Update Changelog.
[qemu/mini2440.git] / vl.c
blobd23af87a7148793545d8c7177750791c3e06a039
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2007 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "vl.h"
26 #include <unistd.h>
27 #include <fcntl.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <errno.h>
31 #include <sys/time.h>
32 #include <zlib.h>
34 #ifndef _WIN32
35 #include <sys/times.h>
36 #include <sys/wait.h>
37 #include <termios.h>
38 #include <sys/poll.h>
39 #include <sys/mman.h>
40 #include <sys/ioctl.h>
41 #include <sys/socket.h>
42 #include <netinet/in.h>
43 #include <dirent.h>
44 #include <netdb.h>
45 #ifdef _BSD
46 #include <sys/stat.h>
47 #ifndef __APPLE__
48 #include <libutil.h>
49 #endif
50 #else
51 #ifndef __sun__
52 #include <linux/if.h>
53 #include <linux/if_tun.h>
54 #include <pty.h>
55 #include <malloc.h>
56 #include <linux/rtc.h>
57 #include <linux/ppdev.h>
58 #include <linux/parport.h>
59 #else
60 #include <sys/stat.h>
61 #include <sys/ethernet.h>
62 #include <sys/sockio.h>
63 #include <arpa/inet.h>
64 #include <netinet/arp.h>
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #include <netinet/ip_icmp.h> // must come after ip.h
69 #include <netinet/udp.h>
70 #include <netinet/tcp.h>
71 #include <net/if.h>
72 #include <syslog.h>
73 #include <stropts.h>
74 #endif
75 #endif
76 #endif
78 #if defined(CONFIG_SLIRP)
79 #include "libslirp.h"
80 #endif
82 #ifdef _WIN32
83 #include <malloc.h>
84 #include <sys/timeb.h>
85 #include <windows.h>
86 #define getopt_long_only getopt_long
87 #define memalign(align, size) malloc(size)
88 #endif
90 #include "qemu_socket.h"
92 #ifdef CONFIG_SDL
93 #ifdef __APPLE__
94 #include <SDL/SDL.h>
95 #endif
96 #endif /* CONFIG_SDL */
98 #ifdef CONFIG_COCOA
99 #undef main
100 #define main qemu_main
101 #endif /* CONFIG_COCOA */
103 #include "disas.h"
105 #include "exec-all.h"
107 #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
108 #ifdef __sun__
109 #define SMBD_COMMAND "/usr/sfw/sbin/smbd"
110 #else
111 #define SMBD_COMMAND "/usr/sbin/smbd"
112 #endif
114 //#define DEBUG_UNUSED_IOPORT
115 //#define DEBUG_IOPORT
117 #define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
119 #ifdef TARGET_PPC
120 #define DEFAULT_RAM_SIZE 144
121 #else
122 #define DEFAULT_RAM_SIZE 128
123 #endif
124 /* in ms */
125 #define GUI_REFRESH_INTERVAL 30
127 /* Max number of USB devices that can be specified on the commandline. */
128 #define MAX_USB_CMDLINE 8
130 /* XXX: use a two level table to limit memory usage */
131 #define MAX_IOPORTS 65536
133 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
134 char phys_ram_file[1024];
135 void *ioport_opaque[MAX_IOPORTS];
136 IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
137 IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
138 /* Note: bs_table[MAX_DISKS] is a dummy block driver if none available
139 to store the VM snapshots */
140 BlockDriverState *bs_table[MAX_DISKS + 1], *fd_table[MAX_FD];
141 BlockDriverState *pflash_table[MAX_PFLASH];
142 BlockDriverState *sd_bdrv;
143 BlockDriverState *mtd_bdrv;
144 /* point to the block driver where the snapshots are managed */
145 BlockDriverState *bs_snapshots;
146 int vga_ram_size;
147 static DisplayState display_state;
148 int nographic;
149 const char* keyboard_layout = NULL;
150 int64_t ticks_per_sec;
151 int boot_device = 'c';
152 int ram_size;
153 int pit_min_timer_count = 0;
154 int nb_nics;
155 NICInfo nd_table[MAX_NICS];
156 QEMUTimer *gui_timer;
157 int vm_running;
158 int rtc_utc = 1;
159 int cirrus_vga_enabled = 1;
160 int vmsvga_enabled = 0;
161 #ifdef TARGET_SPARC
162 int graphic_width = 1024;
163 int graphic_height = 768;
164 int graphic_depth = 8;
165 #else
166 int graphic_width = 800;
167 int graphic_height = 600;
168 int graphic_depth = 15;
169 #endif
170 int full_screen = 0;
171 int no_frame = 0;
172 int no_quit = 0;
173 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
174 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
175 #ifdef TARGET_I386
176 int win2k_install_hack = 0;
177 #endif
178 int usb_enabled = 0;
179 static VLANState *first_vlan;
180 int smp_cpus = 1;
181 const char *vnc_display;
182 #if defined(TARGET_SPARC)
183 #define MAX_CPUS 16
184 #elif defined(TARGET_I386)
185 #define MAX_CPUS 255
186 #else
187 #define MAX_CPUS 1
188 #endif
189 int acpi_enabled = 1;
190 int fd_bootchk = 1;
191 int no_reboot = 0;
192 int cursor_hide = 1;
193 int graphic_rotate = 0;
194 int daemonize = 0;
195 const char *option_rom[MAX_OPTION_ROMS];
196 int nb_option_roms;
197 int semihosting_enabled = 0;
198 int autostart = 1;
199 const char *qemu_name;
200 #ifdef TARGET_SPARC
201 unsigned int nb_prom_envs = 0;
202 const char *prom_envs[MAX_PROM_ENVS];
203 #endif
205 /***********************************************************/
206 /* x86 ISA bus support */
208 target_phys_addr_t isa_mem_base = 0;
209 PicState2 *isa_pic;
211 uint32_t default_ioport_readb(void *opaque, uint32_t address)
213 #ifdef DEBUG_UNUSED_IOPORT
214 fprintf(stderr, "unused inb: port=0x%04x\n", address);
215 #endif
216 return 0xff;
219 void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
221 #ifdef DEBUG_UNUSED_IOPORT
222 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
223 #endif
226 /* default is to make two byte accesses */
227 uint32_t default_ioport_readw(void *opaque, uint32_t address)
229 uint32_t data;
230 data = ioport_read_table[0][address](ioport_opaque[address], address);
231 address = (address + 1) & (MAX_IOPORTS - 1);
232 data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
233 return data;
236 void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
238 ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
239 address = (address + 1) & (MAX_IOPORTS - 1);
240 ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
243 uint32_t default_ioport_readl(void *opaque, uint32_t address)
245 #ifdef DEBUG_UNUSED_IOPORT
246 fprintf(stderr, "unused inl: port=0x%04x\n", address);
247 #endif
248 return 0xffffffff;
251 void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
253 #ifdef DEBUG_UNUSED_IOPORT
254 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
255 #endif
258 void init_ioports(void)
260 int i;
262 for(i = 0; i < MAX_IOPORTS; i++) {
263 ioport_read_table[0][i] = default_ioport_readb;
264 ioport_write_table[0][i] = default_ioport_writeb;
265 ioport_read_table[1][i] = default_ioport_readw;
266 ioport_write_table[1][i] = default_ioport_writew;
267 ioport_read_table[2][i] = default_ioport_readl;
268 ioport_write_table[2][i] = default_ioport_writel;
272 /* size is the word size in byte */
273 int register_ioport_read(int start, int length, int size,
274 IOPortReadFunc *func, void *opaque)
276 int i, bsize;
278 if (size == 1) {
279 bsize = 0;
280 } else if (size == 2) {
281 bsize = 1;
282 } else if (size == 4) {
283 bsize = 2;
284 } else {
285 hw_error("register_ioport_read: invalid size");
286 return -1;
288 for(i = start; i < start + length; i += size) {
289 ioport_read_table[bsize][i] = func;
290 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
291 hw_error("register_ioport_read: invalid opaque");
292 ioport_opaque[i] = opaque;
294 return 0;
297 /* size is the word size in byte */
298 int register_ioport_write(int start, int length, int size,
299 IOPortWriteFunc *func, void *opaque)
301 int i, bsize;
303 if (size == 1) {
304 bsize = 0;
305 } else if (size == 2) {
306 bsize = 1;
307 } else if (size == 4) {
308 bsize = 2;
309 } else {
310 hw_error("register_ioport_write: invalid size");
311 return -1;
313 for(i = start; i < start + length; i += size) {
314 ioport_write_table[bsize][i] = func;
315 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
316 hw_error("register_ioport_write: invalid opaque");
317 ioport_opaque[i] = opaque;
319 return 0;
322 void isa_unassign_ioport(int start, int length)
324 int i;
326 for(i = start; i < start + length; i++) {
327 ioport_read_table[0][i] = default_ioport_readb;
328 ioport_read_table[1][i] = default_ioport_readw;
329 ioport_read_table[2][i] = default_ioport_readl;
331 ioport_write_table[0][i] = default_ioport_writeb;
332 ioport_write_table[1][i] = default_ioport_writew;
333 ioport_write_table[2][i] = default_ioport_writel;
337 /***********************************************************/
339 void cpu_outb(CPUState *env, int addr, int val)
341 #ifdef DEBUG_IOPORT
342 if (loglevel & CPU_LOG_IOPORT)
343 fprintf(logfile, "outb: %04x %02x\n", addr, val);
344 #endif
345 ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
346 #ifdef USE_KQEMU
347 if (env)
348 env->last_io_time = cpu_get_time_fast();
349 #endif
352 void cpu_outw(CPUState *env, int addr, int val)
354 #ifdef DEBUG_IOPORT
355 if (loglevel & CPU_LOG_IOPORT)
356 fprintf(logfile, "outw: %04x %04x\n", addr, val);
357 #endif
358 ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
359 #ifdef USE_KQEMU
360 if (env)
361 env->last_io_time = cpu_get_time_fast();
362 #endif
365 void cpu_outl(CPUState *env, int addr, int val)
367 #ifdef DEBUG_IOPORT
368 if (loglevel & CPU_LOG_IOPORT)
369 fprintf(logfile, "outl: %04x %08x\n", addr, val);
370 #endif
371 ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
372 #ifdef USE_KQEMU
373 if (env)
374 env->last_io_time = cpu_get_time_fast();
375 #endif
378 int cpu_inb(CPUState *env, int addr)
380 int val;
381 val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
382 #ifdef DEBUG_IOPORT
383 if (loglevel & CPU_LOG_IOPORT)
384 fprintf(logfile, "inb : %04x %02x\n", addr, val);
385 #endif
386 #ifdef USE_KQEMU
387 if (env)
388 env->last_io_time = cpu_get_time_fast();
389 #endif
390 return val;
393 int cpu_inw(CPUState *env, int addr)
395 int val;
396 val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
397 #ifdef DEBUG_IOPORT
398 if (loglevel & CPU_LOG_IOPORT)
399 fprintf(logfile, "inw : %04x %04x\n", addr, val);
400 #endif
401 #ifdef USE_KQEMU
402 if (env)
403 env->last_io_time = cpu_get_time_fast();
404 #endif
405 return val;
408 int cpu_inl(CPUState *env, int addr)
410 int val;
411 val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
412 #ifdef DEBUG_IOPORT
413 if (loglevel & CPU_LOG_IOPORT)
414 fprintf(logfile, "inl : %04x %08x\n", addr, val);
415 #endif
416 #ifdef USE_KQEMU
417 if (env)
418 env->last_io_time = cpu_get_time_fast();
419 #endif
420 return val;
423 /***********************************************************/
424 void hw_error(const char *fmt, ...)
