2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
22 #define WIN32_LEAN_AND_MEAN
25 #include <sys/types.h>
38 #include "qemu-common.h"
43 #if defined(CONFIG_USER_ONLY)
47 //#define DEBUG_TB_INVALIDATE
50 //#define DEBUG_UNASSIGNED
52 /* make various TB consistency checks */
53 //#define DEBUG_TB_CHECK
54 //#define DEBUG_TLB_CHECK
56 //#define DEBUG_IOPORT
57 //#define DEBUG_SUBPAGE
59 #if !defined(CONFIG_USER_ONLY)
60 /* TB consistency checks only implemented for usermode emulation. */
64 #define SMC_BITMAP_USE_THRESHOLD 10
66 #define MMAP_AREA_START 0x00000000
67 #define MMAP_AREA_END 0xa8000000
69 #if defined(TARGET_SPARC64)
70 #define TARGET_PHYS_ADDR_SPACE_BITS 41
71 #elif defined(TARGET_SPARC)
72 #define TARGET_PHYS_ADDR_SPACE_BITS 36
73 #elif defined(TARGET_ALPHA)
74 #define TARGET_PHYS_ADDR_SPACE_BITS 42
75 #define TARGET_VIRT_ADDR_SPACE_BITS 42
76 #elif defined(TARGET_PPC64)
77 #define TARGET_PHYS_ADDR_SPACE_BITS 42
78 #elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
79 #define TARGET_PHYS_ADDR_SPACE_BITS 42
80 #elif defined(TARGET_I386) && !defined(USE_KQEMU)
81 #define TARGET_PHYS_ADDR_SPACE_BITS 36
83 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
84 #define TARGET_PHYS_ADDR_SPACE_BITS 32
87 static TranslationBlock
*tbs
;
88 int code_gen_max_blocks
;
89 TranslationBlock
*tb_phys_hash
[CODE_GEN_PHYS_HASH_SIZE
];
91 /* any access to the tbs or the page table must use this lock */
92 spinlock_t tb_lock
= SPIN_LOCK_UNLOCKED
;
94 #if defined(__arm__) || defined(__sparc_v9__)
95 /* The prologue must be reachable with a direct jump. ARM and Sparc64
96 have limited branch ranges (possibly also PPC) so place it in a
97 section close to code segment. */
98 #define code_gen_section \
99 __attribute__((__section__(".gen_code"))) \
100 __attribute__((aligned (32)))
102 #define code_gen_section \
103 __attribute__((aligned (32)))
106 uint8_t code_gen_prologue
[1024] code_gen_section
;
107 static uint8_t *code_gen_buffer
;
108 static unsigned long code_gen_buffer_size
;
109 /* threshold to flush the translated code buffer */
110 static unsigned long code_gen_buffer_max_size
;
111 uint8_t *code_gen_ptr
;
113 #if !defined(CONFIG_USER_ONLY)
114 ram_addr_t phys_ram_size
;
116 uint8_t *phys_ram_base
;
117 uint8_t *phys_ram_dirty
;
118 static int in_migration
;
119 static ram_addr_t phys_ram_alloc_offset
= 0;
123 /* current CPU in the current thread. It is only valid inside
125 CPUState
*cpu_single_env
;
126 /* 0 = Do not count executed instructions.
127 1 = Precise instruction counting.
128 2 = Adaptive rate instruction counting. */
130 /* Current instruction counter. While executing translated code this may
131 include some instructions that have not yet been executed. */
134 typedef struct PageDesc
{
135 /* list of TBs intersecting this ram page */
136 TranslationBlock
*first_tb
;
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count
;
140 uint8_t *code_bitmap
;
141 #if defined(CONFIG_USER_ONLY)
146 typedef struct PhysPageDesc
{
147 /* offset in host memory of the page + io_index in the low bits */
148 ram_addr_t phys_offset
;
149 ram_addr_t region_offset
;
153 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
154 /* XXX: this is a temporary hack for alpha target.
155 * In the future, this is to be replaced by a multi-level table
156 * to actually be able to handle the complete 64 bits address space.
158 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
160 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
163 #define L1_SIZE (1 << L1_BITS)
164 #define L2_SIZE (1 << L2_BITS)
166 unsigned long qemu_real_host_page_size
;
167 unsigned long qemu_host_page_bits
;
168 unsigned long qemu_host_page_size
;
169 unsigned long qemu_host_page_mask
;
171 /* XXX: for system emulation, it could just be an array */
172 static PageDesc
*l1_map
[L1_SIZE
];
173 static PhysPageDesc
**l1_phys_map
;
175 #if !defined(CONFIG_USER_ONLY)
176 static void io_mem_init(void);
178 /* io memory support */
179 CPUWriteMemoryFunc
*io_mem_write
[IO_MEM_NB_ENTRIES
][4];
180 CPUReadMemoryFunc
*io_mem_read
[IO_MEM_NB_ENTRIES
][4];
181 void *io_mem_opaque
[IO_MEM_NB_ENTRIES
];
182 static int io_mem_nb
;
183 static int io_mem_watch
;
187 static const char *logfilename
= "/tmp/qemu.log";
190 static int log_append
= 0;
193 static int tlb_flush_count
;
194 static int tb_flush_count
;
195 static int tb_phys_invalidate_count
;
197 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
198 typedef struct subpage_t
{
199 target_phys_addr_t base
;
200 CPUReadMemoryFunc
**mem_read
[TARGET_PAGE_SIZE
][4];
201 CPUWriteMemoryFunc
**mem_write
[TARGET_PAGE_SIZE
][4];
202 void *opaque
[TARGET_PAGE_SIZE
][2][4];
203 ram_addr_t region_offset
[TARGET_PAGE_SIZE
][2][4];
207 static void map_exec(void *addr
, long size
)
210 VirtualProtect(addr
, size
,
211 PAGE_EXECUTE_READWRITE
, &old_protect
);
215 static void map_exec(void *addr
, long size
)
217 unsigned long start
, end
, page_size
;
219 page_size
= getpagesize();
220 start
= (unsigned long)addr
;
221 start
&= ~(page_size
- 1);
223 end
= (unsigned long)addr
+ size
;
224 end
+= page_size
- 1;
225 end
&= ~(page_size
- 1);
227 mprotect((void *)start
, end
- start
,
228 PROT_READ
| PROT_WRITE
| PROT_EXEC
);
232 static void page_init(void)
234 /* NOTE: we can always suppose that qemu_host_page_size >=
238 SYSTEM_INFO system_info
;
240 GetSystemInfo(&system_info
);
241 qemu_real_host_page_size
= system_info
.dwPageSize
;
244 qemu_real_host_page_size
= getpagesize();
246 if (qemu_host_page_size
== 0)
247 qemu_host_page_size
= qemu_real_host_page_size
;
248 if (qemu_host_page_size
< TARGET_PAGE_SIZE
)
249 qemu_host_page_size
= TARGET_PAGE_SIZE
;
250 qemu_host_page_bits
= 0;
251 while ((1 << qemu_host_page_bits
) < qemu_host_page_size
)
252 qemu_host_page_bits
++;
253 qemu_host_page_mask
= ~(qemu_host_page_size
- 1);
254 l1_phys_map
= qemu_vmalloc(L1_SIZE
* sizeof(void *));
255 memset(l1_phys_map
, 0, L1_SIZE
* sizeof(void *));
257 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
259 long long startaddr
, endaddr
;
264 last_brk
= (unsigned long)sbrk(0);
265 f
= fopen("/proc/self/maps", "r");
268 n
= fscanf (f
, "%llx-%llx %*[^\n]\n", &startaddr
, &endaddr
);
270 startaddr
= MIN(startaddr
,
271 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS
) - 1);
272 endaddr
= MIN(endaddr
,
273 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS
) - 1);
274 page_set_flags(startaddr
& TARGET_PAGE_MASK
,
275 TARGET_PAGE_ALIGN(endaddr
),
286 static inline PageDesc
**page_l1_map(target_ulong index
)
288 #if TARGET_LONG_BITS > 32
289 /* Host memory outside guest VM. For 32-bit targets we have already
290 excluded high addresses. */
291 if (index
> ((target_ulong
)L2_SIZE
* L1_SIZE
))
294 return &l1_map
[index
>> L2_BITS
];
297 static inline PageDesc
*page_find_alloc(target_ulong index
)
300 lp
= page_l1_map(index
);
306 /* allocate if not found */
307 #if defined(CONFIG_USER_ONLY)
308 size_t len
= sizeof(PageDesc
) * L2_SIZE
;
309 /* Don't use qemu_malloc because it may recurse. */
310 p
= mmap(0, len
, PROT_READ
| PROT_WRITE
,
311 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
314 unsigned long addr
= h2g(p
);
315 page_set_flags(addr
& TARGET_PAGE_MASK
,
316 TARGET_PAGE_ALIGN(addr
+ len
),
320 p
= qemu_mallocz(sizeof(PageDesc
) * L2_SIZE
);
324 return p
+ (index
& (L2_SIZE
- 1));
327 static inline PageDesc
*page_find(target_ulong index
)
330 lp
= page_l1_map(index
);
337 return p
+ (index
& (L2_SIZE
- 1));
340 static PhysPageDesc
*phys_page_find_alloc(target_phys_addr_t index
, int alloc
)
345 p
= (void **)l1_phys_map
;
346 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
348 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
349 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
351 lp
= p
+ ((index
>> (L1_BITS
+ L2_BITS
)) & (L1_SIZE
- 1));
354 /* allocate if not found */
357 p
= qemu_vmalloc(sizeof(void *) * L1_SIZE
);
358 memset(p
, 0, sizeof(void *) * L1_SIZE
);
362 lp
= p
+ ((index
>> L2_BITS
) & (L1_SIZE
- 1));
366 /* allocate if not found */
369 pd
= qemu_vmalloc(sizeof(PhysPageDesc
) * L2_SIZE
);
371 for (i
= 0; i
< L2_SIZE
; i
++)
372 pd
[i
].phys_offset
= IO_MEM_UNASSIGNED
;
374 return ((PhysPageDesc
*)pd
) + (index
& (L2_SIZE
- 1));
377 static inline PhysPageDesc
*phys_page_find(target_phys_addr_t index
)
379 return phys_page_find_alloc(index
, 0);
382 #if !defined(CONFIG_USER_ONLY)
383 static void tlb_protect_code(ram_addr_t ram_addr
);
384 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
386 #define mmap_lock() do { } while(0)
387 #define mmap_unlock() do { } while(0)
390 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
392 #if defined(CONFIG_USER_ONLY)
393 /* Currently it is not recommanded to allocate big chunks of data in
394 user mode. It will change when a dedicated libc will be used */
395 #define USE_STATIC_CODE_GEN_BUFFER
398 #ifdef USE_STATIC_CODE_GEN_BUFFER
399 static uint8_t static_code_gen_buffer
[DEFAULT_CODE_GEN_BUFFER_SIZE
];
402 static void code_gen_alloc(unsigned long tb_size
)
404 #ifdef USE_STATIC_CODE_GEN_BUFFER
405 code_gen_buffer
= static_code_gen_buffer
;
406 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
407 map_exec(code_gen_buffer
, code_gen_buffer_size
);
409 code_gen_buffer_size
= tb_size
;
410 if (code_gen_buffer_size
== 0) {
411 #if defined(CONFIG_USER_ONLY)
412 /* in user mode, phys_ram_size is not meaningful */
413 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
415 /* XXX: needs ajustments */
416 code_gen_buffer_size
= (unsigned long)(phys_ram_size
/ 4);
419 if (code_gen_buffer_size
< MIN_CODE_GEN_BUFFER_SIZE
)
420 code_gen_buffer_size
