2 * Intel XScale PXA255/270 processor support.
4 * Copyright (c) 2006 Openedhand Ltd.
5 * Written by Andrzej Zaborowski <balrog@zabor.org>
7 * This code is licenced under the GPL.
15 #include "qemu-timer.h"
16 #include "qemu-char.h"
19 target_phys_addr_t io_base
;
22 { 0x40100000, PXA2XX_PIC_FFUART
},
23 { 0x40200000, PXA2XX_PIC_BTUART
},
24 { 0x40700000, PXA2XX_PIC_STUART
},
25 { 0x41600000, PXA25X_PIC_HWUART
},
27 }, pxa270_serial
[] = {
28 { 0x40100000, PXA2XX_PIC_FFUART
},
29 { 0x40200000, PXA2XX_PIC_BTUART
},
30 { 0x40700000, PXA2XX_PIC_STUART
},
34 typedef struct PXASSPDef
{
35 target_phys_addr_t io_base
;
40 static PXASSPDef pxa250_ssp
[] = {
41 { 0x41000000, PXA2XX_PIC_SSP
},
46 static PXASSPDef pxa255_ssp
[] = {
47 { 0x41000000, PXA2XX_PIC_SSP
},
48 { 0x41400000, PXA25X_PIC_NSSP
},
53 static PXASSPDef pxa26x_ssp
[] = {
54 { 0x41000000, PXA2XX_PIC_SSP
},
55 { 0x41400000, PXA25X_PIC_NSSP
},
56 { 0x41500000, PXA26X_PIC_ASSP
},
61 static PXASSPDef pxa27x_ssp
[] = {
62 { 0x41000000, PXA2XX_PIC_SSP
},
63 { 0x41700000, PXA27X_PIC_SSP2
},
64 { 0x41900000, PXA2XX_PIC_SSP3
},
68 #define PMCR 0x00 /* Power Manager Control register */
69 #define PSSR 0x04 /* Power Manager Sleep Status register */
70 #define PSPR 0x08 /* Power Manager Scratch-Pad register */
71 #define PWER 0x0c /* Power Manager Wake-Up Enable register */
72 #define PRER 0x10 /* Power Manager Rising-Edge Detect Enable register */
73 #define PFER 0x14 /* Power Manager Falling-Edge Detect Enable register */
74 #define PEDR 0x18 /* Power Manager Edge-Detect Status register */
75 #define PCFR 0x1c /* Power Manager General Configuration register */
76 #define PGSR0 0x20 /* Power Manager GPIO Sleep-State register 0 */
77 #define PGSR1 0x24 /* Power Manager GPIO Sleep-State register 1 */
78 #define PGSR2 0x28 /* Power Manager GPIO Sleep-State register 2 */
79 #define PGSR3 0x2c /* Power Manager GPIO Sleep-State register 3 */
80 #define RCSR 0x30 /* Reset Controller Status register */
81 #define PSLR 0x34 /* Power Manager Sleep Configuration register */
82 #define PTSR 0x38 /* Power Manager Standby Configuration register */
83 #define PVCR 0x40 /* Power Manager Voltage Change Control register */
84 #define PUCR 0x4c /* Power Manager USIM Card Control/Status register */
85 #define PKWR 0x50 /* Power Manager Keyboard Wake-Up Enable register */
86 #define PKSR 0x54 /* Power Manager Keyboard Level-Detect Status */
87 #define PCMD0 0x80 /* Power Manager I2C Command register File 0 */
88 #define PCMD31 0xfc /* Power Manager I2C Command register File 31 */
90 static uint32_t pxa2xx_pm_read(void *opaque
, target_phys_addr_t addr
)
92 struct pxa2xx_state_s
*s
= (struct pxa2xx_state_s
*) opaque
;
100 return s
->pm_regs
[addr
>> 2];
103 printf("%s: Bad register " REG_FMT
"\n", __FUNCTION__
, addr
);
109 static void pxa2xx_pm_write(void *opaque
, target_phys_addr_t addr
,
112 struct pxa2xx_state_s
*s
= (struct pxa2xx_state_s
*) opaque
;
117 s
->pm_regs
[addr
>> 2] &= 0x15 & ~(value
& 0x2a);
118 s
->pm_regs
[addr
>> 2] |= value
& 0x15;
121 case PSSR
: /* Read-clean registers */
124 s
->pm_regs
[addr
>> 2] &= ~value
;
127 default: /* Read-write registers */
128 if (addr
>= PMCR
&& addr
<= PCMD31
&& !(addr
& 3)) {
129 s
->pm_regs
[addr
>> 2] = value
;
133 printf("%s: Bad register " REG_FMT
"\n", __FUNCTION__
, addr
);
138 static CPUReadMemoryFunc
*pxa2xx_pm_readfn
[] = {
144 static CPUWriteMemoryFunc
*pxa2xx_pm_writefn
[] = {
150 static void pxa2xx_pm_save(QEMUFile
*f
, void *opaque
)
152 struct pxa2xx_state_s
*s
= (struct pxa2xx_state_s
*) opaque
;
155 for (i
= 0; i
< 0x40; i
++)
156 qemu_put_be32s(f
, &s
->pm_regs
[i
]);
159 static int pxa2xx_pm_load(QEMUFile
*f
, void *opaque
, int version_id
)
161 struct pxa2xx_state_s
*s
= (struct pxa2xx_state_s
*) opaque
;
164 for (i
= 0; i
< 0x40; i
++)
165 qemu_get_be32s(f
, &s
->pm_regs
[i
]);
170 #define CCCR 0x00 /* Core Clock Configuration register */
171 #define CKEN 0x04 /* Clock Enable register */
172 #define OSCC 0x08 /* Oscillator Configuration register */
173 #define CCSR 0x0c /* Core Clock Status register */
175 static uint32_t pxa2xx_cm_read(void *opaque
, target_phys_addr_t addr
)
177 struct pxa2xx_state_s
*s
= (struct pxa2xx_state_s
*) opaque
;
184 return s
->cm_regs
[addr
>> 2];
187 return s
->cm_regs
[CCCR
>> 2] | (3 << 28);
190 printf("%s: Bad register " REG_FMT
"\n", __FUNCTION__
, addr
);
196 static void pxa2xx_cm_write(void *opaque
, target_phys_addr_t addr
,
199 struct pxa2xx_state_s
*s
= (struct pxa2xx_state_s
*) opaque
;
205 s
->cm_regs
[addr
>> 2] = value
;
209 s
->cm_regs
[addr
>> 2] &= ~0x6c;
210 s
->cm_regs
[addr
>> 2] |= value
& 0x6e;
211 if ((value
>> 1) & 1) /* OON */
212 s
->cm_regs
[addr
>> 2] |= 1 << 0; /* Oscillator is now stable */
216 printf("%s: Bad register " REG_FMT
"\n", __FUNCTION__
, addr
);
221 static CPUReadMemoryFunc
*pxa2xx_cm_readfn
[] = {
227 static CPUWriteMemoryFunc
*pxa2xx_cm_writefn
[] = {
233 static void pxa2xx_cm_save(QEMUFile
*f
, void *opaque
)
235 struct pxa2xx_state_s
*s
= (struct pxa2xx_state_s
*) opaque
;
238 for (i
= 0; i
< 4; i
++)
239 qemu_put_be32s(f
, &s
->cm_regs
[i
]);
240 qemu_put_be32s(f
, &s
->clkcfg
);
241 qemu_put_be32s(f
, &s
->pmnc
);
244 static int pxa2xx_cm_load(QEMUFile
*f
, void *opaque
, int version_id
)
246 struct pxa2xx_state_s
*s
= (struct pxa2xx_state_s
*) opaque
;
249 for (i
= 0; i
< 4; i
++)
250 qemu_get_be32s(f
, &s
->cm_regs
[i
]);
251 qemu_get_be32s(f
, &s
->clkcfg
);
252 qemu_get_be32s(f
, &s
->pmnc
);
257 static uint32_t pxa2xx_clkpwr_read(void *opaque
, int op2
, int reg
, int crm
)
259 struct pxa2xx_state_s
*s
= (struct pxa2xx_state_s
*) opaque
;
262 case 6: /* Clock Configuration register */
265 case 7: /* Power Mode register */
269 printf("%s: Bad register 0x%x\n", __FUNCTION__
, reg
);
275 static void pxa2xx_clkpwr_write(void *opaque
, int op2
, int reg
, int crm
,
278 struct pxa2xx_state_s
*s
= (struct pxa2xx_state_s
*) opaque
;
279 static const char *pwrmode
[8] = {
280 "Normal", "Idle", "Deep-idle", "Standby",
281 "Sleep", "reserved (!)", "reserved (!)", "Deep-sleep",
285 case 6: /* Clock Configuration register */
286 s
->clkcfg
= value
& 0xf;
288 printf("%s: CPU frequency change attempt\n", __FUNCTION__
);
291 case 7: /* Power Mode register */
293 printf("%s: CPU voltage change attempt\n", __FUNCTION__
);
301 if (!(s
->cm_regs
[CCCR
>> 2] & (1 << 31))) { /* CPDIS */
302 cpu_interrupt(s
->env
, CPU_INTERRUPT_HALT
);
309 cpu_interrupt(s
->env
, CPU_INTERRUPT_HALT
);
310 s
->pm_regs
[RCSR
>> 2] |= 0x8; /* Set GPR */
314 s
->env
->uncached_cpsr
=
315 ARM_CPU_MODE_SVC
| CPSR_A
| CPSR_F
| CPSR_I
;
316 s
->env
->cp15
.c1_sys
= 0;
317 s
->env
->cp15
.c1_coproc
= 0;
318 s
->env
->cp15
.c2_base0
= 0;
320 s
->pm_regs
[PSSR
>> 2] |= 0x8; /* Set STS */
321 s
->pm_regs
[RCSR
>> 2] |= 0x8; /* Set GPR */
324 * The scratch-pad register is almost universally used
325 * for storing the return address on suspend. For the
326 * lack of a resuming bootloader, perform a jump
327 * directly to that address.