426 va_list ap;
427 CPUState *env;
429 va_start(ap, fmt);
430 fprintf(stderr, "qemu: hardware error: ");
431 vfprintf(stderr, fmt, ap);
432 fprintf(stderr, "\n");
433 for(env = first_cpu; env != NULL; env = env->next_cpu) {
434 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
435 #ifdef TARGET_I386
436 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
437 #else
438 cpu_dump_state(env, stderr, fprintf, 0);
439 #endif
441 va_end(ap);
442 abort();
445 /***********************************************************/
446 /* keyboard/mouse */
448 static QEMUPutKBDEvent *qemu_put_kbd_event;
449 static void *qemu_put_kbd_event_opaque;
450 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
451 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
453 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
455 qemu_put_kbd_event_opaque = opaque;
456 qemu_put_kbd_event = func;
459 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
460 void *opaque, int absolute,
461 const char *name)
463 QEMUPutMouseEntry *s, *cursor;
465 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
466 if (!s)
467 return NULL;
469 s->qemu_put_mouse_event = func;
470 s->qemu_put_mouse_event_opaque = opaque;
471 s->qemu_put_mouse_event_absolute = absolute;
472 s->qemu_put_mouse_event_name = qemu_strdup(name);
473 s->next = NULL;
475 if (!qemu_put_mouse_event_head) {
476 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
477 return s;
480 cursor = qemu_put_mouse_event_head;
481 while (cursor->next != NULL)
482 cursor = cursor->next;
484 cursor->next = s;
485 qemu_put_mouse_event_current = s;
487 return s;
490 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
492 QEMUPutMouseEntry *prev = NULL, *cursor;
494 if (!qemu_put_mouse_event_head || entry == NULL)
495 return;
497 cursor = qemu_put_mouse_event_head;
498 while (cursor != NULL && cursor != entry) {
499 prev = cursor;
500 cursor = cursor->next;
503 if (cursor == NULL) // does not exist or list empty
504 return;
505 else if (prev == NULL) { // entry is head
506 qemu_put_mouse_event_head = cursor->next;
507 if (qemu_put_mouse_event_current == entry)
508 qemu_put_mouse_event_current = cursor->next;
509 qemu_free(entry->qemu_put_mouse_event_name);
510 qemu_free(entry);
511 return;
514 prev->next = entry->next;
516 if (qemu_put_mouse_event_current == entry)
517 qemu_put_mouse_event_current = prev;
519 qemu_free(entry->qemu_put_mouse_event_name);
520 qemu_free(entry);
523 void kbd_put_keycode(int keycode)
525 if (qemu_put_kbd_event) {
526 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
530 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
532 QEMUPutMouseEvent *mouse_event;
533 void *mouse_event_opaque;
534 int width;
536 if (!qemu_put_mouse_event_current) {
537 return;
540 mouse_event =
541 qemu_put_mouse_event_current->qemu_put_mouse_event;
542 mouse_event_opaque =
543 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
545 if (mouse_event) {
546 if (graphic_rotate) {
547 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
548 width = 0x7fff;
549 else
550 width = graphic_width;
551 mouse_event(mouse_event_opaque,
552 width - dy, dx, dz, buttons_state);
553 } else
554 mouse_event(mouse_event_opaque,
555 dx, dy, dz, buttons_state);
559 int kbd_mouse_is_absolute(void)
561 if (!qemu_put_mouse_event_current)
562 return 0;
564 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
567 void do_info_mice(void)
569 QEMUPutMouseEntry *cursor;
570 int index = 0;
572 if (!qemu_put_mouse_event_head) {
573 term_printf("No mouse devices connected\n");
574 return;
577 term_printf("Mouse devices available:\n");
578 cursor = qemu_put_mouse_event_head;
579 while (cursor != NULL) {
580 term_printf("%c Mouse #%d: %s\n",
581 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
582 index, cursor->qemu_put_mouse_event_name);
583 index++;
584 cursor = cursor->next;
588 void do_mouse_set(int index)
590 QEMUPutMouseEntry *cursor;
591 int i = 0;
593 if (!qemu_put_mouse_event_head) {
594 term_printf("No mouse devices connected\n");
595 return;
598 cursor = qemu_put_mouse_event_head;
599 while (cursor != NULL && index != i) {
600 i++;
601 cursor = cursor->next;
604 if (cursor != NULL)
605 qemu_put_mouse_event_current = cursor;
606 else
607 term_printf("Mouse at given index not found\n");
610 /* compute with 96 bit intermediate result: (a*b)/c */
611 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
613 union {
614 uint64_t ll;
615 struct {
616 #ifdef WORDS_BIGENDIAN
617 uint32_t high, low;
618 #else
619 uint32_t low, high;
620 #endif
621 } l;
622 } u, res;
623 uint64_t rl, rh;
625 u.ll = a;
626 rl = (uint64_t)u.l.low * (uint64_t)b;
627 rh = (uint64_t)u.l.high * (uint64_t)b;
628 rh += (rl >> 32);
629 res.l.high = rh / c;
630 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
631 return res.ll;
634 /***********************************************************/
635 /* real time host monotonic timer */
637 #define QEMU_TIMER_BASE 1000000000LL
639 #ifdef WIN32
641 static int64_t clock_freq;
643 static void init_get_clock(void)
645 LARGE_INTEGER freq;
646 int ret;
647 ret = QueryPerformanceFrequency(&freq);
648 if (ret == 0) {
649 fprintf(stderr, "Could not calibrate ticks\n");
650 exit(1);
652 clock_freq = freq.QuadPart;
655 static int64_t get_clock(void)
657 LARGE_INTEGER ti;
658 QueryPerformanceCounter(&ti);
659 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
662 #else
664 static int use_rt_clock;
666 static void init_get_clock(void)
668 use_rt_clock = 0;
669 #if defined(__linux__)
671 struct timespec ts;
672 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
673 use_rt_clock = 1;
676 #endif
679 static int64_t get_clock(void)
681 #if defined(__linux__)
682 if (use_rt_clock) {
683 struct timespec ts;
684 clock_gettime(CLOCK_MONOTONIC, &ts);
685 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
686 } else
687 #endif
689 /* XXX: using gettimeofday leads to problems if the date
690 changes, so it should be avoided. */
691 struct timeval tv;
692 gettimeofday(&tv, NULL);
693 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
697 #endif
699 /***********************************************************/
700 /* guest cycle counter */
702 static int64_t cpu_ticks_prev;
703 static int64_t cpu_ticks_offset;
704 static int64_t cpu_clock_offset;
705 static int cpu_ticks_enabled;
707 /* return the host CPU cycle counter and handle stop/restart */
708 int64_t cpu_get_ticks(void)
710 if (!cpu_ticks_enabled) {
711 return cpu_ticks_offset;
712 } else {
713 int64_t ticks;
714 ticks = cpu_get_real_ticks();
715 if (cpu_ticks_prev > ticks) {
716 /* Note: non increasing ticks may happen if the host uses
717 software suspend */
718 cpu_ticks_offset += cpu_ticks_prev - ticks;
720 cpu_ticks_prev = ticks;
721 return ticks + cpu_ticks_offset;
725 /* return the host CPU monotonic timer and handle stop/restart */
726 static int64_t cpu_get_clock(void)
728 int64_t ti;
729 if (!cpu_ticks_enabled) {
730 return cpu_clock_offset;
731 } else {
732 ti = get_clock();
733 return ti + cpu_clock_offset;
737 /* enable cpu_get_ticks() */
738 void cpu_enable_ticks(void)
740 if (!cpu_ticks_enabled) {
741 cpu_ticks_offset -= cpu_get_real_ticks();
742 cpu_clock_offset -= get_clock();
743 cpu_ticks_enabled = 1;
747 /* disable cpu_get_ticks() : the clock is stopped. You must not call
748 cpu_get_ticks() after that. */
749 void cpu_disable_ticks(void)
751 if (cpu_ticks_enabled) {
752 cpu_ticks_offset = cpu_get_ticks();
753 cpu_clock_offset = cpu_get_clock();
754 cpu_ticks_enabled = 0;
758 /***********************************************************/
759 /* timers */
761 #define QEMU_TIMER_REALTIME 0
762 #define QEMU_TIMER_VIRTUAL 1
764 struct QEMUClock {
765 int type;
766 /* XXX: add frequency */
769 struct QEMUTimer {
770 QEMUClock *clock;
771 int64_t expire_time;
772 QEMUTimerCB *cb;
773 void *opaque;
774 struct QEMUTimer *next;
777 QEMUClock *rt_clock;
778 QEMUClock *vm_clock;
780 static QEMUTimer *active_timers[2];
781 #ifdef _WIN32
782 static MMRESULT timerID;
783 static HANDLE host_alarm = NULL;
784 static unsigned int period = 1;
785 #else
786 /* frequency of the times() clock tick */
787 static int timer_freq;
788 #endif
790 QEMUClock *qemu_new_clock(int type)
