addr 0x%8.8x\n",
99 s
->dmaregs
[0] & DMA_WRITE_MEM
? 'w': 'r', s
->dmaregs
[1]);
100 addr
|= s
->dmaregs
[3];
102 sparc_iommu_memory_write(s
->iommu
, addr
, buf
, len
);
108 if (l
> sizeof(tmp_buf
))
110 for(i
= 0; i
< l
; i
+= 2) {
111 tmp_buf
[i
>> 1] = bswap16(*(uint16_t *)(buf
+ i
));
113 sparc_iommu_memory_write(s
->iommu
, addr
, (uint8_t *)tmp_buf
, l
);
121 static void dma_set_irq(void *opaque
, int irq
, int level
)
123 DMAState
*s
= opaque
;
125 DPRINTF("Raise IRQ\n");
126 s
->dmaregs
[0] |= DMA_INTR
;
127 qemu_irq_raise(s
->irq
);
129 s
->dmaregs
[0] &= ~DMA_INTR
;
130 DPRINTF("Lower IRQ\n");
131 qemu_irq_lower(s
->irq
);
135 void espdma_memory_read(void *opaque
, uint8_t *buf
, int len
)
137 DMAState
*s
= opaque
;
139 DPRINTF("DMA read, direction: %c, addr 0x%8.8x\n",
140 s
->dmaregs
[0] & DMA_WRITE_MEM
? 'w': 'r', s
->dmaregs
[1]);
141 sparc_iommu_memory_read(s
->iommu
, s
->dmaregs
[1], buf
, len
);
142 s
->dmaregs
[0] |= DMA_INTR
;
143 s
->dmaregs
[1] += len
;
146 void espdma_memory_write(void *opaque
, uint8_t *buf
, int len
)
148 DMAState
*s
= opaque
;
150 DPRINTF("DMA write, direction: %c, addr 0x%8.8x\n",
151 s
->dmaregs
[0] & DMA_WRITE_MEM
? 'w': 'r', s
->dmaregs
[1]);
152 sparc_iommu_memory_write(s
->iommu
, s
->dmaregs
[1], buf
, len
);
153 s
->dmaregs
[0] |= DMA_INTR
;
154 s
->dmaregs
[1] += len
;
157 static uint32_t dma_mem_readl(void *opaque
, target_phys_addr_t addr
)
159 DMAState
*s
= opaque
;
162 saddr
= (addr
& DMA_MASK
) >> 2;
163 DPRINTF("read dmareg " TARGET_FMT_plx
": 0x%8.8x\n", addr
,
166 return s
->dmaregs
[saddr
];
169 static void dma_mem_writel(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
171 DMAState
*s
= opaque
;
174 saddr
= (addr
& DMA_MASK
) >> 2;
175 DPRINTF("write dmareg " TARGET_FMT_plx
": 0x%8.8x -> 0x%8.8x\n", addr
,
176 s
->dmaregs
[saddr
], val
);
179 if (!(val
& DMA_INTREN
)) {
180 DPRINTF("Lower IRQ\n");
181 qemu_irq_lower(s
->irq
);
183 if (val
& DMA_RESET
) {
184 qemu_irq_raise(s
->dev_reset
);
185 qemu_irq_lower(s
->dev_reset
);
186 } else if (val
& DMA_DRAIN_FIFO
) {
187 val
&= ~DMA_DRAIN_FIFO
;
189 val
= DMA_DRAIN_FIFO
;
194 s
->dmaregs
[0] |= DMA_LOADED
;
199 s
->dmaregs
[saddr
] = val
;
202 static CPUReadMemoryFunc
*dma_mem_read
[3] = {
208 static CPUWriteMemoryFunc
*dma_mem_write
[3] = {
214 static void dma_reset(void *opaque
)
216 DMAState
*s
= opaque
;
218 memset(s
->dmaregs
, 0, DMA_SIZE
);
219 s
->dmaregs
[0] = DMA_VER
;
222 static void dma_save(QEMUFile
*f
, void *opaque
)
224 DMAState
*s
= opaque
;
227 for (i
= 0; i
< DMA_REGS
; i
++)
228 qemu_put_be32s(f
, &s
->dmaregs
[i
]);
231 static int dma_load(QEMUFile
*f
, void *opaque
, int version_id
)
233 DMAState
*s
= opaque
;
238 for (i
= 0; i
< DMA_REGS
; i
++)
239 qemu_get_be32s(f
, &s
->dmaregs
[i
]);
244 void *sparc32_dma_init(target_phys_addr_t daddr
, qemu_irq parent_irq
,
245 void *iommu
, qemu_irq
**dev_irq
, qemu_irq
**reset
)
250 s
= qemu_mallocz(sizeof(DMAState
));
255 dma_io_memory
= cpu_register_io_memory(0, dma_mem_read
, dma_mem_write
, s
);
256 cpu_register_physical_memory(daddr
, DMA_SIZE
, dma_io_memory
);
258 register_savevm("sparc32_dma", daddr
, 2, dma_save
, dma_load
, s
);
259 qemu_register_reset(dma_reset
, s
);
260 *dev_irq
= qemu_allocate_irqs(dma_set_irq
, s
, 1);
262 *reset
= &s
->dev_reset
;