329 memset(s
->env
->regs
, 0, 4 * 15);
330 s
->env
->regs
[15] = s
->pm_regs
[PSPR
>> 2];
333 buffer
= 0xe59ff000; /* ldr pc, [pc, #0] */
334 cpu_physical_memory_write(0, &buffer
, 4);
335 buffer
= s
->pm_regs
[PSPR
>> 2];
336 cpu_physical_memory_write(8, &buffer
, 4);
340 cpu_interrupt(cpu_single_env
, CPU_INTERRUPT_HALT
);
346 printf("%s: machine entered %s mode\n", __FUNCTION__
,
352 printf("%s: Bad register 0x%x\n", __FUNCTION__
, reg
);
357 /* Performace Monitoring Registers */
358 #define CPPMNC 0 /* Performance Monitor Control register */
359 #define CPCCNT 1 /* Clock Counter register */
360 #define CPINTEN 4 /* Interrupt Enable register */
361 #define CPFLAG 5 /* Overflow Flag register */
362 #define CPEVTSEL 8 /* Event Selection register */
364 #define CPPMN0 0 /* Performance Count register 0 */
365 #define CPPMN1 1 /* Performance Count register 1 */
366 #define CPPMN2 2 /* Performance Count register 2 */
367 #define CPPMN3 3 /* Performance Count register 3 */
369 static uint32_t pxa2xx_perf_read(void *opaque
, int op2
, int reg
, int crm
)
371 struct pxa2xx_state_s
*s
= (struct pxa2xx_state_s
*) opaque
;
378 return qemu_get_clock(vm_clock
);
387 printf("%s: Bad register 0x%x\n", __FUNCTION__
, reg
);
393 static void pxa2xx_perf_write(void *opaque
, int op2
, int reg
, int crm
,
396 struct pxa2xx_state_s
*s
= (struct pxa2xx_state_s
*) opaque
;
410 printf("%s: Bad register 0x%x\n", __FUNCTION__
, reg
);
415 static uint32_t pxa2xx_cp14_read(void *opaque
, int op2
, int reg
, int crm
)
419 return pxa2xx_clkpwr_read(opaque
, op2
, reg
, crm
);
421 return pxa2xx_perf_read(opaque
, op2
, reg
, crm
);
432 printf("%s: Bad register 0x%x\n", __FUNCTION__
, reg
);
438 static void pxa2xx_cp14_write(void *opaque
, int op2
, int reg
, int crm
,
443 pxa2xx_clkpwr_write(opaque
, op2
, reg
, crm
, value
);
446 pxa2xx_perf_write(opaque
, op2
, reg
, crm
, value
);
458 printf("%s: Bad register 0x%x\n", __FUNCTION__
, reg
);
463 #define MDCNFG 0x00 /* SDRAM Configuration register */
464 #define MDREFR 0x04 /* SDRAM Refresh Control register */
465 #define MSC0 0x08 /* Static Memory Control register 0 */
466 #define MSC1 0x0c /* Static Memory Control register 1 */
467 #define MSC2 0x10 /* Static Memory Control register 2 */
468 #define MECR 0x14 /* Expansion Memory Bus Config register */
469 #define SXCNFG 0x1c /* Synchronous Static Memory Config register */
470 #define MCMEM0 0x28 /* PC Card Memory Socket 0 Timing register */
471 #define MCMEM1 0x2c /* PC Card Memory Socket 1 Timing register */
472 #define MCATT0 0x30 /* PC Card Attribute Socket 0 register */
473 #define MCATT1 0x34 /* PC Card Attribute Socket 1 register */
474 #define MCIO0 0x38 /* PC Card I/O Socket 0 Timing register */
475 #define MCIO1 0x3c /* PC Card I/O Socket 1 Timing register */
476 #define MDMRS 0x40 /* SDRAM Mode Register Set Config register */
477 #define BOOT_DEF 0x44 /* Boot-time Default Configuration register */
478 #define ARB_CNTL 0x48 /* Arbiter Control register */
479 #define BSCNTR0 0x4c /* Memory Buffer Strength Control register 0 */
480 #define BSCNTR1 0x50 /* Memory Buffer Strength Control register 1 */
481 #define LCDBSCNTR 0x54 /* LCD Buffer Strength Control register */
482 #define MDMRSLP 0x58 /* Low Power SDRAM Mode Set Config register */
483 #define BSCNTR2 0x5c /* Memory Buffer Strength Control register 2 */
484 #define BSCNTR3 0x60 /* Memory Buffer Strength Control register 3 */
485 #define SA1110 0x64 /* SA-1110 Memory Compatibility register */
487 static uint32_t pxa2xx_mm_read(void *opaque
, target_phys_addr_t addr
)
489 struct pxa2xx_state_s
*s
= (struct pxa2xx_state_s
*) opaque
;
493 case MDCNFG
... SA1110
:
495 return s
->mm_regs
[addr
>> 2];
498 printf("%s: Bad register " REG_FMT
"\n", __FUNCTION__
, addr
);
504 static void pxa2xx_mm_write(void *opaque
, target_phys_addr_t addr
,
507 struct pxa2xx_state_s
*s
= (struct pxa2xx_state_s
*) opaque
;
511 case MDCNFG
... SA1110
:
512 if ((addr
& 3) == 0) {
513 s
->mm_regs
[addr
>> 2] = value
;
518 printf("%s: Bad register " REG_FMT
"\n", __FUNCTION__
, addr
);
523 static CPUReadMemoryFunc
*pxa2xx_mm_readfn
[] = {
529 static CPUWriteMemoryFunc
*pxa2xx_mm_writefn
[] = {
535 static void pxa2xx_mm_save(QEMUFile
*f
, void *opaque
)
537 struct pxa2xx_state_s
*s
= (struct pxa2xx_state_s
*) opaque
;
540 for (i
= 0; i
< 0x1a; i
++)
541 qemu_put_be32s(f
, &s
->mm_regs
[i
]);
544 static int pxa2xx_mm_load(QEMUFile
*f
, void *opaque
, int version_id
)
546 struct pxa2xx_state_s
*s
= (struct pxa2xx_state_s
*) opaque
;
549 for (i
= 0; i
< 0x1a; i
++)
550 qemu_get_be32s(f
, &s
->mm_regs
[i
]);
555 /* Synchronous Serial Ports */
556 struct pxa2xx_ssp_s
{
557 target_phys_addr_t base
;
570 uint32_t rx_fifo
[16];
574 uint32_t (*readfn
)(void *opaque
);
575 void (*writefn
)(void *opaque
, uint32_t value
);
579 #define SSCR0 0x00 /* SSP Control register 0 */
580 #define SSCR1 0x04 /* SSP Control register 1 */
581 #define SSSR 0x08 /* SSP Status register */
582 #define SSITR 0x0c /* SSP Interrupt Test register */
583 #define SSDR 0x10 /* SSP Data register */
584 #define SSTO 0x28 /* SSP Time-Out register */
585 #define SSPSP 0x2c /* SSP Programmable Serial Protocol register */
586 #define SSTSA 0x30 /* SSP TX Time Slot Active register */
587 #define SSRSA 0x34 /* SSP RX Time Slot Active register */
588 #define SSTSS 0x38 /* SSP Time Slot Status register */
589 #define SSACD 0x3c /* SSP Audio Clock Divider register */
591 /* Bitfields for above registers */
592 #define SSCR0_SPI(x) (((x) & 0x30) == 0x00)
593 #define SSCR0_SSP(x) (((x) & 0x30) == 0x10)
594 #define SSCR0_UWIRE(x) (((x) & 0x30) == 0x20)
595 #define SSCR0_PSP(x) (((x) & 0x30) == 0x30)
596 #define SSCR0_SSE (1 << 7)
597 #define SSCR0_RIM (1 << 22)
598 #define SSCR0_TIM (1 << 23)
599 #define SSCR0_MOD (1 << 31)
600 #define SSCR0_DSS(x) (((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1)
601 #define SSCR1_RIE (1 << 0)
602 #define SSCR1_TIE (1 << 1)
603 #define SSCR1_LBM (1 << 2)
604 #define SSCR1_MWDS (1 << 5)
605 #define SSCR1_TFT(x) ((((x) >> 6) & 0xf) + 1)
606 #define SSCR1_RFT(x) ((((x) >> 10) & 0xf) + 1)
607 #define SSCR1_EFWR (1 << 14)
608 #define SSCR1_PINTE (1 << 18)
609 #define SSCR1_TINTE (1 << 19)
610 #define SSCR1_RSRE (1 << 20)
611 #define SSCR1_TSRE (1 << 21)
612 #define SSCR1_EBCEI (1 << 29)
613 #define SSITR_INT (7 << 5)
614 #define SSSR_TNF (1 << 2)
615 #define SSSR_RNE (1 << 3)
616 #define SSSR_TFS (1 << 5)
617 #define SSSR_RFS (1 << 6)
618 #define SSSR_ROR (1 << 7)
619 #define SSSR_PINT (1 << 18)
620 #define SSSR_TINT (1 << 19)
621 #define SSSR_EOC (1 << 20)
622 #define SSSR_TUR (1 << 21)
623 #define SSSR_BCE (1 << 23)
624 #define SSSR_RW 0x00bc0080
626 static void pxa2xx_ssp_int_update(struct pxa2xx_ssp_s
*s
)
630 level
|= s
->ssitr
& SSITR_INT
;
631 level
|= (s
->sssr
& SSSR_BCE
) && (s
->sscr
[1] & SSCR1_EBCEI
);
632 level
|= (s
->sssr
& SSSR_TUR
) && !(s
->sscr
[0] & SSCR0_TIM
);
633 level
|= (s
->sssr
& SSSR_EOC
) && (s
->sssr
& (SSSR_TINT
| SSSR_PINT
));
634 level
|= (s
->sssr
& SSSR_TINT
) && (s
->sscr
[1] & SSCR1_TINTE
);
635 level
|= (s
->sssr
& SSSR_PINT
) && (s
->sscr
[1] & SSCR1_PINTE
);
636 level
|= (s
->sssr
& SSSR_ROR
) && !(s
->sscr
[0] & SSCR0_RIM
);
637 level
|= (s
->sssr
& SSSR_RFS
) && (s
->sscr
[1] & SSCR1_RIE
);
638 level
|= (s
->sssr
& SSSR_TFS
) && (s
->sscr
[1] & SSCR1_TIE
);
639 qemu_set_irq(s
->irq
, !!level
);
642 static void pxa2xx_ssp_fifo_update(struct pxa2xx_ssp_s
*s
)
644 s
->sssr
&= ~(0xf << 12); /* Clear RFL */
645 s
->sssr
&= ~(0xf << 8); /* Clear TFL */
646 s
->sssr
&= ~SSSR_TNF
;
648 s
->sssr
|= ((s
->rx_level
- 1) & 0xf) << 12;
649 if (s
->rx_level
>= SSCR1_RFT(s
->sscr
[1]))
652 s
->sssr
&= ~SSSR_RFS
;
653 if (0 <= SSCR1_TFT(s
->sscr
[1]))
656 s
->sssr
&= ~SSSR_TFS
;
660 s
->sssr
&= ~SSSR_RNE
;
664 pxa2xx_ssp_int_update(s
);
667 static uint32_t pxa2xx_ssp_read(void *opaque
, target_phys_addr_t addr
)
669 struct pxa2xx_ssp_s
*s
= (struct pxa2xx_ssp_s
*) opaque
;
685 return s
->sssr
| s
->ssitr
;
689 if (s
->rx_level
< 1) {
690 printf("%s: SSP Rx Underrun\n", __FUNCTION__
);
694 retval
= s
->rx_fifo
[s
->rx_start
++];
696 pxa2xx_ssp_fifo_update(s
);
707 printf("%s: Bad register " REG_FMT
"\n", __FUNCTION__
, addr
);
713 static void pxa2xx_ssp_write(void *opaque
, target_phys_addr_t addr
,
716 struct pxa2xx_ssp_s
*s
= (struct pxa2xx_ssp_s
*) opaque
;
721 s
->sscr
[0] = value
& 0xc7ffffff;
722 s
->enable
= value
& SSCR0_SSE
;
723 if (value
& SSCR0_MOD
)
724 printf("%s: Attempt to use network mode\n", __FUNCTION__
);
725 if (s
->enable
&& SSCR0_DSS(value
) < 4)
726 printf("%s: Wrong data size: %i bits\n", __FUNCTION__
,
728 if (!(value
& SSCR0_SSE
)) {
733 pxa2xx_ssp_fifo_update(s
);
738 if (value
& (SSCR1_LBM
| SSCR1_EFWR
))
739 printf("%s: Attempt to use SSP test mode\n", __FUNCTION__
);
740 pxa2xx_ssp_fifo_update(s
);
752 s
->ssitr
= value
& SSITR_INT
;
753 pxa2xx_ssp_int_update(s
);
757 s
->sssr
&= ~(value
& SSSR_RW
);
758 pxa2xx_ssp_int_update(s
);
762 if (SSCR0_UWIRE(s
->sscr
[0])) {
763 if (s
->sscr
[1] & SSCR1_MWDS
)
768 /* Note how 32bits overflow does no harm here */
769 value
&= (1 << SSCR0_DSS(s
->sscr
[0])) - 1;
771 /* Data goes from here to the Tx FIFO and is shifted out from
772 * there directly to the slave, no need to buffer it.
