MTRR support on x86 (Carl-Daniel Hailfinger)
[qemu/mini2440/sniper_sniper_test.git] / hw / pl022.c
blob90f4f0f16f1e2e72bdea38b27ae7d4e56225a0cc
1 /*
2 * Arm PrimeCell PL022 Synchronous Serial Port
4 * Copyright (c) 2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licenced under the GPL.
8 */
10 #include "hw.h"
11 #include "primecell.h"
13 //#define DEBUG_PL022 1
15 #ifdef DEBUG_PL022
16 #define DPRINTF(fmt, args...) \
17 do { printf("pl022: " fmt , ##args); } while (0)
18 #define BADF(fmt, args...) \
19 do { fprintf(stderr, "pl022: error: " fmt , ##args); exit(1);} while (0)
20 #else
21 #define DPRINTF(fmt, args...) do {} while(0)
22 #define BADF(fmt, args...) \
23 do { fprintf(stderr, "pl022: error: " fmt , ##args);} while (0)
24 #endif
26 #define PL022_CR1_LBM 0x01
27 #define PL022_CR1_SSE 0x02
28 #define PL022_CR1_MS 0x04
29 #define PL022_CR1_SDO 0x08
31 #define PL022_SR_TFE 0x01
32 #define PL022_SR_TNF 0x02
33 #define PL022_SR_RNE 0x04
34 #define PL022_SR_RFF 0x08
35 #define PL022_SR_BSY 0x10
37 #define PL022_INT_ROR 0x01
38 #define PL022_INT_RT 0x04
39 #define PL022_INT_RX 0x04
40 #define PL022_INT_TX 0x08
42 typedef struct {
43 uint32_t cr0;
44 uint32_t cr1;
45 uint32_t bitmask;
46 uint32_t sr;
47 uint32_t cpsr;
48 uint32_t is;
49 uint32_t im;
50 /* The FIFO head points to the next empty entry. */
51 int tx_fifo_head;
52 int rx_fifo_head;
53 int tx_fifo_len;
54 int rx_fifo_len;
55 uint16_t tx_fifo[8];
56 uint16_t rx_fifo[8];
57 qemu_irq irq;
58 int (*xfer_cb)(void *, int);
59 void *opaque;
60 } pl022_state;
62 static const unsigned char pl022_id[8] =
63 { 0x22, 0x10, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1 };
65 static void pl022_update(pl022_state *s)
67 s->sr = 0;
68 if (s->tx_fifo_len == 0)
69 s->sr |= PL022_SR_TFE;
70 if (s->tx_fifo_len != 8)
71 s->sr |= PL022_SR_TNF;
72 if (s->rx_fifo_len != 0)
73 s->sr |= PL022_SR_RNE;
74 if (s->rx_fifo_len == 8)
75 s->sr |= PL022_SR_RFF;
76 if (s->tx_fifo_len)
77 s->sr |= PL022_SR_BSY;
78 s->is = 0;
79 if (s->rx_fifo_len >= 4)
80 s->is |= PL022_INT_RX;
81 if (s->tx_fifo_len <= 4)
82 s->is |= PL022_INT_TX;
84 qemu_set_irq(s->irq, (s->is & s->im) != 0);
87 static void pl022_xfer(pl022_state *s)
89 int i;
90 int o;
91 int val;
93 if ((s->cr1 & PL022_CR1_SSE) == 0) {
94 pl022_update(s);
95 DPRINTF("Disabled\n");
96 return;
99 DPRINTF("Maybe xfer %d/%d\n", s->tx_fifo_len, s->rx_fifo_len);
100 i = (s->tx_fifo_head - s->tx_fifo_len) & 7;
101 o = s->rx_fifo_head;
102 /* ??? We do not emulate the line speed.
103 This may break some applications. The are two problematic cases:
104 (a) A driver feeds data into the TX FIFO until it is full,
105 and only then drains the RX FIFO. On real hardware the CPU can
106 feed data fast enough that the RX fifo never gets chance to overflow.
107 (b) A driver transmits data, deliberately allowing the RX FIFO to
108 overflow because it ignores the RX data anyway.
