Fix bit fitting checks
[qemu/mini2440.git] / gdbstub.c
blob9a361e3251639e831e478a79522bfa85d2c09f16
1 /*
2 * gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "config.h"
21 #ifdef CONFIG_USER_ONLY
22 #include <stdlib.h>
23 #include <stdio.h>
24 #include <stdarg.h>
25 #include <string.h>
26 #include <errno.h>
27 #include <unistd.h>
28 #include <fcntl.h>
30 #include "qemu.h"
31 #else
32 #include "qemu-common.h"
33 #include "qemu-char.h"
34 #include "sysemu.h"
35 #include "gdbstub.h"
36 #endif
38 #include "qemu_socket.h"
39 #ifdef _WIN32
40 /* XXX: these constants may be independent of the host ones even for Unix */
41 #ifndef SIGTRAP
42 #define SIGTRAP 5
43 #endif
44 #ifndef SIGINT
45 #define SIGINT 2
46 #endif
47 #else
48 #include <signal.h>
49 #endif
51 //#define DEBUG_GDB
53 enum RSState {
54 RS_IDLE,
55 RS_GETLINE,
56 RS_CHKSUM1,
57 RS_CHKSUM2,
58 RS_SYSCALL,
60 typedef struct GDBState {
61 CPUState *env; /* current CPU */
62 enum RSState state; /* parsing state */
63 char line_buf[4096];
64 int line_buf_index;
65 int line_csum;
66 uint8_t last_packet[4100];
67 int last_packet_len;
68 #ifdef CONFIG_USER_ONLY
69 int fd;
70 int running_state;
71 #else
72 CharDriverState *chr;
73 #endif
74 } GDBState;
76 /* By default use no IRQs and no timers while single stepping so as to
77 * make single stepping like an ICE HW step.
79 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
81 #ifdef CONFIG_USER_ONLY
82 /* XXX: This is not thread safe. Do we care? */
83 static int gdbserver_fd = -1;
85 /* XXX: remove this hack. */
86 static GDBState gdbserver_state;
88 static int get_char(GDBState *s)
90 uint8_t ch;
91 int ret;
93 for(;;) {
94 ret = recv(s->fd, &ch, 1, 0);
95 if (ret < 0) {
96 if (errno != EINTR && errno != EAGAIN)
97 return -1;
98 } else if (ret == 0) {
99 return -1;
100 } else {
101 break;
104 return ch;
106 #endif
108 /* GDB stub state for use by semihosting syscalls. */
109 static GDBState *gdb_syscall_state;
110 static gdb_syscall_complete_cb gdb_current_syscall_cb;
112 enum {
113 GDB_SYS_UNKNOWN,
114 GDB_SYS_ENABLED,
115 GDB_SYS_DISABLED,
116 } gdb_syscall_mode;
118 /* If gdb is connected when the first semihosting syscall occurs then use
119 remote gdb syscalls. Otherwise use native file IO. */
120 int use_gdb_syscalls(void)
122 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
123 gdb_syscall_mode = (gdb_syscall_state ? GDB_SYS_ENABLED
124 : GDB_SYS_DISABLED);
126 return gdb_syscall_mode == GDB_SYS_ENABLED;
129 /* Resume execution. */
130 static inline void gdb_continue(GDBState *s)
132 #ifdef CONFIG_USER_ONLY
133 s->running_state = 1;
134 #else
135 vm_start();
136 #endif
139 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
141 #ifdef CONFIG_USER_ONLY
142 int ret;
144 while (len > 0) {
145 ret = send(s->fd, buf, len, 0);
146 if (ret < 0) {
147 if (errno != EINTR && errno != EAGAIN)
148 return;
149 } else {
150 buf += ret;
151 len -= ret;
154 #else
155 qemu_chr_write(s->chr, buf, len);
156 #endif
159 static inline int fromhex(int v)
161 if (v >= '0' && v <= '9')
162 return v - '0';
163 else if (v >= 'A' && v <= 'F')
164 return v - 'A' + 10;
165 else if (v >= 'a' && v <= 'f')
166 return v - 'a' + 10;
167 else
168 return 0;
171 static inline int tohex(int v)
173 if (v < 10)
174 return v + '0';
175 else
176 return v - 10 + 'a';
179 static void memtohex(char *buf, const uint8_t *mem, int len)
181 int i, c;
182 char *q;
183 q = buf;
184 for(i = 0; i < len; i++) {
185 c = mem[i];
186 *q++ = tohex(c >> 4);
187 *q++ = tohex(c & 0xf);
189 *q = '\0';
192 static void hextomem(uint8_t *mem, const char *buf, int len)
194 int i;
196 for(i = 0; i < len; i++) {
197 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
198 buf += 2;
202 /* return -1 if error, 0 if OK */
203 static int put_packet(GDBState *s, char *buf)
205 int len, csum, i;
206 uint8_t *p;
208 #ifdef DEBUG_GDB
209 printf("reply='%s'\n", buf);
210 #endif
212 for(;;) {
213 p = s->last_packet;
214 *(p++) = '$';
215 len = strlen(buf);
216 memcpy(p, buf, len);
217 p += len;
218 csum = 0;
219 for(i = 0; i < len; i++) {
220 csum += buf[i];
222 *(p++) = '#';
223 *(p++) = tohex((csum >> 4) & 0xf);
224 *(p++) = tohex((csum) & 0xf);
226 s->last_packet_len = p - s->last_packet;
227 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
229 #ifdef CONFIG_USER_ONLY
230 i = get_char(s);
231 if (i < 0)
232 return -1;
233 if (i == '+')
234 break;
235 #else
236 break;
237 #endif
239 return 0;
242 #if defined(TARGET_I386)
