2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #if !defined(CONFIG_SOFTMMU)
35 #include <sys/ucontext.h>
38 int tb_invalidated_flag
;
41 //#define DEBUG_SIGNAL
43 #if defined(TARGET_ARM) || defined(TARGET_SPARC)
44 /* XXX: unify with i386 target */
45 void cpu_loop_exit(void)
47 longjmp(env
->jmp_env
, 1);
54 /* exit the current TB from a signal handler. The host registers are
55 restored in a state compatible with the CPU emulator
57 void cpu_resume_from_signal(CPUState
*env1
, void *puc
)
59 #if !defined(CONFIG_SOFTMMU)
60 struct ucontext
*uc
= puc
;
65 /* XXX: restore cpu registers saved in host registers */
67 #if !defined(CONFIG_SOFTMMU)
69 /* XXX: use siglongjmp ? */
70 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
73 longjmp(env
->jmp_env
, 1);
77 static TranslationBlock
*tb_find_slow(target_ulong pc
,
81 TranslationBlock
*tb
, **ptb1
;
84 target_ulong phys_pc
, phys_page1
, phys_page2
, virt_page2
;
89 tb_invalidated_flag
= 0;
91 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
93 /* find translated block using physical mappings */
94 phys_pc
= get_phys_addr_code(env
, pc
);
95 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
97 h
= tb_phys_hash_func(phys_pc
);
98 ptb1
= &tb_phys_hash
[h
];
104 tb
->page_addr
[0] == phys_page1
&&
105 tb
->cs_base
== cs_base
&&
106 tb
->flags
== flags
) {
107 /* check next page if needed */
108 if (tb
->page_addr
[1] != -1) {
109 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
111 phys_page2
= get_phys_addr_code(env
, virt_page2
);
112 if (tb
->page_addr
[1] == phys_page2
)
118 ptb1
= &tb
->phys_hash_next
;
121 /* if no translated code available, then translate it now */
124 /* flush must be done */
126 /* cannot fail at this point */
128 /* don't forget to invalidate previous TB info */
129 tb_invalidated_flag
= 1;
131 tc_ptr
= code_gen_ptr
;
133 tb
->cs_base
= cs_base
;
135 cpu_gen_code(env
, tb
, CODE_GEN_MAX_SIZE
, &code_gen_size
);
136 code_gen_ptr
= (void *)(((unsigned long)code_gen_ptr
+ code_gen_size
+ CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
138 /* check next page if needed */
139 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
141 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
142 phys_page2
= get_phys_addr_code(env
, virt_page2
);
144 tb_link_phys(tb
, phys_pc
, phys_page2
);
147 /* we add the TB in the virtual pc hash table */
148 env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
149 spin_unlock(&tb_lock
);
153 static inline TranslationBlock
*tb_find_fast(void)
155 TranslationBlock
*tb
;
156 target_ulong cs_base
, pc
;
159 /* we record a subset of the CPU state. It will
160 always be the same before a given translated block
162 #if defined(TARGET_I386)
164 flags
|= (env
->eflags
& (IOPL_MASK
| TF_MASK
| VM_MASK
));
165 cs_base
= env
->segs
[R_CS
].base
;
166 pc
= cs_base
+ env
->eip
;
167 #elif defined(TARGET_ARM)
168 flags
= env
->thumb
| (env
->vfp
.vec_len
<< 1)
169 | (env
->vfp
.vec_stride
<< 4);
170 if ((env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
)
172 if (env
->vfp
.xregs
[ARM_VFP_FPEXC
] & (1 << 30))
176 #elif defined(TARGET_SPARC)
177 #ifdef TARGET_SPARC64
178 flags
= (env
->pstate
<< 2) | ((env
->lsu
& (DMMU_E
| IMMU_E
)) >> 2);
180 flags
= env
->psrs
| ((env
->mmuregs
[0] & (MMU_E
| MMU_NF
)) << 1);
184 #elif defined(TARGET_PPC)
185 flags
= (msr_pr
<< MSR_PR
) | (msr_fp
<< MSR_FP
) |
186 (msr_se
<< MSR_SE
) | (msr_le
<< MSR_LE
);
189 #elif defined(TARGET_MIPS)
190 flags
= env
->hflags
& (MIPS_HFLAG_TMASK
| MIPS_HFLAG_BMASK
);
