2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu-timer.h"
33 #define RTC_SECONDS_ALARM 1
35 #define RTC_MINUTES_ALARM 3
37 #define RTC_HOURS_ALARM 5
38 #define RTC_ALARM_DONT_CARE 0xC0
40 #define RTC_DAY_OF_WEEK 6
41 #define RTC_DAY_OF_MONTH 7
50 #define REG_A_UIP 0x80
52 #define REG_B_SET 0x80
53 #define REG_B_PIE 0x40
54 #define REG_B_AIE 0x20
55 #define REG_B_UIE 0x10
58 uint8_t cmos_data
[128];
62 target_phys_addr_t base
;
65 QEMUTimer
*periodic_timer
;
66 int64_t next_periodic_time
;
68 int64_t next_second_time
;
69 QEMUTimer
*second_timer
;
70 QEMUTimer
*second_timer2
;
73 static void rtc_set_time(RTCState
*s
);
74 static void rtc_copy_date(RTCState
*s
);
76 static void rtc_timer_update(RTCState
*s
, int64_t current_time
)
78 int period_code
, period
;
79 int64_t cur_clock
, next_irq_clock
;
81 period_code
= s
->cmos_data
[RTC_REG_A
] & 0x0f;
82 if (period_code
!= 0 &&
83 (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
)) {
86 /* period in 32 Khz cycles */
87 period
= 1 << (period_code
- 1);
88 /* compute 32 khz clock */
89 cur_clock
= muldiv64(current_time
, 32768, ticks_per_sec
);
90 next_irq_clock
= (cur_clock
& ~(period
- 1)) + period
;
91 s
->next_periodic_time
= muldiv64(next_irq_clock
, ticks_per_sec
, 32768) + 1;
92 qemu_mod_timer(s
->periodic_timer
, s
->next_periodic_time
);
94 qemu_del_timer(s
->periodic_timer
);
98 static void rtc_periodic_timer(void *opaque
)
100 RTCState
*s
= opaque
;
102 rtc_timer_update(s
, s
->next_periodic_time
);
103 s
->cmos_data
[RTC_REG_C
] |= 0xc0;
104 qemu_irq_raise(s
->irq
);
107 static void cmos_ioport_write(void *opaque
, uint32_t addr
, uint32_t data
)
109 RTCState
*s
= opaque
;
111 if ((addr
& 1) == 0) {
112 s
->cmos_index
= data
& 0x7f;
115 printf("cmos: write index=0x%02x val=0x%02x\n",
116 s
->cmos_index
, data
);
118 switch(s
->cmos_index
) {
119 case RTC_SECONDS_ALARM
:
120 case RTC_MINUTES_ALARM
:
121 case RTC_HOURS_ALARM
:
122 /* XXX: not supported */
123 s
->cmos_data
[s
->cmos_index
] = data
;
128 case RTC_DAY_OF_WEEK
:
129 case RTC_DAY_OF_MONTH
:
132 s
->cmos_data
[s
->cmos_index
] = data
;
133 /* if in set mode, do not update the time */
134 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
139 /* UIP bit is read only */
140 s
->cmos_data
[RTC_REG_A
] = (data
& ~REG_A_UIP
) |
141 (s
->cmos_data
[RTC_REG_A
] & REG_A_UIP
);
142 rtc_timer_update(s
, qemu_get_clock(vm_clock
));
145 if (data
& REG_B_SET
) {
146 /* set mode: reset UIP mode */
147 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
150 /* if disabling set mode, update the time */
151 if (s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) {
155 s
->cmos_data
[RTC_REG_B
] = data
;
156 rtc_timer_update(s
, qemu_get_clock(vm_clock
));
160 /* cannot write to them */
163 s
->cmos_data
[s
->cmos_index
] = data
;
169 static inline int to_bcd(RTCState
*s
, int a
)
171 if (s
->cmos_data
[RTC_REG_B
] & 0x04) {
174 return ((a
/ 10) << 4) | (a
% 10);
178 static inline int from_bcd(RTCState
*s
, int a
)
180 if (s
->cmos_data
[RTC_REG_B
] & 0x04) {
183 return ((a
>> 4) * 10) + (a
& 0x0f);
187 static void rtc_set_time(RTCState
*s
)
189 struct tm
*tm
= &s
->current_tm
;
191 tm
->tm_sec
