Fix 64 bit issue in slirp
[qemu/mini2440/sniper_sniper_test.git] / hw / etraxfs_timer.c
blob04bdede27222cba8eb412d152593efcd3cdf1925
1 /*
2 * QEMU ETRAX Timers
4 * Copyright (c) 2007 Edgar E. Iglesias, Axis Communications AB.
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <stdio.h>
25 #include <sys/time.h>
26 #include "hw.h"
27 #include "sysemu.h"
28 #include "qemu-timer.h"
30 #define D(x)
32 #define RW_TMR0_DIV 0x00
33 #define R_TMR0_DATA 0x04
34 #define RW_TMR0_CTRL 0x08
35 #define RW_TMR1_DIV 0x10
36 #define R_TMR1_DATA 0x14
37 #define RW_TMR1_CTRL 0x18
38 #define R_TIME 0x38
39 #define RW_WD_CTRL 0x40
40 #define R_WD_STAT 0x44
41 #define RW_INTR_MASK 0x48
42 #define RW_ACK_INTR 0x4c
43 #define R_INTR 0x50
44 #define R_MASKED_INTR 0x54
46 struct fs_timer_t {
47 CPUState *env;
48 qemu_irq *irq;
49 qemu_irq *nmi;
51 QEMUBH *bh_t0;
52 QEMUBH *bh_t1;
53 QEMUBH *bh_wd;
54 ptimer_state *ptimer_t0;
55 ptimer_state *ptimer_t1;
56 ptimer_state *ptimer_wd;
57 struct timeval last;
59 int wd_hits;
61 /* Control registers. */
62 uint32_t rw_tmr0_div;
63 uint32_t r_tmr0_data;
64 uint32_t rw_tmr0_ctrl;
66 uint32_t rw_tmr1_div;
67 uint32_t r_tmr1_data;
68 uint32_t rw_tmr1_ctrl;
70 uint32_t rw_wd_ctrl;
72 uint32_t rw_intr_mask;
73 uint32_t rw_ack_intr;
74 uint32_t r_intr;
75 uint32_t r_masked_intr;
78 static uint32_t timer_readl (void *opaque, target_phys_addr_t addr)
80 struct fs_timer_t *t = opaque;
81 uint32_t r = 0;
83 switch (addr) {
84 case R_TMR0_DATA:
85 r = ptimer_get_count(t->ptimer_t0);
86 break;
87 case R_TMR1_DATA:
88 r = ptimer_get_count(t->ptimer_t1);
89 break;
90 case R_TIME:
91 r = qemu_get_clock(vm_clock) / 10;
92 break;
93 case RW_INTR_MASK:
94 r = t->rw_intr_mask;
95 break;
96 case R_MASKED_INTR:
97 r = t->r_intr & t->rw_intr_mask;
98 break;
99 default:
100 D(printf ("%s %x\n", __func__, addr));
101 break;
103 return r;
106 #define TIMER_SLOWDOWN 1
107 static void update_ctrl(struct fs_timer_t *t, int tnum)
109 unsigned int op;
110 unsigned int freq;
111 unsigned int freq_hz;
112 unsigned int div;
113 uint32_t ctrl;
115 ptimer_state *timer;
117 if (tnum == 0) {
118 ctrl = t->rw_tmr0_ctrl;
119 div = t->rw_tmr0_div;
120 timer = t->ptimer_t0;
121 } else {
122 ctrl = t->rw_tmr1_ctrl;
123 div = t->rw_tmr1_div;
124 timer = t->ptimer_t1;
128 op = ctrl & 3;
129 freq = ctrl >> 2;
130 freq_hz = 32000000;
132 switch (freq)
134 case 0:
135 case 1:
136 D(printf ("extern or disabled timer clock?\n"));
137 break;
138 case 4: freq_hz = 29493000; break;
139 case 5: freq_hz = 32000000; break;
140 case 6: freq_hz = 32768000; break;
141 case 7: freq_hz = 100000000; break;
142 default:
143 abort();
144 break;
147 D(printf ("freq_hz=%d div=%d\n", freq_hz, div));
148 div = div * TIMER_SLOWDOWN;
149 div /= 1000;
150 freq_hz /= 1000;
151 ptimer_set_freq(timer, freq_hz);
152 ptimer_set_limit(timer, div, 0);
154 switch (op)
156 case 0:
157 /* Load. */
158 ptimer_set_limit(timer, div, 1);
159 break;
160 case 1:
161 /* Hold. */
162 ptimer_stop(timer);
163 break;
164 case 2:
165 /* Run. */
166 ptimer_run(timer, 0);
167 break;
168 default:
169 abort();
170 break;
174 static void timer_update_irq(struct fs_timer_t *t)
176 t->r_intr &= ~(t->rw_ack_intr);
177 t->r_masked_intr = t->r_intr & t->rw_intr_mask;
179 D(printf("%s: masked_intr=%x\n", __func__, t->r_masked_intr));
180 if (t->r_masked_intr)
181 qemu_irq_raise(t->irq[0]);
182 else
183 qemu_irq_lower(t->irq[0]);
186 static void timer0_hit(void *opaque)
188 struct fs_timer_t *t = opaque;
189 t->r_intr |= 1;
190 timer_update_irq(t);