194 #error unsupported CPU
196 tb
= env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
197 if (__builtin_expect(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
198 tb
->flags
!= flags
, 0)) {
199 tb
= tb_find_slow(pc
, cs_base
, flags
);
200 /* Note: we do it here to avoid a gcc bug on Mac OS X when
201 doing it in tb_find_slow */
202 if (tb_invalidated_flag
) {
203 /* as some TB could have been invalidated because
204 of memory exceptions while generating the code, we
205 must recompute the hash index here */
213 /* main execution loop */
215 int cpu_exec(CPUState
*env1
)
217 int saved_T0
, saved_T1
;
222 #if defined(TARGET_I386)
247 #elif defined(TARGET_SPARC)
248 #if defined(reg_REGWPTR)
249 uint32_t *saved_regwptr
;
253 int saved_i7
, tmp_T0
;
255 int ret
, interrupt_request
;
256 void (*gen_func
)(void);
257 TranslationBlock
*tb
;
260 #if defined(TARGET_I386)
261 /* handle exit of HALTED state */
262 if (env1
->hflags
& HF_HALTED_MASK
) {
263 /* disable halt condition */
264 if ((env1
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
265 (env1
->eflags
& IF_MASK
)) {
266 env1
->hflags
&= ~HF_HALTED_MASK
;
271 #elif defined(TARGET_PPC)
273 if (env1
->msr
[MSR_EE
] &&
274 (env1
->interrupt_request
&
275 (CPU_INTERRUPT_HARD
| CPU_INTERRUPT_TIMER
))) {
281 #elif defined(TARGET_SPARC)
283 if ((env1
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
284 (env1
->psret
!= 0)) {
290 #elif defined(TARGET_ARM)
292 /* An interrupt wakes the CPU even if the I and F CPSR bits are
294 if (env1
->interrupt_request
295 & (CPU_INTERRUPT_FIQ
| CPU_INTERRUPT_HARD
)) {
301 #elif defined(TARGET_MIPS)
303 if (env1
->interrupt_request
&
304 (CPU_INTERRUPT_HARD
| CPU_INTERRUPT_TIMER
)) {
312 cpu_single_env
= env1
;
314 /* first we save global registers */
323 /* we also save i7 because longjmp may not restore it */
324 asm volatile ("mov %%i7, %0" : "=r" (saved_i7
));
327 #if defined(TARGET_I386)
354 /* put eflags in CPU temporary format */
355 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
356 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
357 CC_OP
= CC_OP_EFLAGS
;
358 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
359 #elif defined(TARGET_ARM)
360 #elif defined(TARGET_SPARC)
361 #if defined(reg_REGWPTR)
362 saved_regwptr
= REGWPTR
;
364 #elif defined(TARGET_PPC)
365 #elif defined(TARGET_MIPS)
367 #error unsupported target CPU
369 env
->exception_index
= -1;
371 /* prepare setjmp context for exception handling */
373 if (setjmp(env
->jmp_env
) == 0) {
374 env
->current_tb
= NULL
;
375 /* if an exception is pending, we execute it here */
376 if (env
->exception_index
>= 0) {
377 if (env
->exception_index
>= EXCP_INTERRUPT
) {
378 /* exit request from the cpu execution loop */
379 ret
= env
->exception_index
;
381 } else if (env
->user_mode_only
) {
382 /* if user mode only, we simulate a fake exception
383 which will be hanlded outside the cpu execution
385 #if defined(TARGET_I386)
386 do_interrupt_user(env
->exception_index
,
387 env
->exception_is_int
,
389 env
->exception_next_eip
);
391 ret
= env
->exception_index
;
394 #if defined(TARGET_I386)
395 /* simulate a real cpu exception. On i386, it can
396 trigger new exceptions, but we do not handle
397 double or triple faults yet. */
398 do_interrupt(env
->exception_index
,
399 env
->exception_is_int
,
401 env
->exception_next_eip
, 0);
402 #elif defined(TARGET_PPC)
404 #elif defined(TARGET_MIPS)
406 #elif defined(TARGET_SPARC)
407 do_interrupt(env
->exception_index
);
408 #elif defined(TARGET_ARM)