244 #ifdef TARGET_X86_64
245 static const uint8_t gdb_x86_64_regs[16] = {
246 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
247 8, 9, 10, 11, 12, 13, 14, 15,
249 #endif
251 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
253 int i, fpus, nb_regs;
254 uint8_t *p;
256 p = mem_buf;
257 #ifdef TARGET_X86_64
258 if (env->hflags & HF_CS64_MASK) {
259 nb_regs = 16;
260 for(i = 0; i < 16; i++) {
261 *(uint64_t *)p = tswap64(env->regs[gdb_x86_64_regs[i]]);
262 p += 8;
264 *(uint64_t *)p = tswap64(env->eip);
265 p += 8;
266 } else
267 #endif
269 nb_regs = 8;
270 for(i = 0; i < 8; i++) {
271 *(uint32_t *)p = tswap32(env->regs[i]);
272 p += 4;
274 *(uint32_t *)p = tswap32(env->eip);
275 p += 4;
278 *(uint32_t *)p = tswap32(env->eflags);
279 p += 4;
280 *(uint32_t *)p = tswap32(env->segs[R_CS].selector);
281 p += 4;
282 *(uint32_t *)p = tswap32(env->segs[R_SS].selector);
283 p += 4;
284 *(uint32_t *)p = tswap32(env->segs[R_DS].selector);
285 p += 4;
286 *(uint32_t *)p = tswap32(env->segs[R_ES].selector);
287 p += 4;
288 *(uint32_t *)p = tswap32(env->segs[R_FS].selector);
289 p += 4;
290 *(uint32_t *)p = tswap32(env->segs[R_GS].selector);
291 p += 4;
292 for(i = 0; i < 8; i++) {
293 /* XXX: convert floats */
294 #ifdef USE_X86LDOUBLE
295 memcpy(p, &env->fpregs[i], 10);
296 #else
297 memset(p, 0, 10);
298 #endif
299 p += 10;
301 *(uint32_t *)p = tswap32(env->fpuc); /* fctrl */
302 p += 4;
303 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
304 *(uint32_t *)p = tswap32(fpus); /* fstat */
305 p += 4;
306 *(uint32_t *)p = 0; /* ftag */
307 p += 4;
308 *(uint32_t *)p = 0; /* fiseg */
309 p += 4;
310 *(uint32_t *)p = 0; /* fioff */
311 p += 4;
312 *(uint32_t *)p = 0; /* foseg */
313 p += 4;
314 *(uint32_t *)p = 0; /* fooff */
315 p += 4;
316 *(uint32_t *)p = 0; /* fop */
317 p += 4;
318 for(i = 0; i < nb_regs; i++) {
319 *(uint64_t *)p = tswap64(env->xmm_regs[i].XMM_Q(0));
320 p += 8;
321 *(uint64_t *)p = tswap64(env->xmm_regs[i].XMM_Q(1));
322 p += 8;
324 *(uint32_t *)p = tswap32(env->mxcsr);
325 p += 4;
326 return p - mem_buf;
329 static inline void cpu_gdb_load_seg(CPUState *env, const uint8_t **pp,
330 int sreg)
332 const uint8_t *p;
333 uint32_t sel;
334 p = *pp;
335 sel = tswap32(*(uint32_t *)p);
336 p += 4;
337 if (sel != env->segs[sreg].selector) {
338 #if defined(CONFIG_USER_ONLY)
339 cpu_x86_load_seg(env, sreg, sel);
340 #else
341 /* XXX: do it with a debug function which does not raise an
342 exception */
343 #endif
345 *pp = p;
348 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
350 const uint8_t *p = mem_buf;
351 int i, nb_regs;
352 uint16_t fpus;
354 #ifdef TARGET_X86_64
355 if (env->hflags & HF_CS64_MASK) {
356 nb_regs = 16;
357 for(i = 0; i < 16; i++) {
358 env->regs[gdb_x86_64_regs[i]] = tswap64(*(uint64_t *)p);
359 p += 8;
361 env->eip = tswap64(*(uint64_t *)p);
362 p += 8;
363 } else
364 #endif
366 nb_regs = 8;
367 for(i = 0; i < 8; i++) {
368 env->regs[i] = tswap32(*(uint32_t *)p);
369 p += 4;
371 env->eip = tswap32(*(uint32_t *)p);
372 p += 4;
374 env->eflags = tswap32(*(uint32_t *)p);
375 p += 4;
376 cpu_gdb_load_seg(env, &p, R_CS);
377 cpu_gdb_load_seg(env, &p, R_SS);
378 cpu_gdb_load_seg(env, &p, R_DS);
379 cpu_gdb_load_seg(env, &p, R_ES);
380 cpu_gdb_load_seg(env, &p, R_FS);
381 cpu_gdb_load_seg(env, &p, R_GS);
383 /* FPU state */
384 for(i = 0; i < 8; i++) {
385 /* XXX: convert floats */
386 #ifdef USE_X86LDOUBLE
387 memcpy(&env->fpregs[i], p, 10);
388 #endif
389 p += 10;
391 env->fpuc = tswap32(*(uint32_t *)p); /* fctrl */
392 p += 4;
393 fpus = tswap32(*(uint32_t *)p);
394 p += 4;
395 env->fpstt = (fpus >> 11) & 7;
396 env->fpus = fpus & ~0x3800;
397 p += 4 * 6;
399 if (size >= ((p - mem_buf) + 16 * nb_regs + 4)) {
400 /* SSE state */
401 for(i = 0; i < nb_regs; i++) {
402 env->xmm_regs[i].XMM_Q(0) = tswap64(*(uint64_t *)p);
403 p += 8;
404 env->xmm_regs[i].XMM_Q(1) = tswap64(*(uint64_t *)p);
405 p += 8;
407 env->mxcsr = tswap32(*(uint32_t *)p);
408 p += 4;
412 #elif defined (TARGET_PPC)
413 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
415 uint32_t *registers = (uint32_t *)mem_buf, tmp;
416 int i;
418 /* fill in gprs */
419 for(i = 0; i < 32; i++) {
420 registers[i] = tswapl(env->gpr[i]);
422 /* fill in fprs */
423 for (i = 0; i < 32; i++) {
424 registers[(i * 2) + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
425 registers[(i * 2) + 33] = tswapl(*((uint32_t *)&env->fpr[i] + 1));
427 /* nip, msr, ccr, lnk, ctr, xer, mq */
