sys-queue.h defines _SYS_QUEUE_H_ which is also defined by
[qemu/mini2440/sniper_sniper_test.git] / linux-user / qemu.h
bloba2abe51781954fb8abb0649c40da803cc7729d85
1 #ifndef QEMU_H
2 #define QEMU_H
4 #include <signal.h>
5 #include <string.h>
7 #include "cpu.h"
9 #undef DEBUG_REMAP
10 #ifdef DEBUG_REMAP
11 #include <stdlib.h>
12 #endif /* DEBUG_REMAP */
14 #ifdef TARGET_ABI32
15 typedef uint32_t abi_ulong;
16 typedef int32_t abi_long;
17 #define TARGET_ABI_FMT_lx "%08x"
18 #define TARGET_ABI_FMT_ld "%d"
19 #define TARGET_ABI_FMT_lu "%u"
20 #define TARGET_ABI_BITS 32
21 #else
22 typedef target_ulong abi_ulong;
23 typedef target_long abi_long;
24 #define TARGET_ABI_FMT_lx TARGET_FMT_lx
25 #define TARGET_ABI_FMT_ld TARGET_FMT_ld
26 #define TARGET_ABI_FMT_lu TARGET_FMT_lu
27 #define TARGET_ABI_BITS TARGET_LONG_BITS
28 /* for consistency, define ABI32 too */
29 #if TARGET_ABI_BITS == 32
30 #define TARGET_ABI32 1
31 #endif
32 #endif
34 #include "thunk.h"
35 #include "syscall_defs.h"
36 #include "syscall.h"
37 #include "target_signal.h"
38 #include "gdbstub.h"
40 #if defined(USE_NPTL)
41 #define THREAD __thread
42 #else
43 #define THREAD
44 #endif
46 /* This struct is used to hold certain information about the image.
47 * Basically, it replicates in user space what would be certain
48 * task_struct fields in the kernel
50 struct image_info {
51 abi_ulong load_addr;
52 abi_ulong start_code;
53 abi_ulong end_code;
54 abi_ulong start_data;
55 abi_ulong end_data;
56 abi_ulong start_brk;
57 abi_ulong brk;
58 abi_ulong start_mmap;
59 abi_ulong mmap;
60 abi_ulong rss;
61 abi_ulong start_stack;
62 abi_ulong entry;
63 abi_ulong code_offset;
64 abi_ulong data_offset;
65 char **host_argv;
66 int personality;
69 #ifdef TARGET_I386
70 /* Information about the current linux thread */
71 struct vm86_saved_state {
72 uint32_t eax; /* return code */
73 uint32_t ebx;
74 uint32_t ecx;
75 uint32_t edx;
76 uint32_t esi;
77 uint32_t edi;
78 uint32_t ebp;
79 uint32_t esp;
80 uint32_t eflags;
81 uint32_t eip;
82 uint16_t cs, ss, ds, es, fs, gs;
84 #endif
86 #ifdef TARGET_ARM
87 /* FPU emulator */
88 #include "nwfpe/fpa11.h"
89 #endif
91 #define MAX_SIGQUEUE_SIZE 1024
93 struct sigqueue {
94 struct sigqueue *next;
95 target_siginfo_t info;
98 struct emulated_sigtable {
99 int pending; /* true if signal is pending */
100 struct sigqueue *first;
101 struct sigqueue info; /* in order to always have memory for the
102 first signal, we put it here */
105 /* NOTE: we force a big alignment so that the stack stored after is
106 aligned too */
107 typedef struct TaskState {
108 struct TaskState *next;
109 #ifdef TARGET_ARM
110 /* FPA state */
111 FPA11 fpa;
112 int swi_errno;
113 #endif
114 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
115 abi_ulong target_v86;
116 struct vm86_saved_state vm86_saved_regs;
117 struct target_vm86plus_struct vm86plus;
118 uint32_t v86flags;
119 uint32_t v86mask;
120 #endif
121 #ifdef TARGET_M68K
122 int sim_syscalls;
123 #endif
124 #if defined(TARGET_ARM) || defined(TARGET_M68K)
125 /* Extra fields for semihosted binaries. */
126 uint32_t stack_base;
127 uint32_t heap_base;
128 uint32_t heap_limit;
129 #endif
130 int used; /* non zero if used */
131 struct image_info *info;
133 struct emulated_sigtable sigtab[TARGET_NSIG];
134 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
135 struct sigqueue *first_free; /* first free siginfo queue entry */
136 int signal_pending; /* non zero if a signal may be pending */
138 uint8_t stack[0];
139 } __attribute__((aligned(16))) TaskState;
141 void init_task_state(TaskState *ts);
142 extern const char *qemu_uname_release;
144 /* ??? See if we can avoid exposing so much of the loader internals. */
146 * MAX_ARG_PAGES defines the number of pages allocated for arguments
147 * and envelope for the new program. 32 should suffice, this gives
148 * a maximum env+arg of 128kB w/4KB pages!
