Fix 64 bit issue in slirp
[qemu/mini2440/sniper_sniper_test.git] / hw / lsi53c895a.c
blob81d56724562c537798503910c2a6462f3e129d13
1 /*
2 * QEMU LSI53C895A SCSI Host Bus Adapter emulation
4 * Copyright (c) 2006 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licenced under the LGPL.
8 */
10 /* ??? Need to check if the {read,write}[wl] routines work properly on
11 big-endian targets. */
13 #include "hw.h"
14 #include "pci.h"
15 #include "scsi-disk.h"
17 //#define DEBUG_LSI
18 //#define DEBUG_LSI_REG
20 #ifdef DEBUG_LSI
21 #define DPRINTF(fmt, args...) \
22 do { printf("lsi_scsi: " fmt , ##args); } while (0)
23 #define BADF(fmt, args...) \
24 do { fprintf(stderr, "lsi_scsi: error: " fmt , ##args); exit(1);} while (0)
25 #else
26 #define DPRINTF(fmt, args...) do {} while(0)
27 #define BADF(fmt, args...) \
28 do { fprintf(stderr, "lsi_scsi: error: " fmt , ##args);} while (0)
29 #endif
31 #define LSI_SCNTL0_TRG 0x01
32 #define LSI_SCNTL0_AAP 0x02
33 #define LSI_SCNTL0_EPC 0x08
34 #define LSI_SCNTL0_WATN 0x10
35 #define LSI_SCNTL0_START 0x20
37 #define LSI_SCNTL1_SST 0x01
38 #define LSI_SCNTL1_IARB 0x02
39 #define LSI_SCNTL1_AESP 0x04
40 #define LSI_SCNTL1_RST 0x08
41 #define LSI_SCNTL1_CON 0x10
42 #define LSI_SCNTL1_DHP 0x20
43 #define LSI_SCNTL1_ADB 0x40
44 #define LSI_SCNTL1_EXC 0x80
46 #define LSI_SCNTL2_WSR 0x01
47 #define LSI_SCNTL2_VUE0 0x02
48 #define LSI_SCNTL2_VUE1 0x04
49 #define LSI_SCNTL2_WSS 0x08
50 #define LSI_SCNTL2_SLPHBEN 0x10
51 #define LSI_SCNTL2_SLPMD 0x20
52 #define LSI_SCNTL2_CHM 0x40
53 #define LSI_SCNTL2_SDU 0x80
55 #define LSI_ISTAT0_DIP 0x01
56 #define LSI_ISTAT0_SIP 0x02
57 #define LSI_ISTAT0_INTF 0x04
58 #define LSI_ISTAT0_CON 0x08
59 #define LSI_ISTAT0_SEM 0x10
60 #define LSI_ISTAT0_SIGP 0x20
61 #define LSI_ISTAT0_SRST 0x40
62 #define LSI_ISTAT0_ABRT 0x80
64 #define LSI_ISTAT1_SI 0x01
65 #define LSI_ISTAT1_SRUN 0x02
66 #define LSI_ISTAT1_FLSH 0x04
68 #define LSI_SSTAT0_SDP0 0x01
69 #define LSI_SSTAT0_RST 0x02
70 #define LSI_SSTAT0_WOA 0x04
71 #define LSI_SSTAT0_LOA 0x08
72 #define LSI_SSTAT0_AIP 0x10
73 #define LSI_SSTAT0_OLF 0x20
74 #define LSI_SSTAT0_ORF 0x40
75 #define LSI_SSTAT0_ILF 0x80
77 #define LSI_SIST0_PAR 0x01
78 #define LSI_SIST0_RST 0x02
79 #define LSI_SIST0_UDC 0x04
80 #define LSI_SIST0_SGE 0x08
81 #define LSI_SIST0_RSL 0x10
82 #define LSI_SIST0_SEL 0x20
83 #define LSI_SIST0_CMP 0x40
84 #define LSI_SIST0_MA 0x80
86 #define LSI_SIST1_HTH 0x01
87 #define LSI_SIST1_GEN 0x02
88 #define LSI_SIST1_STO 0x04
89 #define LSI_SIST1_SBMC 0x10
91 #define LSI_SOCL_IO 0x01
92 #define LSI_SOCL_CD 0x02
93 #define LSI_SOCL_MSG 0x04
94 #define LSI_SOCL_ATN 0x08
95 #define LSI_SOCL_SEL 0x10
96 #define LSI_SOCL_BSY 0x20
97 #define LSI_SOCL_ACK 0x40
98 #define LSI_SOCL_REQ 0x80
100 #define LSI_DSTAT_IID 0x01
101 #define LSI_DSTAT_SIR 0x04
102 #define LSI_DSTAT_SSI 0x08
103 #define LSI_DSTAT_ABRT 0x10
104 #define LSI_DSTAT_BF 0x20
105 #define LSI_DSTAT_MDPE 0x40
106 #define LSI_DSTAT_DFE 0x80
108 #define LSI_DCNTL_COM 0x01
109 #define LSI_DCNTL_IRQD 0x02
110 #define LSI_DCNTL_STD 0x04
111 #define LSI_DCNTL_IRQM 0x08
112 #define LSI_DCNTL_SSM 0x10
113 #define LSI_DCNTL_PFEN 0x20
114 #define LSI_DCNTL_PFF 0x40
115 #define LSI_DCNTL_CLSE 0x80
117 #define LSI_DMODE_MAN 0x01
118 #define LSI_DMODE_BOF 0x02
119 #define LSI_DMODE_ERMP 0x04
120 #define LSI_DMODE_ERL 0x08
121 #define LSI_DMODE_DIOM 0x10
122 #define LSI_DMODE_SIOM 0x20
124 #define LSI_CTEST2_DACK 0x01
125 #define LSI_CTEST2_DREQ 0x02
126 #define LSI_CTEST2_TEOP 0x04
127 #define LSI_CTEST2_PCICIE 0x08
128 #define LSI_CTEST2_CM 0x10
129 #define LSI_CTEST2_CIO 0x20
130 #define LSI_CTEST2_SIGP 0x40
131 #define LSI_CTEST2_DDIR 0x80
133 #define LSI_CTEST5_BL2 0x04
134 #define LSI_CTEST5_DDIR 0x08
135 #define LSI_CTEST5_MASR 0x10
136 #define LSI_CTEST5_DFSN 0x20
137 #define LSI_CTEST5_BBCK 0x40
138 #define LSI_CTEST5_ADCK 0x80
140 #define LSI_CCNTL0_DILS 0x01
141 #define LSI_CCNTL0_DISFC 0x10
142 #define LSI_CCNTL0_ENNDJ 0x20
143 #define LSI_CCNTL0_PMJCTL 0x40
144 #define LSI_CCNTL0_ENPMJ 0x80
146 #define LSI_CCNTL1_EN64DBMV 0x01
147 #define LSI_CCNTL1_EN64TIBMV 0x02
148 #define LSI_CCNTL1_64TIMOD 0x04
149 #define LSI_CCNTL1_DDAC 0x08
150 #define LSI_CCNTL1_ZMOD 0x80
152 #define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD)
154 #define PHASE_DO 0
155 #define PHASE_DI 1
156 #define PHASE_CMD 2
157 #define PHASE_ST 3
158 #define PHASE_MO 6
159 #define PHASE_MI 7
160 #define PHASE_MASK 7
162 /* Maximum length of MSG IN data. */
163 #define LSI_MAX_MSGIN_LEN 8
165 /* Flag set if this is a tagged command. */
166 #define LSI_TAG_VALID (1 << 16)
168 typedef struct {
169 uint32_t tag;
170 uint32_t pending;
171 int out;
172 } lsi_queue;
174 typedef struct {
175 PCIDevice pci_dev;
176 int mmio_io_addr;
177 int ram_io_addr;
178 uint32_t script_ram_base;
180 int carry; /* ??? Should this be an a visible register somewhere? */
181 int sense;
182 /* Action to take at the end of a MSG IN phase.
183 0 = COMMAND, 1 = disconect, 2 = DATA OUT, 3 = DATA IN. */
184 int msg_action;
185 int msg_len;
186 uint8_t msg[LSI_MAX_MSGIN_LEN];
187 /* 0 if SCRIPTS are running or stopped.
188 * 1 if a Wait Reselect instruction has been issued.
189 * 2 if processing DMA from lsi_execute_script.