412 env
->exception_index
= -1;
415 if (kqemu_is_ok(env
) && env
->interrupt_request
== 0) {
417 env
->eflags
= env
->eflags
| cc_table
[CC_OP
].compute_all() | (DF
& DF_MASK
);
418 ret
= kqemu_cpu_exec(env
);
419 /* put eflags in CPU temporary format */
420 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
421 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
422 CC_OP
= CC_OP_EFLAGS
;
423 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
426 longjmp(env
->jmp_env
, 1);
427 } else if (ret
== 2) {
428 /* softmmu execution needed */
430 if (env
->interrupt_request
!= 0) {
431 /* hardware interrupt will be executed just after */
433 /* otherwise, we restart */
434 longjmp(env
->jmp_env
, 1);
440 T0
= 0; /* force lookup of first TB */
443 /* g1 can be modified by some libc? functions */
446 interrupt_request
= env
->interrupt_request
;
447 if (__builtin_expect(interrupt_request
, 0)) {
448 #if defined(TARGET_I386)
449 /* if hardware interrupt pending, we execute it */
450 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
451 (env
->eflags
& IF_MASK
) &&
452 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
454 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
455 intno
= cpu_get_pic_interrupt(env
);
456 if (loglevel
& CPU_LOG_TB_IN_ASM
) {
457 fprintf(logfile
, "Servicing hardware INT=0x%02x\n", intno
);
459 do_interrupt(intno
, 0, 0, 0, 1);
460 /* ensure that no TB jump will be modified as
461 the program flow was changed */
468 #elif defined(TARGET_PPC)
470 if ((interrupt_request
& CPU_INTERRUPT_RESET
)) {
475 if ((interrupt_request
& CPU_INTERRUPT_HARD
)) {
477 env
->exception_index
= EXCP_EXTERNAL
;
480 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
486 } else if ((interrupt_request
& CPU_INTERRUPT_TIMER
)) {
488 env
->exception_index
= EXCP_DECR
;
491 env
->interrupt_request
&= ~CPU_INTERRUPT_TIMER
;
499 #elif defined(TARGET_MIPS)
500 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
501 (env
->CP0_Status
& (1 << CP0St_IE
)) &&
502 (env
->CP0_Status
& env
->CP0_Cause
& 0x0000FF00) &&
503 !(env
->hflags
& MIPS_HFLAG_EXL
) &&
504 !(env
->hflags
& MIPS_HFLAG_ERL
) &&
505 !(env
->hflags
& MIPS_HFLAG_DM
)) {
507 env
->exception_index
= EXCP_EXT_INTERRUPT
;
510 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
517 #elif defined(TARGET_SPARC)
518 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
520 int pil
= env
->interrupt_index
& 15;
521 int type
= env
->interrupt_index
& 0xf0;
523 if (((type
== TT_EXTINT
) &&
524 (pil
== 15 || pil
> env
->psrpil
)) ||
526 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
527 do_interrupt(env
->interrupt_index
);
528 env
->interrupt_index
= 0;
535 } else if (interrupt_request
& CPU_INTERRUPT_TIMER
) {
536 //do_interrupt(0, 0, 0, 0, 0);
537 env
->interrupt_request
&= ~CPU_INTERRUPT_TIMER
;
538 } else if (interrupt_request
& CPU_INTERRUPT_HALT
) {
542 #elif defined(TARGET_ARM)
543 if (interrupt_request
& CPU_INTERRUPT_FIQ
544 && !(env
->uncached_cpsr
& CPSR_F
)) {
545 env
->exception_index
= EXCP_FIQ
;
548 if (interrupt_request
& CPU_INTERRUPT_HARD
549 && !(env
->uncached_cpsr
& CPSR_I
)) {
550 env
->exception_index
= EXCP_IRQ
;
554 if (env
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
555 env
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
556 /* ensure that no TB jump will be modified as
557 the program flow was changed */
564 if (interrupt_request
& CPU_INTERRUPT_EXIT
) {
565 env
->interrupt_request
&= ~CPU_INTERRUPT_EXIT
;
566 env
->exception_index
= EXCP_INTERRUPT
;
571 if ((loglevel