428 registers[96] = tswapl(env->nip);
429 registers[97] = tswapl(env->msr);
430 tmp = 0;
431 for (i = 0; i < 8; i++)
432 tmp |= env->crf[i] << (32 - ((i + 1) * 4));
433 registers[98] = tswapl(tmp);
434 registers[99] = tswapl(env->lr);
435 registers[100] = tswapl(env->ctr);
436 registers[101] = tswapl(ppc_load_xer(env));
437 registers[102] = 0;
439 return 103 * 4;
442 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
444 uint32_t *registers = (uint32_t *)mem_buf;
445 int i;
447 /* fill in gprs */
448 for (i = 0; i < 32; i++) {
449 env->gpr[i] = tswapl(registers[i]);
451 /* fill in fprs */
452 for (i = 0; i < 32; i++) {
453 *((uint32_t *)&env->fpr[i]) = tswapl(registers[(i * 2) + 32]);
454 *((uint32_t *)&env->fpr[i] + 1) = tswapl(registers[(i * 2) + 33]);
456 /* nip, msr, ccr, lnk, ctr, xer, mq */
457 env->nip = tswapl(registers[96]);
458 ppc_store_msr(env, tswapl(registers[97]));
459 registers[98] = tswapl(registers[98]);
460 for (i = 0; i < 8; i++)
461 env->crf[i] = (registers[98] >> (32 - ((i + 1) * 4))) & 0xF;
462 env->lr = tswapl(registers[99]);
463 env->ctr = tswapl(registers[100]);
464 ppc_store_xer(env, tswapl(registers[101]));
466 #elif defined (TARGET_SPARC)
467 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
469 target_ulong *registers = (target_ulong *)mem_buf;
470 int i;
472 /* fill in g0..g7 */
473 for(i = 0; i < 8; i++) {
474 registers[i] = tswapl(env->gregs[i]);
476 /* fill in register window */
477 for(i = 0; i < 24; i++) {
478 registers[i + 8] = tswapl(env->regwptr[i]);
480 #ifndef TARGET_SPARC64
481 /* fill in fprs */
482 for (i = 0; i < 32; i++) {
483 registers[i + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
485 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
486 registers[64] = tswapl(env->y);
488 target_ulong tmp;
490 tmp = GET_PSR(env);
491 registers[65] = tswapl(tmp);
493 registers[66] = tswapl(env->wim);
494 registers[67] = tswapl(env->tbr);
495 registers[68] = tswapl(env->pc);
496 registers[69] = tswapl(env->npc);
497 registers[70] = tswapl(env->fsr);
498 registers[71] = 0; /* csr */
499 registers[72] = 0;
500 return 73 * sizeof(target_ulong);
501 #else
502 /* fill in fprs */
503 for (i = 0; i < 64; i += 2) {
504 uint64_t tmp;
506 tmp = ((uint64_t)*(uint32_t *)&env->fpr[i]) << 32;
507 tmp |= *(uint32_t *)&env->fpr[i + 1];
508 registers[i / 2 + 32] = tswap64(tmp);
510 registers[64] = tswapl(env->pc);
511 registers[65] = tswapl(env->npc);
512 registers[66] = tswapl(((uint64_t)GET_CCR(env) << 32) |
513 ((env->asi & 0xff) << 24) |
514 ((env->pstate & 0xfff) << 8) |
515 GET_CWP64(env));
516 registers[67] = tswapl(env->fsr);
517 registers[68] = tswapl(env->fprs);
518 registers[69] = tswapl(env->y);
519 return 70 * sizeof(target_ulong);
520 #endif
523 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
525 target_ulong *registers = (target_ulong *)mem_buf;
526 int i;
528 /* fill in g0..g7 */
529 for(i = 0; i < 7; i++) {
530 env->gregs[i] = tswapl(registers[i]);
532 /* fill in register window */
533 for(i = 0; i < 24; i++) {
534 env->regwptr[i] = tswapl(registers[i + 8]);
536 #ifndef TARGET_SPARC64
537 /* fill in fprs */
538 for (i = 0; i < 32; i++) {
539 *((uint32_t *)&env->fpr[i]) = tswapl(registers[i + 32]);
541 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
542 env->y = tswapl(registers[64]);
543 PUT_PSR(env, tswapl(registers[65]));
544 env->wim = tswapl(registers[66]);
545 env->tbr = tswapl(registers[67]);
546 env->pc = tswapl(registers[68]);
547 env->npc = tswapl(registers[69]);
548 env->fsr = tswapl(registers[70]);
549 #else
550 for (i = 0; i < 64; i += 2) {
551 uint64_t tmp;
553 tmp = tswap64(registers[i / 2 + 32]);
554 *((uint32_t *)&env->fpr[i]) = tmp >> 32;
555 *((uint32_t *)&env->fpr[i + 1]) = tmp & 0xffffffff;
557 env->pc = tswapl(registers[64]);
558 env->npc = tswapl(registers[65]);
560 uint64_t tmp = tswapl(registers[66]);
562 PUT_CCR(env, tmp >> 32);
563 env->asi = (tmp >> 24) & 0xff;
564 env->pstate = (tmp >> 8) & 0xfff;
565 PUT_CWP64(env, tmp & 0xff);
567 env->fsr = tswapl(registers[67]);
568 env->fprs = tswapl(registers[68]);
569 env->y = tswapl(registers[69]);
570 #endif
572 #elif defined (TARGET_ARM)
573 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
575 int i;
576 uint8_t *ptr;
578 ptr = mem_buf;
579 /* 16 core integer registers (4 bytes each). */
580 for (i = 0; i < 16; i++)
582 *(uint32_t *)ptr = tswapl(env->regs[i]);
583 ptr += 4;
585 /* 8 FPA registers (12 bytes each), FPS (4 bytes).