= MIN_CODE_GEN_BUFFER_SIZE
;
421 /* The code gen buffer location may have constraints depending on
422 the host cpu and OS */
423 #if defined(__linux__)
428 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
429 #if defined(__x86_64__)
431 /* Cannot map more than that */
432 if (code_gen_buffer_size
> (800 * 1024 * 1024))
433 code_gen_buffer_size
= (800 * 1024 * 1024);
434 #elif defined(__sparc_v9__)
435 // Map the buffer below 2G, so we can use direct calls and branches
437 start
= (void *) 0x60000000UL
;
438 if (code_gen_buffer_size
> (512 * 1024 * 1024))
439 code_gen_buffer_size
= (512 * 1024 * 1024);
440 #elif defined(__arm__)
441 /* Map the buffer below 32M, so we can use direct calls and branches */
443 start
= (void *) 0x01000000UL
;
444 if (code_gen_buffer_size
> 16 * 1024 * 1024)
445 code_gen_buffer_size
= 16 * 1024 * 1024;
447 code_gen_buffer
= mmap(start
, code_gen_buffer_size
,
448 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
450 if (code_gen_buffer
== MAP_FAILED
) {
451 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
455 #elif defined(__FreeBSD__)
459 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
460 #if defined(__x86_64__)
461 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
462 * 0x40000000 is free */
464 addr
= (void *)0x40000000;
465 /* Cannot map more than that */
466 if (code_gen_buffer_size
> (800 * 1024 * 1024))
467 code_gen_buffer_size
= (800 * 1024 * 1024);
469 code_gen_buffer
= mmap(addr
, code_gen_buffer_size
,
470 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
472 if (code_gen_buffer
== MAP_FAILED
) {
473 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
478 code_gen_buffer
= qemu_malloc(code_gen_buffer_size
);
479 if (!code_gen_buffer
) {
480 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
483 map_exec(code_gen_buffer
, code_gen_buffer_size
);
485 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
486 map_exec(code_gen_prologue
, sizeof(code_gen_prologue
));
487 code_gen_buffer_max_size
= code_gen_buffer_size
-
488 code_gen_max_block_size();
489 code_gen_max_blocks
= code_gen_buffer_size
/ CODE_GEN_AVG_BLOCK_SIZE
;
490 tbs
= qemu_malloc(code_gen_max_blocks
* sizeof(TranslationBlock
));
493 /* Must be called before using the QEMU cpus. 'tb_size' is the size
494 (in bytes) allocated to the translation buffer. Zero means default
496 void cpu_exec_init_all(unsigned long tb_size
)
499 code_gen_alloc(tb_size
);
500 code_gen_ptr
= code_gen_buffer
;
502 #if !defined(CONFIG_USER_ONLY)
507 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
509 #define CPU_COMMON_SAVE_VERSION 1
511 static void cpu_common_save(QEMUFile
*f
, void *opaque
)
513 CPUState
*env
= opaque
;
515 qemu_put_be32s(f
, &env
->halted
);
516 qemu_put_be32s(f
, &env
->interrupt_request
);
519 static int cpu_common_load(QEMUFile
*f
, void *opaque
, int version_id
)
521 CPUState
*env
= opaque
;
523 if (version_id
!= CPU_COMMON_SAVE_VERSION
)
526 qemu_get_be32s(f
, &env
->halted
);
527 qemu_get_be32s(f
, &env
->interrupt_request
);
534 void cpu_exec_init(CPUState
*env
)
539 env
->next_cpu
= NULL
;
542 while (*penv
!= NULL
) {
543 penv
= (CPUState
**)&(*penv
)->next_cpu
;
546 env
->cpu_index
= cpu_index
;
547 TAILQ_INIT(&env
->breakpoints
);
548 TAILQ_INIT(&env
->watchpoints
);
550 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
551 register_savevm("cpu_common", cpu_index
, CPU_COMMON_SAVE_VERSION
,
552 cpu_common_save
, cpu_common_load
, env
);
553 register_savevm("cpu", cpu_index
, CPU_SAVE_VERSION
,
554 cpu_save
, cpu_load
, env
);
558 static inline void invalidate_page_bitmap(PageDesc
*p
)
560 if (p
->code_bitmap
) {
561 qemu_free(p
->code_bitmap
);
562 p
->code_bitmap
= NULL
;
564 p
->code_write_count
= 0;
567 /* set to NULL all the 'first_tb' fields in all PageDescs */
568 static void page_flush_tb(void)
573 for(i
= 0; i
< L1_SIZE
; i
++) {
576 for(j
= 0; j
< L2_SIZE
; j
++) {
578 invalidate_page_bitmap(p
);
585 /* flush all the translation blocks */
586 /* XXX: tb_flush is currently not thread safe */
587 void tb_flush(CPUState
*env1
)
590 #if defined(DEBUG_FLUSH)
591 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
592 (unsigned long)(code_gen_ptr
- code_gen_buffer
),
594 ((unsigned long)(code_gen_ptr
- code_gen_buffer
)) / nb_tbs
: 0);
596 if ((unsigned long)(code_gen_ptr
- code_gen_buffer
) > code_gen_buffer_size
)
597 cpu_abort(env1
, "Internal error: code buffer overflow\n");
601 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
602 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
605 memset (tb_phys_hash
, 0, CODE_GEN_PHYS_HASH_SIZE
* sizeof (void *));
608 code_gen_ptr
= code_gen_buffer
;
609 /* XXX: flush processor icache at this point if cache flush is
614 #ifdef DEBUG_TB_CHECK
616 static void tb_invalidate_check(target_ulong address
)
618 TranslationBlock
*tb
;
620 address
&= TARGET_PAGE_MASK
;
621 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
622 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
623 if (!(address
+ TARGET_PAGE_SIZE
<= tb
->pc
||
624 address
>= tb
->pc
+ tb
->size
)) {
625 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
626 address
, (long)tb
->pc
, tb
->size
);
632 /* verify that all the pages have correct rights for code */
633 static void tb_page_check(void)
635 TranslationBlock
*tb
;
636 int i
, flags1
, flags2
;
638 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
639 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
640 flags1
= page_get_flags(tb
->pc
);
641 flags2
= page_get_flags(tb
->pc
+ tb
->size
- 1);
642 if ((flags1
& PAGE_WRITE
) || (flags2
& PAGE_WRITE
)) {
643 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
644 (long)tb
->pc
, tb
->size
, flags1
, flags2
);
650 static void tb_jmp_check(TranslationBlock
*tb
)
652 TranslationBlock
*tb1
;
655 /* suppress any remaining jumps to this TB */
659 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
662 tb1
= tb1
->jmp_next
[n1
];
664 /* check end of list */
666 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb
);
672 /* invalidate one TB */
673 static inline void tb_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
,
676 TranslationBlock
*tb1
;
680 *ptb
= *(TranslationBlock
**)((char *)tb1
+ next_offset
);
683 ptb
= (TranslationBlock
**)((char *)tb1
+ next_offset
);
687 static inline void tb_page_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
689 TranslationBlock
*tb1
;
695 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
697 *ptb
= tb1
->page_next
[n1
];
700 ptb
= &tb1
->page_next
[n1
];
704 static inline void tb_jmp_remove(TranslationBlock
*tb
, int n
)
706 TranslationBlock
*tb1
, **ptb
;
709 ptb
= &tb
->jmp_next
[n
];
712 /* find tb(n) in circular list */
716 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
717 if (n1
== n
&& tb1
== tb
)
720 ptb
= &tb1
->jmp_first
;
722 ptb
= &tb1
->jmp_next
[n1
];
725 /* now we can suppress tb(n) from the list */
726 *ptb
= tb
->jmp_next
[n
];
728 tb
->jmp_next
[n
] = NULL
;
732 /* reset the jump entry 'n' of a TB so that it is not chained to
734 static inline void tb_reset_jump(TranslationBlock
*tb
, int n
)
736 tb_set_jmp_target(tb
, n
, (unsigned long)(tb
->tc_ptr
+ tb
->tb_next_offset
[n
]));
739 void tb_phys_invalidate(TranslationBlock
*tb
, target_ulong page_addr
)
744 target_phys_addr_t phys_pc
;
745 TranslationBlock
*tb1
, *tb2
;
747 /* remove the TB from the hash list */
748 phys_pc
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
749 h
= tb_phys_hash_func(phys_pc
);
750 tb_remove(&tb_phys_hash
[h
], tb
,
751 offsetof(TranslationBlock
, phys_hash_next
));
753 /* remove the TB from the page list */
754 if (tb
->page_addr
[0] != page_addr
) {
755 p
= page_find(tb
->page_addr
[0] >> TARGET_PAGE_BITS
);
756 tb_page_remove(&p
->first_tb
, tb
);
757 invalidate_page_bitmap(p
);
759 if (tb
->page_addr
[1] != -1 && tb
->page_addr
[1] != page_addr
) {
760 p
= page_find(tb
->page_addr
[1] >> TARGET_PAGE_BITS
);
761 tb_page_remove(&p
->first_tb
, tb
);
762 invalidate_page_bitmap(p
);
765 tb_invalidated_flag
= 1;
767 /* remove the TB from the hash list */
768 h
= tb_jmp_cache_hash_func(tb
->pc
);
769 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
770 if (env
->tb_jmp_cache
[h
] == tb
)
771 env
->tb_jmp_cache
[h
] = NULL
;
774 /* suppress this TB from the two jump lists */
775 tb_jmp_remove(tb
, 0);
776 tb_jmp_remove(tb
, 1);
778 /* suppress any remaining jumps to this TB */
784 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
785 tb2
= tb1
->jmp_next
[n1
];
786 tb_reset_jump(tb1
, n1
);
787 tb1
->jmp_next
[n1
] = NULL
;
790 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2); /* fail safe */
792 tb_phys_invalidate_count
++;
795 static inline void set_bits(uint8_t *tab
, int start
, int len
)
801 mask
= 0xff << (start
& 7);
802 if ((start
& ~7) == (end
& ~7)) {
804 mask
&= ~(0xff << (end
& 7));
809 start
= (start
+ 8) & ~7;
811 while (start
< end1
) {
816 mask
= ~(0xff << (end
& 7));
822 static void build_page_bitmap(PageDesc
*p
)
824 int n
, tb_start
, tb_end
;
825 TranslationBlock
*tb
;
827 p
->code_bitmap
= qemu_mallocz(TARGET_PAGE_SIZE
/ 8);
834 tb
= (TranslationBlock
*)((long)tb
& ~3);
835 /* NOTE: this is subtle as a TB may span two physical pages */
837 /* NOTE: tb_end may be after the end of the page, but
838 it is not a problem */
839 tb_start
= tb
->pc
& ~TARGET_PAGE_MASK
;
840 tb_end
= tb_start
+ tb
->size
;
841 if (tb_end
> TARGET_PAGE_SIZE
)
842 tb_end
= TARGET_PAGE_SIZE
;
845 tb_end
= ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
847 set_bits(p
->code_bitmap
, tb_start
, tb_end
- tb_start
);
848 tb
= tb
->page_next
[n
];
852 TranslationBlock
*tb_gen_code(CPUState