190 * 3 if a DMA operation is in progress. */
191 int waiting;
192 SCSIDevice *scsi_dev[LSI_MAX_DEVS];
193 SCSIDevice *current_dev;
194 int current_lun;
195 /* The tag is a combination of the device ID and the SCSI tag. */
196 uint32_t current_tag;
197 uint32_t current_dma_len;
198 int command_complete;
199 uint8_t *dma_buf;
200 lsi_queue *queue;
201 int queue_len;
202 int active_commands;
204 uint32_t dsa;
205 uint32_t temp;
206 uint32_t dnad;
207 uint32_t dbc;
208 uint8_t istat0;
209 uint8_t istat1;
210 uint8_t dcmd;
211 uint8_t dstat;
212 uint8_t dien;
213 uint8_t sist0;
214 uint8_t sist1;
215 uint8_t sien0;
216 uint8_t sien1;
217 uint8_t mbox0;
218 uint8_t mbox1;
219 uint8_t dfifo;
220 uint8_t ctest2;
221 uint8_t ctest3;
222 uint8_t ctest4;
223 uint8_t ctest5;
224 uint8_t ccntl0;
225 uint8_t ccntl1;
226 uint32_t dsp;
227 uint32_t dsps;
228 uint8_t dmode;
229 uint8_t dcntl;
230 uint8_t scntl0;
231 uint8_t scntl1;
232 uint8_t scntl2;
233 uint8_t scntl3;
234 uint8_t sstat0;
235 uint8_t sstat1;
236 uint8_t scid;
237 uint8_t sxfer;
238 uint8_t socl;
239 uint8_t sdid;
240 uint8_t ssid;
241 uint8_t sfbr;
242 uint8_t stest1;
243 uint8_t stest2;
244 uint8_t stest3;
245 uint8_t sidl;
246 uint8_t stime0;
247 uint8_t respid0;
248 uint8_t respid1;
249 uint32_t mmrs;
250 uint32_t mmws;
251 uint32_t sfs;
252 uint32_t drs;
253 uint32_t sbms;
254 uint32_t dbms;
255 uint32_t dnad64;
256 uint32_t pmjad1;
257 uint32_t pmjad2;
258 uint32_t rbc;
259 uint32_t ua;
260 uint32_t ia;
261 uint32_t sbc;
262 uint32_t csbc;
263 uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */
265 /* Script ram is stored as 32-bit words in host byteorder. */
266 uint32_t script_ram[2048];
267 } LSIState;
269 static void lsi_soft_reset(LSIState *s)
271 DPRINTF("Reset\n");
272 s->carry = 0;
274 s->waiting = 0;
275 s->dsa = 0;
276 s->dnad = 0;
277 s->dbc = 0;
278 s->temp = 0;
279 memset(s->scratch, 0, sizeof(s->scratch));
280 s->istat0 = 0;
281 s->istat1 = 0;
282 s->dcmd = 0;
283 s->dstat = 0;
284 s->dien = 0;
285 s->sist0 = 0;
286 s->sist1 = 0;
287 s->sien0 = 0;
288 s->sien1 = 0;
289 s->mbox0 = 0;
290 s->mbox1 = 0;
291 s->dfifo = 0;
292 s->ctest2 = 0;
293 s->ctest3 = 0;
294 s->ctest4 = 0;
295 s->ctest5 = 0;
296 s->ccntl0 = 0;
297 s->ccntl1 = 0;
298 s->dsp = 0;
299 s->dsps = 0;
300 s->dmode = 0;
301 s->dcntl = 0;
302 s->scntl0 = 0xc0;
303 s->scntl1 = 0;
304 s->scntl2 = 0;
305 s->scntl3 = 0;
306 s->sstat0 = 0;
307 s->sstat1 = 0;
308 s->scid = 7;
309 s->sxfer = 0;
310 s->socl = 0;
311 s->stest1 = 0;
312 s->stest2 = 0;
313 s->stest3 = 0;
314 s->sidl = 0;
315 s->stime0 = 0;
316 s->respid0 = 0x80;
317 s->respid1 = 0;
318 s->mmrs = 0;
319 s->mmws = 0;
320 s->sfs = 0;
321 s->drs = 0;
322 s->sbms = 0;
323 s->dbms = 0;
324 s->dnad64 = 0;
325 s->pmjad1 = 0;
326 s->pmjad2 = 0;
327 s->rbc = 0;
328 s->ua = 0;
329 s->ia = 0;
330 s->sbc = 0;
331 s->csbc = 0;
334 static int lsi_dma_40bit(LSIState *s)
336 if ((s->ccntl1 & LSI_CCNTL1_40BIT) == LSI_CCNTL1_40BIT)
337 return 1;
338 return 0;
341 static int lsi_dma_ti64bit(LSIState *s)
343 if ((s->ccntl1 & LSI_CCNTL1_EN64TIBMV) == LSI_CCNTL1_EN64TIBMV)
344 return 1;
345 return 0;
348 static int lsi_dma_64bit(LSIState *s)
350 if ((s->ccntl1 & LSI_CCNTL1_EN64DBMV) == LSI_CCNTL1_EN64DBMV)
351 return 1;
352 return 0;
355 static uint8_t lsi_reg_readb(LSIState *s, int offset);
356 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
357 static void lsi_execute_script(LSIState *s);
359 static inline uint32_t read_dword(LSIState *s, uint32_t addr)
361 uint32_t buf;
363 /* Optimize reading from SCRIPTS RAM. */
364 if ((addr & 0xffffe000) == s->script_ram_base) {
365 return s->script_ram[(addr & 0x1fff) >> 2];
367 cpu_physical_memory_read(addr, (uint8_t *)&buf, 4);
368 return cpu_to_le32(buf);
371 static void lsi_stop_script(LSIState *s)
373 s->istat1 &= ~LSI_ISTAT1_SRUN;
376 static void lsi_update_irq(LSIState *s)
378 int level;
379 static int last_level;
381 /* It's unclear whether the DIP/SIP bits should be cleared when the
382 Interrupt Status Registers are cleared or when istat0 is read.
383 We currently do the formwer, which seems to work. */
384 level = 0;
385 if (s->dstat) {
386 if (s->dstat & s->dien)
387 level = 1;
388 s->istat0 |= LSI_ISTAT0_DIP;
389 } else {
390 s->istat0 &= ~LSI_ISTAT0_DIP;
393 if (s->sist0 || s->sist1) {
394 if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
395 level = 1;
396 s->istat0 |= LSI_ISTAT0_SIP;
397 } else {
398 s->istat0 &= ~LSI_ISTAT0_SIP;
400 if (s->istat0 & LSI_ISTAT0_INTF)
401 level = 1;
403 if (level != last_level) {
404 DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
405 level, s->dstat, s->sist1, s->sist0);
406 last_level = level;
408 qemu_set_irq(s->pci_dev.irq[0], level);
411 /* Stop SCRIPTS execution and raise a SCSI interrupt. */
412 static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
414 uint32_t mask0;
415 uint32_t mask1;
417 DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
418 stat1, stat0, s->sist1, s->sist0);
419 s->sist0 |= stat0;
420 s->sist1 |= stat1;
421 /* Stop processor on fatal or unmasked interrupt. As a special hack
422 we don't stop processing when raising STO. Instead continue
423 execution and stop at the next insn that accesses the SCSI bus. */
424 mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
425 mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
426 mask1 &= ~LSI_SIST1_STO;
427 if (s->sist0 & mask0 || s->sist1 & mask1) {
428 lsi_stop_script(s);
430 lsi_update_irq(s);
433 /* Stop SCRIPTS execution and raise a DMA interrupt. */
434 static void lsi_script_dma_interrupt(LSIState *s, int stat)
436 DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat);
437 s->dstat |= stat;
438 lsi_update_irq(s);
439 lsi_stop_script(s);
442 static inline void lsi_set_phase(LSIState *s, int phase)
444 s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
447 static void lsi_bad_phase(LSIState *s, int out, int new_phase)
449 /* Trigger a phase mismatch. */
450 if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
451 if ((s->ccntl0 & LSI_CCNTL0_PMJCTL) || out) {
452 s->dsp = s->pmjad1;
453 } else {
454 s->dsp = s->pmjad2;
456 DPRINTF("Data phase mismatch jump to %08x\n", s->dsp);
457 } else {
458 DPRINTF("Phase mismatch interrupt\n");
459 lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
460 lsi_stop_script(s);
462 lsi_set_phase(s, new_phase);
466 /* Resume SCRIPTS execution after a DMA operation. */
467 static void lsi_resume_script(LSIState *s)
469 if (s->waiting != 2) {
470 s->waiting = 0;
471 lsi_execute_script(s);
472 } else {
473 s->waiting = 0;
477 /* Initiate a SCSI layer data transfer. */
478 static void lsi_do_dma(LSIState *s, int out)
480 uint32_t count;
481 target_phys_addr_t addr;
483 if (!s->current_dma_len) {
484 /* Wait until data is available. */
485 DPRINTF("DMA no data available\n");
486 return;
489 count = s->dbc;
490 if (count > s->current_dma_len)
491 count = s->current_dma_len;