586 Not yet implemented. */
587 memset (ptr, 0, 8 * 12 + 4);
588 ptr += 8 * 12 + 4;
589 /* CPSR (4 bytes). */
590 *(uint32_t *)ptr = tswapl (cpsr_read(env));
591 ptr += 4;
593 return ptr - mem_buf;
596 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
598 int i;
599 uint8_t *ptr;
601 ptr = mem_buf;
602 /* Core integer registers. */
603 for (i = 0; i < 16; i++)
605 env->regs[i] = tswapl(*(uint32_t *)ptr);
606 ptr += 4;
608 /* Ignore FPA regs and scr. */
609 ptr += 8 * 12 + 4;
610 cpsr_write (env, tswapl(*(uint32_t *)ptr), 0xffffffff);
612 #elif defined (TARGET_M68K)
613 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
615 int i;
616 uint8_t *ptr;
617 CPU_DoubleU u;
619 ptr = mem_buf;
620 /* D0-D7 */
621 for (i = 0; i < 8; i++) {
622 *(uint32_t *)ptr = tswapl(env->dregs[i]);
623 ptr += 4;
625 /* A0-A7 */
626 for (i = 0; i < 8; i++) {
627 *(uint32_t *)ptr = tswapl(env->aregs[i]);
628 ptr += 4;
630 *(uint32_t *)ptr = tswapl(env->sr);
631 ptr += 4;
632 *(uint32_t *)ptr = tswapl(env->pc);
633 ptr += 4;
634 /* F0-F7. The 68881/68040 have 12-bit extended precision registers.
635 ColdFire has 8-bit double precision registers. */
636 for (i = 0; i < 8; i++) {
637 u.d = env->fregs[i];
638 *(uint32_t *)ptr = tswap32(u.l.upper);
639 *(uint32_t *)ptr = tswap32(u.l.lower);
641 /* FP control regs (not implemented). */
642 memset (ptr, 0, 3 * 4);
643 ptr += 3 * 4;
645 return ptr - mem_buf;
648 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
650 int i;
651 uint8_t *ptr;
652 CPU_DoubleU u;
654 ptr = mem_buf;
655 /* D0-D7 */
656 for (i = 0; i < 8; i++) {
657 env->dregs[i] = tswapl(*(uint32_t *)ptr);
658 ptr += 4;
660 /* A0-A7 */
661 for (i = 0; i < 8; i++) {
662 env->aregs[i] = tswapl(*(uint32_t *)ptr);
663 ptr += 4;
665 env->sr = tswapl(*(uint32_t *)ptr);
666 ptr += 4;
667 env->pc = tswapl(*(uint32_t *)ptr);
668 ptr += 4;
669 /* F0-F7. The 68881/68040 have 12-bit extended precision registers.
670 ColdFire has 8-bit double precision registers. */
671 for (i = 0; i < 8; i++) {
672 u.l.upper = tswap32(*(uint32_t *)ptr);
673 u.l.lower = tswap32(*(uint32_t *)ptr);
674 env->fregs[i] = u.d;
676 /* FP control regs (not implemented). */
677 ptr += 3 * 4;
679 #elif defined (TARGET_MIPS)
680 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
682 int i;
683 uint8_t *ptr;
685 ptr = mem_buf;
686 for (i = 0; i < 32; i++)
688 *(target_ulong *)ptr = tswapl(env->gpr[env->current_tc][i]);
689 ptr += sizeof(target_ulong);
692 *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_Status);
693 ptr += sizeof(target_ulong);
695 *(target_ulong *)ptr = tswapl(env->LO[env->current_tc][0]);
696 ptr += sizeof(target_ulong);
698 *(target_ulong *)ptr = tswapl(env->HI[env->current_tc][0]);
699 ptr += sizeof(target_ulong);
701 *(target_ulong *)ptr = tswapl(env->CP0_BadVAddr);
702 ptr += sizeof(target_ulong);
704 *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_Cause);
705 ptr += sizeof(target_ulong);
707 *(target_ulong *)ptr = tswapl(env->PC[env->current_tc]);
708 ptr += sizeof(target_ulong);
710 if (env->CP0_Config1 & (1 << CP0C1_FP))
712 for (i = 0; i < 32; i++)
714 if (env->CP0_Status & (1 << CP0St_FR))
715 *(target_ulong *)ptr = tswapl(env->fpu->fpr[i].d);
716 else
717 *(target_ulong *)ptr = tswap32(env->fpu->fpr[i].w[FP_ENDIAN_IDX]);
718 ptr += sizeof(target_ulong);
721 *(target_ulong *)ptr = (int32_t)tswap32(env->fpu->fcr31);
722 ptr += sizeof(target_ulong);
724 *(target_ulong *)ptr = (int32_t)tswap32(env->fpu->fcr0);
725 ptr += sizeof(target_ulong);
728 /* "fp", pseudo frame pointer. Not yet implemented in gdb. */
729 *(target_ulong *)ptr = 0;
730 ptr += sizeof(target_ulong);
732 /* Registers for embedded use, we just pad them. */
733 for (i = 0; i < 16; i++)
735 *(target_ulong *)ptr = 0;
736 ptr += sizeof(target_ulong);
739 /* Processor ID. */
740 *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_PRid);
741 ptr += sizeof(target_ulong);
743 return ptr - mem_buf;
746 /* convert MIPS rounding mode in FCR31 to IEEE library */
747 static unsigned int ieee_rm[] =
749 float_round_nearest_even,
750 float_round_to_zero,
751 float_round_up,
752 float_round_down
754 #define RESTORE_ROUNDING_MODE \
755 set_float_rounding_mode(ieee_rm[env->fpu->fcr31 & 3], &env->fpu->fp_status)
757 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
759 int i;
760 uint8_t *ptr;
762 ptr = mem_buf;
763 for (i = 0; i < 32; i++)
765 env->gpr[env->current_tc][i] = tswapl(*(target_ulong *)ptr);