*env
,
853 target_ulong pc
, target_ulong cs_base
,
854 int flags
, int cflags
)
856 TranslationBlock
*tb
;
858 target_ulong phys_pc
, phys_page2
, virt_page2
;
861 phys_pc
= get_phys_addr_code(env
, pc
);
864 /* flush must be done */
866 /* cannot fail at this point */
868 /* Don't forget to invalidate previous TB info. */
869 tb_invalidated_flag
= 1;
871 tc_ptr
= code_gen_ptr
;
873 tb
->cs_base
= cs_base
;
876 cpu_gen_code(env
, tb
, &code_gen_size
);
877 code_gen_ptr
= (void *)(((unsigned long)code_gen_ptr
+ code_gen_size
+ CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
879 /* check next page if needed */
880 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
882 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
883 phys_page2
= get_phys_addr_code(env
, virt_page2
);
885 tb_link_phys(tb
, phys_pc
, phys_page2
);
889 /* invalidate all TBs which intersect with the target physical page
890 starting in range [start;end[. NOTE: start and end must refer to
891 the same physical page. 'is_cpu_write_access' should be true if called
892 from a real cpu write access: the virtual CPU will exit the current
893 TB if code is modified inside this TB. */
894 void tb_invalidate_phys_page_range(target_phys_addr_t start
, target_phys_addr_t end
,
895 int is_cpu_write_access
)
897 TranslationBlock
*tb
, *tb_next
, *saved_tb
;
898 CPUState
*env
= cpu_single_env
;
899 target_ulong tb_start
, tb_end
;
902 #ifdef TARGET_HAS_PRECISE_SMC
903 int current_tb_not_found
= is_cpu_write_access
;
904 TranslationBlock
*current_tb
= NULL
;
905 int current_tb_modified
= 0;
906 target_ulong current_pc
= 0;
907 target_ulong current_cs_base
= 0;
908 int current_flags
= 0;
909 #endif /* TARGET_HAS_PRECISE_SMC */
911 p
= page_find(start
>> TARGET_PAGE_BITS
);
914 if (!p
->code_bitmap
&&
915 ++p
->code_write_count
>= SMC_BITMAP_USE_THRESHOLD
&&
916 is_cpu_write_access
) {
917 /* build code bitmap */
918 build_page_bitmap(p
);
921 /* we remove all the TBs in the range [start, end[ */
922 /* XXX: see if in some cases it could be faster to invalidate all the code */
926 tb
= (TranslationBlock
*)((long)tb
& ~3);
927 tb_next
= tb
->page_next
[n
];
928 /* NOTE: this is subtle as a TB may span two physical pages */
930 /* NOTE: tb_end may be after the end of the page, but
931 it is not a problem */
932 tb_start
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
933 tb_end
= tb_start
+ tb
->size
;
935 tb_start
= tb
->page_addr
[1];
936 tb_end
= tb_start
+ ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
938 if (!(tb_end
<= start
|| tb_start
>= end
)) {
939 #ifdef TARGET_HAS_PRECISE_SMC
940 if (current_tb_not_found
) {
941 current_tb_not_found
= 0;
943 if (env
->mem_io_pc
) {
944 /* now we have a real cpu fault */
945 current_tb
= tb_find_pc(env
->mem_io_pc
);
948 if (current_tb
== tb
&&
949 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
950 /* If we are modifying the current TB, we must stop
951 its execution. We could be more precise by checking
952 that the modification is after the current PC, but it
953 would require a specialized function to partially
954 restore the CPU state */
956 current_tb_modified
= 1;
957 cpu_restore_state(current_tb
, env
,
958 env
->mem_io_pc
, NULL
);
959 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
962 #endif /* TARGET_HAS_PRECISE_SMC */
963 /* we need to do that to handle the case where a signal
964 occurs while doing tb_phys_invalidate() */
967 saved_tb
= env
->current_tb
;
968 env
->current_tb
= NULL
;
970 tb_phys_invalidate(tb
, -1);
972 env
->current_tb
= saved_tb
;
973 if (env
->interrupt_request
&& env
->current_tb
)
974 cpu_interrupt(env
, env
->interrupt_request
);
979 #if !defined(CONFIG_USER_ONLY)
980 /* if no code remaining, no need to continue to use slow writes */
982 invalidate_page_bitmap(p
);
983 if (is_cpu_write_access
) {
984 tlb_unprotect_code_phys(env
, start
, env
->mem_io_vaddr
);
988 #ifdef TARGET_HAS_PRECISE_SMC
989 if (current_tb_modified
) {
990 /* we generate a block containing just the instruction
991 modifying the memory. It will ensure that it cannot modify
993 env
->current_tb
= NULL
;
994 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
995 cpu_resume_from_signal(env
, NULL
);
1000 /* len must be <= 8 and start must be a multiple of len */
1001 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start
, int len
)
1007 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1008 cpu_single_env
->mem_io_vaddr
, len
,
1009 cpu_single_env
->eip
,
1010 cpu_single_env
->eip
+ (long)cpu_single_env
->segs
[R_CS
].base
);
1013 p
= page_find(start
>> TARGET_PAGE_BITS
);
1016 if (p
->code_bitmap
) {
1017 offset
= start
& ~TARGET_PAGE_MASK
;
1018 b
= p
->code_bitmap
[offset
>> 3] >> (offset
& 7);
1019 if (b
& ((1 << len
) - 1))
1023 tb_invalidate_phys_page_range(start
, start
+ len
, 1);
1027 #if !defined(CONFIG_SOFTMMU)
1028 static void tb_invalidate_phys_page(target_phys_addr_t addr
,
1029 unsigned long pc
, void *puc
)
1031 TranslationBlock
*tb
;
1034 #ifdef TARGET_HAS_PRECISE_SMC
1035 TranslationBlock
*current_tb
= NULL
;
1036 CPUState
*env
= cpu_single_env
;
1037 int current_tb_modified
= 0;
1038 target_ulong current_pc
= 0;
1039 target_ulong current_cs_base
= 0;
1040 int current_flags
= 0;
1043 addr
&= TARGET_PAGE_MASK
;
1044 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1048 #ifdef TARGET_HAS_PRECISE_SMC
1049 if (tb
&& pc
!= 0) {
1050 current_tb
= tb_find_pc(pc
);
1053 while (tb
!= NULL
) {
1055 tb
= (TranslationBlock
*)((long)tb
& ~3);
1056 #ifdef TARGET_HAS_PRECISE_SMC
1057 if (current_tb
== tb
&&
1058 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1059 /* If we are modifying the current TB, we must stop
1060 its execution. We could be more precise by checking
1061 that the modification is after the current PC, but it
1062 would require a specialized function to partially
1063 restore the CPU state */
1065 current_tb_modified
= 1;
1066 cpu_restore_state(current_tb
, env
, pc
, puc
);
1067 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1070 #endif /* TARGET_HAS_PRECISE_SMC */
1071 tb_phys_invalidate(tb
, addr
);
1072 tb
= tb
->page_next
[n
];
1075 #ifdef TARGET_HAS_PRECISE_SMC
1076 if (current_tb_modified
) {
1077 /* we generate a block containing just the instruction
1078 modifying the memory. It will ensure that it cannot modify
1080 env
->current_tb
= NULL
;
1081 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1082 cpu_resume_from_signal(env
, puc
);
1088 /* add the tb in the target page and protect it if necessary */
1089 static inline void tb_alloc_page(TranslationBlock
*tb
,
1090 unsigned int n
, target_ulong page_addr
)
1093 TranslationBlock
*last_first_tb
;
1095 tb
->page_addr
[n
] = page_addr
;
1096 p
= page_find_alloc(page_addr
>> TARGET_PAGE_BITS
);
1097 tb
->page_next
[n
] = p
->first_tb
;
1098 last_first_tb
= p
->first_tb
;
1099 p
->first_tb
= (TranslationBlock
*)((long)tb
| n
);
1100 invalidate_page_bitmap(p
);
1102 #if defined(TARGET_HAS_SMC) || 1
1104 #if defined(CONFIG_USER_ONLY)
1105 if (p
->flags
& PAGE_WRITE
) {
1110 /* force the host page as non writable (writes will have a
1111 page fault + mprotect overhead) */
1112 page_addr
&= qemu_host_page_mask
;
1114 for(addr
= page_addr
; addr
< page_addr
+ qemu_host_page_size
;
1115 addr
+= TARGET_PAGE_SIZE
) {
1117 p2
= page_find (addr
>> TARGET_PAGE_BITS
);
1121 p2
->flags
&= ~PAGE_WRITE
;
1122 page_get_flags(addr
);
1124 mprotect(g2h(page_addr
), qemu_host_page_size
,
1125 (prot
& PAGE_BITS
) & ~PAGE_WRITE
);
1126 #ifdef DEBUG_TB_INVALIDATE
1127 printf("protecting code page: 0x" TARGET_FMT_lx
"\n",
1132 /* if some code is already present, then the pages are already
1133 protected. So we handle the case where only the first TB is
1134 allocated in a physical page */
1135 if (!last_first_tb
) {
1136 tlb_protect_code(page_addr
);
1140 #endif /* TARGET_HAS_SMC */
1143 /* Allocate a new translation block. Flush the translation buffer if
1144 too many translation blocks or too much generated code. */
1145 TranslationBlock
*tb_alloc(target_ulong pc
)
1147 TranslationBlock
*tb
;
1149 if (nb_tbs
>= code_gen_max_blocks
||
1150 (code_gen_ptr
- code_gen_buffer
) >= code_gen_buffer_max_size
)
1152 tb
= &tbs
[nb_tbs
++];
1158 void tb_free(TranslationBlock
*tb
)
1160 /* In practice this is mostly used for single use temporary TB
1161 Ignore the hard cases and just back up if this TB happens to
1162 be the last one generated. */
1163 if (nb_tbs
> 0 && tb
== &tbs
[nb_tbs
- 1]) {
1164 code_gen_ptr
= tb
->tc_ptr
;
1169 /* add a new TB and link it to the physical page tables. phys_page2 is
1170 (-1) to indicate that only one page contains the TB. */
1171 void tb_link_phys(TranslationBlock
*tb
,
1172 target_ulong phys_pc
, target_ulong phys_page2
)
1175 TranslationBlock
**ptb
;
1177 /* Grab the mmap lock to stop another thread invalidating this TB
1178 before we are done. */
1180 /* add in the physical hash table */
1181 h
= tb_phys_hash_func(phys_pc
);
1182 ptb
= &tb_phys_hash
[h
];
1183 tb
->phys_hash_next
= *ptb
;
1186 /* add in the page list */
1187 tb_alloc_page(tb
, 0, phys_pc
& TARGET_PAGE_MASK
);
1188 if (phys_page2
!= -1)
1189 tb_alloc_page(tb
, 1, phys_page2
);
1191 tb
->page_addr
[1] = -1;
1193 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2);
1194 tb
->jmp_next
[0] = NULL
;
1195 tb
->jmp_next
[1] = NULL
;
1197 /* init original jump addresses */
1198 if (tb
->tb_next_offset
[0] != 0xffff)
1199 tb_reset_jump(tb
, 0);
1200 if (tb
->tb_next_offset
[1] != 0xffff)
1201 tb_reset_jump(tb
, 1);
1203 #ifdef DEBUG_TB_CHECK
1209 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1210 tb[1].tc_ptr. Return NULL if not found */