776 s
->writefn(s
->opaque
, value
);
778 if (s
->rx_level
< 0x10) {
780 s
->rx_fifo
[(s
->rx_start
+ s
->rx_level
++) & 0xf] =
781 s
->readfn(s
->opaque
);
783 s
->rx_fifo
[(s
->rx_start
+ s
->rx_level
++) & 0xf] = 0x0;
787 pxa2xx_ssp_fifo_update(s
);
803 printf("%s: Bad register " REG_FMT
"\n", __FUNCTION__
, addr
);
808 void pxa2xx_ssp_attach(struct pxa2xx_ssp_s
*port
,
809 uint32_t (*readfn
)(void *opaque
),
810 void (*writefn
)(void *opaque
, uint32_t value
), void *opaque
)
813 printf("%s: no such SSP\n", __FUNCTION__
);
817 port
->opaque
= opaque
;
818 port
->readfn
= readfn
;
819 port
->writefn
= writefn
;
822 static CPUReadMemoryFunc
*pxa2xx_ssp_readfn
[] = {
828 static CPUWriteMemoryFunc
*pxa2xx_ssp_writefn
[] = {
834 static void pxa2xx_ssp_save(QEMUFile
*f
, void *opaque
)
836 struct pxa2xx_ssp_s
*s
= (struct pxa2xx_ssp_s
*) opaque
;
839 qemu_put_be32(f
, s
->enable
);
841 qemu_put_be32s(f
, &s
->sscr
[0]);
842 qemu_put_be32s(f
, &s
->sscr
[1]);
843 qemu_put_be32s(f
, &s
->sspsp
);
844 qemu_put_be32s(f
, &s
->ssto
);
845 qemu_put_be32s(f
, &s
->ssitr
);
846 qemu_put_be32s(f
, &s
->sssr
);
847 qemu_put_8s(f
, &s
->sstsa
);
848 qemu_put_8s(f
, &s
->ssrsa
);
849 qemu_put_8s(f
, &s
->ssacd
);
851 qemu_put_byte(f
, s
->rx_level
);
852 for (i
= 0; i
< s
->rx_level
; i
++)
853 qemu_put_byte(f
, s
->rx_fifo
[(s
->rx_start
+ i
) & 0xf]);
856 static int pxa2xx_ssp_load(QEMUFile
*f
, void *opaque
, int version_id
)
858 struct pxa2xx_ssp_s
*s
= (struct pxa2xx_ssp_s
*) opaque
;
861 s
->enable
= qemu_get_be32(f
);
863 qemu_get_be32s(f
, &s
->sscr
[0]);
864 qemu_get_be32s(f
, &s
->sscr
[1]);
865 qemu_get_be32s(f
, &s
->sspsp
);
866 qemu_get_be32s(f
, &s
->ssto
);
867 qemu_get_be32s(f
, &s
->ssitr
);
868 qemu_get_be32s(f
, &s
->sssr
);
869 qemu_get_8s(f
, &s
->sstsa
);
870 qemu_get_8s(f
, &s
->ssrsa
);
871 qemu_get_8s(f
, &s
->ssacd
);
873 s
->rx_level
= qemu_get_byte(f
);
875 for (i
= 0; i
< s
->rx_level
; i
++)
876 s
->rx_fifo
[i
] = qemu_get_byte(f
);
881 /* Real-Time Clock */
882 #define RCNR 0x00 /* RTC Counter register */
883 #define RTAR 0x04 /* RTC Alarm register */
884 #define RTSR 0x08 /* RTC Status register */
885 #define RTTR 0x0c /* RTC Timer Trim register */
886 #define RDCR 0x10 /* RTC Day Counter register */
887 #define RYCR 0x14 /* RTC Year Counter register */
888 #define RDAR1 0x18 /* RTC Wristwatch Day Alarm register 1 */
889 #define RYAR1 0x1c /* RTC Wristwatch Year Alarm register 1 */
890 #define RDAR2 0x20 /* RTC Wristwatch Day Alarm register 2 */
891 #define RYAR2 0x24 /* RTC Wristwatch Year Alarm register 2 */
892 #define SWCR 0x28 /* RTC Stopwatch Counter register */
893 #define SWAR1 0x2c /* RTC Stopwatch Alarm register 1 */
894 #define SWAR2 0x30 /* RTC Stopwatch Alarm register 2 */
895 #define RTCPICR 0x34 /* RTC Periodic Interrupt Counter register */
896 #define PIAR 0x38 /* RTC Periodic Interrupt Alarm register */
898 static inline void pxa2xx_rtc_int_update(struct pxa2xx_state_s
*s
)
900 qemu_set_irq(s
->pic
[PXA2XX_PIC_RTCALARM
], !!(s
->rtsr
& 0x2553));
903 static void pxa2xx_rtc_hzupdate(struct pxa2xx_state_s
*s
)
905 int64_t rt
= qemu_get_clock(rt_clock
);
906 s
->last_rcnr
+= ((rt
- s
->last_hz
) << 15) /
907 (1000 * ((s
->rttr
& 0xffff) + 1));
908 s
->last_rdcr
+= ((rt
- s
->last_hz
) << 15) /
909 (1000 * ((s
->rttr
& 0xffff) + 1));
913 static void pxa2xx_rtc_swupdate(struct pxa2xx_state_s
*s
)
915 int64_t rt
= qemu_get_clock(rt_clock
);
916 if (s
->rtsr
& (1 << 12))
917 s
->last_swcr
+= (rt
- s
->last_sw
) / 10;
921 static void pxa2xx_rtc_piupdate(struct pxa2xx_state_s
*s
)
923 int64_t rt
= qemu_get_clock(rt_clock
);
924 if (s
->rtsr
& (1 << 15))
925 s
->last_swcr
+= rt
- s
->last_pi
;
929 static inline void pxa2xx_rtc_alarm_update(struct pxa2xx_state_s
*s
,
932 if ((rtsr
& (1 << 2)) && !(rtsr
& (1 << 0)))
933 qemu_mod_timer(s
->rtc_hz
, s
->last_hz
+
934 (((s
->rtar
- s
->last_rcnr
) * 1000 *
935 ((s
->rttr
& 0xffff) + 1)) >> 15));
937 qemu_del_timer(s
->rtc_hz
);
939 if ((rtsr
& (1 << 5)) && !(rtsr
& (1 << 4)))
940 qemu_mod_timer(s
->rtc_rdal1
, s
->last_hz
+
941 (((s
->rdar1
- s
->last_rdcr
) * 1000 *
942 ((s
->rttr
& 0xffff) + 1)) >> 15)); /* TODO: fixup */
944 qemu_del_timer(s
->rtc_rdal1
);
946 if ((rtsr
& (1 << 7)) && !(rtsr
& (1 << 6)))
947 qemu_mod_timer(s
->rtc_rdal2
, s
->last_hz
+
948 (((s
->rdar2
- s
->last_rdcr
) * 1000 *
949 ((s
->rttr
& 0xffff) + 1)) >> 15)); /* TODO: fixup */
951 qemu_del_timer(s
->rtc_rdal2
);
953 if ((rtsr
& 0x1200) == 0x1200 && !(rtsr
& (1 << 8)))
954 qemu_mod_timer(s
->rtc_swal1
, s
->last_sw
+
955 (s
->swar1
- s
->last_swcr
) * 10); /* TODO: fixup */
957 qemu_del_timer(s
->rtc_swal1
);
959 if ((rtsr
& 0x1800) == 0x1800 && !(rtsr
& (1 << 10)))
960 qemu_mod_timer(s
->rtc_swal2
, s
->last_sw
+
961 (s
->swar2
- s
->last_swcr
) * 10); /* TODO: fixup */
963 qemu_del_timer(s
->rtc_swal2
);
965 if ((rtsr
& 0xc000) == 0xc000 && !(rtsr
& (1 << 13)))
966 qemu_mod_timer(s
->rtc_pi
, s
->last_pi
+
967 (s
->piar
& 0xffff) - s
->last_rtcpicr
);
969 qemu_del_timer(s
->rtc_pi
);
972 static inline void pxa2xx_rtc_hz_tick(void *opaque
)
974 struct pxa2xx_state_s
*s
= (struct pxa2xx_state_s
*) opaque
;
976 pxa2xx_rtc_alarm_update(s
, s
->rtsr
);
977 pxa2xx_rtc_int_update(s
);
980 static inline void pxa2xx_rtc_rdal1_tick(void *opaque
)
982 struct pxa2xx_state_s
*s
= (struct pxa2xx_state_s
*) opaque
;
984 pxa2xx_rtc_alarm_update(s
, s
->rtsr
);
985 pxa2xx_rtc_int_update(s
);
988 static inline void pxa2xx_rtc_rdal2_tick(void *opaque
)
990 struct pxa2xx_state_s
*s
= (struct pxa2xx_state_s
*) opaque
;
992 pxa2xx_rtc_alarm_update(s
, s
->rtsr
);
993 pxa2xx_rtc_int_update(s
);
996 static inline void pxa2xx_rtc_swal1_tick(void *opaque
)
998 struct pxa2xx_state_s
*s
= (struct pxa2xx_state_s
*) opaque
;
1000 pxa2xx_rtc_alarm_update(s
, s
->rtsr
);
1001 pxa2xx_rtc_int_update(s
);
1004 static inline void pxa2xx_rtc_swal2_tick(void *opaque
)
1006 struct pxa2xx_state_s
*s
= (struct pxa2xx_state_s
*) opaque
;
1007 s
->rtsr
|= (1 << 10);
1008 pxa2xx_rtc_alarm_update(s
, s
->rtsr
);
1009 pxa2xx_rtc_int_update(s
);
1012 static inline void pxa2xx_rtc_pi_tick(void *opaque
)
1014 struct pxa2xx_state_s
*s
= (struct pxa2xx_state_s
*) opaque
;
1015 s
->rtsr
|= (1 << 13);
1016 pxa2xx_rtc_piupdate(s