766 ptr += sizeof(target_ulong);
769 env->CP0_Status = tswapl(*(target_ulong *)ptr);
770 ptr += sizeof(target_ulong);
772 env->LO[env->current_tc][0] = tswapl(*(target_ulong *)ptr);
773 ptr += sizeof(target_ulong);
775 env->HI[env->current_tc][0] = tswapl(*(target_ulong *)ptr);
776 ptr += sizeof(target_ulong);
778 env->CP0_BadVAddr = tswapl(*(target_ulong *)ptr);
779 ptr += sizeof(target_ulong);
781 env->CP0_Cause = tswapl(*(target_ulong *)ptr);
782 ptr += sizeof(target_ulong);
784 env->PC[env->current_tc] = tswapl(*(target_ulong *)ptr);
785 ptr += sizeof(target_ulong);
787 if (env->CP0_Config1 & (1 << CP0C1_FP))
789 for (i = 0; i < 32; i++)
791 if (env->CP0_Status & (1 << CP0St_FR))
792 env->fpu->fpr[i].d = tswapl(*(target_ulong *)ptr);
793 else
794 env->fpu->fpr[i].w[FP_ENDIAN_IDX] = tswapl(*(target_ulong *)ptr);
795 ptr += sizeof(target_ulong);
798 env->fpu->fcr31 = tswapl(*(target_ulong *)ptr) & 0xFF83FFFF;
799 ptr += sizeof(target_ulong);
801 /* The remaining registers are assumed to be read-only. */
803 /* set rounding mode */
804 RESTORE_ROUNDING_MODE;
806 #ifndef CONFIG_SOFTFLOAT
807 /* no floating point exception for native float */
808 SET_FP_ENABLE(env->fcr31, 0);
809 #endif
812 #elif defined (TARGET_SH4)
814 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
816 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
818 uint32_t *ptr = (uint32_t *)mem_buf;
819 int i;
821 #define SAVE(x) *ptr++=tswapl(x)
822 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
823 for (i = 0; i < 8; i++) SAVE(env->gregs[i + 16]);
824 } else {
825 for (i = 0; i < 8; i++) SAVE(env->gregs[i]);
827 for (i = 8; i < 16; i++) SAVE(env->gregs[i]);
828 SAVE (env->pc);
829 SAVE (env->pr);
830 SAVE (env->gbr);
831 SAVE (env->vbr);
832 SAVE (env->mach);
833 SAVE (env->macl);
834 SAVE (env->sr);
835 SAVE (env->fpul);
836 SAVE (env->fpscr);
837 for (i = 0; i < 16; i++)
838 SAVE(env->fregs[i + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
839 SAVE (env->ssr);
840 SAVE (env->spc);
841 for (i = 0; i < 8; i++) SAVE(env->gregs[i]);
842 for (i = 0; i < 8; i++) SAVE(env->gregs[i + 16]);
843 return ((uint8_t *)ptr - mem_buf);
846 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
848 uint32_t *ptr = (uint32_t *)mem_buf;
849 int i;
851 #define LOAD(x) (x)=*ptr++;
852 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
853 for (i = 0; i < 8; i++) LOAD(env->gregs[i + 16]);
854 } else {
855 for (i = 0; i < 8; i++) LOAD(env->gregs[i]);
857 for (i = 8; i < 16; i++) LOAD(env->gregs[i]);
858 LOAD (env->pc);
859 LOAD (env->pr);
860 LOAD (env->gbr);
861 LOAD (env->vbr);
862 LOAD (env->mach);
863 LOAD (env->macl);
864 LOAD (env->sr);
865 LOAD (env->fpul);
866 LOAD (env->fpscr);
867 for (i = 0; i < 16; i++)
868 LOAD(env->fregs[i + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
869 LOAD (env->ssr);
870 LOAD (env->spc);
871 for (i = 0; i < 8; i++) LOAD(env->gregs[i]);
872 for (i = 0; i < 8; i++) LOAD(env->gregs[i + 16]);
874 #elif defined (TARGET_CRIS)
876 static int cris_save_32 (unsigned char *d, uint32_t value)
878 *d++ = (value);
879 *d++ = (value >>= 8);
880 *d++ = (value >>= 8);
881 *d++ = (value >>= 8);
882 return 4;
884 static int cris_save_16 (unsigned char *d, uint32_t value)
886 *d++ = (value);
887 *d++ = (value >>= 8);
888 return 2;
890 static int cris_save_8 (unsigned char *d, uint32_t value)
892 *d++ = (value);
893 return 1;
896 /* FIXME: this will bug on archs not supporting unaligned word accesses. */
897 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
899 uint8_t *ptr = mem_buf;
900 uint8_t srs;
901 int i;
903 for (i = 0; i < 16; i++)
904 ptr += cris_save_32 (ptr, env->regs[i]);
906 srs = env->pregs[PR_SRS];
908 ptr += cris_save_8 (ptr, env->pregs[0]);
909 ptr += cris_save_8 (ptr, env->pregs[1]);
910 ptr += cris_save_32 (ptr, env->pregs[2]);
911 ptr += cris_save_8 (ptr, srs);
912 ptr += cris_save_16 (ptr, env->pregs[4]);
914 for (i = 5; i < 16; i++)
915 ptr += cris_save_32 (ptr, env->pregs[i]);
917 ptr += cris_save_32 (ptr, env->pc);
919 for (i = 0; i < 16; i++)
920 ptr += cris_save_32 (ptr, env->sregs[srs][i]);
922 return ((uint8_t *)ptr - mem_buf);
925 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
927 uint32_t *ptr = (uint32_t *)mem_buf;
928 int i;
930 #define LOAD(x) (x)=*ptr++;
931 for (i = 0; i < 16; i++) LOAD(env->regs[i]);
932 LOAD (env->pc);
934 #else
935 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
937 return 0;