= from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
192 tm
->tm_min
= from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
193 tm
->tm_hour
= from_bcd(s
, s
->cmos_data
[RTC_HOURS
] & 0x7f);
194 if (!(s
->cmos_data
[RTC_REG_B
] & 0x02) &&
195 (s
->cmos_data
[RTC_HOURS
] & 0x80)) {
198 tm
->tm_wday
= from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_WEEK
]);
199 tm
->tm_mday
= from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_MONTH
]);
200 tm
->tm_mon
= from_bcd(s
, s
->cmos_data
[RTC_MONTH
]) - 1;
201 tm
->tm_year
= from_bcd(s
, s
->cmos_data
[RTC_YEAR
]) + 100;
204 static void rtc_copy_date(RTCState
*s
)
206 const struct tm
*tm
= &s
->current_tm
;
208 s
->cmos_data
[RTC_SECONDS
] = to_bcd(s
, tm
->tm_sec
);
209 s
->cmos_data
[RTC_MINUTES
] = to_bcd(s
, tm
->tm_min
);
210 if (s
->cmos_data
[RTC_REG_B
] & 0x02) {
212 s
->cmos_data
[RTC_HOURS
] = to_bcd(s
, tm
->tm_hour
);
215 s
->cmos_data
[RTC_HOURS
] = to_bcd(s
, tm
->tm_hour
% 12);
216 if (tm
->tm_hour
>= 12)
217 s
->cmos_data
[RTC_HOURS
] |= 0x80;
219 s
->cmos_data
[RTC_DAY_OF_WEEK
] = to_bcd(s
, tm
->tm_wday
);
220 s
->cmos_data
[RTC_DAY_OF_MONTH
] = to_bcd(s
, tm
->tm_mday
);
221 s
->cmos_data
[RTC_MONTH
] = to_bcd(s
, tm
->tm_mon
+ 1);
222 s
->cmos_data
[RTC_YEAR
] = to_bcd(s
, tm
->tm_year
% 100);
225 /* month is between 0 and 11. */
226 static int get_days_in_month(int month
, int year
)
228 static const int days_tab
[12] = {
229 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
232 if ((unsigned )month
>= 12)
236 if ((year
% 4) == 0 && ((year
% 100) != 0 || (year
% 400) == 0))
242 /* update 'tm' to the next second */
243 static void rtc_next_second(struct tm
*tm
)
248 if ((unsigned)tm
->tm_sec
>= 60) {
251 if ((unsigned)tm
->tm_min
>= 60) {
254 if ((unsigned)tm
->tm_hour
>= 24) {
258 if ((unsigned)tm
->tm_wday
>= 7)
260 days_in_month
= get_days_in_month(tm
->tm_mon
,
263 if (tm
->tm_mday
< 1) {
265 } else if (tm
->tm_mday
> days_in_month
) {
268 if (tm
->tm_mon
>= 12) {
279 static void rtc_update_second(void *opaque
)
281 RTCState
*s
= opaque
;
284 /* if the oscillator is not in normal operation, we do not update */
285 if ((s
->cmos_data
[RTC_REG_A
] & 0x70) != 0x20) {
286 s
->next_second_time
+= ticks_per_sec
;
287 qemu_mod_timer(s
->second_timer
, s
->next_second_time
);
289 rtc_next_second(&s
->current_tm
);
291 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
292 /* update in progress bit */
293 s
->cmos_data
[RTC_REG_A
] |= REG_A_UIP
;
295 /* should be 244 us = 8 / 32768 seconds, but currently the
296 timers do not have the necessary resolution. */
297 delay
= (ticks_per_sec
* 1) / 100;
300 qemu_mod_timer(s
->second_timer2
,
301 s
->next_second_time
+ delay
);
305 static void rtc_update_second2(void *opaque
)
307 RTCState
*s
= opaque
;
309 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
314 if (s
->cmos_data
[RTC_REG_B
] & REG_B_AIE
) {
315 if (((s
->cmos_data
[RTC_SECONDS_ALARM
] & 0xc0) == 0xc0 ||
316 s
->cmos_data
[RTC_SECONDS_ALARM
] == s
->current_tm
.tm_sec
) &&
317 ((s
->cmos_data
[RTC_MINUTES_ALARM
] & 0xc0) == 0xc0 ||
318 s
->cmos_data
[RTC_MINUTES_ALARM
] == s
->current_tm
.tm_mon
) &&