150 #define MAX_ARG_PAGES 32
153 * This structure is used to hold the arguments that are
154 * used when loading binaries.
156 struct linux_binprm {
157 char buf[128];
158 void *page[MAX_ARG_PAGES];
159 abi_ulong p;
160 int fd;
161 int e_uid, e_gid;
162 int argc, envc;
163 char **argv;
164 char **envp;
165 char * filename; /* Name of binary */
168 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
169 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
170 abi_ulong stringp, int push_ptr);
171 int loader_exec(const char * filename, char ** argv, char ** envp,
172 struct target_pt_regs * regs, struct image_info *infop);
174 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
175 struct image_info * info);
176 int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
177 struct image_info * info);
178 #ifdef TARGET_HAS_ELFLOAD32
179 int load_elf_binary_multi(struct linux_binprm *bprm,
180 struct target_pt_regs *regs,
181 struct image_info *info);
182 #endif
184 abi_long memcpy_to_target(abi_ulong dest, const void *src,
185 unsigned long len);
186 void target_set_brk(abi_ulong new_brk);
187 abi_long do_brk(abi_ulong new_brk);
188 void syscall_init(void);
189 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
190 abi_long arg2, abi_long arg3, abi_long arg4,
191 abi_long arg5, abi_long arg6);
192 void gemu_log(const char *fmt, ...) __attribute__((format(printf,1,2)));
193 extern THREAD CPUState *thread_env;
194 void cpu_loop(CPUState *env);
195 void init_paths(const char *prefix);
196 const char *path(const char *pathname);
197 char *target_strerror(int err);
198 int get_osversion(void);
199 void fork_start(void);
200 void fork_end(int child);
202 #include "qemu-log.h"
204 /* strace.c */
205 void print_syscall(int num,
206 abi_long arg1, abi_long arg2, abi_long arg3,
207 abi_long arg4, abi_long arg5, abi_long arg6);
208 void print_syscall_ret(int num, abi_long arg1);
209 extern int do_strace;
211 /* signal.c */
212 void process_pending_signals(CPUState *cpu_env);
213 void signal_init(void);
214 int queue_signal(CPUState *env, int sig, target_siginfo_t *info);
215 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
216 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
217 int target_to_host_signal(int sig);
218 long do_sigreturn(CPUState *env);
219 long do_rt_sigreturn(CPUState *env);
220 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
222 #ifdef TARGET_I386
223 /* vm86.c */
224 void save_v86_state(CPUX86State *env);
225 void handle_vm86_trap(CPUX86State *env, int trapno);
226 void handle_vm86_fault(CPUX86State *env);
227 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
228 #elif defined(TARGET_SPARC64)
229 void sparc64_set_context(CPUSPARCState *env);
230 void sparc64_get_context(CPUSPARCState *env);
231 #endif
233 /* mmap.c */
234 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
235 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
236 int flags, int fd, abi_ulong offset);
237 int target_munmap(abi_ulong start, abi_ulong len);
238 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
239 abi_ulong new_size, unsigned long flags,
240 abi_ulong new_addr);
241 int target_msync(abi_ulong start, abi_ulong len, int flags);
242 extern unsigned long last_brk;
243 void mmap_lock(void);
244 void mmap_unlock(void);
245 #if defined(USE_NPTL)
246 void mmap_fork_start(void);
247 void mmap_fork_end(int child);
248 #endif
250 /* main.c */
251 extern unsigned long x86_stack_size;
253 /* user access */
255 #define VERIFY_READ 0
256 #define VERIFY_WRITE 1 /* implies read access */
258 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
260 return page_check_range((target_ulong)addr, size,
261 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
264 /* NOTE __get_user and __put_user use host pointers and don't check access. */
265 /* These are usually used to access struct data members once the
266 * struct has been locked - usually with lock_user_struct().