& CPU_LOG_TB_CPU
)) {
572 #if defined(TARGET_I386)
573 /* restore flags in standard format */
575 env
->regs
[R_EAX
] = EAX
;
578 env
->regs
[R_EBX
] = EBX
;
581 env
->regs
[R_ECX
] = ECX
;
584 env
->regs
[R_EDX
] = EDX
;
587 env
->regs
[R_ESI
] = ESI
;
590 env
->regs
[R_EDI
] = EDI
;
593 env
->regs
[R_EBP
] = EBP
;
596 env
->regs
[R_ESP
] = ESP
;
598 env
->eflags
= env
->eflags
| cc_table
[CC_OP
].compute_all() | (DF
& DF_MASK
);
599 cpu_dump_state(env
, logfile
, fprintf
, X86_DUMP_CCOP
);
600 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
601 #elif defined(TARGET_ARM)
602 cpu_dump_state(env
, logfile
, fprintf
, 0);
603 #elif defined(TARGET_SPARC)
604 REGWPTR
= env
->regbase
+ (env
->cwp
* 16);
605 env
->regwptr
= REGWPTR
;
606 cpu_dump_state(env
, logfile
, fprintf
, 0);
607 #elif defined(TARGET_PPC)
608 cpu_dump_state(env
, logfile
, fprintf
, 0);
609 #elif defined(TARGET_MIPS)
610 cpu_dump_state(env
, logfile
, fprintf
, 0);
612 #error unsupported target CPU
618 if ((loglevel
& CPU_LOG_EXEC
)) {
619 fprintf(logfile
, "Trace 0x%08lx [" TARGET_FMT_lx
"] %s\n",
620 (long)tb
->tc_ptr
, tb
->pc
,
621 lookup_symbol(tb
->pc
));
627 /* see if we can patch the calling TB. When the TB
628 spans two pages, we cannot safely do a direct
633 (env
->kqemu_enabled
!= 2) &&
635 tb
->page_addr
[1] == -1
636 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
637 && (tb
->cflags
& CF_CODE_COPY
) ==
638 (((TranslationBlock
*)(T0
& ~3))->cflags
& CF_CODE_COPY
)
642 tb_add_jump((TranslationBlock
*)(long)(T0
& ~3), T0
& 3, tb
);
643 #if defined(USE_CODE_COPY)
644 /* propagates the FP use info */
645 ((TranslationBlock
*)(T0
& ~3))->cflags
|=
646 (tb
->cflags
& CF_FP_USED
);
648 spin_unlock(&tb_lock
);
652 env
->current_tb
= tb
;
653 /* execute the generated code */
654 gen_func
= (void *)tc_ptr
;
655 #if defined(__sparc__)
656 __asm__
__volatile__("call %0\n\t"
660 : "i0", "i1", "i2", "i3", "i4", "i5");
661 #elif defined(__arm__)
662 asm volatile ("mov pc, %0\n\t"
663 ".global exec_loop\n\t"
667 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
668 #elif defined(TARGET_I386) && defined(USE_CODE_COPY)
670 if (!(tb
->cflags
& CF_CODE_COPY
)) {
671 if ((tb
->cflags
& CF_FP_USED
) && env
->native_fp_regs
) {
672 save_native_fp_state(env
);
676 if ((tb
->cflags
& CF_FP_USED
) && !env
->native_fp_regs
) {
677 restore_native_fp_state(env
);
679 /* we work with native eflags */
680 CC_SRC
= cc_table
[CC_OP
].compute_all();
681 CC_OP
= CC_OP_EFLAGS
;
682 asm(".globl exec_loop\n"
687 " fs movl %11, %%eax\n"
688 " andl $0x400, %%eax\n"
689 " fs orl %8, %%eax\n"
692 " fs movl %%esp, %12\n"
693 " fs movl %0, %%eax\n"
694 " fs movl %1, %%ecx\n"
695 " fs movl %2, %%edx\n"
696 " fs movl %3, %%ebx\n"
697 " fs movl %4, %%esp\n"
698 " fs movl %5, %%ebp\n"
699 " fs movl %6, %%esi\n"
700 " fs movl %7, %%edi\n"
703 " fs movl %%esp, %4\n"
704 " fs movl %12, %%esp\n"
705 " fs movl %%eax, %0\n"
706 " fs movl %%ecx, %1\n"
707 " fs movl %%edx, %2\n"
708 " fs movl %%ebx, %3\n"
709 " fs movl %%ebp, %5\n"
710 " fs movl %%esi, %6\n"
711 " fs movl %%edi, %7\n"
714 " movl %%eax, %%ecx\n"
715 " andl $0x400, %%ecx\n"
717 " andl $0x8d5, %%eax\n"
718 " fs movl %%eax, %8\n"
720 " subl %%ecx, %%eax\n"
721 " fs movl %%eax, %11\n"
722 " fs movl %9, %%ebx\n" /* get T0 value */
725 : "m" (*(uint8_t *)offsetof(CPUState
, regs
[0])),
726 "m" (*(uint8_t *)offsetof(CPUState
, regs
[1])),
727 "m" (*(uint8_t *)offsetof(CPUState
, regs
[2])),
728 "m" (*(uint8_t *)offsetof(CPUState
, regs
[3])),
729 "m" (*(uint8_t *)offsetof(CPUState
