Fix 64 bit issue in slirp
[qemu/mini2440/sniper_sniper_test.git] / hw / etraxfs_eth.c
blobcce89178a50ef4985616d093da0b39c128be078b
1 /*
2 * QEMU ETRAX Ethernet Controller.
4 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include <stdio.h>
26 #include "hw.h"
27 #include "net.h"
29 #include "etraxfs_dma.h"
31 #define D(x)
33 /* Advertisement control register. */
34 #define ADVERTISE_10HALF 0x0020 /* Try for 10mbps half-duplex */
35 #define ADVERTISE_10FULL 0x0040 /* Try for 10mbps full-duplex */
36 #define ADVERTISE_100HALF 0x0080 /* Try for 100mbps half-duplex */
37 #define ADVERTISE_100FULL 0x0100 /* Try for 100mbps full-duplex */
39 /*
40 * The MDIO extensions in the TDK PHY model were reversed engineered from the
41 * linux driver (PHYID and Diagnostics reg).
42 * TODO: Add friendly names for the register nums.
44 struct qemu_phy
46 uint32_t regs[32];
48 int link;
50 unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
51 void (*write)(struct qemu_phy *phy, unsigned int req,
52 unsigned int data);
55 static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req)
57 int regnum;
58 unsigned r = 0;
60 regnum = req & 0x1f;
62 switch (regnum) {
63 case 1:
64 if (!phy->link)
65 break;
66 /* MR1. */
67 /* Speeds and modes. */
68 r |= (1 << 13) | (1 << 14);
69 r |= (1 << 11) | (1 << 12);
70 r |= (1 << 5); /* Autoneg complete. */
71 r |= (1 << 3); /* Autoneg able. */
72 r |= (1 << 2); /* link. */
73 break;
74 case 5:
75 /* Link partner ability.
76 We are kind; always agree with whatever best mode
77 the guest advertises. */
78 r = 1 << 14; /* Success. */
79 /* Copy advertised modes. */
80 r |= phy->regs[4] & (15 << 5);
81 /* Autoneg support. */
82 r |= 1;
83 break;
84 case 18:
86 /* Diagnostics reg. */
87 int duplex = 0;
88 int speed_100 = 0;
90 if (!phy->link)
91 break;
93 /* Are we advertising 100 half or 100 duplex ? */
94 speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF);
95 speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL);
97 /* Are we advertising 10 duplex or 100 duplex ? */
98 duplex = !!(phy->regs[4] & ADVERTISE_100FULL);
99 duplex |= !!(phy->regs[4] & ADVERTISE_10FULL);
100 r = (speed_100 << 10) | (duplex << 11);
102 break;
104 default:
105 r = phy->regs[regnum];
106 break;
108 D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum));
109 return r;
112 static void
113 tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data)
115 int regnum;
117 regnum = req & 0x1f;
118 D(printf("%s reg[%d] = %x\n", __func__, regnum, data));
119 switch (regnum) {
120 default:
121 phy->regs[regnum] = data;
122 break;
126 static void
127 tdk_init(struct qemu_phy *phy)
129 phy->regs[0] = 0x3100;
130 /* PHY Id. */
131 phy->regs[2] = 0x0300;
132 phy->regs[3] = 0xe400;
133 /* Autonegotiation advertisement reg. */
134 phy->regs[4] = 0x01E1;
135 phy->link = 1;
137 phy->read = tdk_read;
138 phy->write = tdk_write;
141 struct qemu_mdio
143 /* bus. */
144 int mdc;
145 int mdio;
147 /* decoder. */
148 enum {
149 PREAMBLE,
150 SOF,
151 OPC,
152 ADDR,
153 REQ,
154 TURNAROUND,
155 DATA
156 } state;
157 unsigned int drive;
159 unsigned int cnt;
160 unsigned int addr;
161 unsigned int opc;
162 unsigned int req;
163 unsigned int data;
165 struct qemu_phy *devs[32];
