Fix 64 bit issue in slirp
[qemu/mini2440/sniper_sniper_test.git] / hw / onenand.c
blob510119f350cba2b97dbd4029afc70c384e9dd4b3
1 /*
2 * OneNAND flash memories emulation.
4 * Copyright (C) 2008 Nokia Corporation
5 * Written by Andrzej Zaborowski <andrew@openedhand.com>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 or
10 * (at your option) version 3 of the License.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
22 #include "qemu-common.h"
23 #include "flash.h"
24 #include "irq.h"
25 #include "sysemu.h"
26 #include "block.h"
28 /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
29 #define PAGE_SHIFT 11
31 /* Fixed */
32 #define BLOCK_SHIFT (PAGE_SHIFT + 6)
34 struct onenand_s {
35 uint32_t id;
36 int shift;
37 target_phys_addr_t base;
38 qemu_irq intr;
39 qemu_irq rdy;
40 BlockDriverState *bdrv;
41 BlockDriverState *bdrv_cur;
42 uint8_t *image;
43 uint8_t *otp;
44 uint8_t *current;
45 ram_addr_t ram;
46 uint8_t *boot[2];
47 uint8_t *data[2][2];
48 int iomemtype;
49 int cycle;
50 int otpmode;
52 uint16_t addr[8];
53 uint16_t unladdr[8];
54 int bufaddr;
55 int count;
56 uint16_t command;
57 uint16_t config[2];
58 uint16_t status;
59 uint16_t intstatus;
60 uint16_t wpstatus;
62 struct ecc_state_s ecc;
64 int density_mask;
65 int secs;
66 int secs_cur;
67 int blocks;
68 uint8_t *blockwp;
71 enum {
72 ONEN_BUF_BLOCK = 0,
73 ONEN_BUF_BLOCK2 = 1,
74 ONEN_BUF_DEST_BLOCK = 2,
75 ONEN_BUF_DEST_PAGE = 3,
76 ONEN_BUF_PAGE = 7,
79 enum {
80 ONEN_ERR_CMD = 1 << 10,
81 ONEN_ERR_ERASE = 1 << 11,
82 ONEN_ERR_PROG = 1 << 12,
83 ONEN_ERR_LOAD = 1 << 13,
86 enum {
87 ONEN_INT_RESET = 1 << 4,
88 ONEN_INT_ERASE = 1 << 5,
89 ONEN_INT_PROG = 1 << 6,
90 ONEN_INT_LOAD = 1 << 7,
91 ONEN_INT = 1 << 15,
94 enum {
95 ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
96 ONEN_LOCK_LOCKED = 1 << 1,
97 ONEN_LOCK_UNLOCKED = 1 << 2,
100 void onenand_base_update(void *opaque, target_phys_addr_t new)
102 struct onenand_s *s = (struct onenand_s *) opaque;
104 s->base = new;
106 /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
107 * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
108 * write boot commands. Also take note of the BWPS bit. */
109 cpu_register_physical_memory(s->base + (0x0000 << s->shift),
110 0x0200 << s->shift, s->iomemtype);
111 cpu_register_physical_memory(s->base + (0x0200 << s->shift),
112 0xbe00 << s->shift,
113 (s->ram +(0x0200 << s->shift)) | IO_MEM_RAM);
114 if (s->iomemtype)
115 cpu_register_physical_memory_offset(s->base + (0xc000 << s->shift),
116 0x4000 << s->shift, s->iomemtype, (0xc000 << s->shift));
119 void onenand_base_unmap(void *opaque)
121 struct onenand_s *s = (struct onenand_s *) opaque;
123 cpu_register_physical_memory(s->base,
124 0x10000 << s->shift, IO_MEM_UNASSIGNED);
127 static void onenand_intr_update(struct onenand_s *s)
129 qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
132 /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
133 static void onenand_reset(struct onenand_s *s, int cold)
135 memset(&s->addr, 0, sizeof(s->addr));
136 s->command = 0;
137 s->count = 1;
138 s->bufaddr = 0;
139 s->config[0] = 0x40c0;
140 s->config[1] = 0x0000;
141 onenand_intr_update(s);
142 qemu_irq_raise(s->rdy);
143 s->status = 0x0000;
144 s->intstatus = cold ? 0x8080 : 0x8010;
145 s->unladdr[0] = 0;
146 s->unladdr[1] = 0;
147 s->wpstatus = 0x0002;
148 s->cycle = 0;
149 s->otpmode = 0;