1211 TranslationBlock
*tb_find_pc(unsigned long tc_ptr
)
1213 int m_min
, m_max
, m
;
1215 TranslationBlock
*tb
;
1219 if (tc_ptr
< (unsigned long)code_gen_buffer
||
1220 tc_ptr
>= (unsigned long)code_gen_ptr
)
1222 /* binary search (cf Knuth) */
1225 while (m_min
<= m_max
) {
1226 m
= (m_min
+ m_max
) >> 1;
1228 v
= (unsigned long)tb
->tc_ptr
;
1231 else if (tc_ptr
< v
) {
1240 static void tb_reset_jump_recursive(TranslationBlock
*tb
);
1242 static inline void tb_reset_jump_recursive2(TranslationBlock
*tb
, int n
)
1244 TranslationBlock
*tb1
, *tb_next
, **ptb
;
1247 tb1
= tb
->jmp_next
[n
];
1249 /* find head of list */
1252 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1255 tb1
= tb1
->jmp_next
[n1
];
1257 /* we are now sure now that tb jumps to tb1 */
1260 /* remove tb from the jmp_first list */
1261 ptb
= &tb_next
->jmp_first
;
1265 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1266 if (n1
== n
&& tb1
== tb
)
1268 ptb
= &tb1
->jmp_next
[n1
];
1270 *ptb
= tb
->jmp_next
[n
];
1271 tb
->jmp_next
[n
] = NULL
;
1273 /* suppress the jump to next tb in generated code */
1274 tb_reset_jump(tb
, n
);
1276 /* suppress jumps in the tb on which we could have jumped */
1277 tb_reset_jump_recursive(tb_next
);
1281 static void tb_reset_jump_recursive(TranslationBlock
*tb
)
1283 tb_reset_jump_recursive2(tb
, 0);
1284 tb_reset_jump_recursive2(tb
, 1);
1287 #if defined(TARGET_HAS_ICE)
1288 static void breakpoint_invalidate(CPUState
*env
, target_ulong pc
)
1290 target_phys_addr_t addr
;
1292 ram_addr_t ram_addr
;
1295 addr
= cpu_get_phys_page_debug(env
, pc
);
1296 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
1298 pd
= IO_MEM_UNASSIGNED
;
1300 pd
= p
->phys_offset
;
1302 ram_addr
= (pd
& TARGET_PAGE_MASK
) | (pc
& ~TARGET_PAGE_MASK
);
1303 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1307 /* Add a watchpoint. */
1308 int cpu_watchpoint_insert(CPUState
*env
, target_ulong addr
, target_ulong len
,
1309 int flags
, CPUWatchpoint
**watchpoint
)
1311 target_ulong len_mask
= ~(len
- 1);
1314 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1315 if ((len
!= 1 && len
!= 2 && len
!= 4 && len
!= 8) || (addr
& ~len_mask
)) {
1316 fprintf(stderr
, "qemu: tried to set invalid watchpoint at "
1317 TARGET_FMT_lx
", len=" TARGET_FMT_lu
"\n", addr
, len
);
1320 wp
= qemu_malloc(sizeof(*wp
));
1325 wp
->len_mask
= len_mask
;
1328 /* keep all GDB-injected watchpoints in front */
1330 TAILQ_INSERT_HEAD(&env
->watchpoints
, wp
, entry
);
1332 TAILQ_INSERT_TAIL(&env
->watchpoints
, wp
, entry
);
1334 tlb_flush_page(env
, addr
);
1341 /* Remove a specific watchpoint. */
1342 int cpu_watchpoint_remove(CPUState
*env
, target_ulong addr
, target_ulong len
,
1345 target_ulong len_mask
= ~(len
- 1);
1348 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1349 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
1350 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
1351 cpu_watchpoint_remove_by_ref(env
, wp
);
1358 /* Remove a specific watchpoint by reference. */
1359 void cpu_watchpoint_remove_by_ref(CPUState
*env
, CPUWatchpoint
*watchpoint
)
1361 TAILQ_REMOVE(&env
->watchpoints
, watchpoint
, entry
);
1363 tlb_flush_page(env
, watchpoint
->vaddr
);
1365 qemu_free(watchpoint
);
1368 /* Remove all matching watchpoints. */
1369 void cpu_watchpoint_remove_all(CPUState
*env
, int mask
)
1371 CPUWatchpoint
*wp
, *next
;
1373 TAILQ_FOREACH_SAFE(wp
, &env
->watchpoints
, entry
, next
) {
1374 if (wp
->flags
& mask
)
1375 cpu_watchpoint_remove_by_ref(env
, wp
);
1379 /* Add a breakpoint. */
1380 int cpu_breakpoint_insert(CPUState
*env
, target_ulong pc
, int flags
,
1381 CPUBreakpoint
**breakpoint
)
1383 #if defined(TARGET_HAS_ICE)
1386 bp
= qemu_malloc(sizeof(*bp
));
1393 /* keep all GDB-injected breakpoints in front */
1395 TAILQ_INSERT_HEAD(&env
->breakpoints
, bp
, entry
);
1397 TAILQ_INSERT_TAIL(&env
->breakpoints
, bp
, entry
);
1399 breakpoint_invalidate(env
, pc
);
1409 /* Remove a specific breakpoint. */
1410 int cpu_breakpoint_remove(CPUState
*env
, target_ulong pc
, int flags
)
1412 #if defined(TARGET_HAS_ICE)
1415 TAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1416 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
1417 cpu_breakpoint_remove_by_ref(env
, bp
);
1427 /* Remove a specific breakpoint by reference. */
1428 void cpu_breakpoint_remove_by_ref(CPUState
*env
, CPUBreakpoint
*breakpoint
)
1430 #if defined(TARGET_HAS_ICE)
1431 TAILQ_REMOVE(&env
->breakpoints
, breakpoint
, entry
);
1433 breakpoint_invalidate(env
, breakpoint
->pc
);
1435 qemu_free(breakpoint
);
1439 /* Remove all matching breakpoints. */
1440 void cpu_breakpoint_remove_all(CPUState
*env
, int mask
)
1442 #if defined(TARGET_HAS_ICE)
1443 CPUBreakpoint
*bp
, *next
;
1445 TAILQ_FOREACH_SAFE(bp
, &env
->breakpoints
, entry
, next
) {
1446 if (bp
->flags
& mask
)
1447 cpu_breakpoint_remove_by_ref(env
, bp
);
1452 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1453 CPU loop after each instruction */
1454 void cpu_single_step(CPUState
*env
, int enabled
)
1456 #if defined(TARGET_HAS_ICE)
1457 if (env
->singlestep_enabled
!= enabled
) {
1458 env
->singlestep_enabled
= enabled
;
1459 /* must flush all the translated code to avoid inconsistancies */
1460 /* XXX: only flush what is necessary */
1466 /* enable or disable low levels log */
1467 void cpu_set_log(int log_flags
)
1469 loglevel
= log_flags
;
1470 if (loglevel
&& !logfile
) {
1471 logfile
= fopen(logfilename
, log_append
? "a" : "w");
1473 perror(logfilename
);
1476 #if !defined(CONFIG_SOFTMMU)
1477 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1479 static char logfile_buf
[4096];
1480 setvbuf(logfile
, logfile_buf
, _IOLBF
, sizeof(logfile_buf
));
1483 setvbuf(logfile
, NULL
, _IOLBF
, 0);
1487 if (!loglevel
&& logfile
) {
1493 void cpu_set_log_filename(const char *filename
)
1495 logfilename
= strdup(filename
);
1500 cpu_set_log(loglevel
);
1503 /* mask must never be zero, except for A20 change call */
1504 void cpu_interrupt(CPUState
*env
, int mask
)
1506 #if !defined(USE_NPTL)
1507 TranslationBlock
*tb
;
1508 static spinlock_t interrupt_lock
= SPIN_LOCK_UNLOCKED
;
1512 old_mask
= env
->interrupt_request
;
1513 /* FIXME: This is probably not threadsafe. A different thread could
1514 be in the middle of a read-modify-write operation. */
1515 env
->interrupt_request
|= mask
;
1516 #if defined(USE_NPTL)
1517 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1518 problem and hope the cpu will stop of its own accord. For userspace
1519 emulation this often isn't actually as bad as it sounds. Often
1520 signals are used primarily to interrupt blocking syscalls. */
1523 env
->icount_decr
.u16
.high
= 0xffff;
1524 #ifndef CONFIG_USER_ONLY
1525 /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means
1526 an async event happened and we need to process it. */
1528 && (mask
& ~(old_mask
| CPU_INTERRUPT_EXIT
)) != 0) {
1529 cpu_abort(env
, "Raised interrupt while not in I/O function");
1533 tb
= env
->current_tb
;
1534 /* if the cpu is currently executing code, we must unlink it and
1535 all the potentially executing TB */
1536 if (tb
&& !testandset(&interrupt_lock
)) {
1537 env
->current_tb
= NULL
;
1538 tb_reset_jump_recursive(tb
);
1539 resetlock(&interrupt_lock
);
1545 void cpu_reset_interrupt(CPUState
*env
, int mask
)
1547 env
->interrupt_request
&= ~mask
;
1550 const CPULogItem cpu_log_items
[] = {
1551 { CPU_LOG_TB_OUT_ASM
, "out_asm",
1552 "show generated host assembly code for each compiled TB" },
1553 { CPU_LOG_TB_IN_ASM
, "in_asm",
1554 "show target assembly code for each compiled TB" },
1555 { CPU_LOG_TB_OP
, "op",
1556 "show micro ops for each compiled TB" },
1557 { CPU_LOG_TB_OP_OPT
, "op_opt",
1560 "before eflags optimization and "
1562 "after liveness analysis" },
1563 { CPU_LOG_INT
, "int",
1564 "show interrupts/exceptions in short format" },
1565 { CPU_LOG_EXEC
, "exec",
1566 "show trace before each executed TB (lots of logs)" },
1567 { CPU_LOG_TB_CPU
, "cpu",
1568 "show CPU state before block translation" },
1570 { CPU_LOG_PCALL
, "pcall",
1571 "show protected mode far calls/returns/exceptions" },
1574 { CPU_LOG_IOPORT
, "ioport",
1575 "show all i/o ports accesses" },
1580 static int cmp1(const char *s1
, int n
, const char *s2
)
1582 if (strlen(s2
) != n
)
1584 return memcmp(s1
, s2
, n
) == 0;
1587 /* takes a comma separated list of log masks. Return 0 if error. */
1588 int cpu_str_to_log_mask(const char *str
)
1590 const CPULogItem
*item
;
1597 p1
= strchr(p
, ',');
1600 if(cmp1(p
,p1
-p
,"all")) {
1601 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1605 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1606 if (cmp1(p
, p1
- p
, item
->name
))
1620 void cpu_abort(CPUState
*env
, const char *fmt
, ...)
1627 fprintf(stderr
, "qemu: fatal: ");
1628 vfprintf(stderr
, fmt
, ap
);
1629 fprintf(stderr
, "\n");
1631 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1633 cpu_dump_state(env
, stderr
, fprintf
, 0);
1635 if (qemu_log_enabled()) {
1636 qemu_log("qemu: fatal: ");
1637 qemu_log_vprintf(fmt
, ap2
);
1640 log_cpu_state(env
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1642 log_cpu_state(env
, 0);
1652 CPUState
*cpu_copy(CPUState
*env
)
1654 CPUState
*new_env
= cpu_init(env
->cpu_model_str
);
1655 CPUState
*next_cpu
= new_env
->next_cpu
;
1656 int cpu_index
= new_env
->cpu_index
;
1657 #if defined(TARGET_HAS_ICE)
1662 memcpy(new_env
, env
, sizeof(CPUState
));
1664 /* Preserve chaining and index. */
1665 new_env
->next_cpu
= next_cpu
;
1666 new_env
->cpu_index
= cpu_index
;
1668 /* Clone all break/watchpoints.