493 addr = s->dnad;
494 /* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */
495 if (lsi_dma_40bit(s) || lsi_dma_ti64bit(s))
496 addr |= ((uint64_t)s->dnad64 << 32);
497 else if (s->dbms)
498 addr |= ((uint64_t)s->dbms << 32);
499 else if (s->sbms)
500 addr |= ((uint64_t)s->sbms << 32);
502 DPRINTF("DMA addr=0x" TARGET_FMT_plx " len=%d\n", addr, count);
503 s->csbc += count;
504 s->dnad += count;
505 s->dbc -= count;
507 if (s->dma_buf == NULL) {
508 s->dma_buf = s->current_dev->get_buf(s->current_dev,
509 s->current_tag);
512 /* ??? Set SFBR to first data byte. */
513 if (out) {
514 cpu_physical_memory_read(addr, s->dma_buf, count);
515 } else {
516 cpu_physical_memory_write(addr, s->dma_buf, count);
518 s->current_dma_len -= count;
519 if (s->current_dma_len == 0) {
520 s->dma_buf = NULL;
521 if (out) {
522 /* Write the data. */
523 s->current_dev->write_data(s->current_dev, s->current_tag);
524 } else {
525 /* Request any remaining data. */
526 s->current_dev->read_data(s->current_dev, s->current_tag);
528 } else {
529 s->dma_buf += count;
530 lsi_resume_script(s);
535 /* Add a command to the queue. */
536 static void lsi_queue_command(LSIState *s)
538 lsi_queue *p;
540 DPRINTF("Queueing tag=0x%x\n", s->current_tag);
541 if (s->queue_len == s->active_commands) {
542 s->queue_len++;
543 s->queue = qemu_realloc(s->queue, s->queue_len * sizeof(lsi_queue));
545 p = &s->queue[s->active_commands++];
546 p->tag = s->current_tag;
547 p->pending = 0;
548 p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
551 /* Queue a byte for a MSG IN phase. */
552 static void lsi_add_msg_byte(LSIState *s, uint8_t data)
554 if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
555 BADF("MSG IN data too long\n");
556 } else {
557 DPRINTF("MSG IN 0x%02x\n", data);
558 s->msg[s->msg_len++] = data;
562 /* Perform reselection to continue a command. */
563 static void lsi_reselect(LSIState *s, uint32_t tag)
565 lsi_queue *p;
566 int n;
567 int id;
569 p = NULL;
570 for (n = 0; n < s->active_commands; n++) {
571 p = &s->queue[n];
572 if (p->tag == tag)
573 break;
575 if (n == s->active_commands) {
576 BADF("Reselected non-existant command tag=0x%x\n", tag);
577 return;
579 id = (tag >> 8) & 0xf;
580 s->ssid = id | 0x80;
581 DPRINTF("Reselected target %d\n", id);
582 s->current_dev = s->scsi_dev[id];
583 s->current_tag = tag;
584 s->scntl1 |= LSI_SCNTL1_CON;
585 lsi_set_phase(s, PHASE_MI);
586 s->msg_action = p->out ? 2 : 3;
587 s->current_dma_len = p->pending;
588 s->dma_buf = NULL;
589 lsi_add_msg_byte(s, 0x80);
590 if (s->current_tag & LSI_TAG_VALID) {
591 lsi_add_msg_byte(s, 0x20);
592 lsi_add_msg_byte(s, tag & 0xff);
595 s->active_commands--;
596 if (n != s->active_commands) {
597 s->queue[n] = s->queue[s->active_commands];
601 /* Record that data is available for a queued command. Returns zero if
602 the device was reselected, nonzero if the IO is deferred. */
603 static int lsi_queue_tag(LSIState *s, uint32_t tag, uint32_t arg)
605 lsi_queue *p;
606 int i;
607 for (i = 0; i < s->active_commands; i++) {
608 p = &s->queue[i];
609 if (p->tag == tag) {
610 if (p->pending) {
611 BADF("Multiple IO pending for tag %d\n", tag);
613 p->pending = arg;
614 if (s->waiting == 1) {
615 /* Reselect device. */
616 lsi_reselect(s, tag);
617 return 0;
618 } else {
619 DPRINTF("Queueing IO tag=0x%x\n", tag);
620 p->pending = arg;
621 return 1;
625 BADF("IO with unknown tag %d\n", tag);
626 return 1;
629 /* Callback to indicate that the SCSI layer has completed a transfer. */
630 static void lsi_command_complete(void *opaque, int reason, uint32_t tag,
631 uint32_t arg)
633 LSIState *s = (LSIState *)opaque;
634 int out;
636 out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
637 if (reason == SCSI_REASON_DONE) {
638 DPRINTF("Command complete sense=%d\n", (int)arg);
639 s->sense = arg;
640 s->command_complete = 2;
641 if (s->waiting && s->dbc != 0) {
642 /* Raise phase mismatch for short transfers. */
643 lsi_bad_phase(s, out, PHASE_ST);
644 } else {
645 lsi_set_phase(s, PHASE_ST);
647 lsi_resume_script(s);
648 return;
651 if (s->waiting == 1 || tag != s->current_tag) {
652 if (lsi_queue_tag(s, tag, arg))
653 return;
655 DPRINTF("Data ready tag=0x%x len=%d\n", tag, arg);
656 s->current_dma_len = arg;
657 s->command_complete = 1;
658 if (!s->waiting)
659 return;
660 if (s->waiting == 1 || s->dbc == 0) {
661 lsi_resume_script(s);
662 } else {
663 lsi_do_dma(s, out);
667 static void lsi_do_command(LSIState *s)
669 uint8_t buf[16];
670 int n;
672 DPRINTF("Send command len=%d\n", s->dbc);
673 if (s->dbc > 16)
674 s->dbc = 16;
675 cpu_physical_memory_read(s->dnad, buf, s->dbc);
676 s->sfbr = buf[0];
677 s->command_complete = 0;
678 n = s->current_dev->send_command(s->current_dev, s->current_tag, buf,
679 s->current_lun);
680 if (n > 0) {
681 lsi_set_phase(s, PHASE_DI);
682 s->current_dev->read_data(s->current_dev, s->current_tag);
683 } else if (n < 0) {
684 lsi_set_phase(s, PHASE_DO);
685 s->current_dev->write_data(s->current_dev, s->current_tag);
688 if (!s->command_complete) {
689 if (n) {
690 /* Command did not complete immediately so disconnect. */
691 lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
692 lsi_add_msg_byte(s, 4); /* DISCONNECT */
693 /* wait data */
694 lsi_set_phase(s, PHASE_MI);
695 s->msg_action = 1;
696 lsi_queue_command(s);
697 } else {
698 /* wait command complete */
699 lsi_set_phase(s, PHASE_DI);
704 static void lsi_do_status(LSIState *s)
706 uint8_t sense;
707 DPRINTF("Get status len=%d sense=%d\n", s->dbc, s->sense);
708 if (s->dbc != 1)
709 BADF("Bad Status move\n");
710 s->dbc = 1;
711 sense = s->sense;
712 s->sfbr = sense;
713 cpu_physical_memory_write(s->dnad, &sense, 1);
714 lsi_set_phase(s, PHASE_MI);
715 s->msg_action = 1;
716 lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
719 static void lsi_disconnect(LSIState *s)
721 s->scntl1 &= ~LSI_SCNTL1_CON;
722 s->sstat1 &= ~PHASE_MASK;
725 static void lsi_do_msgin(LSIState *s)
727 int len;
728 DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len);
729 s->sfbr = s->msg[0];
730 len = s->msg_len;
731 if (len > s->dbc)
732 len = s->dbc;
733 cpu_physical_memory_write(s->dnad, s->msg, len);
734 /* Linux drivers rely on the last byte being in the SIDL. */
735 s->sidl = s->msg[len - 1];
736 s->msg_len -= len;
737 if (s->msg_len) {
738 memmove(s->msg, s->msg + len, s->msg_len);
739 } else {
740 /* ??? Check if ATN (not yet implemented) is asserted and maybe
741 switch to PHASE_MO. */
742 switch (s->msg_action) {
743 case 0:
744 lsi_set_phase(s, PHASE_CMD);
745 break;
746 case 1:
747 lsi_disconnect(s);
748 break;
749 case 2:
750 lsi_set_phase(s, PHASE_DO);
751 break;
752 case 3:
753 lsi_set_phase(s, PHASE_DI);
754 break;
755 default:
756 abort();
761 /* Read the next byte during a MSGOUT phase. */
762 static uint8_t lsi_get_msgbyte(LSIState *s)
764 uint8_t data;
765 cpu_physical_memory_read(s->dnad, &data, 1);