);
1017 s
->last_rtcpicr
= 0;
1018 pxa2xx_rtc_alarm_update(s
, s
->rtsr
);
1019 pxa2xx_rtc_int_update(s
);
1022 static uint32_t pxa2xx_rtc_read(void *opaque
, target_phys_addr_t addr
)
1024 struct pxa2xx_state_s
*s
= (struct pxa2xx_state_s
*) opaque
;
1025 addr
-= s
->rtc_base
;
1049 return s
->last_rcnr
+ ((qemu_get_clock(rt_clock
) - s
->last_hz
) << 15) /
1050 (1000 * ((s
->rttr
& 0xffff) + 1));
1052 return s
->last_rdcr
+ ((qemu_get_clock(rt_clock
) - s
->last_hz
) << 15) /
1053 (1000 * ((s
->rttr
& 0xffff) + 1));
1055 return s
->last_rycr
;
1057 if (s
->rtsr
& (1 << 12))
1058 return s
->last_swcr
+ (qemu_get_clock(rt_clock
) - s
->last_sw
) / 10;
1060 return s
->last_swcr
;
1062 printf("%s: Bad register " REG_FMT
"\n", __FUNCTION__
, addr
);
1068 static void pxa2xx_rtc_write(void *opaque
, target_phys_addr_t addr
,
1071 struct pxa2xx_state_s
*s
= (struct pxa2xx_state_s
*) opaque
;
1072 addr
-= s
->rtc_base
;
1076 if (!(s
->rttr
& (1 << 31))) {
1077 pxa2xx_rtc_hzupdate(s
);
1079 pxa2xx_rtc_alarm_update(s
, s
->rtsr
);
1084 if ((s
->rtsr
^ value
) & (1 << 15))
1085 pxa2xx_rtc_piupdate(s
);
1087 if ((s
->rtsr
^ value
) & (1 << 12))
1088 pxa2xx_rtc_swupdate(s
);
1090 if (((s
->rtsr
^ value
) & 0x4aac) | (value
& ~0xdaac))
1091 pxa2xx_rtc_alarm_update(s
, value
);
1093 s
->rtsr
= (value
& 0xdaac) | (s
->rtsr
& ~(value
& ~0xdaac));
1094 pxa2xx_rtc_int_update(s
);
1099 pxa2xx_rtc_alarm_update(s
, s
->rtsr
);
1104 pxa2xx_rtc_alarm_update(s
, s
->rtsr
);
1109 pxa2xx_rtc_alarm_update(s
, s
->rtsr
);
1114 pxa2xx_rtc_alarm_update(s
, s
->rtsr
);
1119 pxa2xx_rtc_alarm_update(s
, s
->rtsr
);
1123 pxa2xx_rtc_swupdate(s
);
1126 pxa2xx_rtc_alarm_update(s
, s
->rtsr
);
1131 pxa2xx_rtc_alarm_update(s
, s
->rtsr
);
1136 pxa2xx_rtc_alarm_update(s
, s
->rtsr
);
1140 pxa2xx_rtc_hzupdate(s
);
1141 s
->last_rcnr
= value
;
1142 pxa2xx_rtc_alarm_update(s
, s
->rtsr
);
1146 pxa2xx_rtc_hzupdate(s
);
1147 s
->last_rdcr
= value
;
1148 pxa2xx_rtc_alarm_update(s
, s
->rtsr
);
1152 s
->last_rycr
= value
;
1156 pxa2xx_rtc_swupdate(s
);
1157 s
->last_swcr
= value
;
1158 pxa2xx_rtc_alarm_update(s
, s
->rtsr
);
1162 pxa2xx_rtc_piupdate(s
);
1163 s
->last_rtcpicr
= value
& 0xffff;
1164 pxa2xx_rtc_alarm_update(s
, s
->rtsr
);
1168 printf("%s: Bad register " REG_FMT
"\n", __FUNCTION__
, addr
);
1172 static CPUReadMemoryFunc
*pxa2xx_rtc_readfn
[] = {
1178 static CPUWriteMemoryFunc
*pxa2xx_rtc_writefn
[] = {
1184 static void pxa2xx_rtc_init(struct pxa2xx_state_s
*s
)
1192 qemu_get_timedate(&tm
, 0);
1193 wom
= ((tm
.tm_mday
- 1) / 7) + 1;
1195 s
->last_rcnr
= (uint32_t) mktime(&tm
);
1196 s
->last_rdcr
= (wom
<< 20) | ((tm
.tm_wday
+ 1) << 17) |
1197 (tm
.tm_hour
<< 12) | (tm
.tm_min
<< 6) | tm
.tm_sec
;
1198 s
->last_rycr
= ((tm
.tm_year
+ 1900) << 9) |
1199 ((tm
.tm_mon
+ 1) << 5) | tm
.tm_mday
;
1200 s
->last_swcr
= (tm
.tm_hour
<< 19) |
1201 (tm
.tm_min
<< 13) | (tm
.tm_sec
<< 7);
1202 s
->last_rtcpicr
= 0;
1203 s
->last_hz
= s
->last_sw
= s
->last_pi
= qemu_get_clock(rt_clock
);
1205 s
->rtc_hz
= qemu_new_timer(rt_clock
, pxa2xx_rtc_hz_tick
, s
);
1206 s
->rtc_rdal1
= qemu_new_timer(rt_clock
, pxa2xx_rtc_rdal1_tick
, s
);
1207 s
->rtc_rdal2
= qemu_new_timer(rt_clock
, pxa2xx_rtc_rdal2_tick
, s
);
1208 s
->rtc_swal1
= qemu_new_timer(rt_clock
, pxa2xx_rtc_swal1_tick
, s
);
1209 s
->rtc_swal2
= qemu_new_timer(rt_clock
, pxa2xx_rtc_swal2_tick
, s
);
1210 s
->rtc_pi
= qemu_new_timer(rt_clock
, pxa2xx_rtc_pi_tick
, s
);
1213 static void pxa2xx_rtc_save(QEMUFile
*f
, void *opaque
)
1215 struct pxa2xx_state_s
*s
= (struct pxa2xx_state_s
*) opaque
;
1217 pxa2xx_rtc_hzupdate(s
);
1218 pxa2xx_rtc_piupdate(s
);
1219 pxa2xx_rtc_swupdate(s
);
1221 qemu_put_be32s(f
, &s
->rttr
);
1222 qemu_put_be32s(f
, &s
->rtsr
);
1223 qemu_put_be32s(f
, &s
->rtar
);
1224 qemu_put_be32s(f
, &s
->rdar1
);
1225 qemu_put_be32s(f
, &s
->rdar2
);
1226 qemu_put_be32s(f
, &s
->ryar1
);
1227 qemu_put_be32s(f
, &s
->ryar2
);
1228 qemu_put_be32s(f
, &s
->swar1
);
1229 qemu_put_be32s(f
, &s
->swar2
);
1230 qemu_put_be32s(f
, &s
->piar
);
1231 qemu_put_be32s(f
, &s
->last_rcnr
);
1232 qemu_put_be32s(f
, &s
->last_rdcr
);
1233 qemu_put_be32s(f
, &s
->last_rycr
);
1234 qemu_put_be32s(f
, &s
->last_swcr
);
1235 qemu_put_be32s(f
, &s
->last_rtcpicr
);
1236 qemu_put_sbe64s(f
, &s
->last_hz
);
1237 qemu_put_sbe64s(f
, &s
->last_sw
);
1238 qemu_put_sbe64s(f
, &s
->last_pi
);
1241 static int pxa2xx_rtc_load(QEMUFile
*f
, void *opaque
, int version_id
)
1243 struct pxa2xx_state_s
*s
= (struct pxa2xx_state_s
*) opaque
;
1245 qemu_get_be32s(f
, &s
->rttr
);
1246 qemu_get_be32s(f
, &s
->rtsr
);
1247 qemu_get_be32s(f
, &s
->rtar
);
1248 qemu_get_be32s(f
, &s
->rdar1
);
1249 qemu_get_be32s(f
, &s
->rdar2
);
1250 qemu_get_be32s(f
, &s
->ryar1
);
1251 qemu_get_be32s(f
, &s
->ryar2
);
1252 qemu_get_be32s(f
, &s
->swar1
);
1253 qemu_get_be32s(f
, &s
->swar2
);
1254 qemu_get_be32s(f
, &s
->piar
);
1255 qemu_get_be32s(f
, &s
->last_rcnr
);
1256 qemu_get_be32s(f
, &s
->last_rdcr
);
1257 qemu_get_be32s(f
, &s
->last_rycr
);
1258 qemu_get_be32s(f
, &s
->last_swcr
);
1259 qemu_get_be32s(f
, &s
->last_rtcpicr
);
1260 qemu_get_sbe64s(f
, &s
->last_hz
);
1261 qemu_get_sbe64s(f
, &s
->last_sw
);
1262 qemu_get_sbe64s(f
, &s
->last_pi
);
1264 pxa2xx_rtc_alarm_update(s
, s
->rtsr
);
1270 struct pxa2xx_i2c_s
{
1273 target_phys_addr_t base
;
1282 #define IBMR 0x80 /* I2C Bus Monitor register */
1283 #define IDBR 0x88 /* I2C Data Buffer register */
1284 #define ICR 0x90 /* I2C Control register */
1285 #define ISR 0x98 /* I2C Status register */
1286 #define ISAR 0xa0 /* I2C Slave Address register */
1288 static void pxa2xx_i2c_update(struct pxa2xx_i2c_s
*s
)
1291 level
|= s
->status
& s
->control
& (1 << 10); /* BED */
1292 level
|= (s
->status
& (1 << 7)) && (s
->control
& (1 << 9)); /* IRF */
1293 level
|= (s
->status
& (1 << 6)) && (s
->control
& (1 << 8)); /* ITE */
1294 level
|= s
->status
& (1 << 9); /* SAD */
1295 qemu_set_irq(s
->irq
, !!level
);
1298 /* These are only stubs now. */
1299 static void pxa2xx_i2c_event(i2c_slave
*i2c
, enum i2c_event event
)
1301 struct pxa2xx_i2c_s
*s
= (struct pxa2xx_i2c_s
*) i2c
;
1304 case I2C_START_SEND
:
1305 s
->status
|= (1 << 9); /* set SAD */
1306 s
->status