1669 Note: Once we support ptrace with hw-debug register access, make sure
1670 BP_CPU break/watchpoints are handled correctly on clone. */
1671 TAILQ_INIT(&env
->breakpoints
);
1672 TAILQ_INIT(&env
->watchpoints
);
1673 #if defined(TARGET_HAS_ICE)
1674 TAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1675 cpu_breakpoint_insert(new_env
, bp
->pc
, bp
->flags
, NULL
);
1677 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1678 cpu_watchpoint_insert(new_env
, wp
->vaddr
, (~wp
->len_mask
) + 1,
1686 #if !defined(CONFIG_USER_ONLY)
1688 static inline void tlb_flush_jmp_cache(CPUState
*env
, target_ulong addr
)
1692 /* Discard jump cache entries for any tb which might potentially
1693 overlap the flushed page. */
1694 i
= tb_jmp_cache_hash_page(addr
- TARGET_PAGE_SIZE
);
1695 memset (&env
->tb_jmp_cache
[i
], 0,
1696 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1698 i
= tb_jmp_cache_hash_page(addr
);
1699 memset (&env
->tb_jmp_cache
[i
], 0,
1700 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1703 /* NOTE: if flush_global is true, also flush global entries (not
1705 void tlb_flush(CPUState
*env
, int flush_global
)
1709 #if defined(DEBUG_TLB)
1710 printf("tlb_flush:\n");
1712 /* must reset current TB so that interrupts cannot modify the
1713 links while we are modifying them */
1714 env
->current_tb
= NULL
;
1716 for(i
= 0; i
< CPU_TLB_SIZE
; i
++) {
1717 env
->tlb_table
[0][i
].addr_read
= -1;
1718 env
->tlb_table
[0][i
].addr_write
= -1;
1719 env
->tlb_table
[0][i
].addr_code
= -1;
1720 env
->tlb_table
[1][i
].addr_read
= -1;
1721 env
->tlb_table
[1][i
].addr_write
= -1;
1722 env
->tlb_table
[1][i
].addr_code
= -1;
1723 #if (NB_MMU_MODES >= 3)
1724 env
->tlb_table
[2][i
].addr_read
= -1;
1725 env
->tlb_table
[2][i
].addr_write
= -1;
1726 env
->tlb_table
[2][i
].addr_code
= -1;
1727 #if (NB_MMU_MODES == 4)
1728 env
->tlb_table
[3][i
].addr_read
= -1;
1729 env
->tlb_table
[3][i
].addr_write
= -1;
1730 env
->tlb_table
[3][i
].addr_code
= -1;
1735 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
1738 if (env
->kqemu_enabled
) {
1739 kqemu_flush(env
, flush_global
);
1745 static inline void tlb_flush_entry(CPUTLBEntry
*tlb_entry
, target_ulong addr
)
1747 if (addr
== (tlb_entry
->addr_read
&
1748 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1749 addr
== (tlb_entry
->addr_write
&
1750 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1751 addr
== (tlb_entry
->addr_code
&
1752 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
1753 tlb_entry
->addr_read
= -1;
1754 tlb_entry
->addr_write
= -1;
1755 tlb_entry
->addr_code
= -1;
1759 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
1763 #if defined(DEBUG_TLB)
1764 printf("tlb_flush_page: " TARGET_FMT_lx
"\n", addr
);
1766 /* must reset current TB so that interrupts cannot modify the
1767 links while we are modifying them */
1768 env
->current_tb
= NULL
;
1770 addr
&= TARGET_PAGE_MASK
;
1771 i
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1772 tlb_flush_entry(&env
->tlb_table
[0][i
], addr
);
1773 tlb_flush_entry(&env
->tlb_table
[1][i
], addr
);
1774 #if (NB_MMU_MODES >= 3)
1775 tlb_flush_entry(&env
->tlb_table
[2][i
], addr
);
1776 #if (NB_MMU_MODES == 4)
1777 tlb_flush_entry(&env
->tlb_table
[3][i
], addr
);
1781 tlb_flush_jmp_cache(env
, addr
);
1784 if (env
->kqemu_enabled
) {
1785 kqemu_flush_page(env
, addr
);
1790 /* update the TLBs so that writes to code in the virtual page 'addr'
1792 static void tlb_protect_code(ram_addr_t ram_addr
)
1794 cpu_physical_memory_reset_dirty(ram_addr
,
1795 ram_addr
+ TARGET_PAGE_SIZE
,
1799 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1800 tested for self modifying code */
1801 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
1804 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] |= CODE_DIRTY_FLAG
;
1807 static inline void tlb_reset_dirty_range(CPUTLBEntry
*tlb_entry
,
1808 unsigned long start
, unsigned long length
)
1811 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
1812 addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) + tlb_entry
->addend
;
1813 if ((addr
- start
) < length
) {
1814 tlb_entry
->addr_write
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) | TLB_NOTDIRTY
;
1819 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
1823 unsigned long length
, start1
;
1827 start
&= TARGET_PAGE_MASK
;
1828 end
= TARGET_PAGE_ALIGN(end
);
1830 length
= end
- start
;
1833 len
= length
>> TARGET_PAGE_BITS
;
1835 /* XXX: should not depend on cpu context */
1837 if (env
->kqemu_enabled
) {
1840 for(i
= 0; i
< len
; i
++) {
1841 kqemu_set_notdirty(env
, addr
);
1842 addr
+= TARGET_PAGE_SIZE
;
1846 mask
= ~dirty_flags
;
1847 p
= phys_ram_dirty
+ (start
>> TARGET_PAGE_BITS
);
1848 for(i
= 0; i
< len
; i
++)
1851 /* we modify the TLB cache so that the dirty bit will be set again
1852 when accessing the range */
1853 start1
= start
+ (unsigned long)phys_ram_base
;
1854 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1855 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1856 tlb_reset_dirty_range(&env
->tlb_table
[0][i
], start1
, length
);
1857 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1858 tlb_reset_dirty_range(&env
->tlb_table
[1][i
], start1
, length
);
1859 #if (NB_MMU_MODES >= 3)
1860 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1861 tlb_reset_dirty_range(&env
->tlb_table
[2][i
], start1
, length
);
1862 #if (NB_MMU_MODES == 4)
1863 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1864 tlb_reset_dirty_range(&env
->tlb_table
[3][i
], start1
, length
);
1870 int cpu_physical_memory_set_dirty_tracking(int enable
)
1872 in_migration
= enable
;
1876 int cpu_physical_memory_get_dirty_tracking(void)
1878 return in_migration
;
1881 void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
, target_phys_addr_t end_addr
)
1884 kvm_physical_sync_dirty_bitmap(start_addr
, end_addr
);
1887 static inline void tlb_update_dirty(CPUTLBEntry
*tlb_entry
)
1889 ram_addr_t ram_addr
;
1891 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
1892 ram_addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) +
1893 tlb_entry
->addend
- (unsigned long)phys_ram_base
;
1894 if (!cpu_physical_memory_is_dirty(ram_addr
)) {
1895 tlb_entry
->addr_write
|= TLB_NOTDIRTY
;
1900 /* update the TLB according to the current state of the dirty bits */
1901 void cpu_tlb_update_dirty(CPUState
*env
)
1904 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1905 tlb_update_dirty(&env
->tlb_table
[0][i
]);
1906 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1907 tlb_update_dirty(&env
->tlb_table
[1][i
]);
1908 #if (NB_MMU_MODES >= 3)
1909 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1910 tlb_update_dirty(&env
->tlb_table
[2][i
]);
1911 #if (NB_MMU_MODES == 4)
1912 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1913 tlb_update_dirty(&env
->tlb_table
[3][i
]);
1918 static inline void tlb_set_dirty1(CPUTLBEntry
*tlb_entry
, target_ulong vaddr
)
1920 if (tlb_entry
->addr_write
== (vaddr
| TLB_NOTDIRTY
))
1921 tlb_entry
->addr_write
= vaddr
;
1924 /* update the TLB corresponding to virtual page vaddr
1925 so that it is no longer dirty */
1926 static inline void tlb_set_dirty(CPUState
*env
, target_ulong vaddr
)
1930 vaddr
&= TARGET_PAGE_MASK
;
1931 i
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1932 tlb_set_dirty1(&env
->tlb_table
[0][i
], vaddr
);
1933 tlb_set_dirty1(&env
->tlb_table
[1][i
], vaddr
);
1934 #if (NB_MMU_MODES >= 3)
1935 tlb_set_dirty1(&env
->tlb_table
[2][i
], vaddr
);
1936 #if (NB_MMU_MODES == 4)
1937 tlb_set_dirty1(&env
->tlb_table
[3][i
], vaddr
);
1942 /* add a new TLB entry. At most one entry for a given virtual address
1943 is permitted. Return 0 if OK or 2 if the page could not be mapped
1944 (can only happen in non SOFTMMU mode for I/O pages or pages
1945 conflicting with the host address space). */
1946 int tlb_set_page_exec(CPUState
*env
, target_ulong vaddr
,
1947 target_phys_addr_t paddr
, int prot
,
1948 int mmu_idx
, int is_softmmu
)
1953 target_ulong address
;
1954 target_ulong code_address
;
1955 target_phys_addr_t addend
;
1959 target_phys_addr_t iotlb
;
1961 p
= phys_page_find(paddr
>> TARGET_PAGE_BITS
);
1963 pd
= IO_MEM_UNASSIGNED
;
1965 pd
= p
->phys_offset
;
1967 #if defined(DEBUG_TLB)
1968 printf("tlb_set_page: vaddr=" TARGET_FMT_lx
" paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1969 vaddr
, (int)paddr
, prot
, mmu_idx
, is_softmmu
, pd
);
1974 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&& !(pd
& IO_MEM_ROMD
)) {
1975 /* IO memory case (romd handled later) */
1976 address
|= TLB_MMIO
;
1978 addend
= (unsigned long)phys_ram_base
+ (pd
& TARGET_PAGE_MASK
);
1979 if ((pd
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
) {
1981 iotlb
= pd
& TARGET_PAGE_MASK
;
1982 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
)
1983 iotlb
|= IO_MEM_NOTDIRTY
;
1985 iotlb
|= IO_MEM_ROM
;
1987 /* IO handlers are currently passed a phsical address.
1988 It would be nice to pass an offset from the base address
1989 of that region. This would avoid having to special case RAM,
1990 and avoid full address decoding in every device.
1991 We can't use the high bits of pd for this because
1992 IO_MEM_ROMD uses these as a ram address. */
1993 iotlb
= (pd
& ~TARGET_PAGE_MASK
);
1995 iotlb
+= p
->region_offset
;
2001 code_address
= address
;
2002 /* Make accesses to pages with watchpoints go via the
2003 watchpoint trap routines. */
2004 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
2005 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
2006 iotlb
= io_mem_watch
+ paddr
;
2007 /* TODO: The memory case can be optimized by not trapping
2008 reads of pages with a write breakpoint. */
2009 address
|= TLB_MMIO
;
2013 index
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
2014 env
->iotlb
[mmu_idx
][index
] = iotlb
- vaddr
;
2015 te
= &env
->tlb_table
[mmu_idx
][index
];
2016 te
->addend
= addend
- vaddr
;
2017 if (prot
& PAGE_READ
) {
2018 te
->addr_read
= address
;
2023 if (prot
& PAGE_EXEC
) {
2024 te
->addr_code
= code_address
;
2028 if (prot
& PAGE_WRITE
) {
2029 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_ROM
||
2030 (pd
& IO_MEM_ROMD
)) {
2031 /* Write access calls the I/O callback. */
2032 te
->addr_write
= address
| TLB_MMIO
;
2033 } else if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
&&
2034 !cpu_physical_memory_is_dirty(pd
)) {
2035 te
->addr_write
= address
| TLB_NOTDIRTY
;
2037 te
->addr_write
= address
;
2040 te
->addr_write
= -1;
2047 void tlb_flush(CPUState
*env
, int flush_global
)
2051 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
2055 int tlb_set_page_exec(CPUState
*env
, target_ulong vaddr
,
2056 target_phys_addr_t paddr
, int prot
,
2057 int mmu_idx
, int is_softmmu
)
2062 /* dump memory mappings */
2063 void page_dump(FILE *f
)
2065 unsigned long start
, end
;
2066 int i
, j
, prot
, prot1
;
2069 fprintf(f
, "%-8s %-8s %-8s %s\n",
2070 "start", "end", "size", "prot");
2074 for(i
= 0; i
<= L1_SIZE
; i
++) {
2079 for(j
= 0;j
< L2_SIZE
; j
++) {
2084 if (prot1
!= prot
) {
2085 end
= (i
<< (32 - L1_BITS
)) | (j
<< TARGET_PAGE_BITS
);
2087 fprintf(f
, "%08lx-%08lx %08lx %c%c%c\n",
2088 start
, end
, end
- start
,
2089 prot
& PAGE_READ
? 'r' : '-',
2090 prot
& PAGE_WRITE
? 'w' : '-',
2091 prot
& PAGE_EXEC
? 'x' : '-');
2105 int page_get_flags(target_ulong address
)
2109 p
= page_find(address
>> TARGET_PAGE_BITS
);
2115 /* modify the flags of a page and invalidate the code if
2116 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2117 depending on PAGE_WRITE */
2118 void page_set_flags(target_ulong start
, target_ulong end
, int flags
)
2123 /* mmap_lock should already be held. */
2124 start
= start
& TARGET_PAGE_MASK
;
2125 end
= TARGET_PAGE_ALIGN(end
);
2126 if (flags
& PAGE_WRITE
)
2127 flags
|= PAGE_WRITE_ORG
;
2128 for(addr
= start
; addr
< end
; addr
+= TARGET_PAGE_SIZE
) {
2129 p
= page_find_alloc(addr
>> TARGET_PAGE_BITS
);
2130 /* We may be called for host regions that are outside guest
2134 /* if the write protection is set, then we invalidate the code
2136 if (!(p
->flags
& PAGE_WRITE
) &&
2137 (flags
& PAGE_WRITE
) &&