110 We choose to support (a) by stalling the transmit engine if it would
111 cause the RX FIFO to overflow. In practice much transmit-only code
112 falls into (a) because it flushes the RX FIFO to determine when
113 the transfer has completed. */
114 while (s->tx_fifo_len && s->rx_fifo_len < 8) {
115 DPRINTF("xfer\n");
116 val = s->tx_fifo[i];
117 if (s->cr1 & PL022_CR1_LBM) {
118 /* Loopback mode. */
119 } else if (s->xfer_cb) {
120 val = s->xfer_cb(s->opaque, val);
121 } else {
122 val = 0;
124 s->rx_fifo[o] = val & s->bitmask;
125 i = (i + 1) & 7;
126 o = (o + 1) & 7;
127 s->tx_fifo_len--;
128 s->rx_fifo_len++;
130 s->rx_fifo_head = o;
131 pl022_update(s);
134 static uint32_t pl022_read(void *opaque, target_phys_addr_t offset)
136 pl022_state *s = (pl022_state *)opaque;
137 int val;
139 if (offset >= 0xfe0 && offset < 0x1000) {
140 return pl022_id[(offset - 0xfe0) >> 2];
142 switch (offset) {
143 case 0x00: /* CR0 */
144 return s->cr0;
145 case 0x04: /* CR1 */
146 return s->cr1;
147 case 0x08: /* DR */
148 if (s->rx_fifo_len) {
149 val = s->rx_fifo[(s->rx_fifo_head - s->rx_fifo_len) & 7];
150 DPRINTF("RX %02x\n", val);
151 s->rx_fifo_len--;
152 pl022_xfer(s);
153 } else {
154 val = 0;
156 return val;
157 case 0x0c: /* SR */
158 return s->sr;
159 case 0x10: /* CPSR */
160 return s->cpsr;
161 case 0x14: /* IMSC */
162 return s->im;
163 case 0x18: /* RIS */
164 return s->is;
165 case 0x1c: /* MIS */
166 return s->im & s->is;
167 case 0x20: /* DMACR */
168 /* Not implemented. */
169 return 0;
170 default:
171 cpu_abort (cpu_single_env, "pl022_read: Bad offset %x\n",
172 (int)offset);
173 return 0;
177 static void pl022_write(void *opaque, target_phys_addr_t offset,
178 uint32_t value)
180 pl022_state *s = (pl022_state *)opaque;
182 switch (offset) {
183 case 0x00: /* CR0 */
184 s->cr0 = value;
185 /* Clock rate and format are ignored. */
186 s->bitmask = (1 << ((value & 15) + 1)) - 1;
187 break;
188 case 0x04: /* CR1 */
189 s->cr1 = value;
190 if ((s->cr1 & (PL022_CR1_MS | PL022_CR1_SSE))
191 == (PL022_CR1_MS | PL022_CR1_SSE)) {
192 BADF("SPI slave mode not implemented\n");
194 pl022_xfer(s);
195 break;
196 case 0x08: /* DR */
197 if (s->tx_fifo_len < 8) {
198 DPRINTF("TX %02x\n", value);
199 s->tx_fifo[s->tx_fifo_head] = value & s->bitmask;
200 s->tx_fifo_head = (s->tx_fifo_head + 1) & 7;
201 s->tx_fifo_len++;
202 pl022_xfer(s);
204 break;
205 case 0x10: /* CPSR */
206 /* Prescaler. Ignored. */
207 s->cpsr = value & 0xff;
208 break;
209 case 0x14: /* IMSC */
210 s->im = value;
211 pl022_update(s);
212 break;
213 case 0x20: /* DMACR */
214 if (value)
215 cpu_abort (cpu_single_env, "pl022: DMA not implemented\n");
216 break;
217 default:
218 cpu_abort (cpu_single_env, "pl022_write: Bad offset %x\n",
219 (int)offset);
223 static void pl022_reset(pl022_state *s)
225 s->rx_fifo_len = 0;
226 s->tx_fifo_len = 0;
227 s->im = 0;
228 s->is = PL022_INT_TX;
229 s->sr = PL022_SR_TFE | PL022_SR_TNF;
232 static CPUReadMemoryFunc *pl022_readfn[] = {
233 pl022_read,
234 pl022_read,
235 pl022_read
238 static CPUWriteMemoryFunc *pl022_writefn[] = {
239 pl022_write,
240 pl022_write,
241 pl022_write
244 static void pl022_save(QEMUFile *f, void *opaque)
246 pl022_state *s = (pl022_state *)opaque;
247 int i;
249 qemu_put_be32(f, s->cr0);
250 qemu_put_be32(f, s->cr1);
251 qemu_put_be32(f, s->bitmask);
252 qemu_put_be32(f, s->sr);
253 qemu_put_be32(f, s->cpsr);
254 qemu_put_be32(f, s->is);
255 qemu_put_be32(f, s->im);
256 qemu_put_be32(f, s->tx_fifo_head);
257 qemu_put_be32(f, s->rx_fifo_head);
258 qemu_put_be32(f, s->tx_fifo_len);
259 qemu_put_be32(f, s->rx_fifo_len);
260 for (i = 0; i < 8; i++) {
261 qemu_put_be16(f, s->tx_fifo[i]);
262 qemu_put_be16(f, s->rx_fifo[i]);
266 static int pl022_load(QEMUFile *f, void *opaque, int version_id)
268 pl022_state *s = (pl022_state *)opaque;
269 int i;
271 if (version_id != 1)
272 return -EINVAL;
274 s->cr0 = qemu_get_be32(f);
275 s->cr1 = qemu_get_be32(f);
276 s->bitmask = qemu_get_be32(f);
277 s->sr = qemu_get_be32(f);
278 s->cpsr = qemu_get_be32(f);
279 s->is = qemu_get_be32(f);
280 s->im = qemu_get_be32(f);
281 s->tx_fifo_head = qemu_get_be32(f);
282 s->rx_fifo_head = qemu_get_be32(f);
283 s->tx_fifo_len = qemu_get_be32(f);
284 s->rx_fifo_len = qemu_get_be32(f);
285 for (i = 0; i < 8; i++) {
286 s->tx_fifo[i] = qemu_get_be16(f);
287 s->rx_fifo[i] = qemu_get_be16(f);
290 return 0;
293 void pl022_init(uint32_t base, qemu_irq irq, int (*xfer_cb)(void *, int),
294 void * opaque)
296 int iomemtype;
297 pl022_state *s;
299 s = (pl022_state *)qemu_mallocz(sizeof(pl022_state));
300 iomemtype = cpu_register_io_memory(0, pl022_readfn,
301 pl022_writefn, s);
302 cpu_register_physical_memory(base, 0x00001000, iomemtype);
303 s->irq = irq;
304 s->xfer_cb = xfer_cb;
305 s->opaque = opaque;
306 pl022_reset(s);
307 register_savevm("pl022_ssp", -1, 1, pl022_save, pl022_load, s);