193 static void timer1_hit(void *opaque)
195 struct fs_timer_t *t = opaque;
196 t->r_intr |= 2;
197 timer_update_irq(t);
200 static void watchdog_hit(void *opaque)
202 struct fs_timer_t *t = opaque;
203 if (t->wd_hits == 0) {
204 /* real hw gives a single tick before reseting but we are
205 a bit friendlier to compensate for our slower execution. */
206 ptimer_set_count(t->ptimer_wd, 10);
207 ptimer_run(t->ptimer_wd, 1);
208 qemu_irq_raise(t->nmi[0]);
210 else
211 qemu_system_reset_request();
213 t->wd_hits++;
216 static inline void timer_watchdog_update(struct fs_timer_t *t, uint32_t value)
218 unsigned int wd_en = t->rw_wd_ctrl & (1 << 8);
219 unsigned int wd_key = t->rw_wd_ctrl >> 9;
220 unsigned int wd_cnt = t->rw_wd_ctrl & 511;
221 unsigned int new_key = value >> 9 & ((1 << 7) - 1);
222 unsigned int new_cmd = (value >> 8) & 1;
224 /* If the watchdog is enabled, they written key must match the
225 complement of the previous. */
226 wd_key = ~wd_key & ((1 << 7) - 1);
228 if (wd_en && wd_key != new_key)
229 return;
231 D(printf("en=%d new_key=%x oldkey=%x cmd=%d cnt=%d\n",
232 wd_en, new_key, wd_key, new_cmd, wd_cnt));
234 if (t->wd_hits)
235 qemu_irq_lower(t->nmi[0]);
237 t->wd_hits = 0;
239 ptimer_set_freq(t->ptimer_wd, 760);
240 if (wd_cnt == 0)
241 wd_cnt = 256;
242 ptimer_set_count(t->ptimer_wd, wd_cnt);
243 if (new_cmd)
244 ptimer_run(t->ptimer_wd, 1);
245 else
246 ptimer_stop(t->ptimer_wd);
248 t->rw_wd_ctrl = value;
251 static void
252 timer_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
254 struct fs_timer_t *t = opaque;
256 switch (addr)
258 case RW_TMR0_DIV:
259 t->rw_tmr0_div = value;
260 break;
261 case RW_TMR0_CTRL:
262 D(printf ("RW_TMR0_CTRL=%x\n", value));
263 t->rw_tmr0_ctrl = value;
264 update_ctrl(t, 0);
265 break;
266 case RW_TMR1_DIV:
267 t->rw_tmr1_div = value;
268 break;
269 case RW_TMR1_CTRL:
270 D(printf ("RW_TMR1_CTRL=%x\n", value));
271 t->rw_tmr1_ctrl = value;
272 update_ctrl(t, 1);
273 break;
274 case RW_INTR_MASK:
275 D(printf ("RW_INTR_MASK=%x\n", value));
276 t->rw_intr_mask = value;
277 timer_update_irq(t);
278 break;
279 case RW_WD_CTRL:
280 timer_watchdog_update(t, value);
281 break;
282 case RW_ACK_INTR:
283 t->rw_ack_intr = value;
284 timer_update_irq(t);
285 t->rw_ack_intr = 0;
286 break;
287 default:
288 printf ("%s " TARGET_FMT_plx " %x\n",
289 __func__, addr, value);
290 break;
294 static CPUReadMemoryFunc *timer_read[] = {
295 NULL, NULL,
296 &timer_readl,
299 static CPUWriteMemoryFunc *timer_write[] = {
300 NULL, NULL,
301 &timer_writel,
304 static void etraxfs_timer_reset(void *opaque)
306 struct fs_timer_t *t = opaque;
308 ptimer_stop(t->ptimer_t0);
309 ptimer_stop(t->ptimer_t1);
310 ptimer_stop(t->ptimer_wd);
311 t->rw_wd_ctrl = 0;
312 t->r_intr = 0;
313 t->rw_intr_mask = 0;
314 qemu_irq_lower(t->irq[0]);
317 void etraxfs_timer_init(CPUState *env, qemu_irq *irqs, qemu_irq *nmi,
318 target_phys_addr_t base)
320 static struct fs_timer_t *t;
321 int timer_regs;
323 t = qemu_mallocz(sizeof *t);
324 if (!t)
325 return;
327 t->bh_t0 = qemu_bh_new(timer0_hit, t);
328 t->bh_t1 = qemu_bh_new(timer1_hit, t);
329 t->bh_wd = qemu_bh_new(watchdog_hit, t);
330 t->ptimer_t0 = ptimer_init(t->bh_t0);
331 t->ptimer_t1 = ptimer_init(t->bh_t1);
332 t->ptimer_wd = ptimer_init(t->bh_wd);
333 t->irq = irqs;
334 t->nmi = nmi;
335 t->env = env;
337 timer_regs = cpu_register_io_memory(0, timer_read, timer_write, t);
338 cpu_register_physical_memory (base, 0x5c, timer_regs);
340 qemu_register_reset(etraxfs_timer_reset, t);