2139 tb_invalidate_phys_page(addr
, 0, NULL
);
2145 int page_check_range(target_ulong start
, target_ulong len
, int flags
)
2151 if (start
+ len
< start
)
2152 /* we've wrapped around */
2155 end
= TARGET_PAGE_ALIGN(start
+len
); /* must do before we loose bits in the next step */
2156 start
= start
& TARGET_PAGE_MASK
;
2158 for(addr
= start
; addr
< end
; addr
+= TARGET_PAGE_SIZE
) {
2159 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2162 if( !(p
->flags
& PAGE_VALID
) )
2165 if ((flags
& PAGE_READ
) && !(p
->flags
& PAGE_READ
))
2167 if (flags
& PAGE_WRITE
) {
2168 if (!(p
->flags
& PAGE_WRITE_ORG
))
2170 /* unprotect the page if it was put read-only because it
2171 contains translated code */
2172 if (!(p
->flags
& PAGE_WRITE
)) {
2173 if (!page_unprotect(addr
, 0, NULL
))
2182 /* called from signal handler: invalidate the code and unprotect the
2183 page. Return TRUE if the fault was succesfully handled. */
2184 int page_unprotect(target_ulong address
, unsigned long pc
, void *puc
)
2186 unsigned int page_index
, prot
, pindex
;
2188 target_ulong host_start
, host_end
, addr
;
2190 /* Technically this isn't safe inside a signal handler. However we
2191 know this only ever happens in a synchronous SEGV handler, so in
2192 practice it seems to be ok. */
2195 host_start
= address
& qemu_host_page_mask
;
2196 page_index
= host_start
>> TARGET_PAGE_BITS
;
2197 p1
= page_find(page_index
);
2202 host_end
= host_start
+ qemu_host_page_size
;
2205 for(addr
= host_start
;addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
2209 /* if the page was really writable, then we change its
2210 protection back to writable */
2211 if (prot
& PAGE_WRITE_ORG
) {
2212 pindex
= (address
- host_start
) >> TARGET_PAGE_BITS
;
2213 if (!(p1
[pindex
].flags
& PAGE_WRITE
)) {
2214 mprotect((void *)g2h(host_start
), qemu_host_page_size
,
2215 (prot
& PAGE_BITS
) | PAGE_WRITE
);
2216 p1
[pindex
].flags
|= PAGE_WRITE
;
2217 /* and since the content will be modified, we must invalidate
2218 the corresponding translated code. */
2219 tb_invalidate_phys_page(address
, pc
, puc
);
2220 #ifdef DEBUG_TB_CHECK
2221 tb_invalidate_check(address
);
2231 static inline void tlb_set_dirty(CPUState
*env
,
2232 unsigned long addr
, target_ulong vaddr
)
2235 #endif /* defined(CONFIG_USER_ONLY) */
2237 #if !defined(CONFIG_USER_ONLY)
2239 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2240 ram_addr_t memory
, ram_addr_t region_offset
);
2241 static void *subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2242 ram_addr_t orig_memory
, ram_addr_t region_offset
);
2243 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2246 if (addr > start_addr) \
2249 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2250 if (start_addr2 > 0) \
2254 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2255 end_addr2 = TARGET_PAGE_SIZE - 1; \
2257 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2258 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2263 /* register physical memory. 'size' must be a multiple of the target
2264 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2265 io memory page. The address used when calling the IO function is
2266 the offset from the start of the region, plus region_offset. Both
2267 start_region and regon_offset are rounded down to a page boundary
2268 before calculating this offset. This should not be a problem unless
2269 the low bits of start_addr and region_offset differ. */
2270 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr
,
2272 ram_addr_t phys_offset
,
2273 ram_addr_t region_offset
)
2275 target_phys_addr_t addr
, end_addr
;
2278 ram_addr_t orig_size
= size
;
2282 /* XXX: should not depend on cpu context */
2284 if (env
->kqemu_enabled
) {
2285 kqemu_set_phys_mem(start_addr
, size
, phys_offset
);
2289 kvm_set_phys_mem(start_addr
, size
, phys_offset
);
2291 region_offset
&= TARGET_PAGE_MASK
;
2292 size
= (size
+ TARGET_PAGE_SIZE
- 1) & TARGET_PAGE_MASK
;
2293 end_addr
= start_addr
+ (target_phys_addr_t
)size
;
2294 for(addr
= start_addr
; addr
!= end_addr
; addr
+= TARGET_PAGE_SIZE
) {
2295 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2296 if (p
&& p
->phys_offset
!= IO_MEM_UNASSIGNED
) {
2297 ram_addr_t orig_memory
= p
->phys_offset
;
2298 target_phys_addr_t start_addr2
, end_addr2
;
2299 int need_subpage
= 0;
2301 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
, end_addr2
,
2303 if (need_subpage
|| phys_offset
& IO_MEM_SUBWIDTH
) {
2304 if (!(orig_memory
& IO_MEM_SUBPAGE
)) {
2305 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2306 &p
->phys_offset
, orig_memory
,
2309 subpage
= io_mem_opaque
[(orig_memory
& ~TARGET_PAGE_MASK
)
2312 subpage_register(subpage
, start_addr2
, end_addr2
, phys_offset
,
2314 p
->region_offset
= 0;
2316 p
->phys_offset
= phys_offset
;
2317 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2318 (phys_offset
& IO_MEM_ROMD
))
2319 phys_offset
+= TARGET_PAGE_SIZE
;
2322 p
= phys_page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
2323 p
->phys_offset
= phys_offset
;
2324 p
->region_offset
= region_offset
;
2325 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2326 (phys_offset
& IO_MEM_ROMD
)) {
2327 phys_offset
+= TARGET_PAGE_SIZE
;
2329 target_phys_addr_t start_addr2
, end_addr2
;
2330 int need_subpage
= 0;
2332 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
,
2333 end_addr2
, need_subpage
);
2335 if (need_subpage
|| phys_offset
& IO_MEM_SUBWIDTH
) {
2336 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2337 &p
->phys_offset
, IO_MEM_UNASSIGNED
,
2339 subpage_register(subpage
, start_addr2
, end_addr2
,
2340 phys_offset
, region_offset
);
2341 p
->region_offset
= 0;
2345 region_offset
+= TARGET_PAGE_SIZE
;
2348 /* since each CPU stores ram addresses in its TLB cache, we must
2349 reset the modified entries */
2351 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2356 /* XXX: temporary until new memory mapping API */
2357 ram_addr_t
cpu_get_physical_page_desc(target_phys_addr_t addr
)
2361 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2363 return IO_MEM_UNASSIGNED
;
2364 return p
->phys_offset
;
2367 void qemu_register_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2370 kvm_coalesce_mmio_region(addr
, size
);
2373 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2376 kvm_uncoalesce_mmio_region(addr
, size
);
2379 /* XXX: better than nothing */
2380 ram_addr_t
qemu_ram_alloc(ram_addr_t size
)
2383 if ((phys_ram_alloc_offset
+ size
) > phys_ram_size
) {
2384 fprintf(stderr
, "Not enough memory (requested_size = %" PRIu64
", max memory = %" PRIu64
")\n",
2385 (uint64_t)size
, (uint64_t)phys_ram_size
);
2388 addr
= phys_ram_alloc_offset
;
2389 phys_ram_alloc_offset
= TARGET_PAGE_ALIGN(phys_ram_alloc_offset
+ size
);
2393 void qemu_ram_free(ram_addr_t addr
)
2397 static uint32_t unassigned_mem_readb(void *opaque
, target_phys_addr_t addr
)
2399 #ifdef DEBUG_UNASSIGNED
2400 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2402 #if defined(TARGET_SPARC)
2403 do_unassigned_access(addr
, 0, 0, 0, 1);
2408 static uint32_t unassigned_mem_readw(void *opaque
, target_phys_addr_t addr
)
2410 #ifdef DEBUG_UNASSIGNED
2411 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2413 #if defined(TARGET_SPARC)
2414 do_unassigned_access(addr
, 0, 0, 0, 2);
2419 static uint32_t unassigned_mem_readl(void *opaque
, target_phys_addr_t addr
)
2421 #ifdef DEBUG_UNASSIGNED
2422 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2424 #if defined(TARGET_SPARC)
2425 do_unassigned_access(addr
, 0, 0, 0, 4);
2430 static void unassigned_mem_writeb(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2432 #ifdef DEBUG_UNASSIGNED
2433 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2435 #if defined(TARGET_SPARC)
2436 do_unassigned_access(addr
, 1, 0, 0, 1);
2440 static void unassigned_mem_writew(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2442 #ifdef DEBUG_UNASSIGNED
2443 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2445 #if defined(TARGET_SPARC)
2446 do_unassigned_access(addr
, 1, 0, 0, 2);
2450 static void unassigned_mem_writel(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2452 #ifdef DEBUG_UNASSIGNED
2453 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2455 #if defined(TARGET_SPARC)
2456 do_unassigned_access(addr
, 1, 0, 0, 4);
2460 static CPUReadMemoryFunc
*unassigned_mem_read
[3] = {
2461 unassigned_mem_readb
,
2462 unassigned_mem_readw
,
2463 unassigned_mem_readl
,
2466 static CPUWriteMemoryFunc
*unassigned_mem_write
[3] = {
2467 unassigned_mem_writeb
,
2468 unassigned_mem_writew
,
2469 unassigned_mem_writel
,
2472 static void notdirty_mem_writeb(void *opaque
, target_phys_addr_t ram_addr
,
2476 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2477 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2478 #if !defined(CONFIG_USER_ONLY)
2479 tb_invalidate_phys_page_fast(ram_addr
, 1);
2480 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2483 stb_p(phys_ram_base
+ ram_addr
, val
);
2485 if (cpu_single_env
->kqemu_enabled
&&
2486 (dirty_flags
& KQEMU_MODIFY_PAGE_MASK
) != KQEMU_MODIFY_PAGE_MASK
)
2487 kqemu_modify_page(cpu_single_env
, ram_addr
);
2489 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2490 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2491 /* we remove the notdirty callback only if the code has been
2493 if (dirty_flags
== 0xff)
2494 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2497 static void notdirty_mem_writew(void *opaque
, target_phys_addr_t ram_addr
,
2501 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2502 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2503 #if !defined(CONFIG_USER_ONLY)
2504 tb_invalidate_phys_page_fast(ram_addr
, 2);
2505 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2508 stw_p(phys_ram_base
+ ram_addr
, val
);
2510 if (cpu_single_env
->kqemu_enabled
&&
2511 (dirty_flags
& KQEMU_MODIFY_PAGE_MASK
) != KQEMU_MODIFY_PAGE_MASK
)
2512 kqemu_modify_page(cpu_single_env
, ram_addr
);
2514 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2515 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2516 /* we remove the notdirty callback only if the code has been
2518 if (dirty_flags
== 0xff)
2519 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2522 static void notdirty_mem_writel(void *opaque
, target_phys_addr_t ram_addr
,
2526 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2527 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2528 #if !defined(CONFIG_USER_ONLY)
2529 tb_invalidate_phys_page_fast(ram_addr
, 4);
2530 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2533 stl_p(phys_ram_base
+ ram_addr
, val
);
2535 if (cpu_single_env
->kqemu_enabled
&&
2536 (dirty_flags
& KQEMU_MODIFY_PAGE_MASK
) != KQEMU_MODIFY_PAGE_MASK
)
2537 kqemu_modify_page(cpu_single_env
, ram_addr
);
2539 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2540 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2541 /* we remove the notdirty callback only if the code has been
2543 if (dirty_flags
== 0xff)
2544 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2547 static CPUReadMemoryFunc
*error_mem_read
[3] = {
2548 NULL
, /* never used */
2549 NULL
, /* never used */
2550 NULL
, /* never used */
2553 static CPUWriteMemoryFunc
*notdirty_mem_write
[3] = {
2554 notdirty_mem_writeb
,
2555 notdirty_mem_writew
,
2556 notdirty_mem_writel
,
2559 /* Generate a debug exception if a watchpoint has been hit. */
2560 static void check_watchpoint(int offset
, int len_mask
, int flags
)
2562 CPUState
*env
= cpu_single_env
;
2563 target_ulong pc
, cs_base
;
2564 TranslationBlock
*tb
;
2569 if (env
->watchpoint_hit
) {
2570 /* We re-entered the check after replacing the TB. Now raise
2571 * the debug interrupt so that is will trigger after the
2572 * current instruction. */
2573 cpu_interrupt(env
, CPU_INTERRUPT_DEBUG
);
2576 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2577 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
2578 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
2579 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
2580 wp
->flags
|= BP_WATCHPOINT_HIT
;
2581 if (!env