150 s->bdrv_cur = s->bdrv;
151 s->current = s->image;
152 s->secs_cur = s->secs;
154 if (cold) {
155 /* Lock the whole flash */
156 memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
158 if (s->bdrv && bdrv_read(s->bdrv, 0, s->boot[0], 8) < 0)
159 cpu_abort(cpu_single_env, "%s: Loading the BootRAM failed.\n",
160 __FUNCTION__);
164 static inline int onenand_load_main(struct onenand_s *s, int sec, int secn,
165 void *dest)
167 if (s->bdrv_cur)
168 return bdrv_read(s->bdrv_cur, sec, dest, secn) < 0;
169 else if (sec + secn > s->secs_cur)
170 return 1;
172 memcpy(dest, s->current + (sec << 9), secn << 9);
174 return 0;
177 static inline int onenand_prog_main(struct onenand_s *s, int sec, int secn,
178 void *src)
180 if (s->bdrv_cur)
181 return bdrv_write(s->bdrv_cur, sec, src, secn) < 0;
182 else if (sec + secn > s->secs_cur)
183 return 1;
185 memcpy(s->current + (sec << 9), src, secn << 9);
187 return 0;
190 static inline int onenand_load_spare(struct onenand_s *s, int sec, int secn,
191 void *dest)
193 uint8_t buf[512];
195 if (s->bdrv_cur) {
196 if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
197 return 1;
198 memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
199 } else if (sec + secn > s->secs_cur)
200 return 1;
201 else
202 memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
204 return 0;
207 static inline int onenand_prog_spare(struct onenand_s *s, int sec, int secn,
208 void *src)
210 uint8_t buf[512];
212 if (s->bdrv_cur) {
213 if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
214 return 1;
215 memcpy(buf + ((sec & 31) << 4), src, secn << 4);
216 return bdrv_write(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0;
217 } else if (sec + secn > s->secs_cur)
218 return 1;
220 memcpy(s->current + (s->secs_cur << 9) + (sec << 4), src, secn << 4);
222 return 0;
225 static inline int onenand_erase(struct onenand_s *s, int sec, int num)
227 /* TODO: optimise */
228 uint8_t buf[512];
230 memset(buf, 0xff, sizeof(buf));
231 for (; num > 0; num --, sec ++) {
232 if (onenand_prog_main(s, sec, 1, buf))
233 return 1;
234 if (onenand_prog_spare(s, sec, 1, buf))
235 return 1;
238 return 0;
241 static void onenand_command(struct onenand_s *s, int cmd)
243 int b;
244 int sec;
245 void *buf;
246 #define SETADDR(block, page) \
247 sec = (s->addr[page] & 3) + \
248 ((((s->addr[page] >> 2) & 0x3f) + \
249 (((s->addr[block] & 0xfff) | \
250 (s->addr[block] >> 15 ? \
251 s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
252 #define SETBUF_M() \
253 buf = (s->bufaddr & 8) ? \
254 s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \
255 buf += (s->bufaddr & 3) << 9;
256 #define SETBUF_S() \
257 buf = (s->bufaddr & 8) ? \
258 s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \
259 buf += (s->bufaddr & 3) << 4;
261 switch (cmd) {
262 case 0x00: /* Load single/multiple sector data unit into buffer */
263 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
265 SETBUF_M()
266 if (onenand_load_main(s, sec, s->count, buf))
267 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
269 #if 0
270 SETBUF_S()
271 if (onenand_load_spare(s, sec, s->count, buf))
272 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
273 #endif
275 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
276 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
277 * then we need two split the read/write into two chunks.