940 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
944 #endif
946 static int gdb_handle_packet(GDBState *s, CPUState *env, const char *line_buf)
948 const char *p;
949 int ch, reg_size, type;
950 char buf[4096];
951 uint8_t mem_buf[4096];
952 uint32_t *registers;
953 target_ulong addr, len;
955 #ifdef DEBUG_GDB
956 printf("command='%s'\n", line_buf);
957 #endif
958 p = line_buf;
959 ch = *p++;
960 switch(ch) {
961 case '?':
962 /* TODO: Make this return the correct value for user-mode. */
963 snprintf(buf, sizeof(buf), "S%02x", SIGTRAP);
964 put_packet(s, buf);
965 break;
966 case 'c':
967 if (*p != '\0') {
968 addr = strtoull(p, (char **)&p, 16);
969 #if defined(TARGET_I386)
970 env->eip = addr;
971 #elif defined (TARGET_PPC)
972 env->nip = addr;
973 #elif defined (TARGET_SPARC)
974 env->pc = addr;
975 env->npc = addr + 4;
976 #elif defined (TARGET_ARM)
977 env->regs[15] = addr;
978 #elif defined (TARGET_SH4)
979 env->pc = addr;
980 #elif defined (TARGET_MIPS)
981 env->PC[env->current_tc] = addr;
982 #elif defined (TARGET_CRIS)
983 env->pc = addr;
984 #endif
986 gdb_continue(s);
987 return RS_IDLE;
988 case 's':
989 if (*p != '\0') {
990 addr = strtoull(p, (char **)&p, 16);
991 #if defined(TARGET_I386)
992 env->eip = addr;
993 #elif defined (TARGET_PPC)
994 env->nip = addr;
995 #elif defined (TARGET_SPARC)
996 env->pc = addr;
997 env->npc = addr + 4;
998 #elif defined (TARGET_ARM)
999 env->regs[15] = addr;
1000 #elif defined (TARGET_SH4)
1001 env->pc = addr;
1002 #elif defined (TARGET_MIPS)
1003 env->PC[env->current_tc] = addr;
1004 #elif defined (TARGET_CRIS)
1005 env->pc = addr;
1006 #endif
1008 cpu_single_step(env, sstep_flags);
1009 gdb_continue(s);
1010 return RS_IDLE;
1011 case 'F':
1013 target_ulong ret;
1014 target_ulong err;
1016 ret = strtoull(p, (char **)&p, 16);
1017 if (*p == ',') {
1018 p++;
1019 err = strtoull(p, (char **)&p, 16);
1020 } else {
1021 err = 0;
1023 if (*p == ',')
1024 p++;
1025 type = *p;
1026 if (gdb_current_syscall_cb)
1027 gdb_current_syscall_cb(s->env, ret, err);
1028 if (type == 'C') {
1029 put_packet(s, "T02");
1030 } else {
1031 gdb_continue(s);
1034 break;
1035 case 'g':
1036 reg_size = cpu_gdb_read_registers(env, mem_buf);
1037 memtohex(buf, mem_buf, reg_size);
1038 put_packet(s, buf);
1039 break;
1040 case 'G':
1041 registers = (void *)mem_buf;
1042 len = strlen(p) / 2;
1043 hextomem((uint8_t *)registers, p, len);
1044 cpu_gdb_write_registers(env, mem_buf, len);
1045 put_packet(s, "OK");
1046 break;
1047 case 'm':
1048 addr = strtoull(p, (char **)&p, 16);
1049 if (*p == ',')
1050 p++;
1051 len = strtoull(p, NULL, 16);
1052 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 0) != 0) {
1053 put_packet (s, "E14");
1054 } else {
1055 memtohex(buf, mem_buf, len);
1056 put_packet(s, buf);
1058 break;
1059 case 'M':
1060 addr = strtoull(p, (char **)&p, 16);
1061 if (*p == ',')
1062 p++;
1063 len = strtoull(p, (char **)&p, 16);
1064 if (*p == ':')
1065 p++;
1066 hextomem(mem_buf, p, len);
1067 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 1) != 0)
1068 put_packet(s, "E14");
1069 else
1070 put_packet(s, "OK");
1071 break;
1072 case 'Z':
1073 type = strtoul(p, (char **)&p, 16);
1074 if (*p == ',')
1075 p++;
1076 addr = strtoull(p, (char **)&p, 16);
1077 if (*p == ',')
1078 p++;
1079 len = strtoull(p, (char **)&p, 16);
1080 if (type == 0 || type == 1) {
1081 if (cpu_breakpoint_insert(env, addr) < 0)
1082 goto breakpoint_error;
1083 put_packet(s, "OK");
1084 #ifndef CONFIG_USER_ONLY
1085 } else if (type == 2) {
1086 if (cpu_watchpoint_insert(env, addr) < 0)
1087 goto breakpoint_error;
1088 put_packet(s, "OK");
1089 #endif
1090 } else {
1091 breakpoint_error:
1092 put_packet(s, "E22");
1094 break;
1095 case 'z':
1096 type = strtoul(p, (char **)&p, 16);
1097 if (*p == ',')
1098 p++;
1099 addr = strtoull(p, (char **)&p, 16);
1100 if (*p == ',')
1101 p++;
1102 len = strtoull(p, (char **)&p, 16);
1103 if (type == 0 || type == 1) {
1104 cpu_breakpoint_remove(env, addr);
1105 put_packet(s, "OK");
1106 #ifndef CONFIG_USER_ONLY
1107 } else if (type == 2) {
1108 cpu_watchpoint_remove(env, addr);
1109 put_packet(s, "OK");
1110 #endif
1111 } else {
1112 goto breakpoint_error;
1114 break;
1115 case 'q':
1116 case 'Q':
1117 /* parse any 'q' packets here */
1118 if (!strcmp(p,"qemu.sstepbits")) {
1119 /* Query Breakpoint bit definitions */
1120 sprintf(buf,"ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1121 SSTEP_ENABLE,
1122 SSTEP_NOIRQ,