766 s->dnad++;
767 s->dbc--;
768 return data;
771 static void lsi_do_msgout(LSIState *s)
773 uint8_t msg;
774 int len;
776 DPRINTF("MSG out len=%d\n", s->dbc);
777 while (s->dbc) {
778 msg = lsi_get_msgbyte(s);
779 s->sfbr = msg;
781 switch (msg) {
782 case 0x00:
783 DPRINTF("MSG: Disconnect\n");
784 lsi_disconnect(s);
785 break;
786 case 0x08:
787 DPRINTF("MSG: No Operation\n");
788 lsi_set_phase(s, PHASE_CMD);
789 break;
790 case 0x01:
791 len = lsi_get_msgbyte(s);
792 msg = lsi_get_msgbyte(s);
793 DPRINTF("Extended message 0x%x (len %d)\n", msg, len);
794 switch (msg) {
795 case 1:
796 DPRINTF("SDTR (ignored)\n");
797 s->dbc -= 2;
798 break;
799 case 3:
800 DPRINTF("WDTR (ignored)\n");
801 s->dbc -= 1;
802 break;
803 default:
804 goto bad;
806 break;
807 case 0x20: /* SIMPLE queue */
808 s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
809 DPRINTF("SIMPLE queue tag=0x%x\n", s->current_tag & 0xff);
810 break;
811 case 0x21: /* HEAD of queue */
812 BADF("HEAD queue not implemented\n");
813 s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
814 break;
815 case 0x22: /* ORDERED queue */
816 BADF("ORDERED queue not implemented\n");
817 s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
818 break;
819 default:
820 if ((msg & 0x80) == 0) {
821 goto bad;
823 s->current_lun = msg & 7;
824 DPRINTF("Select LUN %d\n", s->current_lun);
825 lsi_set_phase(s, PHASE_CMD);
826 break;
829 return;
830 bad:
831 BADF("Unimplemented message 0x%02x\n", msg);
832 lsi_set_phase(s, PHASE_MI);
833 lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
834 s->msg_action = 0;
837 /* Sign extend a 24-bit value. */
838 static inline int32_t sxt24(int32_t n)
840 return (n << 8) >> 8;
843 static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
845 int n;
846 uint8_t buf[TARGET_PAGE_SIZE];
848 DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count);
849 while (count) {
850 n = (count > TARGET_PAGE_SIZE) ? TARGET_PAGE_SIZE : count;
851 cpu_physical_memory_read(src, buf, n);
852 cpu_physical_memory_write(dest, buf, n);
853 src += n;
854 dest += n;
855 count -= n;
859 static void lsi_wait_reselect(LSIState *s)
861 int i;
862 DPRINTF("Wait Reselect\n");
863 if (s->current_dma_len)
864 BADF("Reselect with pending DMA\n");
865 for (i = 0; i < s->active_commands; i++) {
866 if (s->queue[i].pending) {
867 lsi_reselect(s, s->queue[i].tag);
868 break;
871 if (s->current_dma_len == 0) {
872 s->waiting = 1;
876 static void lsi_execute_script(LSIState *s)
878 uint32_t insn;
879 uint32_t addr, addr_high;
880 int opcode;
881 int insn_processed = 0;
883 s->istat1 |= LSI_ISTAT1_SRUN;
884 again:
885 insn_processed++;
886 insn = read_dword(s, s->dsp);
887 if (!insn) {
888 /* If we receive an empty opcode increment the DSP by 4 bytes
889 instead of 8 and execute the next opcode at that location */
890 s->dsp += 4;
891 goto again;
893 addr = read_dword(s, s->dsp + 4);
894 addr_high = 0;
895 DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr);
896 s->dsps = addr;
897 s->dcmd = insn >> 24;
898 s->dsp += 8;
899 switch (insn >> 30) {
900 case 0: /* Block move. */
901 if (s->sist1 & LSI_SIST1_STO) {
902 DPRINTF("Delayed select timeout\n");
903 lsi_stop_script(s);
904 break;
906 s->dbc = insn & 0xffffff;
907 s->rbc = s->dbc;
908 /* ??? Set ESA. */
909 s->ia = s->dsp - 8;
910 if (insn & (1 << 29)) {
911 /* Indirect addressing. */
912 addr = read_dword(s, addr);
913 } else if (insn & (1 << 28)) {
914 uint32_t buf[2];
915 int32_t offset;
916 /* Table indirect addressing. */
918 /* 32-bit Table indirect */
919 offset = sxt24(addr);
920 cpu_physical_memory_read(s->dsa + offset, (uint8_t *)buf, 8);
921 /* byte count is stored in bits 0:23 only */
922 s->dbc = cpu_to_le32(buf[0]) & 0xffffff;
923 s->rbc = s->dbc;
924 addr = cpu_to_le32(buf[1]);
926 /* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of
927 * table, bits [31:24] */
928 if (lsi_dma_40bit(s))
929 addr_high = cpu_to_le32(buf[0]) >> 24;
930 else if (lsi_dma_ti64bit(s)) {
931 int selector = (cpu_to_le32(buf[0]) >> 24) & 0x1f;
932 switch (selector) {
933 case 0 ... 0x0f:
934 /* offset index into scratch registers since
935 * TI64 mode can use registers C to R */
936 addr_high = s->scratch[2 + selector];
937 break;
938 case 0x10:
939 addr_high = s->mmrs;
940 break;
941 case 0x11:
942 addr_high = s->mmws;
943 break;
944 case 0x12:
945 addr_high = s->sfs;
946 break;
947 case 0x13:
948 addr_high = s->drs;
949 break;
950 case 0x14:
951 addr_high = s->sbms;
952 break;
953 case 0x15:
954 addr_high = s->dbms;
955 break;
956 default:
957 BADF("Illegal selector specified (0x%x > 0x15)"
958 " for 64-bit DMA block move", selector);
959 break;
962 } else if (lsi_dma_64bit(s)) {
963 /* fetch a 3rd dword if 64-bit direct move is enabled and
964 only if we're not doing table indirect or indirect addressing */
965 s->dbms = read_dword(s, s->dsp);
966 s->dsp += 4;
967 s->ia = s->dsp - 12;
969 if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
970 DPRINTF("Wrong phase got %d expected %d\n",
971 s->sstat1 & PHASE_MASK, (insn >> 24) & 7);
972 lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
973 break;
975 s->dnad = addr;
976 s->dnad64 = addr_high;
977 switch (s->sstat1 & 0x7) {
978 case PHASE_DO:
979 s->waiting = 2;
980 lsi_do_dma(s, 1);
981 if (s->waiting)
982 s->waiting = 3;
983 break;
984 case PHASE_DI:
985 s->waiting = 2;
986 lsi_do_dma(s, 0);
987 if (s->waiting)
988 s->waiting = 3;
989 break;
990 case PHASE_CMD:
991 lsi_do_command(s);
992 break;
993 case PHASE_ST:
994 lsi_do_status(s);
995 break;
996 case PHASE_MO:
997 lsi_do_msgout(s);
998 break;
999 case PHASE_MI:
1000 lsi_do_msgin(s);
1001 break;
1002 default:
1003 BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK);
1004 exit(1);
1006 s->dfifo = s->dbc & 0xff;
1007 s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
1008 s->sbc = s->dbc;
1009 s->rbc -= s->dbc;
1010 s->ua = addr + s->dbc;
1011 break;
1013 case 1: /* IO or Read/Write instruction. */
1014 opcode = (insn >> 27) & 7;
1015 if (opcode < 5) {
1016 uint32_t id;
1018 if (insn & (1 << 25)) {
1019 id = read_dword(s, s->dsa + sxt24(insn));
1020 } else {
1021 id = addr;
1023 id = (id >> 16) & 0xf;
1024 if (insn & (1 << 26)) {
1025 addr = s->dsp + sxt24(addr);
1027 s->dnad = addr;
1028 switch (opcode) {
1029 case 0: /* Select */
1030 s->sdid = id;
1031 if (s->current_dma_len && (s->ssid & 0xf) == id) {
1032 DPRINTF("Already reselected by target %d\n", id);
1033 break;
1035 s->sstat0 |= LSI_SSTAT0_WOA;
1036 s->scntl1 &= ~LSI_SCNTL1_IARB;
1037 if (id >= LSI_MAX_DEVS || !s->scsi_dev[id]) {
1038 DPRINTF("Selected absent target %d\n", id);
1039 lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
1040 lsi_disconnect(s);
1041 break;
1043 DPRINTF("Selected target %d%s\n",
1044 id, insn & (1 << 3) ? " ATN" : "");
1045 /* ??? Linux drivers compain when this is set. Maybe
1046 it only applies in low-level mode (unimplemented).