, regs
[4])),
730 "m" (*(uint8_t *)offsetof(CPUState
, regs
[5])),
731 "m" (*(uint8_t *)offsetof(CPUState
, regs
[6])),
732 "m" (*(uint8_t *)offsetof(CPUState
, regs
[7])),
733 "m" (*(uint8_t *)offsetof(CPUState
, cc_src
)),
734 "m" (*(uint8_t *)offsetof(CPUState
, tmp0
)),
736 "m" (*(uint8_t *)offsetof(CPUState
, df
)),
737 "m" (*(uint8_t *)offsetof(CPUState
, saved_esp
))
742 #elif defined(__ia64)
749 fp
.gp
= code_gen_buffer
+ 2 * (1 << 20);
750 (*(void (*)(void)) &fp
)();
754 env
->current_tb
= NULL
;
755 /* reset soft MMU for next block (it can currently
756 only be set by a memory fault) */
757 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
758 if (env
->hflags
& HF_SOFTMMU_MASK
) {
759 env
->hflags
&= ~HF_SOFTMMU_MASK
;
760 /* do not allow linking to another block */
764 #if defined(USE_KQEMU)
765 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
766 if (kqemu_is_ok(env
) &&
767 (cpu_get_time_fast() - env
->last_io_time
) >= MIN_CYCLE_BEFORE_SWITCH
) {
778 #if defined(TARGET_I386)
779 #if defined(USE_CODE_COPY)
780 if (env
->native_fp_regs
) {
781 save_native_fp_state(env
);
784 /* restore flags in standard format */
785 env
->eflags
= env
->eflags
| cc_table
[CC_OP
].compute_all() | (DF
& DF_MASK
);
787 /* restore global registers */
812 #elif defined(TARGET_ARM)
813 /* XXX: Save/restore host fpu exception state?. */
814 #elif defined(TARGET_SPARC)
815 #if defined(reg_REGWPTR)
816 REGWPTR
= saved_regwptr
;
818 #elif defined(TARGET_PPC)
819 #elif defined(TARGET_MIPS)
821 #error unsupported target CPU
824 asm volatile ("mov %0, %%i7" : : "r" (saved_i7
));
832 /* fail safe : never use cpu_single_env outside cpu_exec() */
833 cpu_single_env
= NULL
;
837 /* must only be called from the generated code as an exception can be
839 void tb_invalidate_page_range(target_ulong start
, target_ulong end
)
841 /* XXX: cannot enable it yet because it yields to MMU exception
842 where NIP != read address on PowerPC */
844 target_ulong phys_addr
;
845 phys_addr
= get_phys_addr_code(env
, start
);
846 tb_invalidate_phys_page_range(phys_addr
, phys_addr
+ end
- start
, 0);
850 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
852 void cpu_x86_load_seg(CPUX86State
*s
, int seg_reg
, int selector
)
854 CPUX86State
*saved_env
;
858 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
860 cpu_x86_load_seg_cache(env
, seg_reg
, selector
,
861 (selector
<< 4), 0xffff, 0);
863 load_seg(seg_reg
, selector
);
868 void cpu_x86_fsave(CPUX86State
*s
, uint8_t *ptr
, int data32
)
870 CPUX86State
*saved_env
;
875 helper_fsave((target_ulong
)ptr
, data32
);
880 void cpu_x86_frstor(CPUX86State
*s
, uint8_t *ptr
, int data32
)
882 CPUX86State
*saved_env
;
887 helper_frstor((target_ulong
)ptr
, data32
);
892 #endif /* TARGET_I386 */
894 #if !defined(CONFIG_SOFTMMU)
896 #if defined(TARGET_I386)
898 /* 'pc' is the host PC at which the exception was raised. 'address' is
899 the effective address of the memory exception. 'is_write' is 1 if a
900 write caused the exception and otherwise 0'. 'old_set' is the
901 signal set which should be restored */
902 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
903 int is_write
, sigset_t
*old_set
,
906 TranslationBlock
*tb
;
910 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
911 #if defined(DEBUG_SIGNAL)
912 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
913 pc
, address
, is_write
, *(unsigned long *)old_set
);
915 /* XXX: locking issue */
916 if (is_write
&& page_unprotect(address
, pc
, puc
)) {