279 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
280 break;
281 case 0x13: /* Load single/multiple spare sector into buffer */
282 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
284 SETBUF_S()
285 if (onenand_load_spare(s, sec, s->count, buf))
286 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
288 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
289 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
290 * then we need two split the read/write into two chunks.
292 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
293 break;
294 case 0x80: /* Program single/multiple sector data unit from buffer */
295 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
297 SETBUF_M()
298 if (onenand_prog_main(s, sec, s->count, buf))
299 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
301 #if 0
302 SETBUF_S()
303 if (onenand_prog_spare(s, sec, s->count, buf))
304 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
305 #endif
307 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
308 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
309 * then we need two split the read/write into two chunks.
311 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
312 break;
313 case 0x1a: /* Program single/multiple spare area sector from buffer */
314 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
316 SETBUF_S()
317 if (onenand_prog_spare(s, sec, s->count, buf))
318 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
320 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
321 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
322 * then we need two split the read/write into two chunks.
324 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
325 break;
326 case 0x1b: /* Copy-back program */
327 SETBUF_S()
329 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
330 if (onenand_load_main(s, sec, s->count, buf))
331 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
333 SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
334 if (onenand_prog_main(s, sec, s->count, buf))
335 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
337 /* TODO: spare areas */
339 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
340 break;
342 case 0x23: /* Unlock NAND array block(s) */
343 s->intstatus |= ONEN_INT;
345 /* XXX the previous (?) area should be locked automatically */
346 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
347 if (b >= s->blocks) {
348 s->status |= ONEN_ERR_CMD;
349 break;
351 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
352 break;
354 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
356 break;
357 case 0x27: /* Unlock All NAND array blocks */
358 s->intstatus |= ONEN_INT;
360 for (b = 0; b < s->blocks; b ++) {
361 if (b >= s->blocks) {
362 s->status |= ONEN_ERR_CMD;
363 break;
365 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
366 break;
368 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
370 break;
372 case 0x2a: /* Lock NAND array block(s) */
373 s->intstatus |= ONEN_INT;
375 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
376 if (b >= s->blocks) {
377 s->status |= ONEN_ERR_CMD;
378 break;
380 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
381 break;
383 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
385 break;
386 case 0x2c: /* Lock-tight NAND array block(s) */
387 s->intstatus |= ONEN_INT;
389 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
390 if (b >= s->blocks) {
391 s->status |= ONEN_ERR_CMD;
392 break;
394 if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
395 continue;
397 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
399 break;
401 case 0x71: /* Erase-Verify-Read */