792 QEMUClock *clock;
793 clock = qemu_mallocz(sizeof(QEMUClock));
794 if (!clock)
795 return NULL;
796 clock->type = type;
797 return clock;
800 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
802 QEMUTimer *ts;
804 ts = qemu_mallocz(sizeof(QEMUTimer));
805 ts->clock = clock;
806 ts->cb = cb;
807 ts->opaque = opaque;
808 return ts;
811 void qemu_free_timer(QEMUTimer *ts)
813 qemu_free(ts);
816 /* stop a timer, but do not dealloc it */
817 void qemu_del_timer(QEMUTimer *ts)
819 QEMUTimer **pt, *t;
821 /* NOTE: this code must be signal safe because
822 qemu_timer_expired() can be called from a signal. */
823 pt = &active_timers[ts->clock->type];
824 for(;;) {
825 t = *pt;
826 if (!t)
827 break;
828 if (t == ts) {
829 *pt = t->next;
830 break;
832 pt = &t->next;
836 /* modify the current timer so that it will be fired when current_time
837 >= expire_time. The corresponding callback will be called. */
838 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
840 QEMUTimer **pt, *t;
842 qemu_del_timer(ts);
844 /* add the timer in the sorted list */
845 /* NOTE: this code must be signal safe because
846 qemu_timer_expired() can be called from a signal. */
847 pt = &active_timers[ts->clock->type];
848 for(;;) {
849 t = *pt;
850 if (!t)
851 break;
852 if (t->expire_time > expire_time)
853 break;
854 pt = &t->next;
856 ts->expire_time = expire_time;
857 ts->next = *pt;
858 *pt = ts;
861 int qemu_timer_pending(QEMUTimer *ts)
863 QEMUTimer *t;
864 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
865 if (t == ts)
866 return 1;
868 return 0;
871 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
873 if (!timer_head)
874 return 0;
875 return (timer_head->expire_time <= current_time);
878 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
880 QEMUTimer *ts;
882 for(;;) {
883 ts = *ptimer_head;
884 if (!ts || ts->expire_time > current_time)
885 break;
886 /* remove timer from the list before calling the callback */
887 *ptimer_head = ts->next;
888 ts->next = NULL;
890 /* run the callback (the timer list can be modified) */
891 ts->cb(ts->opaque);
895 int64_t qemu_get_clock(QEMUClock *clock)
897 switch(clock->type) {
898 case QEMU_TIMER_REALTIME:
899 return get_clock() / 1000000;
900 default:
901 case QEMU_TIMER_VIRTUAL:
902 return cpu_get_clock();
906 static void init_timers(void)
908 init_get_clock();
909 ticks_per_sec = QEMU_TIMER_BASE;
910 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
911 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
914 /* save a timer */
915 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
917 uint64_t expire_time;
919 if (qemu_timer_pending(ts)) {
920 expire_time = ts->expire_time;
921 } else {
922 expire_time = -1;
924 qemu_put_be64(f, expire_time);
927 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
929 uint64_t expire_time;
931 expire_time = qemu_get_be64(f);
932 if (expire_time != -1) {
933 qemu_mod_timer(ts, expire_time);
934 } else {
935 qemu_del_timer(ts);
939 static void timer_save(QEMUFile *f, void *opaque)
941 if (cpu_ticks_enabled) {
942 hw_error("cannot save state if virtual timers are running");
944 qemu_put_be64s(f, &cpu_ticks_offset);
945 qemu_put_be64s(f, &ticks_per_sec);
946 qemu_put_be64s(f, &cpu_clock_offset);
949 static int timer_load(QEMUFile *f, void *opaque, int version_id)
951 if (version_id != 1 && version_id != 2)
952 return -EINVAL;
953 if (cpu_ticks_enabled) {
954 return -EINVAL;
956 qemu_get_be64s(f, &cpu_ticks_offset);
957 qemu_get_be64s(f, &ticks_per_sec);
958 if (version_id == 2) {
959 qemu_get_be64s(f, &cpu_clock_offset);
961 return 0;
964 #ifdef _WIN32
965 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
966 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
967 #else
968 static void host_alarm_handler(int host_signum)
969 #endif
971 #if 0
972 #define DISP_FREQ 1000
974 static int64_t delta_min = INT64_MAX;
975 static int64_t delta_max, delta_cum, last_clock, delta, ti;
976 static int count;
977 ti = qemu_get_clock(vm_clock);
978 if (last_clock != 0) {
979 delta = ti - last_clock;
980 if (delta < delta_min)
981 delta_min = delta;
982 if (delta > delta_max)
983 delta_max = delta;
984 delta_cum += delta;
985 if (++count == DISP_FREQ) {
986 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
987 muldiv64(delta_min, 1000000, ticks_per_sec),
988 muldiv64(delta_max, 1000000, ticks_per_sec),
989 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
990 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
991 count = 0;
992 delta_min = INT64_MAX;
993 delta_max = 0;
994 delta_cum = 0;
997 last_clock = ti;
999 #endif
1000 if (qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1001 qemu_get_clock(vm_clock)) ||
1002 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1003 qemu_get_clock(rt_clock))) {
1004 #ifdef _WIN32
1005 SetEvent(host_alarm);
1006 #endif
1007 CPUState *env = cpu_single_env;
1008 if (env) {
1009 /* stop the currently executing cpu because a timer occured */
1010 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1011 #ifdef USE_KQEMU
1012 if (env->kqemu_enabled) {
1013 kqemu_cpu_interrupt(env);
1015 #endif
1020 #ifndef _WIN32
1022 #if defined(__linux__)
1024 #define RTC_FREQ 1024
1026 static int rtc_fd;
1028 static int start_rtc_timer(void)
1030 rtc_fd = open("/dev/rtc", O_RDONLY);
1031 if (rtc_fd < 0)
1032 return -1;
1033 if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1034 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1035 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1036 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1037 goto fail;
1039 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1040 fail:
1041 close(rtc_fd);
1042 return -1;
1044 pit_min_timer_count = PIT_FREQ / RTC_FREQ;
1045 return 0;
1048 #else
1050 static int start_rtc_timer(void)
1052 return -1;
1055 #endif /* !defined(__linux__) */
1057 #endif /* !defined(_WIN32) */
1059 static void init_timer_alarm(void)
1061 #ifdef _WIN32
1063 int count=0;
1064 TIMECAPS tc;
1066 ZeroMemory(&tc, sizeof(TIMECAPS));
1067 timeGetDevCaps(&tc, sizeof(TIMECAPS));
1068 if (period < tc.wPeriodMin)
1069 period = tc.wPeriodMin;
1070 timeBeginPeriod(period);
1071 timerID = timeSetEvent(1, // interval (ms)
1072 period, // resolution
1073 host_alarm_handler, // function
1074 (DWORD)&count, // user parameter
1075 TIME_PERIODIC | TIME_CALLBACK_FUNCTION);
1076 if( !timerID ) {
1077 perror("failed timer alarm");
1078 exit(1);
1080 host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1081 if (!host_alarm) {
1082 perror("failed CreateEvent");
1083 exit(1);
1085 qemu_add_wait_object(host_alarm, NULL, NULL);
1087 pit_min_timer_count = ((uint64_t)10000 * PIT_FREQ) / 1000000;
1088 #else
1090 struct sigaction act;
1091 struct itimerval itv;
1093 /* get times() syscall frequency */
1094 timer_freq = sysconf(_SC_CLK_TCK);
1096 /* timer signal */
1097 sigfillset(&act.sa_mask);
1098 act.sa_flags = 0;
1099 #if defined (TARGET_I386) && defined(USE_CODE_COPY)
1100 act.sa_flags |= SA_ONSTACK;
1101 #endif
1102 act.sa_handler = host_alarm_handler;
1103 sigaction(SIGALRM, &act, NULL);
1105 itv.it_interval.tv_sec = 0;
1106 itv.it_interval.tv_usec = 999; /* for i386 kernel 2.6 to get 1 ms */
1107 itv.it_value.tv_sec = 0;
1108 itv.it_value.tv_usec = 10 * 1000;
1109 setitimer(ITIMER_REAL, &itv, NULL);
1110 /* we probe the tick duration of the kernel to inform the user if
1111 the emulated kernel requested a too high timer frequency */
1112 getitimer(ITIMER_REAL, &itv);
1114 #if defined(__linux__)
1115 /* XXX: force /dev/rtc usage because even 2.6 kernels may not
1116 have timers with 1 ms resolution. The correct solution will
1117 be to use the POSIX real time timers available in recent
1118 2.6 kernels */
1119 if (itv.it_interval.tv_usec > 1000 || 1) {
1120 /* try to use /dev/rtc to have a faster timer */
1121 if (start_rtc_timer() < 0)
1122 goto use_itimer;
1123 /* disable itimer */
1124 itv.it_interval.tv_sec = 0;
1125 itv.it_interval.tv_usec = 0;
1126 itv.it_value.tv_sec = 0;
1127 itv.it_value.tv_usec = 0;
1128 setitimer(ITIMER_REAL, &itv, NULL);
1130 /* use the RTC */
1131 sigaction(SIGIO, &act, NULL);
1132 fcntl(rtc_fd, F_SETFL, O_ASYNC);
1133 fcntl(rtc_fd, F_SETOWN, getpid());
1134 } else