->watchpoint_hit
) {
2582 env
->watchpoint_hit
= wp
;
2583 tb
= tb_find_pc(env
->mem_io_pc
);
2585 cpu_abort(env
, "check_watchpoint: could not find TB for "
2586 "pc=%p", (void *)env
->mem_io_pc
);
2588 cpu_restore_state(tb
, env
, env
->mem_io_pc
, NULL
);
2589 tb_phys_invalidate(tb
, -1);
2590 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2591 env
->exception_index
= EXCP_DEBUG
;
2593 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2594 tb_gen_code(env
, pc
, cs_base
, cpu_flags
, 1);
2596 cpu_resume_from_signal(env
, NULL
);
2599 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2604 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2605 so these check for a hit then pass through to the normal out-of-line
2607 static uint32_t watch_mem_readb(void *opaque
, target_phys_addr_t addr
)
2609 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_READ
);
2610 return ldub_phys(addr
);
2613 static uint32_t watch_mem_readw(void *opaque
, target_phys_addr_t addr
)
2615 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_READ
);
2616 return lduw_phys(addr
);
2619 static uint32_t watch_mem_readl(void *opaque
, target_phys_addr_t addr
)
2621 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_READ
);
2622 return ldl_phys(addr
);
2625 static void watch_mem_writeb(void *opaque
, target_phys_addr_t addr
,
2628 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_WRITE
);
2629 stb_phys(addr
, val
);
2632 static void watch_mem_writew(void *opaque
, target_phys_addr_t addr
,
2635 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_WRITE
);
2636 stw_phys(addr
, val
);
2639 static void watch_mem_writel(void *opaque
, target_phys_addr_t addr
,
2642 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_WRITE
);
2643 stl_phys(addr
, val
);
2646 static CPUReadMemoryFunc
*watch_mem_read
[3] = {
2652 static CPUWriteMemoryFunc
*watch_mem_write
[3] = {
2658 static inline uint32_t subpage_readlen (subpage_t
*mmio
, target_phys_addr_t addr
,
2664 idx
= SUBPAGE_IDX(addr
);
2665 #if defined(DEBUG_SUBPAGE)
2666 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d\n", __func__
,
2667 mmio
, len
, addr
, idx
);
2669 ret
= (**mmio
->mem_read
[idx
][len
])(mmio
->opaque
[idx
][0][len
],
2670 addr
+ mmio
->region_offset
[idx
][0][len
]);
2675 static inline void subpage_writelen (subpage_t
*mmio
, target_phys_addr_t addr
,
2676 uint32_t value
, unsigned int len
)
2680 idx
= SUBPAGE_IDX(addr
);
2681 #if defined(DEBUG_SUBPAGE)
2682 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d value %08x\n", __func__
,
2683 mmio
, len
, addr
, idx
, value
);
2685 (**mmio
->mem_write
[idx
][len
])(mmio
->opaque
[idx
][1][len
],
2686 addr
+ mmio
->region_offset
[idx
][1][len
],
2690 static uint32_t subpage_readb (void *opaque
, target_phys_addr_t addr
)
2692 #if defined(DEBUG_SUBPAGE)
2693 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2696 return subpage_readlen(opaque
, addr
, 0);
2699 static void subpage_writeb (void *opaque
, target_phys_addr_t addr
,
2702 #if defined(DEBUG_SUBPAGE)
2703 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2705 subpage_writelen(opaque
, addr
, value
, 0);
2708 static uint32_t subpage_readw (void *opaque
, target_phys_addr_t addr
)
2710 #if defined(DEBUG_SUBPAGE)
2711 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2714 return subpage_readlen(opaque
, addr
, 1);
2717 static void subpage_writew (void *opaque
, target_phys_addr_t addr
,
2720 #if defined(DEBUG_SUBPAGE)
2721 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2723 subpage_writelen(opaque
, addr
, value
, 1);
2726 static uint32_t subpage_readl (void *opaque
, target_phys_addr_t addr
)
2728 #if defined(DEBUG_SUBPAGE)
2729 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2732 return subpage_readlen(opaque
, addr
, 2);
2735 static void subpage_writel (void *opaque
,
2736 target_phys_addr_t addr
, uint32_t value
)
2738 #if defined(DEBUG_SUBPAGE)
2739 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2741 subpage_writelen(opaque
, addr
, value
, 2);
2744 static CPUReadMemoryFunc
*subpage_read
[] = {
2750 static CPUWriteMemoryFunc
*subpage_write
[] = {
2756 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2757 ram_addr_t memory
, ram_addr_t region_offset
)
2762 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2764 idx
= SUBPAGE_IDX(start
);
2765 eidx
= SUBPAGE_IDX(end
);
2766 #if defined(DEBUG_SUBPAGE)
2767 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__
,
2768 mmio
, start
, end
, idx
, eidx
, memory
);
2770 memory
>>= IO_MEM_SHIFT
;
2771 for (; idx
<= eidx
; idx
++) {
2772 for (i
= 0; i
< 4; i
++) {
2773 if (io_mem_read
[memory
][i
]) {
2774 mmio
->mem_read
[idx
][i
] = &io_mem_read
[memory
][i
];
2775 mmio
->opaque
[idx
][0][i
] = io_mem_opaque
[memory
];
2776 mmio
->region_offset
[idx
][0][i
] = region_offset
;
2778 if (io_mem_write
[memory
][i
]) {
2779 mmio
->mem_write
[idx
][i
] = &io_mem_write
[memory
][i
];
2780 mmio
->opaque
[idx
][1][i
] = io_mem_opaque
[memory
];
2781 mmio
->region_offset
[idx
][1][i
] = region_offset
;
2789 static void *subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2790 ram_addr_t orig_memory
, ram_addr_t region_offset
)
2795 mmio
= qemu_mallocz(sizeof(subpage_t
));
2798 subpage_memory
= cpu_register_io_memory(0, subpage_read
, subpage_write
, mmio
);
2799 #if defined(DEBUG_SUBPAGE)
2800 printf("%s: %p base " TARGET_FMT_plx
" len %08x %d\n", __func__
,
2801 mmio
, base
, TARGET_PAGE_SIZE
, subpage_memory
);
2803 *phys
= subpage_memory
| IO_MEM_SUBPAGE
;
2804 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
- 1, orig_memory
,
2811 static void io_mem_init(void)
2813 cpu_register_io_memory(IO_MEM_ROM
>> IO_MEM_SHIFT
, error_mem_read
, unassigned_mem_write
, NULL
);
2814 cpu_register_io_memory(IO_MEM_UNASSIGNED
>> IO_MEM_SHIFT
, unassigned_mem_read
, unassigned_mem_write
, NULL
);
2815 cpu_register_io_memory(IO_MEM_NOTDIRTY
>> IO_MEM_SHIFT
, error_mem_read
, notdirty_mem_write
, NULL
);
2818 io_mem_watch
= cpu_register_io_memory(0, watch_mem_read
,
2819 watch_mem_write
, NULL
);
2820 /* alloc dirty bits array */
2821 phys_ram_dirty
= qemu_vmalloc(phys_ram_size
>> TARGET_PAGE_BITS
);
2822 memset(phys_ram_dirty
, 0xff, phys_ram_size
>> TARGET_PAGE_BITS
);
2825 /* mem_read and mem_write are arrays of functions containing the
2826 function to access byte (index 0), word (index 1) and dword (index
2827 2). Functions can be omitted with a NULL function pointer. The
2828 registered functions may be modified dynamically later.
2829 If io_index is non zero, the corresponding io zone is
2830 modified. If it is zero, a new io zone is allocated. The return
2831 value can be used with cpu_register_physical_memory(). (-1) is
2832 returned if error. */
2833 int cpu_register_io_memory(int io_index
,
2834 CPUReadMemoryFunc
**mem_read
,
2835 CPUWriteMemoryFunc
**mem_write
,
2838 int i
, subwidth
= 0;
2840 if (io_index
<= 0) {
2841 if (io_mem_nb
>= IO_MEM_NB_ENTRIES
)
2843 io_index
= io_mem_nb
++;
2845 if (io_index
>= IO_MEM_NB_ENTRIES
)
2849 for(i
= 0;i
< 3; i
++) {
2850 if (!mem_read
[i
] || !mem_write
[i
])
2851 subwidth
= IO_MEM_SUBWIDTH
;
2852 io_mem_read
[io_index
][i
] = mem_read
[i
];
2853 io_mem_write
[io_index
][i
] = mem_write
[i
];
2855 io_mem_opaque
[io_index
] = opaque
;
2856 return (io_index
<< IO_MEM_SHIFT
) | subwidth
;
2859 CPUWriteMemoryFunc
**cpu_get_io_memory_write(int io_index
)
2861 return io_mem_write
[io_index
>> IO_MEM_SHIFT
];
2864 CPUReadMemoryFunc
**cpu_get_io_memory_read(int io_index
)
2866 return io_mem_read
[io_index
>> IO_MEM_SHIFT
];
2869 #endif /* !defined(CONFIG_USER_ONLY) */
2871 /* physical memory access (slow version, mainly for debug) */
2872 #if defined(CONFIG_USER_ONLY)
2873 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
2874 int len
, int is_write
)
2881 page
= addr
& TARGET_PAGE_MASK
;
2882 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2885 flags
= page_get_flags(page
);
2886 if (!(flags
& PAGE_VALID
))
2889 if (!(flags
& PAGE_WRITE
))
2891 /* XXX: this code should not depend on lock_user */
2892 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2893 /* FIXME - should this return an error rather than just fail? */
2896 unlock_user(p
, addr
, l
);
2898 if (!(flags
& PAGE_READ
))
2900 /* XXX: this code should not depend on lock_user */
2901 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2902 /* FIXME - should this return an error rather than just fail? */
2905 unlock_user(p
, addr
, 0);
2914 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
2915 int len
, int is_write
)
2920 target_phys_addr_t page
;
2925 page
= addr
& TARGET_PAGE_MASK
;
2926 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2929 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
2931 pd
= IO_MEM_UNASSIGNED
;
2933 pd
= p
->phys_offset
;
2937 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
2938 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
2940 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
2941 /* XXX: could force cpu_single_env to NULL to avoid
2943 if (l
>= 4 && ((addr
& 3) == 0)) {
2944 /* 32 bit write access */
2946 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
2948 } else if (l
>= 2 && ((addr
& 1) == 0)) {
2949 /* 16 bit write access */
2951 io_mem_write
[io_index
][1](io_mem_opaque
[io_index
], addr
, val
);
2954 /* 8 bit write access */
2956 io_mem_write
[io_index
][0](io_mem_opaque
[io_index
], addr
, val
);
2960 unsigned long addr1
;
2961 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
2963 ptr
= phys_ram_base
+ addr1
;
2964 memcpy(ptr
, buf
, l
);
2965 if (!cpu_physical_memory_is_dirty(addr1
)) {
2966 /* invalidate code */
2967 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
2969 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
2970 (0xff & ~CODE_DIRTY_FLAG
);
2974 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
2975 !(pd
& IO_MEM_ROMD
)) {
2977 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
2979 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
2980 if (l
>= 4 && ((addr
& 3) == 0)) {
2981 /* 32 bit read access */
2982 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
2985 } else if (l
>= 2 && ((addr
& 1) == 0)) {
2986 /* 16 bit read access */
2987 val
= io_mem_read
[io_index
][1](io_mem_opaque
[io_index
], addr
);
2991 /* 8 bit read access */
2992 val
= io_mem_read
[io_index
][0](io_mem_opaque
[io_index
], addr
);
2998 ptr
= phys_ram_base
+ (pd
& TARGET_PAGE_MASK
) +
2999 (addr
& ~TARGET_PAGE_MASK
);
3000 memcpy(buf
, ptr
, l
);
3009 /* used for ROM loading : can write in RAM and ROM */
3010 void cpu_physical_memory_write_rom(target_phys_addr_t addr
,
3011 const uint8_t *buf
, int len
)
3015 target_phys_addr_t page
;
3020 page
= addr
& TARGET_PAGE_MASK
;
3021 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3024 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3026 pd
= IO_MEM_UNASSIGNED
;
3028 pd
= p
->phys_offset
;
3031 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
&&
3032 (pd
& ~TARGET_PAGE_MASK
) != IO_MEM_ROM
&&
3033 !(pd
& IO_MEM_ROMD
)) {
3036 unsigned long addr1
;
3037 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3039 ptr
= phys_ram_base
+ addr1
;
3040 memcpy(ptr
, buf
, l
);
3050 target_phys_addr_t addr
;
3051 target_phys_addr_t len
;
3054 static BounceBuffer bounce
;
3056 typedef struct MapClient
{
3058 void (*callback
)(void *opaque
);
3059 LIST_ENTRY(MapClient
) link
;
3062 static LIST_HEAD(map_client_list
, MapClient
) map_client_list
3063 = LIST_HEAD_INITIALIZER(map_client_list
);
3065 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
3067 MapClient
*client
= qemu_malloc(sizeof(*client
));
3069 client
->opaque
= opaque
;
3070 client
->callback
= callback
;
3071 LIST_INSERT_HEAD(&map_client_list
, client
, link
);
3075 void cpu_unregister_map_client(void *_client
)
3077 MapClient
*client
= (MapClient
*)_client
;
3079 LIST_REMOVE(client
, link
);
3082 static void cpu_notify_map_clients(void)
3086 while (!LIST_EMPTY(&map_client_list
)) {
3087 client
= LIST_FIRST(&map_client_list
);
3088 client
->callback(client
->opaque
);
3089 LIST_REMOVE(client
, link
);
3093 /* Map a physical memory region into a host virtual address.