920 /* see if it is an MMU fault */
921 ret
= cpu_x86_handle_mmu_fault(env
, address
, is_write
,
922 ((env
->hflags
& HF_CPL_MASK
) == 3), 0);
924 return 0; /* not an MMU fault */
926 return 1; /* the MMU fault was handled without causing real CPU fault */
927 /* now we have a real cpu fault */
930 /* the PC is inside the translated code. It means that we have
931 a virtual CPU fault */
932 cpu_restore_state(tb
, env
, pc
, puc
);
936 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
937 env
->eip
, env
->cr
[2], env
->error_code
);
939 /* we restore the process signal mask as the sigreturn should
940 do it (XXX: use sigsetjmp) */
941 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
942 raise_exception_err(env
->exception_index
, env
->error_code
);
944 /* activate soft MMU for this block */
945 env
->hflags
|= HF_SOFTMMU_MASK
;
946 cpu_resume_from_signal(env
, puc
);
948 /* never comes here */
952 #elif defined(TARGET_ARM)
953 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
954 int is_write
, sigset_t
*old_set
,
957 TranslationBlock
*tb
;
961 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
962 #if defined(DEBUG_SIGNAL)
963 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
964 pc
, address
, is_write
, *(unsigned long *)old_set
);
966 /* XXX: locking issue */
967 if (is_write
&& page_unprotect(address
, pc
, puc
)) {
970 /* see if it is an MMU fault */
971 ret
= cpu_arm_handle_mmu_fault(env
, address
, is_write
, 1, 0);
973 return 0; /* not an MMU fault */
975 return 1; /* the MMU fault was handled without causing real CPU fault */
976 /* now we have a real cpu fault */
979 /* the PC is inside the translated code. It means that we have
980 a virtual CPU fault */
981 cpu_restore_state(tb
, env
, pc
, puc
);
983 /* we restore the process signal mask as the sigreturn should
984 do it (XXX: use sigsetjmp) */
985 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
988 #elif defined(TARGET_SPARC)
989 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
990 int is_write
, sigset_t
*old_set
,
993 TranslationBlock
*tb
;
997 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
998 #if defined(DEBUG_SIGNAL)
999 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1000 pc
, address
, is_write
, *(unsigned long *)old_set
);
1002 /* XXX: locking issue */
1003 if (is_write
&& page_unprotect(address
, pc
, puc
)) {
1006 /* see if it is an MMU fault */
1007 ret
= cpu_sparc_handle_mmu_fault(env
, address
, is_write
, 1, 0);
1009 return 0; /* not an MMU fault */
1011 return 1; /* the MMU fault was handled without causing real CPU fault */
1012 /* now we have a real cpu fault */
1013 tb
= tb_find_pc(pc
);
1015 /* the PC is inside the translated code. It means that we have
1016 a virtual CPU fault */
1017 cpu_restore_state(tb
, env
, pc
, puc
);
1019 /* we restore the process signal mask as the sigreturn should
1020 do it (XXX: use sigsetjmp) */
1021 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1024 #elif defined (TARGET_PPC)
1025 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1026 int is_write
, sigset_t
*old_set
,
1029 TranslationBlock
*tb
;
1033 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1034 #if defined(DEBUG_SIGNAL)
1035 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1036 pc
, address
, is_write
, *(unsigned long *)old_set
);
1038 /* XXX: locking issue */
1039 if (is_write
&& page_unprotect(address
, pc
, puc
)) {
1043 /* see if it is an MMU fault */
1044 ret
= cpu_ppc_handle_mmu_fault(env
, address
, is_write
, msr_pr
, 0);