&= ~(1 << 0); /* clear RWM */
1308 case I2C_START_RECV
:
1309 s
->status
|= (1 << 9); /* set SAD */
1310 s
->status
|= 1 << 0; /* set RWM */
1313 s
->status
|= (1 << 4); /* set SSD */
1316 s
->status
|= 1 << 1; /* set ACKNAK */
1319 pxa2xx_i2c_update(s
);
1322 static int pxa2xx_i2c_rx(i2c_slave
*i2c
)
1324 struct pxa2xx_i2c_s
*s
= (struct pxa2xx_i2c_s
*) i2c
;
1325 if ((s
->control
& (1 << 14)) || !(s
->control
& (1 << 6)))
1328 if (s
->status
& (1 << 0)) { /* RWM */
1329 s
->status
|= 1 << 6; /* set ITE */
1331 pxa2xx_i2c_update(s
);
1336 static int pxa2xx_i2c_tx(i2c_slave
*i2c
, uint8_t data
)
1338 struct pxa2xx_i2c_s
*s
= (struct pxa2xx_i2c_s
*) i2c
;
1339 if ((s
->control
& (1 << 14)) || !(s
->control
& (1 << 6)))
1342 if (!(s
->status
& (1 << 0))) { /* RWM */
1343 s
->status
|= 1 << 7; /* set IRF */
1346 pxa2xx_i2c_update(s
);
1351 static uint32_t pxa2xx_i2c_read(void *opaque
, target_phys_addr_t addr
)
1353 struct pxa2xx_i2c_s
*s
= (struct pxa2xx_i2c_s
*) opaque
;
1360 return s
->status
| (i2c_bus_busy(s
->bus
) << 2);
1362 return s
->slave
.address
;
1366 if (s
->status
& (1 << 2))
1367 s
->ibmr
^= 3; /* Fake SCL and SDA pin changes */
1372 printf("%s: Bad register " REG_FMT
"\n", __FUNCTION__
, addr
);
1378 static void pxa2xx_i2c_write(void *opaque
, target_phys_addr_t addr
,
1381 struct pxa2xx_i2c_s
*s
= (struct pxa2xx_i2c_s
*) opaque
;
1387 s
->control
= value
& 0xfff7;
1388 if ((value
& (1 << 3)) && (value
& (1 << 6))) { /* TB and IUE */
1389 /* TODO: slave mode */
1390 if (value
& (1 << 0)) { /* START condition */
1392 s
->status
|= 1 << 0; /* set RWM */
1394 s
->status
&= ~(1 << 0); /* clear RWM */
1395 ack
= !i2c_start_transfer(s
->bus
, s
->data
>> 1, s
->data
& 1);
1397 if (s
->status
& (1 << 0)) { /* RWM */
1398 s
->data
= i2c_recv(s
->bus
);
1399 if (value
& (1 << 2)) /* ACKNAK */
1403 ack
= !i2c_send(s
->bus
, s
->data
);
1406 if (value
& (1 << 1)) /* STOP condition */
1407 i2c_end_transfer(s
->bus
);
1410 if (value
& (1 << 0)) /* START condition */
1411 s
->status
|= 1 << 6; /* set ITE */
1413 if (s
->status
& (1 << 0)) /* RWM */
1414 s
->status
|= 1 << 7; /* set IRF */
1416 s
->status
|= 1 << 6; /* set ITE */
1417 s
->status
&= ~(1 << 1); /* clear ACKNAK */
1419 s
->status
|= 1 << 6; /* set ITE */
1420 s
->status
|= 1 << 10; /* set BED */
1421 s
->status
|= 1 << 1; /* set ACKNAK */
1424 if (!(value
& (1 << 3)) && (value
& (1 << 6))) /* !TB and IUE */
1425 if (value
& (1 << 4)) /* MA */
1426 i2c_end_transfer(s
->bus
);
1427 pxa2xx_i2c_update(s
);
1431 s
->status
&= ~(value
& 0x07f0);
1432 pxa2xx_i2c_update(s
);
1436 i2c_set_slave_address(&s
->slave
, value
& 0x7f);
1440 s
->data
= value
& 0xff;
1444 printf("%s: Bad register " REG_FMT
"\n", __FUNCTION__
, addr
);
1448 static CPUReadMemoryFunc
*pxa2xx_i2c_readfn
[] = {
1454 static CPUWriteMemoryFunc
*pxa2xx_i2c_writefn
[] = {
1460 static void pxa2xx_i2c_save(QEMUFile
*f
, void *opaque
)
1462 struct pxa2xx_i2c_s
*s
= (struct pxa2xx_i2c_s
*) opaque
;
1464 qemu_put_be16s(f
, &s
->control
);
1465 qemu_put_be16s(f
, &s
->status
);
1466 qemu_put_8s(f
, &s
->ibmr
);
1467 qemu_put_8s(f
, &s
->data
);
1469 i2c_slave_save(f
, &s
->slave
);
1472 static int pxa2xx_i2c_load(QEMUFile
*f
, void *opaque
, int version_id
)
1474 struct pxa2xx_i2c_s
*s
= (struct pxa2xx_i2c_s
*) opaque
;
1476 if (version_id
!= 1)
1479 qemu_get_be16s(f
, &s
->control
);
1480 qemu_get_be16s(f
, &s
->status
);
1481 qemu_get_8s(f
, &s
->ibmr
);
1482 qemu_get_8s(f
, &s
->data
);
1484 i2c_slave_load(f
, &s
->slave
);
1488 struct pxa2xx_i2c_s
*pxa2xx_i2c_init(target_phys_addr_t base
,
1489 qemu_irq irq
, uint32_t page_size
)
1492 /* FIXME: Should the slave device really be on a separate bus? */
1493 struct pxa2xx_i2c_s
*s
= (struct pxa2xx_i2c_s
*)
1494 i2c_slave_init(i2c_init_bus(), 0, sizeof(struct pxa2xx_i2c_s
));
1498 s
->slave
.event
= pxa2xx_i2c_event
;
1499 s
->slave
.recv
= pxa2xx_i2c_rx
;
1500 s
->slave
.send
= pxa2xx_i2c_tx
;
1501 s
->bus
= i2c_init_bus();
1503 iomemtype
= cpu_register_io_memory(0, pxa2xx_i2c_readfn
,
1504 pxa2xx_i2c_writefn
, s
);
1505 cpu_register_physical_memory(s
->base
& ~page_size
, page_size
, iomemtype
);
1507 register_savevm("pxa2xx_i2c", base
, 1,
1508 pxa2xx_i2c_save
, pxa2xx_i2c_load
, s
);
1513 i2c_bus
*pxa2xx_i2c_bus(struct pxa2xx_i2c_s
*s
)
1518 /* PXA Inter-IC Sound Controller */
1519 static void pxa2xx_i2s_reset(struct pxa2xx_i2s_s
*i2s
)
1525 i2s
->control
[0] = 0x00;
1526 i2s
->control
[1] = 0x00;
1531 #define SACR_TFTH(val) ((val >> 8) & 0xf)
1532 #define SACR_RFTH(val) ((val >> 12) & 0xf)
1533 #define SACR_DREC(val) (val & (1 << 3))
1534 #define SACR_DPRL(val) (val & (1 << 4))
1536 static inline void pxa2xx_i2s_update(struct pxa2xx_i2s_s
*i2s
)
1539 rfs
= SACR_RFTH(i2s
->control
[0]) < i2s
->rx_len
&&
1540 !SACR_DREC(i2s
->control
[1]);
1541 tfs
= (i2s
->tx_len
|| i2s
->fifo_len
< SACR_TFTH(i2s
->control
[0])) &&
1542 i2s
->enable
&& !SACR_DPRL(i2s
->control
[1]);
1544 pxa2xx_dma_request(i2s
->dma
, PXA2XX_RX_RQ_I2S
, rfs
);
1545 pxa2xx_dma_request(i2s
->dma
, PXA2XX_TX_RQ_I2S
, tfs
);
1547 i2s
->status
&= 0xe0;
1548 if (i2s
->fifo_len
< 16 || !i2s
->enable
)
1549 i2s
->status
|= 1 << 0; /* TNF */
1551 i2s
->status
|= 1 << 1; /* RNE */
1553 i2s
->status
|= 1 << 2; /* BSY */
1555 i2s
->status
|= 1 << 3; /* TFS */
1557 i2s
->status
|= 1 << 4; /* RFS */
1558 if (!(i2s
->tx_len
&& i2s
->enable
))
1559 i2s
->status
|= i2s
->fifo_len
<< 8; /* TFL */
1560 i2s
->status
|= MAX(i2s
->rx_len
, 0xf) << 12; /* RFL */
1562 qemu_set_irq(i2s
->irq
, i2s
->status
& i2s
->mask
);
1565 #define SACR0 0x00 /* Serial Audio Global Control register */
1566 #define SACR1 0x04 /* Serial Audio I2S/MSB-Justified Control register */
1567 #define SASR0 0x0c /* Serial Audio Interface and FIFO Status register */
1568 #define SAIMR 0x14 /* Serial Audio Interrupt Mask register */
1569 #define SAICR 0x18 /* Serial Audio Interrupt Clear register */
1570 #define SADIV 0x60 /* Serial Audio Clock Divider register */
1571 #define SADR 0x80 /* Serial Audio Data register */
1573 static uint32_t pxa2xx_i2s_read(void *opaque
, target_phys_addr_t addr
)
1575 struct pxa2xx_i2s_s
*s
= (struct pxa2xx_i2s_s
*) opaque
;
1580 return s
->control
[0];
1582 return s
->control
[1];
1592 if (s
->rx_len