1135 #endif /* defined(__linux__) */
1137 use_itimer:
1138 pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec *
1139 PIT_FREQ) / 1000000;
1142 #endif
1145 void quit_timers(void)
1147 #ifdef _WIN32
1148 timeKillEvent(timerID);
1149 timeEndPeriod(period);
1150 if (host_alarm) {
1151 CloseHandle(host_alarm);
1152 host_alarm = NULL;
1154 #endif
1157 /***********************************************************/
1158 /* character device */
1160 static void qemu_chr_event(CharDriverState *s, int event)
1162 if (!s->chr_event)
1163 return;
1164 s->chr_event(s->handler_opaque, event);
1167 static void qemu_chr_reset_bh(void *opaque)
1169 CharDriverState *s = opaque;
1170 qemu_chr_event(s, CHR_EVENT_RESET);
1171 qemu_bh_delete(s->bh);
1172 s->bh = NULL;
1175 void qemu_chr_reset(CharDriverState *s)
1177 if (s->bh == NULL) {
1178 s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1179 qemu_bh_schedule(s->bh);
1183 int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1185 return s->chr_write(s, buf, len);
1188 int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1190 if (!s->chr_ioctl)
1191 return -ENOTSUP;
1192 return s->chr_ioctl(s, cmd, arg);
1195 int qemu_chr_can_read(CharDriverState *s)
1197 if (!s->chr_can_read)
1198 return 0;
1199 return s->chr_can_read(s->handler_opaque);
1202 void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1204 s->chr_read(s->handler_opaque, buf, len);
1208 void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1210 char buf[4096];
1211 va_list ap;
1212 va_start(ap, fmt);
1213 vsnprintf(buf, sizeof(buf), fmt, ap);
1214 qemu_chr_write(s, buf, strlen(buf));
1215 va_end(ap);
1218 void qemu_chr_send_event(CharDriverState *s, int event)
1220 if (s->chr_send_event)
1221 s->chr_send_event(s, event);
1224 void qemu_chr_add_handlers(CharDriverState *s,
1225 IOCanRWHandler *fd_can_read,
1226 IOReadHandler *fd_read,
1227 IOEventHandler *fd_event,
1228 void *opaque)
1230 s->chr_can_read = fd_can_read;
1231 s->chr_read = fd_read;
1232 s->chr_event = fd_event;
1233 s->handler_opaque = opaque;
1234 if (s->chr_update_read_handler)
1235 s->chr_update_read_handler(s);
1238 static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1240 return len;
1243 static CharDriverState *qemu_chr_open_null(void)
1245 CharDriverState *chr;
1247 chr = qemu_mallocz(sizeof(CharDriverState));
1248 if (!chr)
1249 return NULL;
1250 chr->chr_write = null_chr_write;
1251 return chr;
1254 /* MUX driver for serial I/O splitting */
1255 static int term_timestamps;
1256 static int64_t term_timestamps_start;
1257 #define MAX_MUX 4
1258 typedef struct {
1259 IOCanRWHandler *chr_can_read[MAX_MUX];
1260 IOReadHandler *chr_read[MAX_MUX];
1261 IOEventHandler *chr_event[MAX_MUX];
1262 void *ext_opaque[MAX_MUX];
1263 CharDriverState *drv;
1264 int mux_cnt;
1265 int term_got_escape;
1266 int max_size;
1267 } MuxDriver;
1270 static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1272 MuxDriver *d = chr->opaque;
1273 int ret;
1274 if (!term_timestamps) {
1275 ret = d->drv->chr_write(d->drv, buf, len);
1276 } else {
1277 int i;
1279 ret = 0;
1280 for(i = 0; i < len; i++) {
1281 ret += d->drv->chr_write(d->drv, buf+i, 1);
1282 if (buf[i] == '\n') {
1283 char buf1[64];
1284 int64_t ti;
1285 int secs;
1287 ti = get_clock();
1288 if (term_timestamps_start == -1)
1289 term_timestamps_start = ti;
1290 ti -= term_timestamps_start;
1291 secs = ti / 1000000000;
1292 snprintf(buf1, sizeof(buf1),
1293 "[%02d:%02d:%02d.%03d] ",
1294 secs / 3600,
1295 (secs / 60) % 60,
1296 secs % 60,
1297 (int)((ti / 1000000) % 1000));
1298 d->drv->chr_write(d->drv, buf1, strlen(buf1));
1302 return ret;
1305 static char *mux_help[] = {
1306 "% h print this help\n\r",
1307 "% x exit emulator\n\r",
1308 "% s save disk data back to file (if -snapshot)\n\r",
1309 "% t toggle console timestamps\n\r"
1310 "% b send break (magic sysrq)\n\r",
1311 "% c switch between console and monitor\n\r",
1312 "% % sends %\n\r",
1313 NULL
1316 static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1317 static void mux_print_help(CharDriverState *chr)
1319 int i, j;
1320 char ebuf[15] = "Escape-Char";
1321 char cbuf[50] = "\n\r";
1323 if (term_escape_char > 0 && term_escape_char < 26) {
1324 sprintf(cbuf,"\n\r");
1325 sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1326 } else {
1327 sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r", term_escape_char);
1329 chr->chr_write(chr, cbuf, strlen(cbuf));
1330 for (i = 0; mux_help[i] != NULL; i++) {
1331 for (j=0; mux_help[i][j] != '\0'; j++) {
1332 if (mux_help[i][j] == '%')
1333 chr->chr_write(chr, ebuf, strlen(ebuf));
1334 else
1335 chr->chr_write(chr, &mux_help[i][j], 1);
1340 static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1342 if (d->term_got_escape) {
1343 d->term_got_escape = 0;
1344 if (ch == term_escape_char)
1345 goto send_char;
1346 switch(ch) {
1347 case '?':
1348 case 'h':
1349 mux_print_help(chr);
1350 break;
1351 case 'x':
1353 char *term = "QEMU: Terminated\n\r";
1354 chr->chr_write(chr,term,strlen(term));
1355 exit(0);
1356 break;
1358 case 's':
1360 int i;
1361 for (i = 0; i < MAX_DISKS; i++) {
1362 if (bs_table[i])
1363 bdrv_commit(bs_table[i]);
1365 if (mtd_bdrv)
1366 bdrv_commit(mtd_bdrv);
1368 break;
1369 case 'b':
1370 qemu_chr_event(chr, CHR_EVENT_BREAK);
1371 break;
1372 case 'c':
1373 /* Switch to the next registered device */
1374 chr->focus++;
1375 if (chr->focus >= d->mux_cnt)
1376 chr->focus = 0;
1377 break;
1378 case 't':
1379 term_timestamps = !term_timestamps;
1380 term_timestamps_start = -1;
1381 break;
1383 } else if (ch == term_escape_char) {
1384 d->term_got_escape = 1;
1385 } else {
1386 send_char:
1387 return 1;
1389 return 0;
1392 static int mux_chr_can_read(void *opaque)
1394 CharDriverState *chr = opaque;
1395 MuxDriver *d = chr->opaque;
1396 if (d->chr_can_read[chr->focus])
1397 return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1398 return 0;
1401 static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1403 CharDriverState *chr = opaque;
1404 MuxDriver *d = chr->opaque;
1405 int i;
1406 for(i = 0; i < size; i++)
1407 if (mux_proc_byte(chr, d, buf[i]))
1408 d->chr_read[chr->focus](d->ext_opaque[chr->focus], &buf[i], 1);
1411 static void mux_chr_event(void *opaque, int event)
1413 CharDriverState *chr = opaque;
1414 MuxDriver *d = chr->opaque;
1415 int i;
1417 /* Send the event to all registered listeners */
1418 for (i = 0; i < d->mux_cnt; i++)
1419 if (d->chr_event[i])
1420 d->chr_event[i](d->ext_opaque[i], event);
1423 static void mux_chr_update_read_handler(CharDriverState *chr)
1425 MuxDriver *d = chr->opaque;
1427 if (d->mux_cnt >= MAX_MUX) {
1428 fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1429 return;
1431 d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1432 d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1433 d->chr_read[d->mux_cnt] = chr->chr_read;
1434 d->chr_event[d->mux_cnt] = chr->chr_event;
1435 /* Fix up the real driver with mux routines */
1436 if (d->mux_cnt == 0) {
1437 qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1438 mux_chr_event, chr);
1440 chr->focus = d->mux_cnt;
1441 d->mux_cnt++;
1444 CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1446 CharDriverState *chr;
1447 MuxDriver *d;
1449 chr = qemu_mallocz(sizeof(CharDriverState));
1450 if (!chr)
1451 return NULL;
1452 d = qemu_mallocz(sizeof(MuxDriver));
1453 if (!d) {
1454 free(chr);
1455 return NULL;
1458 chr->opaque = d;
1459 d->drv = drv;
1460 chr->focus = -1;
1461 chr->chr_write = mux_chr_write;
1462 chr->chr_update_read_handler = mux_chr_update_read_handler;
1463 return chr;
1467 #ifdef _WIN32
1469 static void socket_cleanup(void)
1471 WSACleanup();
1474 static int socket_init(void)
1476 WSADATA Data;
1477 int ret, err;
1479 ret = WSAStartup(MAKEWORD(2,2), &Data);
1480 if (ret != 0) {
1481 err = WSAGetLastError();
1482 fprintf(stderr, "WSAStartup: %d\n", err);
1483 return -1;
1485 atexit(socket_cleanup);
1486 return 0;
1489 static int send_all(int fd, const uint8_t *buf, int len1)
1491 int ret, len;
1493 len = len1;
1494 while (len > 0) {
1495 ret = send(fd, buf, len, 0);
1496 if (ret < 0) {
1497 int errno;
1498 errno = WSAGetLastError();
1499 if (errno != WSAEWOULDBLOCK) {