1046 return 0; /* not an MMU fault */
1048 return 1; /* the MMU fault was handled without causing real CPU fault */
1050 /* now we have a real cpu fault */
1051 tb
= tb_find_pc(pc
);
1053 /* the PC is inside the translated code. It means that we have
1054 a virtual CPU fault */
1055 cpu_restore_state(tb
, env
, pc
, puc
);
1059 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1060 env
->nip
, env
->error_code
, tb
);
1062 /* we restore the process signal mask as the sigreturn should
1063 do it (XXX: use sigsetjmp) */
1064 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1065 do_raise_exception_err(env
->exception_index
, env
->error_code
);
1067 /* activate soft MMU for this block */
1068 cpu_resume_from_signal(env
, puc
);
1070 /* never comes here */
1074 #elif defined (TARGET_MIPS)
1075 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1076 int is_write
, sigset_t
*old_set
,
1079 TranslationBlock
*tb
;
1083 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1084 #if defined(DEBUG_SIGNAL)
1085 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1086 pc
, address
, is_write
, *(unsigned long *)old_set
);
1088 /* XXX: locking issue */
1089 if (is_write
&& page_unprotect(address
, pc
, puc
)) {
1093 /* see if it is an MMU fault */
1094 ret
= cpu_mips_handle_mmu_fault(env
, address
, is_write
, 1, 0);
1096 return 0; /* not an MMU fault */
1098 return 1; /* the MMU fault was handled without causing real CPU fault */
1100 /* now we have a real cpu fault */
1101 tb
= tb_find_pc(pc
);
1103 /* the PC is inside the translated code. It means that we have
1104 a virtual CPU fault */
1105 cpu_restore_state(tb
, env
, pc
, puc
);
1109 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1110 env
->nip
, env
->error_code
, tb
);
1112 /* we restore the process signal mask as the sigreturn should
1113 do it (XXX: use sigsetjmp) */
1114 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1115 do_raise_exception_err(env
->exception_index
, env
->error_code
);
1117 /* activate soft MMU for this block */
1118 cpu_resume_from_signal(env
, puc
);
1120 /* never comes here */
1125 #error unsupported target CPU
1128 #if defined(__i386__)
1130 #if defined(USE_CODE_COPY)
1131 static void cpu_send_trap(unsigned long pc
, int trap
,
1132 struct ucontext
*uc
)
1134 TranslationBlock
*tb
;
1137 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1138 /* now we have a real cpu fault */
1139 tb
= tb_find_pc(pc
);
1141 /* the PC is inside the translated code. It means that we have
1142 a virtual CPU fault */
1143 cpu_restore_state(tb
, env
, pc
, uc
);
1145 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
1146 raise_exception_err(trap
, env
->error_code
);
1150 int cpu_signal_handler(int host_signum
, struct siginfo
*info
,
1153 struct ucontext
*uc
= puc
;
1161 #define REG_TRAPNO TRAPNO
1163 pc
= uc
->uc_mcontext
.gregs
[REG_EIP
];
1164 trapno
= uc
->uc_mcontext
.gregs
[REG_TRAPNO
];
1165 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
1166 if (trapno
== 0x00 || trapno
== 0x05) {
1167 /* send division by zero or bound exception */
1168 cpu_send_trap(pc
, trapno
, uc
);
1172 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1174 (uc
->uc_mcontext
.gregs
[REG_ERR
] >> 1) & 1 : 0,
1175 &uc
->uc_sigmask
, puc
);
1178 #elif defined(__x86_64__)
1180 int cpu_signal_handler(int host_signum
, struct siginfo
*info
,
1183 struct ucontext
*uc
= puc
;
1186 pc
= uc
->uc_mcontext
.gregs
[REG_RIP
];
1187 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1188 uc
->uc_mcontext
.gregs
[REG_TRAPNO
] == 0xe ?