402 s->intstatus |= ONEN_INT;
403 break;
404 case 0x95: /* Multi-block erase */
405 qemu_irq_pulse(s->intr);
406 /* Fall through. */
407 case 0x94: /* Block erase */
408 sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
409 (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
410 << (BLOCK_SHIFT - 9);
411 if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
412 s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
414 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
415 break;
416 case 0xb0: /* Erase suspend */
417 break;
418 case 0x30: /* Erase resume */
419 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
420 break;
422 case 0xf0: /* Reset NAND Flash core */
423 onenand_reset(s, 0);
424 break;
425 case 0xf3: /* Reset OneNAND */
426 onenand_reset(s, 0);
427 break;
429 case 0x65: /* OTP Access */
430 s->intstatus |= ONEN_INT;
431 s->bdrv_cur = 0;
432 s->current = s->otp;
433 s->secs_cur = 1 << (BLOCK_SHIFT - 9);
434 s->addr[ONEN_BUF_BLOCK] = 0;
435 s->otpmode = 1;
436 break;
438 default:
439 s->status |= ONEN_ERR_CMD;
440 s->intstatus |= ONEN_INT;
441 fprintf(stderr, "%s: unknown OneNAND command %x\n",
442 __FUNCTION__, cmd);
445 onenand_intr_update(s);
448 static uint32_t onenand_read(void *opaque, target_phys_addr_t addr)
450 struct onenand_s *s = (struct onenand_s *) opaque;
451 int offset = addr >> s->shift;
453 switch (offset) {
454 case 0x0000 ... 0xc000:
455 return lduw_le_p(s->boot[0] + addr);
457 case 0xf000: /* Manufacturer ID */
458 return (s->id >> 16) & 0xff;
459 case 0xf001: /* Device ID */
460 return (s->id >> 8) & 0xff;
461 /* TODO: get the following values from a real chip! */
462 case 0xf002: /* Version ID */
463 return (s->id >> 0) & 0xff;
464 case 0xf003: /* Data Buffer size */
465 return 1 << PAGE_SHIFT;
466 case 0xf004: /* Boot Buffer size */
467 return 0x200;
468 case 0xf005: /* Amount of buffers */
469 return 1 | (2 << 8);
470 case 0xf006: /* Technology */
471 return 0;
473 case 0xf100 ... 0xf107: /* Start addresses */
474 return s->addr[offset - 0xf100];
476 case 0xf200: /* Start buffer */
477 return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
479 case 0xf220: /* Command */
480 return s->command;
481 case 0xf221: /* System Configuration 1 */
482 return s->config[0] & 0xffe0;
483 case 0xf222: /* System Configuration 2 */
484 return s->config[1];
486 case 0xf240: /* Controller Status */
487 return s->status;
488 case 0xf241: /* Interrupt */
489 return s->intstatus;
490 case 0xf24c: /* Unlock Start Block Address */
491 return s->unladdr[0];
492 case 0xf24d: /* Unlock End Block Address */
493 return s->unladdr[1];
494 case 0xf24e: /* Write Protection Status */
495 return s->wpstatus;
497 case 0xff00: /* ECC Status */
498 return 0x00;
499 case 0xff01: /* ECC Result of main area data */
500 case 0xff02: /* ECC Result of spare area data */
501 case 0xff03: /* ECC Result of main area data */
502 case 0xff04: /* ECC Result of spare area data */
503 cpu_abort(cpu_single_env, "%s: imeplement ECC\n", __FUNCTION__);
504 return 0x0000;
507 fprintf(stderr, "%s: unknown OneNAND register %x\n",
508 __FUNCTION__, offset);
509 return 0;
512 static void onenand_write(void *opaque, target_phys_addr_t addr,
513 uint32_t value)
515 struct onenand_s *s = (struct onenand_s *) opaque;
516 int offset = addr >> s->shift;
517 int sec;
519 switch (offset) {
520 case 0x0000 ... 0x01ff:
521 case 0x8000 ... 0x800f:
522 if (s->cycle) {
523 s->cycle = 0;
525 if (value == 0x0000) {
526 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
527 onenand_load_main(s, sec,
528 1 << (PAGE_SHIFT - 9), s->data[0][0]);
529 s->addr[ONEN_BUF_PAGE] += 4;
530 s->addr[ONEN_BUF_PAGE] &= 0xff;