1500 return -1;
1502 } else if (ret == 0) {
1503 break;
1504 } else {
1505 buf += ret;
1506 len -= ret;
1509 return len1 - len;
1512 void socket_set_nonblock(int fd)
1514 unsigned long opt = 1;
1515 ioctlsocket(fd, FIONBIO, &opt);
1518 #else
1520 static int unix_write(int fd, const uint8_t *buf, int len1)
1522 int ret, len;
1524 len = len1;
1525 while (len > 0) {
1526 ret = write(fd, buf, len);
1527 if (ret < 0) {
1528 if (errno != EINTR && errno != EAGAIN)
1529 return -1;
1530 } else if (ret == 0) {
1531 break;
1532 } else {
1533 buf += ret;
1534 len -= ret;
1537 return len1 - len;
1540 static inline int send_all(int fd, const uint8_t *buf, int len1)
1542 return unix_write(fd, buf, len1);
1545 void socket_set_nonblock(int fd)
1547 fcntl(fd, F_SETFL, O_NONBLOCK);
1549 #endif /* !_WIN32 */
1551 #ifndef _WIN32
1553 typedef struct {
1554 int fd_in, fd_out;
1555 int max_size;
1556 } FDCharDriver;
1558 #define STDIO_MAX_CLIENTS 1
1559 static int stdio_nb_clients = 0;
1561 static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1563 FDCharDriver *s = chr->opaque;
1564 return unix_write(s->fd_out, buf, len);
1567 static int fd_chr_read_poll(void *opaque)
1569 CharDriverState *chr = opaque;
1570 FDCharDriver *s = chr->opaque;
1572 s->max_size = qemu_chr_can_read(chr);
1573 return s->max_size;
1576 static void fd_chr_read(void *opaque)
1578 CharDriverState *chr = opaque;
1579 FDCharDriver *s = chr->opaque;
1580 int size, len;
1581 uint8_t buf[1024];
1583 len = sizeof(buf);
1584 if (len > s->max_size)
1585 len = s->max_size;
1586 if (len == 0)
1587 return;
1588 size = read(s->fd_in, buf, len);
1589 if (size == 0) {
1590 /* FD has been closed. Remove it from the active list. */
1591 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
1592 return;
1594 if (size > 0) {
1595 qemu_chr_read(chr, buf, size);
1599 static void fd_chr_update_read_handler(CharDriverState *chr)
1601 FDCharDriver *s = chr->opaque;
1603 if (s->fd_in >= 0) {
1604 if (nographic && s->fd_in == 0) {
1605 } else {
1606 qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
1607 fd_chr_read, NULL, chr);
1612 /* open a character device to a unix fd */
1613 static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
1615 CharDriverState *chr;
1616 FDCharDriver *s;
1618 chr = qemu_mallocz(sizeof(CharDriverState));
1619 if (!chr)
1620 return NULL;
1621 s = qemu_mallocz(sizeof(FDCharDriver));
1622 if (!s) {
1623 free(chr);
1624 return NULL;
1626 s->fd_in = fd_in;
1627 s->fd_out = fd_out;
1628 chr->opaque = s;
1629 chr->chr_write = fd_chr_write;
1630 chr->chr_update_read_handler = fd_chr_update_read_handler;
1632 qemu_chr_reset(chr);
1634 return chr;
1637 static CharDriverState *qemu_chr_open_file_out(const char *file_out)
1639 int fd_out;
1641 fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666);
1642 if (fd_out < 0)
1643 return NULL;
1644 return qemu_chr_open_fd(-1, fd_out);
1647 static CharDriverState *qemu_chr_open_pipe(const char *filename)
1649 int fd_in, fd_out;
1650 char filename_in[256], filename_out[256];
1652 snprintf(filename_in, 256, "%s.in", filename);
1653 snprintf(filename_out, 256, "%s.out", filename);
1654 fd_in = open(filename_in, O_RDWR | O_BINARY);
1655 fd_out = open(filename_out, O_RDWR | O_BINARY);
1656 if (fd_in < 0 || fd_out < 0) {
1657 if (fd_in >= 0)
1658 close(fd_in);
1659 if (fd_out >= 0)
1660 close(fd_out);
1661 fd_in = fd_out = open(filename, O_RDWR | O_BINARY);
1662 if (fd_in < 0)
1663 return NULL;
1665 return qemu_chr_open_fd(fd_in, fd_out);
1669 /* for STDIO, we handle the case where several clients use it
1670 (nographic mode) */
1672 #define TERM_FIFO_MAX_SIZE 1
1674 static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
1675 static int term_fifo_size;
1677 static int stdio_read_poll(void *opaque)
1679 CharDriverState *chr = opaque;
1681 /* try to flush the queue if needed */
1682 if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
1683 qemu_chr_read(chr, term_fifo, 1);
1684 term_fifo_size = 0;
1686 /* see if we can absorb more chars */
1687 if (term_fifo_size == 0)
1688 return 1;
1689 else
1690 return 0;
1693 static void stdio_read(void *opaque)
1695 int size;
1696 uint8_t buf[1];
1697 CharDriverState *chr = opaque;
1699 size = read(0, buf, 1);
1700 if (size == 0) {
1701 /* stdin has been closed. Remove it from the active list. */
1702 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
1703 return;
1705 if (size > 0) {
1706 if (qemu_chr_can_read(chr) > 0) {
1707 qemu_chr_read(chr, buf, 1);
1708 } else if (term_fifo_size == 0) {
1709 term_fifo[term_fifo_size++] = buf[0];
1714 /* init terminal so that we can grab keys */
1715 static struct termios oldtty;
1716 static int old_fd0_flags;
1718 static void term_exit(void)
1720 tcsetattr (0, TCSANOW, &oldtty);
1721 fcntl(0, F_SETFL, old_fd0_flags);
1724 static void term_init(void)
1726 struct termios tty;
1728 tcgetattr (0, &tty);
1729 oldtty = tty;
1730 old_fd0_flags = fcntl(0, F_GETFL);
1732 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1733 |INLCR|IGNCR|ICRNL|IXON);
1734 tty.c_oflag |= OPOST;
1735 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
1736 /* if graphical mode, we allow Ctrl-C handling */
1737 if (nographic)
1738 tty.c_lflag &= ~ISIG;
1739 tty.c_cflag &= ~(CSIZE|PARENB);
1740 tty.c_cflag |= CS8;
1741 tty.c_cc[VMIN] = 1;
1742 tty.c_cc[VTIME] = 0;
1744 tcsetattr (0, TCSANOW, &tty);
1746 atexit(term_exit);
1748 fcntl(0, F_SETFL, O_NONBLOCK);
1751 static CharDriverState *qemu_chr_open_stdio(void)
1753 CharDriverState *chr;
1755 if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
1756 return NULL;
1757 chr = qemu_chr_open_fd(0, 1);
1758 qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
1759 stdio_nb_clients++;
1760 term_init();
1762 return chr;
1765 #if defined(__linux__)
1766 static CharDriverState *qemu_chr_open_pty(void)
1768 struct termios tty;
1769 char slave_name[1024];
1770 int master_fd, slave_fd;
1772 /* Not satisfying */
1773 if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
1774 return NULL;
1777 /* Disabling local echo and line-buffered output */
1778 tcgetattr (master_fd, &tty);
1779 tty.c_lflag &= ~(ECHO|ICANON|ISIG);
1780 tty.c_cc[VMIN] = 1;
1781 tty.c_cc[VTIME] = 0;
1782 tcsetattr (master_fd, TCSAFLUSH, &tty);
1784 fprintf(stderr, "char device redirected to %s\n", slave_name);
1785 return qemu_chr_open_fd(master_fd, master_fd);
1788 static void tty_serial_init(int fd, int speed,
1789 int parity, int data_bits, int stop_bits)
1791 struct termios tty;
1792 speed_t spd;
1794 #if 0
1795 printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
1796 speed, parity, data_bits, stop_bits);
1797 #endif
1798 tcgetattr (fd, &tty);
1800 switch(speed) {
1801 case 50:
1802 spd = B50;
1803 break;
1804 case 75:
1805 spd = B75;
1806 break;
1807 case 300:
1808 spd = B300;
1809 break;
1810 case 600:
1811 spd = B600;
1812 break;
1813 case 1200:
1814 spd = B1200;
1815 break;
1816 case 2400:
1817 spd = B2400;
1818 break;
1819 case 4800:
1820 spd = B4800;
1821 break;
1822 case 9600:
1823 spd = B9600;
1824 break;
1825 case 19200:
1826 spd = B19200;
1827 break;
1828 case 38400:
1829 spd = B38400;
1830 break;
1831 case 57600:
1832 spd = B57600;
1833 break;
1834 default:
1835 case 115200:
1836 spd = B115200;
1837 break;
1840 cfsetispeed(&tty, spd);
1841 cfsetospeed(&tty, spd);
1843 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1844 |INLCR|IGNCR|ICRNL|IXON);
1845 tty.c_oflag |= OPOST;
1846 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
1847 tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
1848 switch(data_bits) {
1849 default:
1850 case 8:
1851 tty.c_cflag |= CS8;
1852 break;
1853 case 7:
1854 tty.c_cflag |= CS7;
1855 break;
1856 case 6:
1857 tty.c_cflag |= CS6;
1858 break;
1859 case 5:
1860 tty.c_cflag |= CS5;
1861 break;
1863 switch(parity) {
1864 default:
1865 case 'N':
1866 break;
1867 case 'E':
1868 tty.c_cflag |= PARENB;
1869 break;
1870 case 'O':
1871 tty.c_cflag |= PARENB | PARODD;
1872 break;
1874 if (stop_bits == 2)
1875 tty.c_cflag |= CSTOPB;
1877 tcsetattr (fd, TCSANOW, &tty);
1880 static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
1882 FDCharDriver *s = chr->opaque;
1884 switch(cmd) {
1885 case CHR_IOCTL_SERIAL_SET_PARAMS:
1887 QEMUSerialSetParams *ssp = arg;
1888 tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
1889 ssp->data_bits, ssp->stop_bits);
1891 break;
1892 case CHR_IOCTL_SERIAL_SET_BREAK:
1894 int enable = *(int *)arg;
1895 if (enable)
1896 tcsendbreak(s->fd_in, 1);
1898 break;
1899 default:
1900 return -ENOTSUP;
1902 return 0;
1905 static CharDriverState *qemu_chr_open_tty(const char *filename)
1907 CharDriverState *chr;
1908 int fd;
1910 fd = open(filename, O_RDWR | O_NONBLOCK);
1911 if (fd < 0)
1912 return NULL;
1913 fcntl(fd, F_SETFL, O_NONBLOCK);
1914 tty_serial_init(fd, 115200, 'N', 8, 1);
1915 chr = qemu_chr_open_fd(fd, fd);
1916 if (!chr)
1917 return NULL;
1918 chr->chr_ioctl = tty_serial_ioctl;
1919 qemu_chr_reset(chr);
1920 return chr;
1923 typedef struct {
1924 int fd;
1925 int mode;
1926 } ParallelCharDriver;
1928 static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
1930 if (s->mode != mode) {
1931 int m = mode;
1932 if (ioctl(s->fd, PPSETMODE, &m) < 0)
1933 return 0;
1934 s->mode = mode;
1936 return 1;
1939 static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
1941 ParallelCharDriver *drv = chr->opaque;
1942 int fd = drv->fd;
1943 uint8_t b;
1945 switch(cmd) {
1946 case CHR_IOCTL_PP_READ_DATA:
1947 if (ioctl(fd, PPRDATA, &b) < 0)
1948 return -ENOTSUP;
1949 *(uint8_t *)arg = b;
1950 break;
1951 case CHR_IOCTL_PP_WRITE_DATA:
1952 b = *(uint8_t *)arg;
1953 if (ioctl(fd, PPWDATA, &b) < 0)
1954 return -ENOTSUP;
1955 break;
1956 case CHR_IOCTL_PP_READ_CONTROL:
1957 if (ioctl(fd, PPRCONTROL, &b) < 0)
1958 return -ENOTSUP;
1959 /* Linux gives only the lowest bits, and no way to know data
1960 direction! For better compatibility set the fixed upper
1961 bits. */
1962 *(uint8_t *)arg = b | 0xc0;
1963 break;
1964 case CHR_IOCTL_PP_WRITE_CONTROL:
1965 b = *(uint8_t *)arg;
1966 if (ioctl(fd, PPWCONTROL, &b) < 0)
1967 return -ENOTSUP;
1968 break;
1969 case CHR_IOCTL_PP_READ_STATUS:
1970 if (ioctl(fd, PPRSTATUS, &b) < 0)
1971 return -ENOTSUP;
1972 *(uint8_t *)arg = b;
1973 break;
1974 case CHR_IOCTL_PP_EPP_READ_ADDR:
1975 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
1976 struct ParallelIOArg *parg = arg;
1977 int n = read(fd, parg->buffer, parg->count);
1978 if (n != parg->count) {
1979 return -EIO;
1982 break;
1983 case CHR_IOCTL_PP_EPP_READ:
1984 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
1985 struct ParallelIOArg *parg = arg;
1986 int n = read(fd, parg->buffer, parg->count);
1987 if (n != parg->count) {
1988 return -EIO;
1991 break;
1992 case CHR_IOCTL_PP_EPP_WRITE_ADDR:
1993 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
1994 struct ParallelIOArg *parg = arg;
1995 int n = write(fd, parg->buffer, parg->count);
1996 if (n != parg->count) {
1997 return -EIO;
2000 break;
2001 case CHR_IOCTL_PP_EPP_WRITE:
2002 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2003 struct ParallelIOArg *parg = arg;
2004 int n = write(fd, parg->buffer, parg->count);
2005 if (n != parg->count) {
2006 return -EIO;
2009 break;
2010 default:
2011 return -ENOTSUP;
2013 return 0;
2016 static void pp_close(CharDriverState *chr)
2018 ParallelCharDriver *drv = chr->opaque;
2019 int fd = drv->fd;
2021 pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2022 ioctl(fd, PPRELEASE);
2023 close(fd);
2024 qemu_free(drv);
2027 static CharDriverState *qemu_chr_open_pp(const char *filename)
2029 CharDriverState *chr;
2030 ParallelCharDriver *drv;
2031 int fd;
2033 fd = open(filename, O_RDWR);
2034 if (fd < 0)
2035 return NULL;
2037 if (ioctl(fd, PPCLAIM) < 0) {
2038 close(fd);
2039 return NULL;
2042 drv = qemu_mallocz(sizeof(ParallelCharDriver));
2043 if (!drv) {
2044 close(fd);
2045 return NULL;
2047 drv->fd = fd;
2048 drv->mode = IEEE1284_MODE_COMPAT;
2050 chr = qemu_mallocz(sizeof(CharDriverState));
2051 if (!chr) {
2052 qemu_free(drv);
2053 close(fd);
2054 return NULL;
2056 chr->chr_write = null_chr_write;
2057 chr->chr_ioctl = pp_ioctl;
2058 chr->chr_close = pp_close;
2059 chr->opaque = drv;
2061 qemu_chr_reset(chr);
2063 return chr;
2066 #else
2067 static CharDriverState *qemu_chr_open_pty(void)
2069 return NULL;
2071 #endif
2073 #endif /* !defined(_WIN32) */
2075 #ifdef _WIN32
2076 typedef struct {
2077 int max_size;
2078 HANDLE hcom, hrecv, hsend;
2079 OVERLAPPED orecv, osend;
2080 BOOL fpipe;
2081 DWORD len;
2082 } WinCharState;
2084 #define NSENDBUF 2048
2085 #define NRECVBUF 2048
2086 #define MAXCONNECT 1
2087 #define NTIMEOUT 5000
2089 static int win_chr_poll(void *opaque);
2090 static int win_chr_pipe_poll(void *opaque);
2092 static void win_chr_close(CharDriverState *chr)
2094 WinCharState *s = chr->opaque;
2096 if (s->hsend) {
2097 CloseHandle(s->hsend);
2098 s->hsend = NULL;
2100 if (s->hrecv) {
2101 CloseHandle(s->hrecv);
2102 s->hrecv = NULL;
2104 if (s->hcom) {
2105 CloseHandle(s->hcom);
2106 s->hcom = NULL;
2108 if (s->fpipe)
2109 qemu_del_polling_cb(win_chr_pipe_poll, chr);
2110 else
2111 qemu_del_polling_cb(win_chr_poll, chr);
2114 static int win_chr_init(CharDriverState *chr, const char *filename)
2116 WinCharState *s = chr->opaque;
2117 COMMCONFIG comcfg;
2118 COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2119 COMSTAT comstat;
2120 DWORD size;
2121 DWORD err;
2123 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2124 if (!s->hsend) {
2125 fprintf(stderr, "Failed CreateEvent\n");
2126 goto fail;
2128 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2129 if (!s->hrecv) {
2130 fprintf(stderr, "Failed CreateEvent\n");
2131 goto fail;
2134 s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2135 OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2136 if (s->hcom == INVALID_HANDLE_VALUE) {
2137 fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2138 s->hcom = NULL;
2139 goto fail;
2142 if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2143 fprintf(stderr, "Failed SetupComm\n");
2144 goto fail;
2147 ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2148 size = sizeof(COMMCONFIG);
2149 GetDefaultCommConfig(filename, &comcfg, &size);
2150 comcfg.dcb.DCBlength = sizeof(DCB);
2151 CommConfigDialog(filename, NULL, &comcfg);
2153 if (!SetCommState(s->hcom, &comcfg.dcb)) {
2154 fprintf(stderr, "Failed SetCommState\n");
2155 goto fail;
2158 if (!SetCommMask(s->hcom, EV_ERR)) {
2159 fprintf(stderr, "Failed SetCommMask\n");
2160 goto fail;
2163 cto.ReadIntervalTimeout = MAXDWORD;
2164 if (!SetCommTimeouts(s->hcom, &cto)) {
2165 fprintf(stderr, "Failed SetCommTimeouts\n");
2166 goto fail;
2169 if (!ClearCommError(s->hcom, &err, &comstat)) {
2170 fprintf(stderr, "Failed ClearCommError\n");
2171 goto fail;
2173 qemu_add_polling_cb(win_chr_poll, chr);
2174 return 0;
2176 fail:
2177 win_chr_close(chr);
2178 return -1;
2181 static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2183 WinCharState *s = chr->opaque;
2184 DWORD len, ret, size, err;
2186 len = len1;
2187 ZeroMemory(&s->osend, sizeof(s->osend));
2188 s->osend.hEvent = s->hsend;
2189 while (len > 0) {
2190 if (s->hsend)
2191 ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2192 else
2193 ret = WriteFile(s->hcom, buf, len, &size, NULL);
2194 if (!ret) {
2195 err = GetLastError();
2196 if (err == ERROR_IO_PENDING) {
2197 ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2198 if (ret) {
2199 buf += size;
2200 len -= size;
2201 } else {
2202 break;
2204 } else {
2205 break;
2207 } else {
2208 buf += size;
2209 len -= size;
2212 return len1 - len;
2215 static int win_chr_read_poll(CharDriverState *chr)
2217 WinCharState *s = chr->opaque;
2219 s->max_size = qemu_chr_can_read(chr);
2220 return s->max_size;
2223 static void win_chr_readfile(CharDriverState *chr)
2225 WinCharState *s = chr->opaque;
2226 int ret, err;
2227 uint8_t buf[1024];
2228 DWORD size;
2230 ZeroMemory(&s->orecv, sizeof(s->orecv));
2231 s->orecv.hEvent = s->hrecv;
2232 ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2233 if (!ret) {
2234 err = GetLastError();
2235 if (err == ERROR_IO_PENDING) {
2236 ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2240 if (size > 0) {
2241 qemu_chr_read(chr, buf, size);
2245 static void win_chr_read(CharDriverState *chr)
2247 WinCharState *s = chr->opaque;
2249 if (s->len > s->max_size)
2250 s->len = s->max_size;
2251 if (s->len == 0)
2252 return;