> 0) {
1594 pxa2xx_i2s_update(s
);
1595 return s
->codec_in(s
->opaque
);
1599 printf("%s: Bad register " REG_FMT
"\n", __FUNCTION__
, addr
);
1605 static void pxa2xx_i2s_write(void *opaque
, target_phys_addr_t addr
,
1608 struct pxa2xx_i2s_s
*s
= (struct pxa2xx_i2s_s
*) opaque
;
1614 if (value
& (1 << 3)) /* RST */
1615 pxa2xx_i2s_reset(s
);
1616 s
->control
[0] = value
& 0xff3d;
1617 if (!s
->enable
&& (value
& 1) && s
->tx_len
) { /* ENB */
1618 for (sample
= s
->fifo
; s
->fifo_len
> 0; s
->fifo_len
--, sample
++)
1619 s
->codec_out(s
->opaque
, *sample
);
1620 s
->status
&= ~(1 << 7); /* I2SOFF */
1622 if (value
& (1 << 4)) /* EFWR */
1623 printf("%s: Attempt to use special function\n", __FUNCTION__
);
1624 s
->enable
= ((value
^ 4) & 5) == 5; /* ENB && !RST*/
1625 pxa2xx_i2s_update(s
);
1628 s
->control
[1] = value
& 0x0039;
1629 if (value
& (1 << 5)) /* ENLBF */
1630 printf("%s: Attempt to use loopback function\n", __FUNCTION__
);
1631 if (value
& (1 << 4)) /* DPRL */
1633 pxa2xx_i2s_update(s
);
1636 s
->mask
= value
& 0x0078;
1637 pxa2xx_i2s_update(s
);
1640 s
->status
&= ~(value
& (3 << 5));
1641 pxa2xx_i2s_update(s
);
1644 s
->clk
= value
& 0x007f;
1647 if (s
->tx_len
&& s
->enable
) {
1649 pxa2xx_i2s_update(s
);
1650 s
->codec_out(s
->opaque
, value
);
1651 } else if (s
->fifo_len
< 16) {
1652 s
->fifo
[s
->fifo_len
++] = value
;
1653 pxa2xx_i2s_update(s
);
1657 printf("%s: Bad register " REG_FMT
"\n", __FUNCTION__
, addr
);
1661 static CPUReadMemoryFunc
*pxa2xx_i2s_readfn
[] = {
1667 static CPUWriteMemoryFunc
*pxa2xx_i2s_writefn
[] = {
1673 static void pxa2xx_i2s_save(QEMUFile
*f
, void *opaque
)
1675 struct pxa2xx_i2s_s
*s
= (struct pxa2xx_i2s_s
*) opaque
;
1677 qemu_put_be32s(f
, &s
->control
[0]);
1678 qemu_put_be32s(f
, &s
->control
[1]);
1679 qemu_put_be32s(f
, &s
->status
);
1680 qemu_put_be32s(f
, &s
->mask
);
1681 qemu_put_be32s(f
, &s
->clk
);
1683 qemu_put_be32(f
, s
->enable
);
1684 qemu_put_be32(f
, s
->rx_len
);
1685 qemu_put_be32(f
, s
->tx_len
);
1686 qemu_put_be32(f
, s
->fifo_len
);
1689 static int pxa2xx_i2s_load(QEMUFile
*f
, void *opaque
, int version_id
)
1691 struct pxa2xx_i2s_s
*s
= (struct pxa2xx_i2s_s
*) opaque
;
1693 qemu_get_be32s(f
, &s
->control
[0]);
1694 qemu_get_be32s(f
, &s
->control
[1]);
1695 qemu_get_be32s(f
, &s
->status
);
1696 qemu_get_be32s(f
, &s
->mask
);
1697 qemu_get_be32s(f
, &s
->clk
);
1699 s
->enable
= qemu_get_be32(f
);
1700 s
->rx_len
= qemu_get_be32(f
);
1701 s
->tx_len
= qemu_get_be32(f
);
1702 s
->fifo_len
= qemu_get_be32(f
);
1707 static void pxa2xx_i2s_data_req(void *opaque
, int tx
, int rx
)
1709 struct pxa2xx_i2s_s
*s
= (struct pxa2xx_i2s_s
*) opaque
;
1712 /* Signal FIFO errors */
1713 if (s
->enable
&& s
->tx_len
)
1714 s
->status
|= 1 << 5; /* TUR */
1715 if (s
->enable
&& s
->rx_len
)
1716 s
->status
|= 1 << 6; /* ROR */
1718 /* Should be tx - MIN(tx, s->fifo_len) but we don't really need to
1719 * handle the cases where it makes a difference. */
1720 s
->tx_len
= tx
- s
->fifo_len
;
1722 /* Note that is s->codec_out wasn't set, we wouldn't get called. */
1724 for (sample
= s
->fifo
; s
->fifo_len
; s
->fifo_len
--, sample
++)
1725 s
->codec_out(s
->opaque
, *sample
);
1726 pxa2xx_i2s_update(s
);
1729 static struct pxa2xx_i2s_s
*pxa2xx_i2s_init(target_phys_addr_t base
,
1730 qemu_irq irq
, struct pxa2xx_dma_state_s
*dma
)
1733 struct pxa2xx_i2s_s
*s
= (struct pxa2xx_i2s_s
*)
1734 qemu_mallocz(sizeof(struct pxa2xx_i2s_s
));
1739 s
->data_req
= pxa2xx_i2s_data_req
;
1741 pxa2xx_i2s_reset(s
);
1743 iomemtype
= cpu_register_io_memory(0, pxa2xx_i2s_readfn
,
1744 pxa2xx_i2s_writefn
, s
);
1745 cpu_register_physical_memory(s
->base
& 0xfff00000, 0x100000, iomemtype
);
1747 register_savevm("pxa2xx_i2s", base
, 0,
1748 pxa2xx_i2s_save
, pxa2xx_i2s_load
, s
);
1753 /* PXA Fast Infra-red Communications Port */
1754 struct pxa2xx_fir_s
{
1755 target_phys_addr_t base
;
1757 struct pxa2xx_dma_state_s
*dma
;
1759 CharDriverState
*chr
;
1766 uint8_t rx_fifo
[64];
1769 static void pxa2xx_fir_reset(struct pxa2xx_fir_s
*s
)
1771 s
->control
[0] = 0x00;
1772 s
->control
[1] = 0x00;
1773 s
->control
[2] = 0x00;
1774 s
->status
[0] = 0x00;
1775 s
->status
[1] = 0x00;
1779 static inline void pxa2xx_fir_update(struct pxa2xx_fir_s
*s
)
1781 static const int tresh
[4] = { 8, 16, 32, 0 };
1783 if ((s
->control
[0] & (1 << 4)) && /* RXE */
1784 s
->rx_len
>= tresh
[s
->control
[2] & 3]) /* TRIG */
1785 s
->status
[0] |= 1 << 4; /* RFS */
1787 s
->status
[0] &= ~(1 << 4); /* RFS */
1788 if (s
->control
[0] & (1 << 3)) /* TXE */
1789 s
->status
[0] |= 1 << 3; /* TFS */
1791 s
->status
[0] &= ~(1 << 3); /* TFS */
1793 s
->status
[1] |= 1 << 2; /* RNE */
1795 s
->status
[1] &= ~(1 << 2); /* RNE */
1796 if (s
->control
[0] & (1 << 4)) /* RXE */
1797 s
->status
[1] |= 1 << 0; /* RSY */
1799 s
->status
[1] &= ~(1 << 0); /* RSY */
1801 intr
|= (s
->control
[0] & (1 << 5)) && /* RIE */
1802 (s
->status
[0] & (1 << 4)); /* RFS */
1803 intr
|= (s
->control
[0] & (1 << 6)) && /* TIE */
1804 (s
->status
[0] & (1 << 3)); /* TFS */
1805 intr
|= (s
->control
[2] & (1 << 4)) && /* TRAIL */
1806 (s
->status
[0] & (1 << 6)); /* EOC */
1807 intr
|= (s
->control
[0] & (1 << 2)) && /* TUS */
1808 (s
->status
[0] & (1 << 1)); /* TUR */
1809 intr
|= s
->status
[0] & 0x25; /* FRE, RAB, EIF */
1811 pxa2xx_dma_request(s
->dma
, PXA2XX_RX_RQ_ICP
, (s
->status
[0] >> 4) & 1);
1812 pxa2xx_dma_request(s
->dma
, PXA2XX_TX_RQ_ICP
, (s
->status
[0] >> 3) & 1);
1814 qemu_set_irq(s
->irq
, intr
&& s
->enable
);
1817 #define ICCR0 0x00 /* FICP Control register 0 */
1818 #define ICCR1 0x04 /* FICP Control register 1 */
1819 #define ICCR2 0x08 /* FICP Control register 2 */
1820 #define ICDR 0x0c /* FICP Data register */
1821 #define ICSR0 0x14 /* FICP Status register 0 */
1822 #define ICSR1 0x18 /* FICP Status register 1 */
1823 #define ICFOR 0x1c /* FICP FIFO Occupancy Status register */
1825 static uint32_t pxa2xx_fir_read(void *opaque
, target_phys_addr_t addr
)
1827 struct pxa2xx_fir_s
*s
= (struct pxa2xx_fir_s
*) opaque
;
1833 return s
->control
[0];
1835 return s
->control
[1];
1837 return s
->control
[2];
1839 s
->status
[0] &= ~0x01;
1840 s
->status
[1] &= ~0x72;
1843 ret
= s
->rx_fifo
[s
->rx_start