532 break;
535 switch (value) {
536 case 0x00f0: /* Reset OneNAND */
537 onenand_reset(s, 0);
538 break;
540 case 0x00e0: /* Load Data into Buffer */
541 s->cycle = 1;
542 break;
544 case 0x0090: /* Read Identification Data */
545 memset(s->boot[0], 0, 3 << s->shift);
546 s->boot[0][0 << s->shift] = (s->id >> 16) & 0xff;
547 s->boot[0][1 << s->shift] = (s->id >> 8) & 0xff;
548 s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
549 break;
551 default:
552 fprintf(stderr, "%s: unknown OneNAND boot command %x\n",
553 __FUNCTION__, value);
555 break;
557 case 0xf100 ... 0xf107: /* Start addresses */
558 s->addr[offset - 0xf100] = value;
559 break;
561 case 0xf200: /* Start buffer */
562 s->bufaddr = (value >> 8) & 0xf;
563 if (PAGE_SHIFT == 11)
564 s->count = (value & 3) ?: 4;
565 else if (PAGE_SHIFT == 10)
566 s->count = (value & 1) ?: 2;
567 break;
569 case 0xf220: /* Command */
570 if (s->intstatus & (1 << 15))
571 break;
572 s->command = value;
573 onenand_command(s, s->command);
574 break;
575 case 0xf221: /* System Configuration 1 */
576 s->config[0] = value;
577 onenand_intr_update(s);
578 qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
579 break;
580 case 0xf222: /* System Configuration 2 */
581 s->config[1] = value;
582 break;
584 case 0xf241: /* Interrupt */
585 s->intstatus &= value;
586 if ((1 << 15) & ~s->intstatus)
587 s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
588 ONEN_ERR_PROG | ONEN_ERR_LOAD);
589 onenand_intr_update(s);
590 break;
591 case 0xf24c: /* Unlock Start Block Address */
592 s->unladdr[0] = value & (s->blocks - 1);
593 /* For some reason we have to set the end address to by default
594 * be same as start because the software forgets to write anything
595 * in there. */
596 s->unladdr[1] = value & (s->blocks - 1);
597 break;
598 case 0xf24d: /* Unlock End Block Address */
599 s->unladdr[1] = value & (s->blocks - 1);
600 break;
602 default:
603 fprintf(stderr, "%s: unknown OneNAND register %x\n",
604 __FUNCTION__, offset);
608 static CPUReadMemoryFunc *onenand_readfn[] = {
609 onenand_read, /* TODO */
610 onenand_read,
611 onenand_read,
614 static CPUWriteMemoryFunc *onenand_writefn[] = {
615 onenand_write, /* TODO */
616 onenand_write,
617 onenand_write,
620 void *onenand_init(uint32_t id, int regshift, qemu_irq irq)
622 struct onenand_s *s = (struct onenand_s *) qemu_mallocz(sizeof(*s));
623 int bdrv_index = drive_get_index(IF_MTD, 0, 0);
624 uint32_t size = 1 << (24 + ((id >> 12) & 7));
625 void *ram;
627 s->shift = regshift;
628 s->intr = irq;
629 s->rdy = 0;
630 s->id = id;
631 s->blocks = size >> BLOCK_SHIFT;
632 s->secs = size >> 9;
633 s->blockwp = qemu_malloc(s->blocks);
634 s->density_mask = (id & (1 << 11)) ? (1 << (6 + ((id >> 12) & 7))) : 0;
635 s->iomemtype = cpu_register_io_memory(0, onenand_readfn,
636 onenand_writefn, s);
637 if (bdrv_index == -1)
638 s->image = memset(qemu_malloc(size + (size >> 5)),
639 0xff, size + (size >> 5));
640 else
641 s->bdrv = drives_table[bdrv_index].bdrv;
642 s->otp = memset(qemu_malloc((64 + 2) << PAGE_SHIFT),
643 0xff, (64 + 2) << PAGE_SHIFT);
644 s->ram = qemu_ram_alloc(0xc000 << s->shift);
645 ram = phys_ram_base + s->ram;
646 s->boot[0] = ram + (0x0000 << s->shift);
647 s->boot[1] = ram + (0x8000 << s->shift);
648 s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
649 s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
650 s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
651 s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
653 onenand_reset(s, 1);
655 return s;
658 void *onenand_raw_otp(void *opaque)
660 struct onenand_s *s = (struct onenand_s *) opaque;
662 return s->otp;