268 #define __put_user(x, hptr)\
270 int size = sizeof(*hptr);\
271 switch(size) {\
272 case 1:\
273 *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\
274 break;\
275 case 2:\
276 *(uint16_t *)(hptr) = tswap16((typeof(*hptr))(x));\
277 break;\
278 case 4:\
279 *(uint32_t *)(hptr) = tswap32((typeof(*hptr))(x));\
280 break;\
281 case 8:\
282 *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\
283 break;\
284 default:\
285 abort();\
290 #define __get_user(x, hptr) \
292 int size = sizeof(*hptr);\
293 switch(size) {\
294 case 1:\
295 x = (typeof(*hptr))*(uint8_t *)(hptr);\
296 break;\
297 case 2:\
298 x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\
299 break;\
300 case 4:\
301 x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\
302 break;\
303 case 8:\
304 x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\
305 break;\
306 default:\
307 /* avoid warning */\
308 x = 0;\
309 abort();\
314 /* put_user()/get_user() take a guest address and check access */
315 /* These are usually used to access an atomic data type, such as an int,
316 * that has been passed by address. These internally perform locking
317 * and unlocking on the data type.
319 #define put_user(x, gaddr, target_type) \
320 ({ \
321 abi_ulong __gaddr = (gaddr); \
322 target_type *__hptr; \
323 abi_long __ret; \
324 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
325 __ret = __put_user((x), __hptr); \
326 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
327 } else \
328 __ret = -TARGET_EFAULT; \
329 __ret; \
332 #define get_user(x, gaddr, target_type) \
333 ({ \
334 abi_ulong __gaddr = (gaddr); \
335 target_type *__hptr; \
336 abi_long __ret; \
337 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
338 __ret = __get_user((x), __hptr); \
339 unlock_user(__hptr, __gaddr, 0); \
340 } else { \
341 /* avoid warning */ \
342 (x) = 0; \
343 __ret = -TARGET_EFAULT; \
345 __ret; \
348 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
349 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
350 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
351 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
352 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
353 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
354 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
355 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
356 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
357 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
359 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
360 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
361 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
362 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
363 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
364 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
365 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
366 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
367 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
368 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
370 /* copy_from_user() and copy_to_user() are usually used to copy data
371 * buffers between the target and host. These internally perform
372 * locking/unlocking of the memory.
374 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
375 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
377 /* Functions for accessing guest memory. The tget and tput functions
378 read/write single values, byteswapping as neccessary. The lock_user
379 gets a pointer to a contiguous area of guest memory, but does not perform
380 and byteswapping. lock_user may return either a pointer to the guest
381 memory, or a temporary buffer. */
383 /* Lock an area of guest memory into the host. If copy is true then the
384 host area will have the same contents as the guest. */
385 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
387 if (!access_ok(type, guest_addr, len))
388 return NULL;
389 #ifdef DEBUG_REMAP
391 void *addr;
392 addr = malloc(len);
393 if (copy)
394 memcpy(addr, g2h(guest_addr), len);
395 else
396 memset(addr, 0, len);
397 return addr;
399 #else
400 return g2h(guest_addr);
401 #endif
404 /* Unlock an area of guest memory. The first LEN bytes must be
405 flushed back to guest memory. host_ptr = NULL is explicitly
406 allowed and does nothing. */
407 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
408 long len)
411 #ifdef DEBUG_REMAP
412 if (!host_ptr)
413 return;
414 if (host_ptr == g2h(guest_addr))
415 return;
416 if (len > 0)
417 memcpy(g2h(guest_addr), host_ptr, len);
418 free(host_ptr);
419 #endif
422 /* Return the length of a string in target memory or -TARGET_EFAULT if
423 access error. */
424 abi_long target_strlen(abi_ulong gaddr);
426 /* Like lock_user but for null terminated strings. */
427 static inline void *lock_user_string(abi_ulong guest_addr)
429 abi_long len;
430 len = target_strlen(guest_addr);
431 if (len < 0)
432 return NULL;
433 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
436 /* Helper macros for locking/ulocking a target struct. */
437 #define lock_user_struct(type, host_ptr, guest_addr, copy) \
438 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
439 #define unlock_user_struct(host_ptr, guest_addr, copy) \
440 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
442 #if defined(USE_NPTL)
443 #include <pthread.h>
444 #endif
446 #endif /* QEMU_H */