++];
1845 pxa2xx_fir_update(s
);
1848 printf("%s: Rx FIFO underrun.\n", __FUNCTION__
);
1851 return s
->status
[0];
1853 return s
->status
[1] | (1 << 3); /* TNF */
1857 printf("%s: Bad register " REG_FMT
"\n", __FUNCTION__
, addr
);
1863 static void pxa2xx_fir_write(void *opaque
, target_phys_addr_t addr
,
1866 struct pxa2xx_fir_s
*s
= (struct pxa2xx_fir_s
*) opaque
;
1872 s
->control
[0] = value
;
1873 if (!(value
& (1 << 4))) /* RXE */
1874 s
->rx_len
= s
->rx_start
= 0;
1875 if (!(value
& (1 << 3))) /* TXE */
1877 s
->enable
= value
& 1; /* ITR */
1880 pxa2xx_fir_update(s
);
1883 s
->control
[1] = value
;
1886 s
->control
[2] = value
& 0x3f;
1887 pxa2xx_fir_update(s
);
1890 if (s
->control
[2] & (1 << 2)) /* TXP */
1894 if (s
->chr
&& s
->enable
&& (s
->control
[0] & (1 << 3))) /* TXE */
1895 qemu_chr_write(s
->chr
, &ch
, 1);
1898 s
->status
[0] &= ~(value
& 0x66);
1899 pxa2xx_fir_update(s
);
1904 printf("%s: Bad register " REG_FMT
"\n", __FUNCTION__
, addr
);
1908 static CPUReadMemoryFunc
*pxa2xx_fir_readfn
[] = {
1914 static CPUWriteMemoryFunc
*pxa2xx_fir_writefn
[] = {
1920 static int pxa2xx_fir_is_empty(void *opaque
)
1922 struct pxa2xx_fir_s
*s
= (struct pxa2xx_fir_s
*) opaque
;
1923 return (s
->rx_len
< 64);
1926 static void pxa2xx_fir_rx(void *opaque
, const uint8_t *buf
, int size
)
1928 struct pxa2xx_fir_s
*s
= (struct pxa2xx_fir_s
*) opaque
;
1929 if (!(s
->control
[0] & (1 << 4))) /* RXE */
1933 s
->status
[1] |= 1 << 4; /* EOF */
1934 if (s
->rx_len
>= 64) {
1935 s
->status
[1] |= 1 << 6; /* ROR */
1939 if (s
->control
[2] & (1 << 3)) /* RXP */
1940 s
->rx_fifo
[(s
->rx_start
+ s
->rx_len
++) & 63] = *(buf
++);
1942 s
->rx_fifo
[(s
->rx_start
+ s
->rx_len
++) & 63] = ~*(buf
++);
1945 pxa2xx_fir_update(s
);
1948 static void pxa2xx_fir_event(void *opaque
, int event
)
1952 static void pxa2xx_fir_save(QEMUFile
*f
, void *opaque
)
1954 struct pxa2xx_fir_s
*s
= (struct pxa2xx_fir_s
*) opaque
;
1957 qemu_put_be32(f
, s
->enable
);
1959 qemu_put_8s(f
, &s
->control
[0]);
1960 qemu_put_8s(f
, &s
->control
[1]);
1961 qemu_put_8s(f
, &s
->control
[2]);
1962 qemu_put_8s(f
, &s
->status
[0]);
1963 qemu_put_8s(f
, &s
->status
[1]);
1965 qemu_put_byte(f
, s
->rx_len
);
1966 for (i
= 0; i
< s
->rx_len
; i
++)
1967 qemu_put_byte(f
, s
->rx_fifo
[(s
->rx_start
+ i
) & 63]);
1970 static int pxa2xx_fir_load(QEMUFile
*f
, void *opaque
, int version_id
)
1972 struct pxa2xx_fir_s
*s
= (struct pxa2xx_fir_s
*) opaque
;
1975 s
->enable
= qemu_get_be32(f
);
1977 qemu_get_8s(f
, &s
->control
[0]);
1978 qemu_get_8s(f
, &s
->control
[1]);
1979 qemu_get_8s(f
, &s
->control
[2]);
1980 qemu_get_8s(f
, &s
->status
[0]);
1981 qemu_get_8s(f
, &s
->status
[1]);
1983 s
->rx_len
= qemu_get_byte(f
);
1985 for (i
= 0; i
< s
->rx_len
; i
++)
1986 s
->rx_fifo
[i
] = qemu_get_byte(f
);
1991 static struct pxa2xx_fir_s
*pxa2xx_fir_init(target_phys_addr_t base
,
1992 qemu_irq irq
, struct pxa2xx_dma_state_s
*dma
,
1993 CharDriverState
*chr
)
1996 struct pxa2xx_fir_s
*s
= (struct pxa2xx_fir_s
*)
1997 qemu_mallocz(sizeof(struct pxa2xx_fir_s
));
2004 pxa2xx_fir_reset(s
);
2006 iomemtype
= cpu_register_io_memory(0, pxa2xx_fir_readfn
,
2007 pxa2xx_fir_writefn
, s
);
2008 cpu_register_physical_memory(s
->base
, 0x1000, iomemtype
);
2011 qemu_chr_add_handlers(chr
, pxa2xx_fir_is_empty
,
2012 pxa2xx_fir_rx
, pxa2xx_fir_event
, s
);
2014 register_savevm("pxa2xx_fir", 0, 0, pxa2xx_fir_save
, pxa2xx_fir_load
, s
);
2019 static void pxa2xx_reset(void *opaque
, int line
, int level
)
2021 struct pxa2xx_state_s
*s
= (struct pxa2xx_state_s
*) opaque
;
2023 if (level
&& (s
->pm_regs
[PCFR
>> 2] & 0x10)) { /* GPR_EN */
2025 /* TODO: reset peripherals */
2029 /* Initialise a PXA270 integrated chip (ARM based core). */
2030 struct pxa2xx_state_s
*pxa270_init(unsigned int sdram_size
,
2031 DisplayState
*ds
, const char *revision
)
2033 struct pxa2xx_state_s
*s
;
2034 struct pxa2xx_ssp_s
*ssp
;
2037 s
= (struct pxa2xx_state_s
*) qemu_mallocz(sizeof(struct pxa2xx_state_s
));
2039 if (revision
&& strncmp(revision
, "pxa27", 5)) {
2040 fprintf(stderr
, "Machine requires a PXA27x processor.\n");
2044 revision
= "pxa270";
2046 s
->env
= cpu_init(revision
);
2048 fprintf(stderr
, "Unable to find CPU definition\n");
2051 s
->reset
= qemu_allocate_irqs(pxa2xx_reset
, s
, 1)[0];
2053 /* SDRAM & Internal Memory Storage */
2054 cpu_register_physical_memory(PXA2XX_SDRAM_BASE
,
2055 sdram_size
, qemu_ram_alloc(sdram_size
) | IO_MEM_RAM
);
2056 cpu_register_physical_memory(PXA2XX_INTERNAL_BASE
,
2057 0x40000, qemu_ram_alloc(0x40000) | IO_MEM_RAM
);
2059 s
->pic
= pxa2xx_pic_init(0x40d00000, s
->env
);
2061 s
->dma
= pxa27x_dma_init(0x40000000, s
->pic
[PXA2XX_PIC_DMA
]);
2063 pxa27x_timer_init(0x40a00000, &s
->pic
[PXA2XX_PIC_OST_0
],
2064 s
->pic
[PXA27X_PIC_OST_4_11
]);
2066 s
->gpio
= pxa2xx_gpio_init(0x40e00000, s
->env
, s
->pic
, 121);
2068 index
= drive_get_index(IF_SD
, 0, 0);
2070 fprintf(stderr
, "qemu: missing SecureDigital device\n");
2073 s
->mmc
= pxa2xx_mmci_init(0x41100000, drives_table
[index
].bdrv
,
2074 s
->pic
[PXA2XX_PIC_MMC
], s
->dma
);
2076 for (i
= 0; pxa270_serial
[i
].io_base
; i
++)
2078 serial_mm_init(pxa270_serial
[i
].io_base
, 2,
2079 s
->pic
[pxa270_serial
[i
].irqn
], 14857000/16,
2084 s
->fir
= pxa2xx_fir_init(0x40800000, s
->pic
[PXA2XX_PIC_ICP
],
2085 s
->dma
, serial_hds
[i
]);
2088 s
->lcd
= pxa2xx_lcdc_init(0x44000000, s
->pic
[PXA2XX_PIC_LCD
], ds
);
2090 s
->cm_base
= 0x41300000;
2091 s
->cm_regs
[CCCR
>> 2] = 0x02000210; /* 416.0 MHz */
2092 s
->clkcfg
= 0x00000009; /* Turbo mode active */
2093 iomemtype
= cpu_register_io_memory(0, pxa2xx_cm_readfn
,
2094 pxa2xx_cm_writefn
, s
);
2095 cpu_register_physical_memory(s
->cm_base
, 0x1000, iomemtype
);
2096 register_savevm("pxa2xx_cm", 0, 0, pxa2xx_cm_save
, pxa2xx_cm_load
, s
);
2098 cpu_arm_set_cp_io(s
->env
, 14, pxa2xx_cp14_read
, pxa2xx_cp14_write
, s
);
2100 s
->mm_base
= 0x48000000;
2101 s
->mm_regs
[MDMRS
>> 2] = 0x00020002;
2102 s
->mm_regs
[MDREFR
>> 2] = 0x03ca4000;
2103 s
->mm_regs
[MECR
>> 2] = 0x00000001; /* Two PC Card sockets */
2104 iomemtype
= cpu_register_io_memory(0, pxa2xx_mm_readfn
,
2105 pxa2xx_mm_writefn
, s
);
2106 cpu_register_physical_memory(s
->mm_base