168 static void
169 mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
171 bus->devs[addr & 0x1f] = phy;
174 #ifdef USE_THIS_DEAD_CODE
175 static void
176 mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
178 bus->devs[addr & 0x1f] = NULL;
180 #endif
182 static void mdio_read_req(struct qemu_mdio *bus)
184 struct qemu_phy *phy;
186 phy = bus->devs[bus->addr];
187 if (phy && phy->read)
188 bus->data = phy->read(phy, bus->req);
189 else
190 bus->data = 0xffff;
193 static void mdio_write_req(struct qemu_mdio *bus)
195 struct qemu_phy *phy;
197 phy = bus->devs[bus->addr];
198 if (phy && phy->write)
199 phy->write(phy, bus->req, bus->data);
202 static void mdio_cycle(struct qemu_mdio *bus)
204 bus->cnt++;
206 D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n",
207 bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive));
208 #if 0
209 if (bus->mdc)
210 printf("%d", bus->mdio);
211 #endif
212 switch (bus->state)
214 case PREAMBLE:
215 if (bus->mdc) {
216 if (bus->cnt >= (32 * 2) && !bus->mdio) {
217 bus->cnt = 0;
218 bus->state = SOF;
219 bus->data = 0;
222 break;
223 case SOF:
224 if (bus->mdc) {
225 if (bus->mdio != 1)
226 printf("WARNING: no SOF\n");
227 if (bus->cnt == 1*2) {
228 bus->cnt = 0;
229 bus->opc = 0;
230 bus->state = OPC;
233 break;
234 case OPC:
235 if (bus->mdc) {
236 bus->opc <<= 1;
237 bus->opc |= bus->mdio & 1;
238 if (bus->cnt == 2*2) {
239 bus->cnt = 0;
240 bus->addr = 0;
241 bus->state = ADDR;
244 break;
245 case ADDR:
246 if (bus->mdc) {
247 bus->addr <<= 1;
248 bus->addr |= bus->mdio & 1;
250 if (bus->cnt == 5*2) {
251 bus->cnt = 0;
252 bus->req = 0;
253 bus->state = REQ;
256 break;
257 case REQ:
258 if (bus->mdc) {
259 bus->req <<= 1;
260 bus->req |= bus->mdio & 1;
261 if (bus->cnt == 5*2) {
262 bus->cnt = 0;
263 bus->state = TURNAROUND;
266 break;
267 case TURNAROUND:
268 if (bus->mdc && bus->cnt == 2*2) {
269 bus->mdio = 0;
270 bus->cnt = 0;
272 if (bus->opc == 2) {
273 bus->drive = 1;
274 mdio_read_req(bus);
275 bus->mdio = bus->data & 1;
277 bus->state = DATA;
279 break;
280 case DATA:
281 if (!bus->mdc) {
282 if (bus->drive) {
283 bus->mdio = !!(bus->data & (1 << 15));
284 bus->data <<= 1;
286 } else {
287 if (!bus->drive) {
288 bus->data <<= 1;
289 bus->data |= bus->mdio;
291 if (bus->cnt == 16 * 2) {
292 bus->cnt = 0;
293 bus->state = PREAMBLE;
294 if (!bus->drive)
295 mdio_write_req(bus);
296 bus->drive = 0;
299 break;
300 default:
301 break;
305 /* ETRAX-FS Ethernet MAC block starts here. */
307 #define RW_MA0_LO 0x00
308 #define RW_MA0_HI 0x01
309 #define RW_MA1_LO 0x02
310 #define RW_MA1_HI 0x03
311 #define RW_GA_LO 0x04
312 #define RW_GA_HI 0x05
313 #define RW_GEN_CTRL 0x06
314 #define RW_REC_CTRL 0x07
315 #define RW_TR_CTRL 0x08
316 #define RW_CLR_ERR 0x09
317 #define RW_MGM_CTRL 0x0a
318 #define R_STAT 0x0b
319 #define FS_ETH_MAX_REGS 0x17
321 struct fs_eth
323 CPUState *env;
324 qemu_irq *irq;
325 VLANClientState *vc;
326 int ethregs;
328 /* Two addrs in the filter. */
329 uint8_t macaddr[2][6];
330 uint32_t regs[FS_ETH_MAX_REGS];
332 struct etraxfs_dma_client *dma_out;
333 struct etraxfs_dma_client *dma_in;
335 /* MDIO bus. */
336 struct qemu_mdio mdio_bus;
337 unsigned int phyaddr;