3094 * May map a subset of the requested range, given by and returned in *plen.
3095 * May return NULL if resources needed to perform the mapping are exhausted.
3096 * Use only for reads OR writes - not for read-modify-write operations.
3097 * Use cpu_register_map_client() to know when retrying the map operation is
3098 * likely to succeed.
3100 void *cpu_physical_memory_map(target_phys_addr_t addr
,
3101 target_phys_addr_t
*plen
,
3104 target_phys_addr_t len
= *plen
;
3105 target_phys_addr_t done
= 0;
3107 uint8_t *ret
= NULL
;
3109 target_phys_addr_t page
;
3112 unsigned long addr1
;
3115 page
= addr
& TARGET_PAGE_MASK
;
3116 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3119 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3121 pd
= IO_MEM_UNASSIGNED
;
3123 pd
= p
->phys_offset
;
3126 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3127 if (done
|| bounce
.buffer
) {
3130 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, TARGET_PAGE_SIZE
);
3134 cpu_physical_memory_rw(addr
, bounce
.buffer
, l
, 0);
3136 ptr
= bounce
.buffer
;
3138 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3139 ptr
= phys_ram_base
+ addr1
;
3143 } else if (ret
+ done
!= ptr
) {
3155 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3156 * Will also mark the memory as dirty if is_write == 1. access_len gives
3157 * the amount of memory that was actually read or written by the caller.
3159 void cpu_physical_memory_unmap(void *buffer
, target_phys_addr_t len
,
3160 int is_write
, target_phys_addr_t access_len
)
3162 if (buffer
!= bounce
.buffer
) {
3164 unsigned long addr1
= (uint8_t *)buffer
- phys_ram_base
;
3165 while (access_len
) {
3167 l
= TARGET_PAGE_SIZE
;
3170 if (!cpu_physical_memory_is_dirty(addr1
)) {
3171 /* invalidate code */
3172 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3174 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3175 (0xff & ~CODE_DIRTY_FLAG
);
3184 cpu_physical_memory_write(bounce
.addr
, bounce
.buffer
, access_len
);
3186 qemu_free(bounce
.buffer
);
3187 bounce
.buffer
= NULL
;
3188 cpu_notify_map_clients();
3191 /* warning: addr must be aligned */
3192 uint32_t ldl_phys(target_phys_addr_t addr
)
3200 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3202 pd
= IO_MEM_UNASSIGNED
;
3204 pd
= p
->phys_offset
;
3207 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3208 !(pd
& IO_MEM_ROMD
)) {
3210 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3212 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3213 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
3216 ptr
= phys_ram_base
+ (pd
& TARGET_PAGE_MASK
) +
3217 (addr
& ~TARGET_PAGE_MASK
);
3223 /* warning: addr must be aligned */
3224 uint64_t ldq_phys(target_phys_addr_t addr
)
3232 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3234 pd
= IO_MEM_UNASSIGNED
;
3236 pd
= p
->phys_offset
;
3239 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3240 !(pd
& IO_MEM_ROMD
)) {
3242 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3244 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3245 #ifdef TARGET_WORDS_BIGENDIAN
3246 val
= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
) << 32;
3247 val
|= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4);
3249 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
3250 val
|= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4) << 32;
3254 ptr
= phys_ram_base
+ (pd
& TARGET_PAGE_MASK
) +
3255 (addr
& ~TARGET_PAGE_MASK
);
3262 uint32_t ldub_phys(target_phys_addr_t addr
)
3265 cpu_physical_memory_read(addr
, &val
, 1);
3270 uint32_t lduw_phys(target_phys_addr_t addr
)
3273 cpu_physical_memory_read(addr
, (uint8_t *)&val
, 2);
3274 return tswap16(val
);
3277 /* warning: addr must be aligned. The ram page is not masked as dirty
3278 and the code inside is not invalidated. It is useful if the dirty
3279 bits are used to track modified PTEs */
3280 void stl_phys_notdirty(target_phys_addr_t addr
, uint32_t val
)
3287 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3289 pd
= IO_MEM_UNASSIGNED
;
3291 pd
= p
->phys_offset
;
3294 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3295 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3297 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3298 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3300 unsigned long addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3301 ptr
= phys_ram_base
+ addr1
;
3304 if (unlikely(in_migration
)) {
3305 if (!cpu_physical_memory_is_dirty(addr1
)) {
3306 /* invalidate code */
3307 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
3309 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3310 (0xff & ~CODE_DIRTY_FLAG
);
3316 void stq_phys_notdirty(target_phys_addr_t addr
, uint64_t val
)
3323 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3325 pd
= IO_MEM_UNASSIGNED
;
3327 pd
= p
->phys_offset
;
3330 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3331 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3333 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3334 #ifdef TARGET_WORDS_BIGENDIAN
3335 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
>> 32);
3336 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
);
3338 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3339 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
>> 32);
3342 ptr
= phys_ram_base
+ (pd
& TARGET_PAGE_MASK
) +
3343 (addr
& ~TARGET_PAGE_MASK
);
3348 /* warning: addr must be aligned */
3349 void stl_phys(target_phys_addr_t addr
, uint32_t val
)
3356 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3358 pd
= IO_MEM_UNASSIGNED
;
3360 pd
= p
->phys_offset
;
3363 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3364 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3366 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3367 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3369 unsigned long addr1
;
3370 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3372 ptr
= phys_ram_base
+ addr1
;
3374 if (!cpu_physical_memory_is_dirty(addr1
)) {
3375 /* invalidate code */
3376 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
3378 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3379 (0xff & ~CODE_DIRTY_FLAG
);
3385 void stb_phys(target_phys_addr_t addr
, uint32_t val
)
3388 cpu_physical_memory_write(addr
, &v
, 1);
3392 void stw_phys(target_phys_addr_t addr
, uint32_t val
)
3394 uint16_t v
= tswap16(val
);
3395 cpu_physical_memory_write(addr
, (const uint8_t *)&v
, 2);
3399 void stq_phys(target_phys_addr_t addr
, uint64_t val
)
3402 cpu_physical_memory_write(addr
, (const uint8_t *)&val
, 8);
3407 /* virtual memory access for debug */
3408 int cpu_memory_rw_debug(CPUState
*env
, target_ulong addr
,
3409 uint8_t *buf
, int len
, int is_write
)
3412 target_phys_addr_t phys_addr
;
3416 page
= addr
& TARGET_PAGE_MASK
;
3417 phys_addr
= cpu_get_phys_page_debug(env
, page
);
3418 /* if no physical page mapped, return an error */
3419 if (phys_addr
== -1)
3421 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3424 cpu_physical_memory_rw(phys_addr
+ (addr
& ~TARGET_PAGE_MASK
),
3433 /* in deterministic execution mode, instructions doing device I/Os
3434 must be at the end of the TB */
3435 void cpu_io_recompile(CPUState
*env
, void *retaddr
)
3437 TranslationBlock
*tb
;
3439 target_ulong pc
, cs_base
;
3442 tb
= tb_find_pc((unsigned long)retaddr
);
3444 cpu_abort(env
, "cpu_io_recompile: could not find TB for pc=%p",
3447 n
= env
->icount_decr
.u16
.low
+ tb
->icount
;
3448 cpu_restore_state(tb
, env
, (unsigned long)retaddr
, NULL
);
3449 /* Calculate how many instructions had been executed before the fault
3451 n
= n
- env
->icount_decr
.u16
.low
;
3452 /* Generate a new TB ending on the I/O insn. */
3454 /* On MIPS and SH, delay slot instructions can only be restarted if
3455 they were already the first instruction in the TB. If this is not
3456 the first instruction in a TB then re-execute the preceding
3458 #if defined(TARGET_MIPS)
3459 if ((env
->hflags
& MIPS_HFLAG_BMASK
) != 0 && n
> 1) {
3460 env
->active_tc
.PC
-= 4;
3461 env
->icount_decr
.u16
.low
++;
3462 env
->hflags
&= ~MIPS_HFLAG_BMASK
;
3464 #elif defined(TARGET_SH4)
3465 if ((env
->flags
& ((DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
))) != 0
3468 env
->icount_decr
.u16
.low
++;
3469 env
->flags
&= ~(DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
);
3472 /* This should never happen. */
3473 if (n
> CF_COUNT_MASK
)
3474 cpu_abort(env
, "TB too big during recompile");
3476 cflags
= n
| CF_LAST_IO
;
3478 cs_base
= tb
->cs_base
;
3480 tb_phys_invalidate(tb
, -1);
3481 /* FIXME: In theory this could raise an exception. In practice
3482 we have already translated the block once so it's probably ok. */
3483 tb_gen_code(env
, pc
, cs_base
, flags
, cflags
);
3484 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3485 the first in the TB) then we end up generating a whole new TB and
3486 repeating the fault, which is horribly inefficient.
3487 Better would be to execute just this insn uncached, or generate a
3489 cpu_resume_from_signal(env
, NULL
);
3492 void dump_exec_info(FILE *f
,
3493 int (*cpu_fprintf
)(FILE *f
, const char *fmt
, ...))
3495 int i
, target_code_size
, max_target_code_size
;
3496 int direct_jmp_count
, direct_jmp2_count
, cross_page
;
3497 TranslationBlock
*tb
;
3499 target_code_size
= 0;
3500 max_target_code_size
= 0;
3502 direct_jmp_count
= 0;
3503 direct_jmp2_count
= 0;
3504 for(i
= 0; i
< nb_tbs
; i
++) {
3506 target_code_size
+= tb
->size
;
3507 if (tb
->size
> max_target_code_size
)
3508 max_target_code_size
= tb
->size
;
3509 if (tb
->page_addr
[1] != -1)
3511 if (tb
->tb_next_offset
[0] != 0xffff) {
3513 if (tb
->tb_next_offset
[1] != 0xffff) {
3514 direct_jmp2_count
++;
3518 /* XXX: avoid using doubles ? */
3519 cpu_fprintf(f
, "Translation buffer state:\n");
3520 cpu_fprintf(f
, "gen code size %ld/%ld\n",
3521 code_gen_ptr
- code_gen_buffer
, code_gen_buffer_max_size
);
3522 cpu_fprintf(f
, "TB count %d/%d\n",
3523 nb_tbs
, code_gen_max_blocks
);
3524 cpu_fprintf(f
, "TB avg target size %d max=%d bytes\n",
3525 nb_tbs
? target_code_size
/ nb_tbs
: 0,
3526 max_target_code_size
);
3527 cpu_fprintf(f
, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3528 nb_tbs
? (code_gen_ptr
- code_gen_buffer
) / nb_tbs
: 0,
3529 target_code_size
? (double) (code_gen_ptr
- code_gen_buffer
) / target_code_size
: 0);
3530 cpu_fprintf(f
, "cross page TB count %d (%d%%)\n",
3532 nb_tbs
? (cross_page
* 100) / nb_tbs
: 0);
3533 cpu_fprintf(f
, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3535 nb_tbs
? (direct_jmp_count
* 100) / nb_tbs
: 0,
3537 nb_tbs
? (direct_jmp2_count
* 100) / nb_tbs
: 0);
3538 cpu_fprintf(f
, "\nStatistics:\n");
3539 cpu_fprintf(f
, "TB flush count %d\n", tb_flush_count
);
3540 cpu_fprintf(f
, "TB invalidate count %d\n", tb_phys_invalidate_count
);
3541 cpu_fprintf(f
, "TLB flush count %d\n", tlb_flush_count
);
3542 tcg_dump_info(f
, cpu_fprintf
);
3545 #if !defined(CONFIG_USER_ONLY)
3547 #define MMUSUFFIX _cmmu
3548 #define GETPC() NULL
3549 #define env cpu_single_env
3550 #define SOFTMMU_CODE_ACCESS
3553 #include "softmmu_template.h"
3556 #include "softmmu_template.h"
3559 #include "softmmu_template.h"
3562 #include "softmmu_template.h"