2254 win_chr_readfile(chr);
2257 static int win_chr_poll(void *opaque)
2259 CharDriverState *chr = opaque;
2260 WinCharState *s = chr->opaque;
2261 COMSTAT status;
2262 DWORD comerr;
2264 ClearCommError(s->hcom, &comerr, &status);
2265 if (status.cbInQue > 0) {
2266 s->len = status.cbInQue;
2267 win_chr_read_poll(chr);
2268 win_chr_read(chr);
2269 return 1;
2271 return 0;
2274 static CharDriverState *qemu_chr_open_win(const char *filename)
2276 CharDriverState *chr;
2277 WinCharState *s;
2279 chr = qemu_mallocz(sizeof(CharDriverState));
2280 if (!chr)
2281 return NULL;
2282 s = qemu_mallocz(sizeof(WinCharState));
2283 if (!s) {
2284 free(chr);
2285 return NULL;
2287 chr->opaque = s;
2288 chr->chr_write = win_chr_write;
2289 chr->chr_close = win_chr_close;
2291 if (win_chr_init(chr, filename) < 0) {
2292 free(s);
2293 free(chr);
2294 return NULL;
2296 qemu_chr_reset(chr);
2297 return chr;
2300 static int win_chr_pipe_poll(void *opaque)
2302 CharDriverState *chr = opaque;
2303 WinCharState *s = chr->opaque;
2304 DWORD size;
2306 PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2307 if (size > 0) {
2308 s->len = size;
2309 win_chr_read_poll(chr);
2310 win_chr_read(chr);
2311 return 1;
2313 return 0;
2316 static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2318 WinCharState *s = chr->opaque;
2319 OVERLAPPED ov;
2320 int ret;
2321 DWORD size;
2322 char openname[256];
2324 s->fpipe = TRUE;
2326 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2327 if (!s->hsend) {
2328 fprintf(stderr, "Failed CreateEvent\n");
2329 goto fail;
2331 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2332 if (!s->hrecv) {
2333 fprintf(stderr, "Failed CreateEvent\n");
2334 goto fail;
2337 snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2338 s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2339 PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2340 PIPE_WAIT,
2341 MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2342 if (s->hcom == INVALID_HANDLE_VALUE) {
2343 fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2344 s->hcom = NULL;
2345 goto fail;
2348 ZeroMemory(&ov, sizeof(ov));
2349 ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2350 ret = ConnectNamedPipe(s->hcom, &ov);
2351 if (ret) {
2352 fprintf(stderr, "Failed ConnectNamedPipe\n");
2353 goto fail;
2356 ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2357 if (!ret) {
2358 fprintf(stderr, "Failed GetOverlappedResult\n");
2359 if (ov.hEvent) {
2360 CloseHandle(ov.hEvent);
2361 ov.hEvent = NULL;
2363 goto fail;
2366 if (ov.hEvent) {
2367 CloseHandle(ov.hEvent);
2368 ov.hEvent = NULL;
2370 qemu_add_polling_cb(win_chr_pipe_poll, chr);
2371 return 0;
2373 fail:
2374 win_chr_close(chr);
2375 return -1;
2379 static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2381 CharDriverState *chr;
2382 WinCharState *s;
2384 chr = qemu_mallocz(sizeof(CharDriverState));
2385 if (!chr)
2386 return NULL;
2387 s = qemu_mallocz(sizeof(WinCharState));
2388 if (!s) {
2389 free(chr);
2390 return NULL;
2392 chr->opaque = s;
2393 chr->chr_write = win_chr_write;
2394 chr->chr_close = win_chr_close;
2396 if (win_chr_pipe_init(chr, filename) < 0) {
2397 free(s);
2398 free(chr);
2399 return NULL;
2401 qemu_chr_reset(chr);
2402 return chr;
2405 static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2407 CharDriverState *chr;
2408 WinCharState *s;
2410 chr = qemu_mallocz(sizeof(CharDriverState));
2411 if (!chr)
2412 return NULL;
2413 s = qemu_mallocz(sizeof(WinCharState));
2414 if (!s) {
2415 free(chr);
2416 return NULL;
2418 s->hcom = fd_out;
2419 chr->opaque = s;
2420 chr->chr_write = win_chr_write;
2421 qemu_chr_reset(chr);
2422 return chr;
2425 static CharDriverState *qemu_chr_open_win_con(const char *filename)
2427 return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
2430 static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2432 HANDLE fd_out;
2434 fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2435 OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2436 if (fd_out == INVALID_HANDLE_VALUE)
2437 return NULL;
2439 return qemu_chr_open_win_file(fd_out);
2441 #endif
2443 /***********************************************************/
2444 /* UDP Net console */
2446 typedef struct {
2447 int fd;
2448 struct sockaddr_in daddr;
2449 char buf[1024];
2450 int bufcnt;
2451 int bufptr;
2452 int max_size;
2453 } NetCharDriver;
2455 static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2457 NetCharDriver *s = chr->opaque;
2459 return sendto(s->fd, buf, len, 0,
2460 (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2463 static int udp_chr_read_poll(void *opaque)
2465 CharDriverState *chr = opaque;
2466 NetCharDriver *s = chr->opaque;
2468 s->max_size = qemu_chr_can_read(chr);
2470 /* If there were any stray characters in the queue process them
2471 * first
2473 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2474 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2475 s->bufptr++;
2476 s->max_size = qemu_chr_can_read(chr);
2478 return s->max_size;
2481 static void udp_chr_read(void *opaque)
2483 CharDriverState *chr = opaque;
2484 NetCharDriver *s = chr->opaque;
2486 if (s->max_size == 0)
2487 return;
2488 s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2489 s->bufptr = s->bufcnt;
2490 if (s->bufcnt <= 0)
2491 return;
2493 s->bufptr = 0;
2494 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2495 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2496 s->bufptr++;
2497 s->max_size = qemu_chr_can_read(chr);
2501 static void udp_chr_update_read_handler(CharDriverState *chr)
2503 NetCharDriver *s = chr->opaque;
2505 if (s->fd >= 0) {
2506 qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
2507 udp_chr_read, NULL, chr);
2511 int parse_host_port(struct sockaddr_in *saddr, const char *str);
2512 #ifndef _WIN32
2513 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
2514 #endif
2515 int parse_host_src_port(struct sockaddr_in *haddr,
2516 struct sockaddr_in *saddr,
2517 const char *str);
2519 static CharDriverState *qemu_chr_open_udp(const char *def)
2521 CharDriverState *chr = NULL;
2522 NetCharDriver *s = NULL;
2523 int fd = -1;
2524 struct sockaddr_in saddr;
2526 chr = qemu_mallocz(sizeof(CharDriverState));
2527 if (!chr)
2528 goto return_err;
2529 s = qemu_mallocz(sizeof(NetCharDriver));
2530 if (!s)
2531 goto return_err;
2533 fd = socket(PF_INET, SOCK_DGRAM, 0);
2534 if (fd < 0) {
2535 perror("socket(PF_INET, SOCK_DGRAM)");
2536 goto return_err;
2539 if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
2540 printf("Could not parse: %s\n", def);
2541 goto return_err;
2544 if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
2546 perror("bind");
2547 goto return_err;
2550 s->fd = fd;
2551 s->bufcnt = 0;
2552 s->bufptr = 0;
2553 chr->opaque = s;
2554 chr->chr_write = udp_chr_write;
2555 chr->chr_update_read_handler = udp_chr_update_read_handler;
2556 return chr;
2558 return_err:
2559 if (chr)
2560 free(chr);
2561 if (s)
2562 free(s);
2563 if (fd >= 0)
2564 closesocket(fd);
2565 return NULL;
2568 /***********************************************************/
2569 /* TCP Net console */
2571 typedef struct {
2572 int fd, listen_fd;
2573 int connected;
2574 int max_size;
2575 int do_telnetopt;
2576 int do_nodelay;
2577 int is_unix;
2578 } TCPCharDriver;
2580 static void tcp_chr_accept(void *opaque);
2582 static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2584 TCPCharDriver *s = chr->opaque;
2585 if (s->connected) {
2586 return send_all(s->fd, buf, len);
2587 } else {
2588 /* XXX: indicate an error ? */
2589 return len;
2593 static int tcp_chr_read_poll(void *opaque)
2595 CharDriverState *chr = opaque;
2596 TCPCharDriver *s = chr->opaque;
2597 if (!s->connected)
2598 return 0;
2599 s->max_size = qemu_chr_can_read(chr);
2600 return s->max_size;
2603 #define IAC 255
2604 #define IAC_BREAK 243
2605 static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
2606 TCPCharDriver *s,
2607 char *buf, int *size)
2609 /* Handle any telnet client's basic IAC options to satisfy char by
2610 * char mode with no echo. All IAC options will be removed from
2611 * the buf and the do_telnetopt variable will be used to track the
2612 * state of the width of the IAC information.