1047 lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
1048 s->current_dev = s->scsi_dev[id];
1049 s->current_tag = id << 8;
1050 s->scntl1 |= LSI_SCNTL1_CON;
1051 if (insn & (1 << 3)) {
1052 s->socl |= LSI_SOCL_ATN;
1054 lsi_set_phase(s, PHASE_MO);
1055 break;
1056 case 1: /* Disconnect */
1057 DPRINTF("Wait Disconect\n");
1058 s->scntl1 &= ~LSI_SCNTL1_CON;
1059 break;
1060 case 2: /* Wait Reselect */
1061 lsi_wait_reselect(s);
1062 break;
1063 case 3: /* Set */
1064 DPRINTF("Set%s%s%s%s\n",
1065 insn & (1 << 3) ? " ATN" : "",
1066 insn & (1 << 6) ? " ACK" : "",
1067 insn & (1 << 9) ? " TM" : "",
1068 insn & (1 << 10) ? " CC" : "");
1069 if (insn & (1 << 3)) {
1070 s->socl |= LSI_SOCL_ATN;
1071 lsi_set_phase(s, PHASE_MO);
1073 if (insn & (1 << 9)) {
1074 BADF("Target mode not implemented\n");
1075 exit(1);
1077 if (insn & (1 << 10))
1078 s->carry = 1;
1079 break;
1080 case 4: /* Clear */
1081 DPRINTF("Clear%s%s%s%s\n",
1082 insn & (1 << 3) ? " ATN" : "",
1083 insn & (1 << 6) ? " ACK" : "",
1084 insn & (1 << 9) ? " TM" : "",
1085 insn & (1 << 10) ? " CC" : "");
1086 if (insn & (1 << 3)) {
1087 s->socl &= ~LSI_SOCL_ATN;
1089 if (insn & (1 << 10))
1090 s->carry = 0;
1091 break;
1093 } else {
1094 uint8_t op0;
1095 uint8_t op1;
1096 uint8_t data8;
1097 int reg;
1098 int operator;
1099 #ifdef DEBUG_LSI
1100 static const char *opcode_names[3] =
1101 {"Write", "Read", "Read-Modify-Write"};
1102 static const char *operator_names[8] =
1103 {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
1104 #endif
1106 reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
1107 data8 = (insn >> 8) & 0xff;
1108 opcode = (insn >> 27) & 7;
1109 operator = (insn >> 24) & 7;
1110 DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
1111 opcode_names[opcode - 5], reg,
1112 operator_names[operator], data8, s->sfbr,
1113 (insn & (1 << 23)) ? " SFBR" : "");
1114 op0 = op1 = 0;
1115 switch (opcode) {
1116 case 5: /* From SFBR */
1117 op0 = s->sfbr;
1118 op1 = data8;
1119 break;
1120 case 6: /* To SFBR */
1121 if (operator)
1122 op0 = lsi_reg_readb(s, reg);
1123 op1 = data8;
1124 break;
1125 case 7: /* Read-modify-write */
1126 if (operator)
1127 op0 = lsi_reg_readb(s, reg);
1128 if (insn & (1 << 23)) {
1129 op1 = s->sfbr;
1130 } else {
1131 op1 = data8;
1133 break;
1136 switch (operator) {
1137 case 0: /* move */
1138 op0 = op1;
1139 break;
1140 case 1: /* Shift left */
1141 op1 = op0 >> 7;
1142 op0 = (op0 << 1) | s->carry;
1143 s->carry = op1;
1144 break;
1145 case 2: /* OR */
1146 op0 |= op1;
1147 break;
1148 case 3: /* XOR */
1149 op0 ^= op1;
1150 break;
1151 case 4: /* AND */
1152 op0 &= op1;
1153 break;
1154 case 5: /* SHR */
1155 op1 = op0 & 1;
1156 op0 = (op0 >> 1) | (s->carry << 7);
1157 s->carry = op1;
1158 break;
1159 case 6: /* ADD */
1160 op0 += op1;
1161 s->carry = op0 < op1;
1162 break;
1163 case 7: /* ADC */
1164 op0 += op1 + s->carry;
1165 if (s->carry)
1166 s->carry = op0 <= op1;
1167 else
1168 s->carry = op0 < op1;
1169 break;
1172 switch (opcode) {
1173 case 5: /* From SFBR */
1174 case 7: /* Read-modify-write */
1175 lsi_reg_writeb(s, reg, op0);
1176 break;
1177 case 6: /* To SFBR */
1178 s->sfbr = op0;
1179 break;
1182 break;
1184 case 2: /* Transfer Control. */
1186 int cond;
1187 int jmp;
1189 if ((insn & 0x002e0000) == 0) {
1190 DPRINTF("NOP\n");
1191 break;
1193 if (s->sist1 & LSI_SIST1_STO) {
1194 DPRINTF("Delayed select timeout\n");
1195 lsi_stop_script(s);
1196 break;
1198 cond = jmp = (insn & (1 << 19)) != 0;
1199 if (cond == jmp && (insn & (1 << 21))) {
1200 DPRINTF("Compare carry %d\n", s->carry == jmp);
1201 cond = s->carry != 0;
1203 if (cond == jmp && (insn & (1 << 17))) {
1204 DPRINTF("Compare phase %d %c= %d\n",
1205 (s->sstat1 & PHASE_MASK),
1206 jmp ? '=' : '!',
1207 ((insn >> 24) & 7));
1208 cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
1210 if (cond == jmp && (insn & (1 << 18))) {
1211 uint8_t mask;
1213 mask = (~insn >> 8) & 0xff;
1214 DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
1215 s->sfbr, mask, jmp ? '=' : '!', insn & mask);
1216 cond = (s->sfbr & mask) == (insn & mask);
1218 if (cond == jmp) {
1219 if (insn & (1 << 23)) {
1220 /* Relative address. */
1221 addr = s->dsp + sxt24(addr);
1223 switch ((insn >> 27) & 7) {
1224 case 0: /* Jump */
1225 DPRINTF("Jump to 0x%08x\n", addr);
1226 s->dsp = addr;
1227 break;
1228 case 1: /* Call */
1229 DPRINTF("Call 0x%08x\n", addr);
1230 s->temp = s->dsp;
1231 s->dsp = addr;
1232 break;
1233 case 2: /* Return */
1234 DPRINTF("Return to 0x%08x\n", s->temp);
1235 s->dsp = s->temp;
1236 break;
1237 case 3: /* Interrupt */
1238 DPRINTF("Interrupt 0x%08x\n", s->dsps);
1239 if ((insn & (1 << 20)) != 0) {
1240 s->istat0 |= LSI_ISTAT0_INTF;
1241 lsi_update_irq(s);
1242 } else {
1243 lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
1245 break;
1246 default:
1247 DPRINTF("Illegal transfer control\n");
1248 lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
1249 break;
1251 } else {
1252 DPRINTF("Control condition failed\n");
1255 break;
1257 case 3:
1258 if ((insn & (1 << 29)) == 0) {
1259 /* Memory move. */
1260 uint32_t dest;
1261 /* ??? The docs imply the destination address is loaded into
1262 the TEMP register. However the Linux drivers rely on
1263 the value being presrved. */
1264 dest = read_dword(s, s->dsp);
1265 s->dsp += 4;
1266 lsi_memcpy(s, dest, addr, insn & 0xffffff);
1267 } else {
1268 uint8_t data[7];
1269 int reg;
1270 int n;
1271 int i;
1273 if (insn & (1 << 28)) {
1274 addr = s->dsa + sxt24(addr);
1276 n = (insn & 7);
1277 reg = (insn >> 16) & 0xff;
1278 if (insn & (1 << 24)) {
1279 cpu_physical_memory_read(addr, data, n);
1280 DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n,
1281 addr, *(int *)data);
1282 for (i = 0; i < n; i++) {
1283 lsi_reg_writeb(s, reg + i, data[i]);
1285 } else {
1286 DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr);
1287 for (i = 0; i < n; i++) {
1288 data[i] = lsi_reg_readb(s, reg + i);
1290 cpu_physical_memory_write(addr, data, n);
1294 if (insn_processed > 10000 && !s->waiting) {
1295 /* Some windows drivers make the device spin waiting for a memory
1296 location to change. If we have been executed a lot of code then
1297 assume this is the case and force an unexpected device disconnect.