338 int duplex_mismatch;
340 /* PHY. */
341 struct qemu_phy phy;
344 static void eth_validate_duplex(struct fs_eth *eth)
346 struct qemu_phy *phy;
347 unsigned int phy_duplex;
348 unsigned int mac_duplex;
349 int new_mm = 0;
351 phy = eth->mdio_bus.devs[eth->phyaddr];
352 phy_duplex = !!(phy->read(phy, 18) & (1 << 11));
353 mac_duplex = !!(eth->regs[RW_REC_CTRL] & 128);
355 if (mac_duplex != phy_duplex)
356 new_mm = 1;
358 if (eth->regs[RW_GEN_CTRL] & 1) {
359 if (new_mm != eth->duplex_mismatch) {
360 if (new_mm)
361 printf("HW: WARNING "
362 "ETH duplex mismatch MAC=%d PHY=%d\n",
363 mac_duplex, phy_duplex);
364 else
365 printf("HW: ETH duplex ok.\n");
367 eth->duplex_mismatch = new_mm;
371 static uint32_t eth_readl (void *opaque, target_phys_addr_t addr)
373 struct fs_eth *eth = opaque;
374 uint32_t r = 0;
376 addr >>= 2;
378 switch (addr) {
379 case R_STAT:
380 r = eth->mdio_bus.mdio & 1;
381 break;
382 default:
383 r = eth->regs[addr];
384 D(printf ("%s %x\n", __func__, addr * 4));
385 break;
387 return r;
390 static void eth_update_ma(struct fs_eth *eth, int ma)
392 int reg;
393 int i = 0;
395 ma &= 1;
397 reg = RW_MA0_LO;
398 if (ma)
399 reg = RW_MA1_LO;
401 eth->macaddr[ma][i++] = eth->regs[reg];
402 eth->macaddr[ma][i++] = eth->regs[reg] >> 8;
403 eth->macaddr[ma][i++] = eth->regs[reg] >> 16;
404 eth->macaddr[ma][i++] = eth->regs[reg] >> 24;
405 eth->macaddr[ma][i++] = eth->regs[reg + 4];
406 eth->macaddr[ma][i++] = eth->regs[reg + 4] >> 8;
408 D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma,
409 eth->macaddr[ma][0], eth->macaddr[ma][1],
410 eth->macaddr[ma][2], eth->macaddr[ma][3],
411 eth->macaddr[ma][4], eth->macaddr[ma][5]));
414 static void
415 eth_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
417 struct fs_eth *eth = opaque;
419 addr >>= 2;
420 switch (addr)
422 case RW_MA0_LO:
423 case RW_MA0_HI:
424 eth->regs[addr] = value;
425 eth_update_ma(eth, 0);
426 break;
427 case RW_MA1_LO:
428 case RW_MA1_HI:
429 eth->regs[addr] = value;
430 eth_update_ma(eth, 1);
431 break;
433 case RW_MGM_CTRL:
434 /* Attach an MDIO/PHY abstraction. */
435 if (value & 2)
436 eth->mdio_bus.mdio = value & 1;
437 if (eth->mdio_bus.mdc != (value & 4)) {
438 mdio_cycle(&eth->mdio_bus);
439 eth_validate_duplex(eth);
441 eth->mdio_bus.mdc = !!(value & 4);
442 break;
444 case RW_REC_CTRL:
445 eth->regs[addr] = value;
446 eth_validate_duplex(eth);
447 break;
449 default:
450 eth->regs[addr] = value;
451 D(printf ("%s %x %x\n",
452 __func__, addr, value));
453 break;
457 /* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom
458 filter dropping group addresses we have not joined. The filter has 64
459 bits (m). The has function is a simple nible xor of the group addr. */
460 static int eth_match_groupaddr(struct fs_eth *eth, const unsigned char *sa)
462 unsigned int hsh;
463 int m_individual = eth->regs[RW_REC_CTRL] & 4;
464 int match;
466 /* First bit on the wire of a MAC address signals multicast or
467 physical address. */
468 if (!m_individual && !sa[0] & 1)
469 return 0;
471 /* Calculate the hash index for the GA registers. */
472 hsh = 0;
473 hsh ^= (*sa) & 0x3f;
474 hsh ^= ((*sa) >> 6) & 0x03;
475 ++sa;
476 hsh ^= ((*sa) << 2) & 0x03c;
477 hsh ^= ((*sa) >> 4) & 0xf;