, 0x1000, iomemtype
);
2107 register_savevm("pxa2xx_mm", 0, 0, pxa2xx_mm_save
, pxa2xx_mm_load
, s
);
2109 s
->pm_base
= 0x40f00000;
2110 iomemtype
= cpu_register_io_memory(0, pxa2xx_pm_readfn
,
2111 pxa2xx_pm_writefn
, s
);
2112 cpu_register_physical_memory(s
->pm_base
, 0x100, iomemtype
);
2113 register_savevm("pxa2xx_pm", 0, 0, pxa2xx_pm_save
, pxa2xx_pm_load
, s
);
2115 for (i
= 0; pxa27x_ssp
[i
].io_base
; i
++);
2116 s
->ssp
= (struct pxa2xx_ssp_s
**)
2117 qemu_mallocz(sizeof(struct pxa2xx_ssp_s
*) * i
);
2118 ssp
= (struct pxa2xx_ssp_s
*)
2119 qemu_mallocz(sizeof(struct pxa2xx_ssp_s
) * i
);
2120 for (i
= 0; pxa27x_ssp
[i
].io_base
; i
++) {
2121 s
->ssp
[i
] = &ssp
[i
];
2122 ssp
[i
].base
= pxa27x_ssp
[i
].io_base
;
2123 ssp
[i
].irq
= s
->pic
[pxa27x_ssp
[i
].irqn
];
2125 iomemtype
= cpu_register_io_memory(0, pxa2xx_ssp_readfn
,
2126 pxa2xx_ssp_writefn
, &ssp
[i
]);
2127 cpu_register_physical_memory(ssp
[i
].base
, 0x1000, iomemtype
);
2128 register_savevm("pxa2xx_ssp", i
, 0,
2129 pxa2xx_ssp_save
, pxa2xx_ssp_load
, s
);
2133 usb_ohci_init_pxa(0x4c000000, 3, -1, s
->pic
[PXA2XX_PIC_USBH1
]);
2136 s
->pcmcia
[0] = pxa2xx_pcmcia_init(0x20000000);
2137 s
->pcmcia
[1] = pxa2xx_pcmcia_init(0x30000000);
2139 s
->rtc_base
= 0x40900000;
2140 iomemtype
= cpu_register_io_memory(0, pxa2xx_rtc_readfn
,
2141 pxa2xx_rtc_writefn
, s
);
2142 cpu_register_physical_memory(s
->rtc_base
, 0x1000, iomemtype
);
2144 register_savevm("pxa2xx_rtc", 0, 0, pxa2xx_rtc_save
, pxa2xx_rtc_load
, s
);
2146 s
->i2c
[0] = pxa2xx_i2c_init(0x40301600, s
->pic
[PXA2XX_PIC_I2C
], 0xffff);
2147 s
->i2c
[1] = pxa2xx_i2c_init(0x40f00100, s
->pic
[PXA2XX_PIC_PWRI2C
], 0xff);
2149 s
->i2s
= pxa2xx_i2s_init(0x40400000, s
->pic
[PXA2XX_PIC_I2S
], s
->dma
);
2151 s
->kp
= pxa27x_keypad_init(0x41500000, s
->pic
[PXA2XX_PIC_KEYPAD
]);
2153 /* GPIO1 resets the processor */
2154 /* The handler can be overridden by board-specific code */
2155 pxa2xx_gpio_out_set(s
->gpio
, 1, s
->reset
);
2159 /* Initialise a PXA255 integrated chip (ARM based core). */
2160 struct pxa2xx_state_s
*pxa255_init(unsigned int sdram_size
,
2163 struct pxa2xx_state_s
*s
;
2164 struct pxa2xx_ssp_s
*ssp
;
2168 s
= (struct pxa2xx_state_s
*) qemu_mallocz(sizeof(struct pxa2xx_state_s
));
2170 s
->env
= cpu_init("pxa255");
2172 fprintf(stderr
, "Unable to find CPU definition\n");
2175 s
->reset
= qemu_allocate_irqs(pxa2xx_reset
, s
, 1)[0];
2177 /* SDRAM & Internal Memory Storage */
2178 cpu_register_physical_memory(PXA2XX_SDRAM_BASE
, sdram_size
,
2179 qemu_ram_alloc(sdram_size
) | IO_MEM_RAM
);
2180 cpu_register_physical_memory(PXA2XX_INTERNAL_BASE
, PXA2XX_INTERNAL_SIZE
,
2181 qemu_ram_alloc(PXA2XX_INTERNAL_SIZE
) | IO_MEM_RAM
);
2183 s
->pic
= pxa2xx_pic_init(0x40d00000, s
->env
);
2185 s
->dma
= pxa255_dma_init(0x40000000, s
->pic
[PXA2XX_PIC_DMA
]);
2187 pxa25x_timer_init(0x40a00000, &s
->pic
[PXA2XX_PIC_OST_0
]);
2189 s
->gpio
= pxa2xx_gpio_init(0x40e00000, s
->env
, s
->pic
, 85);
2191 index
= drive_get_index(IF_SD
, 0, 0);
2193 fprintf(stderr
, "qemu: missing SecureDigital device\n");
2196 s
->mmc
= pxa2xx_mmci_init(0x41100000, drives_table
[index
].bdrv
,
2197 s
->pic
[PXA2XX_PIC_MMC
], s
->dma
);
2199 for (i
= 0; pxa255_serial
[i
].io_base
; i
++)
2201 serial_mm_init(pxa255_serial
[i
].io_base
, 2,
2202 s
->pic
[pxa255_serial
[i
].irqn
], 14745600/16,
2207 s
->fir
= pxa2xx_fir_init(0x40800000, s
->pic
[PXA2XX_PIC_ICP
],
2208 s
->dma
, serial_hds
[i
]);
2211 s
->lcd
= pxa2xx_lcdc_init(0x44000000, s
->pic
[PXA2XX_PIC_LCD
], ds
);
2213 s
->cm_base
= 0x41300000;
2214 s
->cm_regs
[CCCR
>> 2] = 0x02000210; /* 416.0 MHz */
2215 s
->clkcfg
= 0x00000009; /* Turbo mode active */
2216 iomemtype
= cpu_register_io_memory(0, pxa2xx_cm_readfn
,
2217 pxa2xx_cm_writefn
, s
);
2218 cpu_register_physical_memory(s
->cm_base
, 0x1000, iomemtype
);
2219 register_savevm("pxa2xx_cm", 0, 0, pxa2xx_cm_save
, pxa2xx_cm_load
, s
);
2221 cpu_arm_set_cp_io(s
->env
, 14, pxa2xx_cp14_read
, pxa2xx_cp14_write
, s
);
2223 s
->mm_base
= 0x48000000;
2224 s
->mm_regs
[MDMRS
>> 2] = 0x00020002;
2225 s
->mm_regs
[MDREFR
>> 2] = 0x03ca4000;
2226 s
->mm_regs
[MECR
>> 2] = 0x00000001; /* Two PC Card sockets */
2227 iomemtype
= cpu_register_io_memory(0, pxa2xx_mm_readfn
,
2228 pxa2xx_mm_writefn
, s
);
2229 cpu_register_physical_memory(s
->mm_base
, 0x1000, iomemtype
);
2230 register_savevm("pxa2xx_mm", 0, 0, pxa2xx_mm_save
, pxa2xx_mm_load
, s
);
2232 s
->pm_base
= 0x40f00000;
2233 iomemtype
= cpu_register_io_memory(0, pxa2xx_pm_readfn
,
2234 pxa2xx_pm_writefn
, s
);
2235 cpu_register_physical_memory(s
->pm_base
, 0x100, iomemtype
);
2236 register_savevm("pxa2xx_pm", 0, 0, pxa2xx_pm_save
, pxa2xx_pm_load
, s
);
2238 for (i
= 0; pxa255_ssp
[i
].io_base
; i
++);
2239 s
->ssp
= (struct pxa2xx_ssp_s
**)
2240 qemu_mallocz(sizeof(struct pxa2xx_ssp_s
*) * i
);
2241 ssp
= (struct pxa2xx_ssp_s
*)
2242 qemu_mallocz(sizeof(struct pxa2xx_ssp_s
) * i
);
2243 for (i
= 0; pxa255_ssp
[i
].io_base
; i
++) {
2244 s
->ssp
[i
] = &ssp
[i
];
2245 ssp
[i
].base
= pxa255_ssp
[i
].io_base
;
2246 ssp
[i
].irq
= s
->pic
[pxa255_ssp
[i
].irqn
];
2248 iomemtype
= cpu_register_io_memory(0, pxa2xx_ssp_readfn
,
2249 pxa2xx_ssp_writefn
, &ssp
[i
]);
2250 cpu_register_physical_memory(ssp
[i
].base
, 0x1000, iomemtype
);
2251 register_savevm("pxa2xx_ssp", i
, 0,
2252 pxa2xx_ssp_save
, pxa2xx_ssp_load
, s
);
2256 usb_ohci_init_pxa(0x4c000000, 3, -1, s
->pic
[PXA2XX_PIC_USBH1
]);
2259 s
->pcmcia
[0] = pxa2xx_pcmcia_init(0x20000000);
2260 s
->pcmcia
[1] = pxa2xx_pcmcia_init(0x30000000);
2262 s
->rtc_base
= 0x40900000;
2263 iomemtype
= cpu_register_io_memory(0, pxa2xx_rtc_readfn
,
2264 pxa2xx_rtc_writefn
, s
);
2265 cpu_register_physical_memory(s
->rtc_base
, 0x1000, iomemtype
);
2267 register_savevm("pxa2xx_rtc", 0, 0, pxa2xx_rtc_save
, pxa2xx_rtc_load
, s
);
2269 s
->i2c
[0] = pxa2xx_i2c_init(0x40301600, s
->pic
[PXA2XX_PIC_I2C
], 0xffff);
2270 s
->i2c
[1] = pxa2xx_i2c_init(0x40f00100, s
->pic
[PXA2XX_PIC_PWRI2C
], 0xff);
2272 s
->i2s
= pxa2xx_i2s_init(0x40400000, s
->pic
[PXA2XX_PIC_I2S
], s
->dma
);
2274 /* GPIO1 resets the processor */
2275 /* The handler can be overridden by board-specific code */
2276 pxa2xx_gpio_out_set(s
->gpio
, 1, s
->reset
);