1298 This is apparently sufficient to beat the drivers into submission.
1300 if (!(s->sien0 & LSI_SIST0_UDC))
1301 fprintf(stderr, "inf. loop with UDC masked\n");
1302 lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0);
1303 lsi_disconnect(s);
1304 } else if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) {
1305 if (s->dcntl & LSI_DCNTL_SSM) {
1306 lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
1307 } else {
1308 goto again;
1311 DPRINTF("SCRIPTS execution stopped\n");
1314 static uint8_t lsi_reg_readb(LSIState *s, int offset)
1316 uint8_t tmp;
1317 #define CASE_GET_REG32(name, addr) \
1318 case addr: return s->name & 0xff; \
1319 case addr + 1: return (s->name >> 8) & 0xff; \
1320 case addr + 2: return (s->name >> 16) & 0xff; \
1321 case addr + 3: return (s->name >> 24) & 0xff;
1323 #ifdef DEBUG_LSI_REG
1324 DPRINTF("Read reg %x\n", offset);
1325 #endif
1326 switch (offset) {
1327 case 0x00: /* SCNTL0 */
1328 return s->scntl0;
1329 case 0x01: /* SCNTL1 */
1330 return s->scntl1;
1331 case 0x02: /* SCNTL2 */
1332 return s->scntl2;
1333 case 0x03: /* SCNTL3 */
1334 return s->scntl3;
1335 case 0x04: /* SCID */
1336 return s->scid;
1337 case 0x05: /* SXFER */
1338 return s->sxfer;
1339 case 0x06: /* SDID */
1340 return s->sdid;
1341 case 0x07: /* GPREG0 */
1342 return 0x7f;
1343 case 0x08: /* Revision ID */
1344 return 0x00;
1345 case 0xa: /* SSID */
1346 return s->ssid;
1347 case 0xb: /* SBCL */
1348 /* ??? This is not correct. However it's (hopefully) only
1349 used for diagnostics, so should be ok. */
1350 return 0;
1351 case 0xc: /* DSTAT */
1352 tmp = s->dstat | 0x80;
1353 if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
1354 s->dstat = 0;
1355 lsi_update_irq(s);
1356 return tmp;
1357 case 0x0d: /* SSTAT0 */
1358 return s->sstat0;
1359 case 0x0e: /* SSTAT1 */
1360 return s->sstat1;
1361 case 0x0f: /* SSTAT2 */
1362 return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
1363 CASE_GET_REG32(dsa, 0x10)
1364 case 0x14: /* ISTAT0 */
1365 return s->istat0;
1366 case 0x16: /* MBOX0 */
1367 return s->mbox0;
1368 case 0x17: /* MBOX1 */
1369 return s->mbox1;
1370 case 0x18: /* CTEST0 */
1371 return 0xff;
1372 case 0x19: /* CTEST1 */
1373 return 0;
1374 case 0x1a: /* CTEST2 */
1375 tmp = s->ctest2 | LSI_CTEST2_DACK | LSI_CTEST2_CM;
1376 if (s->istat0 & LSI_ISTAT0_SIGP) {
1377 s->istat0 &= ~LSI_ISTAT0_SIGP;
1378 tmp |= LSI_CTEST2_SIGP;
1380 return tmp;
1381 case 0x1b: /* CTEST3 */
1382 return s->ctest3;
1383 CASE_GET_REG32(temp, 0x1c)
1384 case 0x20: /* DFIFO */
1385 return 0;
1386 case 0x21: /* CTEST4 */
1387 return s->ctest4;
1388 case 0x22: /* CTEST5 */
1389 return s->ctest5;
1390 case 0x23: /* CTEST6 */
1391 return 0;
1392 case 0x24: /* DBC[0:7] */
1393 return s->dbc & 0xff;
1394 case 0x25: /* DBC[8:15] */
1395 return (s->dbc >> 8) & 0xff;
1396 case 0x26: /* DBC[16->23] */
1397 return (s->dbc >> 16) & 0xff;
1398 case 0x27: /* DCMD */
1399 return s->dcmd;
1400 CASE_GET_REG32(dsp, 0x2c)
1401 CASE_GET_REG32(dsps, 0x30)
1402 CASE_GET_REG32(scratch[0], 0x34)
1403 case 0x38: /* DMODE */
1404 return s->dmode;
1405 case 0x39: /* DIEN */
1406 return s->dien;
1407 case 0x3b: /* DCNTL */
1408 return s->dcntl;
1409 case 0x40: /* SIEN0 */
1410 return s->sien0;
1411 case 0x41: /* SIEN1 */
1412 return s->sien1;
1413 case 0x42: /* SIST0 */
1414 tmp = s->sist0;
1415 s->sist0 = 0;
1416 lsi_update_irq(s);
1417 return tmp;
1418 case 0x43: /* SIST1 */
1419 tmp = s->sist1;
1420 s->sist1 = 0;
1421 lsi_update_irq(s);
1422 return tmp;
1423 case 0x46: /* MACNTL */
1424 return 0x0f;
1425 case 0x47: /* GPCNTL0 */
1426 return 0x0f;
1427 case 0x48: /* STIME0 */
1428 return s->stime0;
1429 case 0x4a: /* RESPID0 */
1430 return s->respid0;
1431 case 0x4b: /* RESPID1 */
1432 return s->respid1;
1433 case 0x4d: /* STEST1 */
1434 return s->stest1;
1435 case 0x4e: /* STEST2 */
1436 return s->stest2;
1437 case 0x4f: /* STEST3 */
1438 return s->stest3;
1439 case 0x50: /* SIDL */
1440 /* This is needed by the linux drivers. We currently only update it
1441 during the MSG IN phase. */
1442 return s->sidl;
1443 case 0x52: /* STEST4 */
1444 return 0xe0;
1445 case 0x56: /* CCNTL0 */
1446 return s->ccntl0;
1447 case 0x57: /* CCNTL1 */
1448 return s->ccntl1;
1449 case 0x58: /* SBDL */
1450 /* Some drivers peek at the data bus during the MSG IN phase. */
1451 if ((s->sstat1 & PHASE_MASK) == PHASE_MI)
1452 return s->msg[0];
1453 return 0;
1454 case 0x59: /* SBDL high */
1455 return 0;
1456 CASE_GET_REG32(mmrs, 0xa0)
1457 CASE_GET_REG32(mmws, 0xa4)
1458 CASE_GET_REG32(sfs, 0xa8)
1459 CASE_GET_REG32(drs, 0xac)
1460 CASE_GET_REG32(sbms, 0xb0)
1461 CASE_GET_REG32(dbms, 0xb4)
1462 CASE_GET_REG32(dnad64, 0xb8)
1463 CASE_GET_REG32(pmjad1, 0xc0)
1464 CASE_GET_REG32(pmjad2, 0xc4)
1465 CASE_GET_REG32(rbc, 0xc8)
1466 CASE_GET_REG32(ua, 0xcc)
1467 CASE_GET_REG32(ia, 0xd4)
1468 CASE_GET_REG32(sbc, 0xd8)
1469 CASE_GET_REG32(csbc, 0xdc)
1471 if (offset >= 0x5c && offset < 0xa0) {
1472 int n;
1473 int shift;
1474 n = (offset - 0x58) >> 2;
1475 shift = (offset & 3) * 8;
1476 return (s->scratch[n] >> shift) & 0xff;
1478 BADF("readb 0x%x\n", offset);
1479 exit(1);
1480 #undef CASE_GET_REG32
1483 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
1485 #define CASE_SET_REG32(name, addr) \
1486 case addr : s->name &= 0xffffff00; s->name |= val; break; \
1487 case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
1488 case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
1489 case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
1491 #ifdef DEBUG_LSI_REG
1492 DPRINTF("Write reg %x = %02x\n", offset, val);
1493 #endif
1494 switch (offset) {
1495 case 0x00: /* SCNTL0 */
1496 s->scntl0 = val;
1497 if (val & LSI_SCNTL0_START) {
1498 BADF("Start sequence not implemented\n");
1500 break;
1501 case 0x01: /* SCNTL1 */
1502 s->scntl1 = val & ~LSI_SCNTL1_SST;
1503 if (val & LSI_SCNTL1_IARB) {
1504 BADF("Immediate Arbritration not implemented\n");
1506 if (val & LSI_SCNTL1_RST) {
1507 s->sstat0 |= LSI_SSTAT0_RST;
1508 lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
1509 } else {
1510 s->sstat0 &= ~LSI_SSTAT0_RST;
1512 break;
1513 case 0x02: /* SCNTL2 */
1514 val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
1515 s->scntl2 = val;
1516 break;
1517 case 0x03: /* SCNTL3 */
1518 s->scntl3 = val;
1519 break;
1520 case 0x04: /* SCID */
1521 s->scid = val;
1522 break;
1523 case 0x05: /* SXFER */
1524 s->sxfer = val;
1525 break;
1526 case 0x06: /* SDID */