1123 SSTEP_NOTIMER);
1124 put_packet(s, buf);
1125 break;
1126 } else if (strncmp(p,"qemu.sstep",10) == 0) {
1127 /* Display or change the sstep_flags */
1128 p += 10;
1129 if (*p != '=') {
1130 /* Display current setting */
1131 sprintf(buf,"0x%x", sstep_flags);
1132 put_packet(s, buf);
1133 break;
1135 p++;
1136 type = strtoul(p, (char **)&p, 16);
1137 sstep_flags = type;
1138 put_packet(s, "OK");
1139 break;
1141 #ifdef CONFIG_LINUX_USER
1142 else if (strncmp(p, "Offsets", 7) == 0) {
1143 TaskState *ts = env->opaque;
1145 sprintf(buf,
1146 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1147 ";Bss=" TARGET_ABI_FMT_lx,
1148 ts->info->code_offset,
1149 ts->info->data_offset,
1150 ts->info->data_offset);
1151 put_packet(s, buf);
1152 break;
1154 #endif
1155 /* Fall through. */
1156 default:
1157 /* put empty packet */
1158 buf[0] = '\0';
1159 put_packet(s, buf);
1160 break;
1162 return RS_IDLE;
1165 extern void tb_flush(CPUState *env);
1167 #ifndef CONFIG_USER_ONLY
1168 static void gdb_vm_stopped(void *opaque, int reason)
1170 GDBState *s = opaque;
1171 char buf[256];
1172 int ret;
1174 if (s->state == RS_SYSCALL)
1175 return;
1177 /* disable single step if it was enable */
1178 cpu_single_step(s->env, 0);
1180 if (reason == EXCP_DEBUG) {
1181 if (s->env->watchpoint_hit) {
1182 snprintf(buf, sizeof(buf), "T%02xwatch:" TARGET_FMT_lx ";",
1183 SIGTRAP,
1184 s->env->watchpoint[s->env->watchpoint_hit - 1].vaddr);
1185 put_packet(s, buf);
1186 s->env->watchpoint_hit = 0;
1187 return;
1189 tb_flush(s->env);
1190 ret = SIGTRAP;
1191 } else if (reason == EXCP_INTERRUPT) {
1192 ret = SIGINT;
1193 } else {
1194 ret = 0;
1196 snprintf(buf, sizeof(buf), "S%02x", ret);
1197 put_packet(s, buf);
1199 #endif
1201 /* Send a gdb syscall request.
1202 This accepts limited printf-style format specifiers, specifically:
1203 %x - target_ulong argument printed in hex.
1204 %lx - 64-bit argument printed in hex.
1205 %s - string pointer (target_ulong) and length (int) pair. */
1206 void gdb_do_syscall(gdb_syscall_complete_cb cb, char *fmt, ...)
1208 va_list va;
1209 char buf[256];
1210 char *p;
1211 target_ulong addr;
1212 uint64_t i64;
1213 GDBState *s;
1215 s = gdb_syscall_state;
1216 if (!s)
1217 return;
1218 gdb_current_syscall_cb = cb;
1219 s->state = RS_SYSCALL;
1220 #ifndef CONFIG_USER_ONLY
1221 vm_stop(EXCP_DEBUG);
1222 #endif
1223 s->state = RS_IDLE;
1224 va_start(va, fmt);
1225 p = buf;
1226 *(p++) = 'F';
1227 while (*fmt) {
1228 if (*fmt == '%') {
1229 fmt++;
1230 switch (*fmt++) {
1231 case 'x':
1232 addr = va_arg(va, target_ulong);
1233 p += sprintf(p, TARGET_FMT_lx, addr);
1234 break;
1235 case 'l':
1236 if (*(fmt++) != 'x')
1237 goto bad_format;
1238 i64 = va_arg(va, uint64_t);
1239 p += sprintf(p, "%" PRIx64, i64);
1240 break;
1241 case 's':
1242 addr = va_arg(va, target_ulong);
1243 p += sprintf(p, TARGET_FMT_lx "/%x", addr, va_arg(va, int));
1244 break;
1245 default:
1246 bad_format:
1247 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
1248 fmt - 1);
1249 break;
1251 } else {
1252 *(p++) = *(fmt++);
1255 *p = 0;
1256 va_end(va);
1257 put_packet(s, buf);
1258 #ifdef CONFIG_USER_ONLY
1259 gdb_handlesig(s->env, 0);
1260 #else
1261 cpu_interrupt(s->env, CPU_INTERRUPT_EXIT);
1262 #endif
1265 static void gdb_read_byte(GDBState *s, int ch)
1267 CPUState *env = s->env;
1268 int i, csum;
1269 uint8_t reply;
1271 #ifndef CONFIG_USER_ONLY
1272 if (s->last_packet_len) {
1273 /* Waiting for a response to the last packet. If we see the start
1274 of a new command then abandon the previous response. */
1275 if (ch == '-') {
1276 #ifdef DEBUG_GDB
1277 printf("Got NACK, retransmitting\n");
1278 #endif
1279 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
1281 #ifdef DEBUG_GDB
1282 else if (ch == '+')
1283 printf("Got ACK\n");
1284 else
1285 printf("Got '%c' when expecting ACK/NACK\n", ch);
1286 #endif
1287 if (ch == '+' || ch == '$')
1288 s->last_packet_len = 0;
1289 if (ch != '$')
1290 return;
1292 if (vm_running) {
1293 /* when the CPU is running, we cannot do anything except stop
1294 it when receiving a char */
1295 vm_stop(EXCP_INTERRUPT);
1296 } else
1297 #endif
1299 switch(s->state) {
1300 case RS_IDLE:
1301 if (ch == '$') {
1302 s->line_buf_index = 0;
1303 s->state = RS_GETLINE;
1305 break;
1306 case RS_GETLINE:
1307 if (ch == '#') {
1308 s->state = RS_CHKSUM1;
1309 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
1310 s->state = RS_IDLE;