478 ++sa;
479 hsh ^= ((*sa) << 4) & 0x30;
480 hsh ^= ((*sa) >> 2) & 0x3f;
481 ++sa;
482 hsh ^= (*sa) & 0x3f;
483 hsh ^= ((*sa) >> 6) & 0x03;
484 ++sa;
485 hsh ^= ((*sa) << 2) & 0x03c;
486 hsh ^= ((*sa) >> 4) & 0xf;
487 ++sa;
488 hsh ^= ((*sa) << 4) & 0x30;
489 hsh ^= ((*sa) >> 2) & 0x3f;
491 hsh &= 63;
492 if (hsh > 31)
493 match = eth->regs[RW_GA_HI] & (1 << (hsh - 32));
494 else
495 match = eth->regs[RW_GA_LO] & (1 << hsh);
496 D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh,
497 eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match));
498 return match;
501 static int eth_can_receive(void *opaque)
503 return 1;
506 static void eth_receive(void *opaque, const uint8_t *buf, int size)
508 unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
509 struct fs_eth *eth = opaque;
510 int use_ma0 = eth->regs[RW_REC_CTRL] & 1;
511 int use_ma1 = eth->regs[RW_REC_CTRL] & 2;
512 int r_bcast = eth->regs[RW_REC_CTRL] & 8;
514 if (size < 12)
515 return;
517 D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n",
518 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
519 use_ma0, use_ma1, r_bcast));
521 /* Does the frame get through the address filters? */
522 if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6))
523 && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6))
524 && (!r_bcast || memcmp(buf, sa_bcast, 6))
525 && !eth_match_groupaddr(eth, buf))
526 return;
528 /* FIXME: Find another way to pass on the fake csum. */
529 etraxfs_dmac_input(eth->dma_in, (void *)buf, size + 4, 1);
532 static int eth_tx_push(void *opaque, unsigned char *buf, int len)
534 struct fs_eth *eth = opaque;
536 D(printf("%s buf=%p len=%d\n", __func__, buf, len));
537 qemu_send_packet(eth->vc, buf, len);
538 return len;
541 static void eth_set_link(VLANClientState *vc)
543 struct fs_eth *eth = vc->opaque;
544 D(printf("%s %d\n", __func__, vc->link_down));
545 eth->phy.link = !vc->link_down;
548 static CPUReadMemoryFunc *eth_read[] = {
549 NULL, NULL,
550 &eth_readl,
553 static CPUWriteMemoryFunc *eth_write[] = {
554 NULL, NULL,
555 &eth_writel,
558 void *etraxfs_eth_init(NICInfo *nd, CPUState *env,
559 qemu_irq *irq, target_phys_addr_t base, int phyaddr)
561 struct etraxfs_dma_client *dma = NULL;
562 struct fs_eth *eth = NULL;
564 qemu_check_nic_model(nd, "fseth");
566 dma = qemu_mallocz(sizeof *dma * 2);
567 if (!dma)
568 return NULL;
570 eth = qemu_mallocz(sizeof *eth);
571 if (!eth)
572 goto err;
574 dma[0].client.push = eth_tx_push;
575 dma[0].client.opaque = eth;
576 dma[1].client.opaque = eth;
577 dma[1].client.pull = NULL;
579 eth->env = env;
580 eth->irq = irq;
581 eth->dma_out = dma;
582 eth->dma_in = dma + 1;
584 /* Connect the phy. */
585 eth->phyaddr = phyaddr & 0x1f;
586 tdk_init(&eth->phy);
587 mdio_attach(&eth->mdio_bus, &eth->phy, eth->phyaddr);
589 eth->ethregs = cpu_register_io_memory(0, eth_read, eth_write, eth);
590 cpu_register_physical_memory (base, 0x5c, eth->ethregs);
592 eth->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
593 eth_receive, eth_can_receive, eth);
594 eth->vc->opaque = eth;
595 eth->vc->link_status_changed = eth_set_link;
597 return dma;
598 err:
599 qemu_free(eth);
600 qemu_free(dma);
601 return NULL;