1527 if ((val & 0xf) != (s->ssid & 0xf))
1528 BADF("Destination ID does not match SSID\n");
1529 s->sdid = val & 0xf;
1530 break;
1531 case 0x07: /* GPREG0 */
1532 break;
1533 case 0x08: /* SFBR */
1534 /* The CPU is not allowed to write to this register. However the
1535 SCRIPTS register move instructions are. */
1536 s->sfbr = val;
1537 break;
1538 case 0x0a: case 0x0b:
1539 /* Openserver writes to these readonly registers on startup */
1540 return;
1541 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1542 /* Linux writes to these readonly registers on startup. */
1543 return;
1544 CASE_SET_REG32(dsa, 0x10)
1545 case 0x14: /* ISTAT0 */
1546 s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
1547 if (val & LSI_ISTAT0_ABRT) {
1548 lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
1550 if (val & LSI_ISTAT0_INTF) {
1551 s->istat0 &= ~LSI_ISTAT0_INTF;
1552 lsi_update_irq(s);
1554 if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) {
1555 DPRINTF("Woken by SIGP\n");
1556 s->waiting = 0;
1557 s->dsp = s->dnad;
1558 lsi_execute_script(s);
1560 if (val & LSI_ISTAT0_SRST) {
1561 lsi_soft_reset(s);
1563 break;
1564 case 0x16: /* MBOX0 */
1565 s->mbox0 = val;
1566 break;
1567 case 0x17: /* MBOX1 */
1568 s->mbox1 = val;
1569 break;
1570 case 0x1a: /* CTEST2 */
1571 s->ctest2 = val & LSI_CTEST2_PCICIE;
1572 break;
1573 case 0x1b: /* CTEST3 */
1574 s->ctest3 = val & 0x0f;
1575 break;
1576 CASE_SET_REG32(temp, 0x1c)
1577 case 0x21: /* CTEST4 */
1578 if (val & 7) {
1579 BADF("Unimplemented CTEST4-FBL 0x%x\n", val);
1581 s->ctest4 = val;
1582 break;
1583 case 0x22: /* CTEST5 */
1584 if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
1585 BADF("CTEST5 DMA increment not implemented\n");
1587 s->ctest5 = val;
1588 break;
1589 case 0x2c: /* DSP[0:7] */
1590 s->dsp &= 0xffffff00;
1591 s->dsp |= val;
1592 break;
1593 case 0x2d: /* DSP[8:15] */
1594 s->dsp &= 0xffff00ff;
1595 s->dsp |= val << 8;
1596 break;
1597 case 0x2e: /* DSP[16:23] */
1598 s->dsp &= 0xff00ffff;
1599 s->dsp |= val << 16;
1600 break;
1601 case 0x2f: /* DSP[24:31] */
1602 s->dsp &= 0x00ffffff;
1603 s->dsp |= val << 24;
1604 if ((s->dmode & LSI_DMODE_MAN) == 0
1605 && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1606 lsi_execute_script(s);
1607 break;
1608 CASE_SET_REG32(dsps, 0x30)
1609 CASE_SET_REG32(scratch[0], 0x34)
1610 case 0x38: /* DMODE */
1611 if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) {
1612 BADF("IO mappings not implemented\n");
1614 s->dmode = val;
1615 break;
1616 case 0x39: /* DIEN */
1617 s->dien = val;
1618 lsi_update_irq(s);
1619 break;
1620 case 0x3b: /* DCNTL */
1621 s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
1622 if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1623 lsi_execute_script(s);
1624 break;
1625 case 0x40: /* SIEN0 */
1626 s->sien0 = val;
1627 lsi_update_irq(s);
1628 break;
1629 case 0x41: /* SIEN1 */
1630 s->sien1 = val;
1631 lsi_update_irq(s);
1632 break;
1633 case 0x47: /* GPCNTL0 */
1634 break;
1635 case 0x48: /* STIME0 */
1636 s->stime0 = val;
1637 break;
1638 case 0x49: /* STIME1 */
1639 if (val & 0xf) {
1640 DPRINTF("General purpose timer not implemented\n");
1641 /* ??? Raising the interrupt immediately seems to be sufficient
1642 to keep the FreeBSD driver happy. */
1643 lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
1645 break;
1646 case 0x4a: /* RESPID0 */
1647 s->respid0 = val;
1648 break;
1649 case 0x4b: /* RESPID1 */
1650 s->respid1 = val;
1651 break;
1652 case 0x4d: /* STEST1 */
1653 s->stest1 = val;
1654 break;
1655 case 0x4e: /* STEST2 */
1656 if (val & 1) {
1657 BADF("Low level mode not implemented\n");
1659 s->stest2 = val;
1660 break;
1661 case 0x4f: /* STEST3 */
1662 if (val & 0x41) {
1663 BADF("SCSI FIFO test mode not implemented\n");
1665 s->stest3 = val;
1666 break;
1667 case 0x56: /* CCNTL0 */
1668 s->ccntl0 = val;
1669 break;
1670 case 0x57: /* CCNTL1 */
1671 s->ccntl1 = val;
1672 break;
1673 CASE_SET_REG32(mmrs, 0xa0)
1674 CASE_SET_REG32(mmws, 0xa4)
1675 CASE_SET_REG32(sfs, 0xa8)
1676 CASE_SET_REG32(drs, 0xac)
1677 CASE_SET_REG32(sbms, 0xb0)
1678 CASE_SET_REG32(dbms, 0xb4)
1679 CASE_SET_REG32(dnad64, 0xb8)
1680 CASE_SET_REG32(pmjad1, 0xc0)
1681 CASE_SET_REG32(pmjad2, 0xc4)
1682 CASE_SET_REG32(rbc, 0xc8)
1683 CASE_SET_REG32(ua, 0xcc)
1684 CASE_SET_REG32(ia, 0xd4)
1685 CASE_SET_REG32(sbc, 0xd8)
1686 CASE_SET_REG32(csbc, 0xdc)
1687 default:
1688 if (offset >= 0x5c && offset < 0xa0) {
1689 int n;
1690 int shift;
1691 n = (offset - 0x58) >> 2;
1692 shift = (offset & 3) * 8;
1693 s->scratch[n] &= ~(0xff << shift);
1694 s->scratch[n] |= (val & 0xff) << shift;
1695 } else {
1696 BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val);
1699 #undef CASE_SET_REG32
1702 static void lsi_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1704 LSIState *s = (LSIState *)opaque;
1706 lsi_reg_writeb(s, addr & 0xff, val);
1709 static void lsi_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1711 LSIState *s = (LSIState *)opaque;
1713 addr &= 0xff;
1714 lsi_reg_writeb(s, addr, val & 0xff);
1715 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1718 static void lsi_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1720 LSIState *s = (LSIState *)opaque;
1722 addr &= 0xff;
1723 lsi_reg_writeb(s, addr, val & 0xff);
1724 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1725 lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1726 lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1729 static uint32_t lsi_mmio_readb(void *opaque, target_phys_addr_t addr)
1731 LSIState *s = (LSIState *)opaque;
1733 return lsi_reg_readb(s, addr & 0xff);
1736 static uint32_t lsi_mmio_readw(void *opaque, target_phys_addr_t addr)
1738 LSIState *s = (LSIState *)opaque;
1739 uint32_t val;
1741 addr &= 0xff;
1742 val = lsi_reg_readb(s, addr);
1743 val |= lsi_reg_readb(s, addr + 1) << 8;
1744 return val;
1747 static uint32_t lsi_mmio_readl(void *opaque, target_phys_addr_t addr)
1749 LSIState *s = (LSIState *)opaque;
1750 uint32_t val;
1751 addr &= 0xff;
1752 val = lsi_reg_readb(s, addr);
1753 val |= lsi_reg_readb(s, addr + 1) << 8;
1754 val |= lsi_reg_readb(s, addr + 2) << 16;
1755 val |= lsi_reg_readb(s, addr + 3) << 24;
1756 return val;
1759 static CPUReadMemoryFunc *lsi_mmio_readfn[3] = {
1760 lsi_mmio_readb,
1761 lsi_mmio_readw,
1762 lsi_mmio_readl,
1765 static CPUWriteMemoryFunc *lsi_mmio_writefn[3] = {
1766 lsi_mmio_writeb,
1767 lsi_mmio_writew,
1768 lsi_mmio_writel,