1189 (uc
->uc_mcontext
.gregs
[REG_ERR
] >> 1) & 1 : 0,
1190 &uc
->uc_sigmask
, puc
);
1193 #elif defined(__powerpc__)
1195 /***********************************************************************
1196 * signal context platform-specific definitions
1200 /* All Registers access - only for local access */
1201 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1202 /* Gpr Registers access */
1203 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1204 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1205 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1206 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1207 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1208 # define LR_sig(context) REG_sig(link, context) /* Link register */
1209 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1210 /* Float Registers access */
1211 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1212 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1213 /* Exception Registers access */
1214 # define DAR_sig(context) REG_sig(dar, context)
1215 # define DSISR_sig(context) REG_sig(dsisr, context)
1216 # define TRAP_sig(context) REG_sig(trap, context)
1220 # include <sys/ucontext.h>
1221 typedef struct ucontext SIGCONTEXT
;
1222 /* All Registers access - only for local access */
1223 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1224 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1225 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1226 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1227 /* Gpr Registers access */
1228 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1229 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1230 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1231 # define CTR_sig(context) REG_sig(ctr, context)
1232 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1233 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1234 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1235 /* Float Registers access */
1236 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1237 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1238 /* Exception Registers access */
1239 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1240 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1241 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1242 #endif /* __APPLE__ */
1244 int cpu_signal_handler(int host_signum
, struct siginfo
*info
,
1247 struct ucontext
*uc
= puc
;
1255 if (DSISR_sig(uc
) & 0x00800000)
1258 if (TRAP_sig(uc
) != 0x400 && (DSISR_sig(uc
) & 0x02000000))
1261 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1262 is_write
, &uc
->uc_sigmask
, puc
);
1265 #elif defined(__alpha__)
1267 int cpu_signal_handler(int host_signum
, struct siginfo
*info
,
1270 struct ucontext
*uc
= puc
;
1271 uint32_t *pc
= uc
->uc_mcontext
.sc_pc
;
1272 uint32_t insn
= *pc
;
1275 /* XXX: need kernel patch to get write flag faster */
1276 switch (insn
>> 26) {
1291 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1292 is_write
, &uc
->uc_sigmask
, puc
);
1294 #elif defined(__sparc__)
1296 int cpu_signal_handler(int host_signum
, struct siginfo
*info
,
1299 uint32_t *regs
= (uint32_t *)(info
+ 1);
1300 void *sigmask
= (regs
+ 20);
1305 /* XXX: is there a standard glibc define ? */
1307 /* XXX: need kernel patch to get write flag faster */
1309 insn
= *(uint32_t *)pc
;
1310 if ((insn
>> 30) == 3) {
1311 switch((insn
>> 19) & 0x3f) {
1323 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1324 is_write
, sigmask
, NULL
);
1327 #elif defined(__arm__)
1329 int cpu_signal_handler(int host_signum
, struct siginfo
*info
,
1332 struct ucontext
*uc
= puc
;
1336 pc
= uc
->uc_mcontext
.gregs
[R15
];
1337 /* XXX: compute is_write */
1339 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1344 #elif defined(__mc68000)
1346 int cpu_signal_handler(int host_signum
, struct siginfo
*info
,
1349 struct ucontext
*uc
= puc
;
1353 pc
= uc
->uc_mcontext
.gregs
[16];
1354 /* XXX: compute is_write */
1356 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1358 &uc
->uc_sigmask
, puc
);
1361 #elif defined(__ia64)
1364 /* This ought to be in <bits/siginfo.h>... */
1365 # define __ISR_VALID 1
1366 # define si_flags _sifields._sigfault._si_pad0
1369 int cpu_signal_handler(int host_signum
, struct siginfo
*info
, void *puc
)
1371 struct ucontext
*uc
= puc
;
1375 ip
= uc
->uc_mcontext
.sc_ip
;
1376 switch (host_signum
) {
1382 if (info
->si_code
&& (info
->si_flags
& __ISR_VALID
))
1383 /* ISR.W (write-access) is bit 33: */
1384 is_write
= (info
->si_isr
>> 33) & 1;
1390 return handle_cpu_signal(ip
, (unsigned long)info
->si_addr
,
1392 &uc
->uc_sigmask
, puc
);
1395 #elif defined(__s390__)
1397 int cpu_signal_handler(int host_signum
, struct siginfo
*info
,
1400 struct ucontext
*uc
= puc
;
1404 pc
= uc
->uc_mcontext
.psw
.addr
;
1405 /* XXX: compute is_write */
1407 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1409 &uc
->uc_sigmask
, puc
);
1414 #error host CPU specific signal handler needed
1418 #endif /* !defined(CONFIG_SOFTMMU) */