1311 } else {
1312 s->line_buf[s->line_buf_index++] = ch;
1314 break;
1315 case RS_CHKSUM1:
1316 s->line_buf[s->line_buf_index] = '\0';
1317 s->line_csum = fromhex(ch) << 4;
1318 s->state = RS_CHKSUM2;
1319 break;
1320 case RS_CHKSUM2:
1321 s->line_csum |= fromhex(ch);
1322 csum = 0;
1323 for(i = 0; i < s->line_buf_index; i++) {
1324 csum += s->line_buf[i];
1326 if (s->line_csum != (csum & 0xff)) {
1327 reply = '-';
1328 put_buffer(s, &reply, 1);
1329 s->state = RS_IDLE;
1330 } else {
1331 reply = '+';
1332 put_buffer(s, &reply, 1);
1333 s->state = gdb_handle_packet(s, env, s->line_buf);
1335 break;
1336 default:
1337 abort();
1342 #ifdef CONFIG_USER_ONLY
1344 gdb_handlesig (CPUState *env, int sig)
1346 GDBState *s;
1347 char buf[256];
1348 int n;
1350 if (gdbserver_fd < 0)
1351 return sig;
1353 s = &gdbserver_state;
1355 /* disable single step if it was enabled */
1356 cpu_single_step(env, 0);
1357 tb_flush(env);
1359 if (sig != 0)
1361 snprintf(buf, sizeof(buf), "S%02x", sig);
1362 put_packet(s, buf);
1365 sig = 0;
1366 s->state = RS_IDLE;
1367 s->running_state = 0;
1368 while (s->running_state == 0) {
1369 n = read (s->fd, buf, 256);
1370 if (n > 0)
1372 int i;
1374 for (i = 0; i < n; i++)
1375 gdb_read_byte (s, buf[i]);
1377 else if (n == 0 || errno != EAGAIN)
1379 /* XXX: Connection closed. Should probably wait for annother
1380 connection before continuing. */
1381 return sig;
1384 return sig;
1387 /* Tell the remote gdb that the process has exited. */
1388 void gdb_exit(CPUState *env, int code)
1390 GDBState *s;
1391 char buf[4];
1393 if (gdbserver_fd < 0)
1394 return;
1396 s = &gdbserver_state;
1398 snprintf(buf, sizeof(buf), "W%02x", code);
1399 put_packet(s, buf);
1403 static void gdb_accept(void *opaque)
1405 GDBState *s;
1406 struct sockaddr_in sockaddr;
1407 socklen_t len;
1408 int val, fd;
1410 for(;;) {
1411 len = sizeof(sockaddr);
1412 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
1413 if (fd < 0 && errno != EINTR) {
1414 perror("accept");
1415 return;
1416 } else if (fd >= 0) {
1417 break;
1421 /* set short latency */
1422 val = 1;
1423 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
1425 s = &gdbserver_state;
1426 memset (s, 0, sizeof (GDBState));
1427 s->env = first_cpu; /* XXX: allow to change CPU */
1428 s->fd = fd;
1430 gdb_syscall_state = s;
1432 fcntl(fd, F_SETFL, O_NONBLOCK);
1435 static int gdbserver_open(int port)
1437 struct sockaddr_in sockaddr;
1438 int fd, val, ret;
1440 fd = socket(PF_INET, SOCK_STREAM, 0);
1441 if (fd < 0) {
1442 perror("socket");
1443 return -1;
1446 /* allow fast reuse */
1447 val = 1;
1448 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
1450 sockaddr.sin_family = AF_INET;
1451 sockaddr.sin_port = htons(port);
1452 sockaddr.sin_addr.s_addr = 0;
1453 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
1454 if (ret < 0) {
1455 perror("bind");
1456 return -1;
1458 ret = listen(fd, 0);
1459 if (ret < 0) {
1460 perror("listen");
1461 return -1;
1463 return fd;
1466 int gdbserver_start(int port)
1468 gdbserver_fd = gdbserver_open(port);
1469 if (gdbserver_fd < 0)
1470 return -1;
1471 /* accept connections */
1472 gdb_accept (NULL);
1473 return 0;
1475 #else
1476 static int gdb_chr_can_receive(void *opaque)
1478 return 1;
1481 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
1483 GDBState *s = opaque;
1484 int i;
1486 for (i = 0; i < size; i++) {
1487 gdb_read_byte(s, buf[i]);
1491 static void gdb_chr_event(void *opaque, int event)
1493 switch (event) {
1494 case CHR_EVENT_RESET:
1495 vm_stop(EXCP_INTERRUPT);
1496 gdb_syscall_state = opaque;
1497 break;
1498 default:
1499 break;
1503 int gdbserver_start(const char *port)
1505 GDBState *s;
1506 char gdbstub_port_name[128];
1507 int port_num;
1508 char *p;
1509 CharDriverState *chr;
1511 if (!port || !*port)
1512 return -1;
1514 port_num = strtol(port, &p, 10);
1515 if (*p == 0) {
1516 /* A numeric value is interpreted as a port number. */
1517 snprintf(gdbstub_port_name, sizeof(gdbstub_port_name),
1518 "tcp::%d,nowait,nodelay,server", port_num);
1519 port = gdbstub_port_name;
1522 chr = qemu_chr_open(port);
1523 if (!chr)
1524 return -1;
1526 s = qemu_mallocz(sizeof(GDBState));
1527 if (!s) {
1528 return -1;
1530 s->env = first_cpu; /* XXX: allow to change CPU */
1531 s->chr = chr;
1532 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
1533 gdb_chr_event, s);
1534 qemu_add_vm_stop_handler(gdb_vm_stopped, s);
1535 return 0;
1537 #endif