319 ((s
->cmos_data
[RTC_HOURS_ALARM
] & 0xc0) == 0xc0 ||
320 s
->cmos_data
[RTC_HOURS_ALARM
] == s
->current_tm
.tm_hour
)) {
322 s
->cmos_data
[RTC_REG_C
] |= 0xa0;
323 qemu_irq_raise(s
->irq
);
327 /* update ended interrupt */
328 if (s
->cmos_data
[RTC_REG_B
] & REG_B_UIE
) {
329 s
->cmos_data
[RTC_REG_C
] |= 0x90;
330 qemu_irq_raise(s
->irq
);
333 /* clear update in progress bit */
334 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
336 s
->next_second_time
+= ticks_per_sec
;
337 qemu_mod_timer(s
->second_timer
, s
->next_second_time
);
340 static uint32_t cmos_ioport_read(void *opaque
, uint32_t addr
)
342 RTCState
*s
= opaque
;
344 if ((addr
& 1) == 0) {
347 switch(s
->cmos_index
) {
351 case RTC_DAY_OF_WEEK
:
352 case RTC_DAY_OF_MONTH
:
355 ret
= s
->cmos_data
[s
->cmos_index
];
358 ret
= s
->cmos_data
[s
->cmos_index
];
361 ret
= s
->cmos_data
[s
->cmos_index
];
362 qemu_irq_lower(s
->irq
);
363 s
->cmos_data
[RTC_REG_C
] = 0x00;
366 ret
= s
->cmos_data
[s
->cmos_index
];
370 printf("cmos: read index=0x%02x val=0x%02x\n",
377 void rtc_set_memory(RTCState
*s
, int addr
, int val
)
379 if (addr
>= 0 && addr
<= 127)
380 s
->cmos_data
[addr
] = val
;
383 void rtc_set_date(RTCState
*s
, const struct tm
*tm
)
389 /* PC cmos mappings */
390 #define REG_IBM_CENTURY_BYTE 0x32
391 #define REG_IBM_PS2_CENTURY_BYTE 0x37
393 static void rtc_set_date_from_host(RTCState
*s
)
398 /* set the CMOS date */
399 qemu_get_timedate(&tm
, 0);
400 rtc_set_date(s
, &tm
);
402 val
= to_bcd(s
, (tm
.tm_year
/ 100) + 19);
403 rtc_set_memory(s
, REG_IBM_CENTURY_BYTE
, val
);
404 rtc_set_memory(s
, REG_IBM_PS2_CENTURY_BYTE
, val
);
407 static void rtc_save(QEMUFile
*f
, void *opaque
)
409 RTCState
*s
= opaque
;
411 qemu_put_buffer(f
, s
->cmos_data
, 128);
412 qemu_put_8s(f
, &s
->cmos_index
);
414 qemu_put_be32(f
, s
->current_tm
.tm_sec
);
415 qemu_put_be32(f
, s
->current_tm
.tm_min
);
416 qemu_put_be32(f
, s
->current_tm
.tm_hour
);
417 qemu_put_be32(f
, s
->current_tm
.tm_wday
);
418 qemu_put_be32(f
, s
->current_tm
.tm_mday
);
419 qemu_put_be32(f
, s
->current_tm
.tm_mon
);
420 qemu_put_be32(f
, s
->current_tm
.tm_year
);
422 qemu_put_timer(f
, s
->periodic_timer
);
423 qemu_put_be64(f
, s
->next_periodic_time
);
425 qemu_put_be64(f
, s
->next_second_time
);
426 qemu_put_timer(f
, s
->second_timer
);
427 qemu_put_timer(f
, s
->second_timer2
);
430 static int rtc_load(QEMUFile
*f
, void *opaque
, int version_id
)
432 RTCState
*s
= opaque
;
437 qemu_get_buffer(f
, s
->cmos_data
, 128);
438 qemu_get_8s(f
, &s
->cmos_index
);
440 s
->current_tm
.tm_sec
=qemu_get_be32(f
);
441 s
->current_tm
.tm_min
=qemu_get_be32(f
);
442 s
->current_tm
.tm_hour
=qemu_get_be32(f
);
443 s
->current_tm
.tm_wday
=qemu_get_be32(f
);
444 s
->current_tm
.tm_mday
=qemu_get_be32(f
);
445 s
->current_tm
.tm_mon
=qemu_get_be32(f
);
446 s
->current_tm
.tm_year
=qemu_get_be32(f
);
448 qemu_get_timer(f
, s
->periodic_timer
);
449 s
->next_periodic_time
=qemu_get_be64(f
);
451 s
->next_second_time
=qemu_get_be64(f
);
452 qemu_get_timer(f
, s
->second_timer
);
453 qemu_get_timer(f
, s
->second_timer2
);
457 RTCState
*rtc_init(int base
, qemu_irq irq
)
461 s