1771 static void lsi_ram_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1773 LSIState *s = (LSIState *)opaque;
1774 uint32_t newval;
1775 int shift;
1777 addr &= 0x1fff;
1778 newval = s->script_ram[addr >> 2];
1779 shift = (addr & 3) * 8;
1780 newval &= ~(0xff << shift);
1781 newval |= val << shift;
1782 s->script_ram[addr >> 2] = newval;
1785 static void lsi_ram_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1787 LSIState *s = (LSIState *)opaque;
1788 uint32_t newval;
1790 addr &= 0x1fff;
1791 newval = s->script_ram[addr >> 2];
1792 if (addr & 2) {
1793 newval = (newval & 0xffff) | (val << 16);
1794 } else {
1795 newval = (newval & 0xffff0000) | val;
1797 s->script_ram[addr >> 2] = newval;
1801 static void lsi_ram_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1803 LSIState *s = (LSIState *)opaque;
1805 addr &= 0x1fff;
1806 s->script_ram[addr >> 2] = val;
1809 static uint32_t lsi_ram_readb(void *opaque, target_phys_addr_t addr)
1811 LSIState *s = (LSIState *)opaque;
1812 uint32_t val;
1814 addr &= 0x1fff;
1815 val = s->script_ram[addr >> 2];
1816 val >>= (addr & 3) * 8;
1817 return val & 0xff;
1820 static uint32_t lsi_ram_readw(void *opaque, target_phys_addr_t addr)
1822 LSIState *s = (LSIState *)opaque;
1823 uint32_t val;
1825 addr &= 0x1fff;
1826 val = s->script_ram[addr >> 2];
1827 if (addr & 2)
1828 val >>= 16;
1829 return le16_to_cpu(val);
1832 static uint32_t lsi_ram_readl(void *opaque, target_phys_addr_t addr)
1834 LSIState *s = (LSIState *)opaque;
1836 addr &= 0x1fff;
1837 return le32_to_cpu(s->script_ram[addr >> 2]);
1840 static CPUReadMemoryFunc *lsi_ram_readfn[3] = {
1841 lsi_ram_readb,
1842 lsi_ram_readw,
1843 lsi_ram_readl,
1846 static CPUWriteMemoryFunc *lsi_ram_writefn[3] = {
1847 lsi_ram_writeb,
1848 lsi_ram_writew,
1849 lsi_ram_writel,
1852 static uint32_t lsi_io_readb(void *opaque, uint32_t addr)
1854 LSIState *s = (LSIState *)opaque;
1855 return lsi_reg_readb(s, addr & 0xff);
1858 static uint32_t lsi_io_readw(void *opaque, uint32_t addr)
1860 LSIState *s = (LSIState *)opaque;
1861 uint32_t val;
1862 addr &= 0xff;
1863 val = lsi_reg_readb(s, addr);
1864 val |= lsi_reg_readb(s, addr + 1) << 8;
1865 return val;
1868 static uint32_t lsi_io_readl(void *opaque, uint32_t addr)
1870 LSIState *s = (LSIState *)opaque;
1871 uint32_t val;
1872 addr &= 0xff;
1873 val = lsi_reg_readb(s, addr);
1874 val |= lsi_reg_readb(s, addr + 1) << 8;
1875 val |= lsi_reg_readb(s, addr + 2) << 16;
1876 val |= lsi_reg_readb(s, addr + 3) << 24;
1877 return val;
1880 static void lsi_io_writeb(void *opaque, uint32_t addr, uint32_t val)
1882 LSIState *s = (LSIState *)opaque;
1883 lsi_reg_writeb(s, addr & 0xff, val);
1886 static void lsi_io_writew(void *opaque, uint32_t addr, uint32_t val)
1888 LSIState *s = (LSIState *)opaque;
1889 addr &= 0xff;
1890 lsi_reg_writeb(s, addr, val & 0xff);
1891 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1894 static void lsi_io_writel(void *opaque, uint32_t addr, uint32_t val)
1896 LSIState *s = (LSIState *)opaque;
1897 addr &= 0xff;
1898 lsi_reg_writeb(s, addr, val & 0xff);
1899 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1900 lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1901 lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1904 static void lsi_io_mapfunc(PCIDevice *pci_dev, int region_num,
1905 uint32_t addr, uint32_t size, int type)
1907 LSIState *s = (LSIState *)pci_dev;
1909 DPRINTF("Mapping IO at %08x\n", addr);
1911 register_ioport_write(addr, 256, 1, lsi_io_writeb, s);
1912 register_ioport_read(addr, 256, 1, lsi_io_readb, s);
1913 register_ioport_write(addr, 256, 2, lsi_io_writew, s);
1914 register_ioport_read(addr, 256, 2, lsi_io_readw, s);
1915 register_ioport_write(addr, 256, 4, lsi_io_writel, s);
1916 register_ioport_read(addr, 256, 4, lsi_io_readl, s);
1919 static void lsi_ram_mapfunc(PCIDevice *pci_dev, int region_num,
1920 uint32_t addr, uint32_t size, int type)
1922 LSIState *s = (LSIState *)pci_dev;
1924 DPRINTF("Mapping ram at %08x\n", addr);
1925 s->script_ram_base = addr;
1926 cpu_register_physical_memory(addr + 0, 0x2000, s->ram_io_addr);
1929 static void lsi_mmio_mapfunc(PCIDevice *pci_dev, int region_num,
1930 uint32_t addr, uint32_t size, int type)
1932 LSIState *s = (LSIState *)pci_dev;
1934 DPRINTF("Mapping registers at %08x\n", addr);
1935 cpu_register_physical_memory(addr + 0, 0x400, s->mmio_io_addr);
1938 void lsi_scsi_attach(void *opaque, BlockDriverState *bd, int id)
1940 LSIState *s = (LSIState *)opaque;
1942 if (id < 0) {
1943 for (id = 0; id < LSI_MAX_DEVS; id++) {
1944 if (s->scsi_dev[id] == NULL)
1945 break;
1948 if (id >= LSI_MAX_DEVS) {
1949 BADF("Bad Device ID %d\n", id);
1950 return;
1952 if (s->scsi_dev[id]) {
1953 DPRINTF("Destroying device %d\n", id);
1954 s->scsi_dev[id]->destroy(s->scsi_dev[id]);
1956 DPRINTF("Attaching block device %d\n", id);
1957 s->scsi_dev[id] = scsi_generic_init(bd, 1, lsi_command_complete, s);
1958 if (s->scsi_dev[id] == NULL)
1959 s->scsi_dev[id] = scsi_disk_init(bd, 1, lsi_command_complete, s);
1962 void *lsi_scsi_init(PCIBus *bus, int devfn)
1964 LSIState *s;
1966 s = (LSIState *)pci_register_device(bus, "LSI53C895A SCSI HBA",
1967 sizeof(*s), devfn, NULL, NULL);
1968 if (s == NULL) {
1969 fprintf(stderr, "lsi-scsi: Failed to register PCI device\n");
1970 return NULL;
1973 /* PCI Vendor ID (word) */
1974 s->pci_dev.config[0x00] = 0x00;
1975 s->pci_dev.config[0x01] = 0x10;
1976 /* PCI device ID (word) */
1977 s->pci_dev.config[0x02] = 0x12;
1978 s->pci_dev.config[0x03] = 0x00;
1979 /* PCI base class code */
1980 s->pci_dev.config[0x0b] = 0x01;
1981 /* PCI subsystem ID */
1982 s->pci_dev.config[0x2e] = 0x00;
1983 s->pci_dev.config[0x2f] = 0x10;
1984 /* PCI latency timer = 255 */
1985 s->pci_dev.config[0x0d] = 0xff;
1986 /* Interrupt pin 1 */
1987 s->pci_dev.config[0x3d] = 0x01;
1989 s->mmio_io_addr = cpu_register_io_memory(0, lsi_mmio_readfn,
1990 lsi_mmio_writefn, s);
1991 s->ram_io_addr = cpu_register_io_memory(0, lsi_ram_readfn,
1992 lsi_ram_writefn, s);
1994 pci_register_io_region((struct PCIDevice *)s, 0, 256,
1995 PCI_ADDRESS_SPACE_IO, lsi_io_mapfunc);
1996 pci_register_io_region((struct PCIDevice *)s, 1, 0x400,
1997 PCI_ADDRESS_SPACE_MEM, lsi_mmio_mapfunc);
1998 pci_register_io_region((struct PCIDevice *)s, 2, 0x2000,
1999 PCI_ADDRESS_SPACE_MEM, lsi_ram_mapfunc);
2000 s->queue = qemu_malloc(sizeof(lsi_queue));
2001 s->queue_len = 1;
2002 s->active_commands = 0;
2004 lsi_soft_reset(s);
2006 return s;