= qemu_mallocz(sizeof(RTCState
));
466 s
->cmos_data
[RTC_REG_A
] = 0x26;
467 s
->cmos_data
[RTC_REG_B
] = 0x02;
468 s
->cmos_data
[RTC_REG_C
] = 0x00;
469 s
->cmos_data
[RTC_REG_D
] = 0x80;
471 rtc_set_date_from_host(s
);
473 s
->periodic_timer
= qemu_new_timer(vm_clock
,
474 rtc_periodic_timer
, s
);
475 s
->second_timer
= qemu_new_timer(vm_clock
,
476 rtc_update_second
, s
);
477 s
->second_timer2
= qemu_new_timer(vm_clock
,
478 rtc_update_second2
, s
);
480 s
->next_second_time
= qemu_get_clock(vm_clock
) + (ticks_per_sec
* 99) / 100;
481 qemu_mod_timer(s
->second_timer2
, s
->next_second_time
);
483 register_ioport_write(base
, 2, 1, cmos_ioport_write
, s
);
484 register_ioport_read(base
, 2, 1, cmos_ioport_read
, s
);
486 register_savevm("mc146818rtc", base
, 1, rtc_save
, rtc_load
, s
);
490 /* Memory mapped interface */
491 static uint32_t cmos_mm_readb (void *opaque
, target_phys_addr_t addr
)
493 RTCState
*s
= opaque
;
495 return cmos_ioport_read(s
, (addr
- s
->base
) >> s
->it_shift
) & 0xFF;
498 static void cmos_mm_writeb (void *opaque
,
499 target_phys_addr_t addr
, uint32_t value
)
501 RTCState
*s
= opaque
;
503 cmos_ioport_write(s
, (addr
- s
->base
) >> s
->it_shift
, value
& 0xFF);
506 static uint32_t cmos_mm_readw (void *opaque
, target_phys_addr_t addr
)
508 RTCState
*s
= opaque
;
511 val
= cmos_ioport_read(s
, (addr
- s
->base
) >> s
->it_shift
) & 0xFFFF;
512 #ifdef TARGET_WORDS_BIGENDIAN
518 static void cmos_mm_writew (void *opaque
,
519 target_phys_addr_t addr
, uint32_t value
)
521 RTCState
*s
= opaque
;
522 #ifdef TARGET_WORDS_BIGENDIAN
523 value
= bswap16(value
);
525 cmos_ioport_write(s
, (addr
- s
->base
) >> s
->it_shift
, value
& 0xFFFF);
528 static uint32_t cmos_mm_readl (void *opaque
, target_phys_addr_t addr
)
530 RTCState
*s
= opaque
;
533 val
= cmos_ioport_read(s
, (addr
- s
->base
) >> s
->it_shift
);
534 #ifdef TARGET_WORDS_BIGENDIAN
540 static void cmos_mm_writel (void *opaque
,
541 target_phys_addr_t addr
, uint32_t value
)
543 RTCState
*s
= opaque
;
544 #ifdef TARGET_WORDS_BIGENDIAN
545 value
= bswap32(value
);
547 cmos_ioport_write(s
, (addr
- s
->base
) >> s
->it_shift
, value
);
550 static CPUReadMemoryFunc
*rtc_mm_read
[] = {
556 static CPUWriteMemoryFunc
*rtc_mm_write
[] = {
562 RTCState
*rtc_mm_init(target_phys_addr_t base
, int it_shift
, qemu_irq irq
)
567 s
= qemu_mallocz(sizeof(RTCState
));
572 s
->cmos_data
[RTC_REG_A
] = 0x26;
573 s
->cmos_data
[RTC_REG_B
] = 0x02;
574 s
->cmos_data
[RTC_REG_C
] = 0x00;
575 s
->cmos_data
[RTC_REG_D
] = 0x80;
578 rtc_set_date_from_host(s
);
580 s
->periodic_timer
= qemu_new_timer(vm_clock
,
581 rtc_periodic_timer
, s
);
582 s
->second_timer
= qemu_new_timer(vm_clock
,
583 rtc_update_second
, s
);
584 s
->second_timer2
= qemu_new_timer(vm_clock
,
585 rtc_update_second2
, s
);
587 s
->next_second_time
= qemu_get_clock(vm_clock
) + (ticks_per_sec
* 99) / 100;
588 qemu_mod_timer(s
->second_timer2
, s
->next_second_time
);
590 io_memory
= cpu_register_io_memory(0, rtc_mm_read
, rtc_mm_write
, s
);
591 cpu_register_physical_memory(base
, 2 << it_shift
, io_memory
);
593 register_savevm("mc146818rtc", base
, 1, rtc_save
, rtc_load
, s
);