2614 * IAC commands come in sets of 3 bytes with the exception of the
2615 * "IAC BREAK" command and the double IAC.
2618 int i;
2619 int j = 0;
2621 for (i = 0; i < *size; i++) {
2622 if (s->do_telnetopt > 1) {
2623 if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
2624 /* Double IAC means send an IAC */
2625 if (j != i)
2626 buf[j] = buf[i];
2627 j++;
2628 s->do_telnetopt = 1;
2629 } else {
2630 if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
2631 /* Handle IAC break commands by sending a serial break */
2632 qemu_chr_event(chr, CHR_EVENT_BREAK);
2633 s->do_telnetopt++;
2635 s->do_telnetopt++;
2637 if (s->do_telnetopt >= 4) {
2638 s->do_telnetopt = 1;
2640 } else {
2641 if ((unsigned char)buf[i] == IAC) {
2642 s->do_telnetopt = 2;
2643 } else {
2644 if (j != i)
2645 buf[j] = buf[i];
2646 j++;
2650 *size = j;
2653 static void tcp_chr_read(void *opaque)
2655 CharDriverState *chr = opaque;
2656 TCPCharDriver *s = chr->opaque;
2657 uint8_t buf[1024];
2658 int len, size;
2660 if (!s->connected || s->max_size <= 0)
2661 return;
2662 len = sizeof(buf);
2663 if (len > s->max_size)
2664 len = s->max_size;
2665 size = recv(s->fd, buf, len, 0);
2666 if (size == 0) {
2667 /* connection closed */
2668 s->connected = 0;
2669 if (s->listen_fd >= 0) {
2670 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
2672 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
2673 closesocket(s->fd);
2674 s->fd = -1;
2675 } else if (size > 0) {
2676 if (s->do_telnetopt)
2677 tcp_chr_process_IAC_bytes(chr, s, buf, &size);
2678 if (size > 0)
2679 qemu_chr_read(chr, buf, size);
2683 static void tcp_chr_connect(void *opaque)
2685 CharDriverState *chr = opaque;
2686 TCPCharDriver *s = chr->opaque;
2688 s->connected = 1;
2689 qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
2690 tcp_chr_read, NULL, chr);
2691 qemu_chr_reset(chr);
2694 #define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
2695 static void tcp_chr_telnet_init(int fd)
2697 char buf[3];
2698 /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
2699 IACSET(buf, 0xff, 0xfb, 0x01); /* IAC WILL ECHO */
2700 send(fd, (char *)buf, 3, 0);
2701 IACSET(buf, 0xff, 0xfb, 0x03); /* IAC WILL Suppress go ahead */
2702 send(fd, (char *)buf, 3, 0);
2703 IACSET(buf, 0xff, 0xfb, 0x00); /* IAC WILL Binary */
2704 send(fd, (char *)buf, 3, 0);
2705 IACSET(buf, 0xff, 0xfd, 0x00); /* IAC DO Binary */
2706 send(fd, (char *)buf, 3, 0);
2709 static void socket_set_nodelay(int fd)
2711 int val = 1;
2712 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2715 static void tcp_chr_accept(void *opaque)
2717 CharDriverState *chr = opaque;
2718 TCPCharDriver *s = chr->opaque;
2719 struct sockaddr_in saddr;
2720 #ifndef _WIN32
2721 struct sockaddr_un uaddr;
2722 #endif
2723 struct sockaddr *addr;
2724 socklen_t len;
2725 int fd;
2727 for(;;) {
2728 #ifndef _WIN32
2729 if (s->is_unix) {
2730 len = sizeof(uaddr);
2731 addr = (struct sockaddr *)&uaddr;
2732 } else
2733 #endif
2735 len = sizeof(saddr);
2736 addr = (struct sockaddr *)&saddr;
2738 fd = accept(s->listen_fd, addr, &len);
2739 if (fd < 0 && errno != EINTR) {
2740 return;
2741 } else if (fd >= 0) {
2742 if (s->do_telnetopt)
2743 tcp_chr_telnet_init(fd);
2744 break;
2747 socket_set_nonblock(fd);
2748 if (s->do_nodelay)
2749 socket_set_nodelay(fd);
2750 s->fd = fd;
2751 qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
2752 tcp_chr_connect(chr);
2755 static void tcp_chr_close(CharDriverState *chr)
2757 TCPCharDriver *s = chr->opaque;
2758 if (s->fd >= 0)
2759 closesocket(s->fd);
2760 if (s->listen_fd >= 0)
2761 closesocket(s->listen_fd);
2762 qemu_free(s);
2765 static CharDriverState *qemu_chr_open_tcp(const char *host_str,
2766 int is_telnet,
2767 int is_unix)
2769 CharDriverState *chr = NULL;
2770 TCPCharDriver *s = NULL;
2771 int fd = -1, ret, err, val;
2772 int is_listen = 0;
2773 int is_waitconnect = 1;
2774 int do_nodelay = 0;
2775 const char *ptr;
2776 struct sockaddr_in saddr;
2777 #ifndef _WIN32
2778 struct sockaddr_un uaddr;
2779 #endif
2780 struct sockaddr *addr;
2781 socklen_t addrlen;
2783 #ifndef _WIN32
2784 if (is_unix) {
2785 addr = (struct sockaddr *)&uaddr;
2786 addrlen = sizeof(uaddr);
2787 if (parse_unix_path(&uaddr, host_str) < 0)
2788 goto fail;
2789 } else
2790 #endif
2792 addr = (struct sockaddr *)&saddr;
2793 addrlen = sizeof(saddr);
2794 if (parse_host_port(&saddr, host_str) < 0)
2795 goto fail;
2798 ptr = host_str;
2799 while((ptr = strchr(ptr,','))) {
2800 ptr++;
2801 if (!strncmp(ptr,"server",6)) {
2802 is_listen = 1;
2803 } else if (!strncmp(ptr,"nowait",6)) {
2804 is_waitconnect = 0;
2805 } else if (!strncmp(ptr,"nodelay",6)) {
2806 do_nodelay = 1;
2807 } else {
2808 printf("Unknown option: %s\n", ptr);
2809 goto fail;
2812 if (!is_listen)
2813 is_waitconnect = 0;
2815 chr = qemu_mallocz(sizeof(CharDriverState));
2816 if (!chr)
2817 goto fail;
2818 s = qemu_mallocz(sizeof(TCPCharDriver));
2819 if (!s)
2820 goto fail;
2822 #ifndef _WIN32
2823 if (is_unix)
2824 fd = socket(PF_UNIX, SOCK_STREAM, 0);
2825 else
2826 #endif
2827 fd = socket(PF_INET, SOCK_STREAM, 0);
2829 if (fd < 0)
2830 goto fail;
2832 if (!is_waitconnect)
2833 socket_set_nonblock(fd);
2835 s->connected = 0;
2836 s->fd = -1;
2837 s->listen_fd = -1;
2838 s->is_unix = is_unix;
2839 s->do_nodelay = do_nodelay && !is_unix;
2841 chr->opaque = s;
2842 chr->chr_write = tcp_chr_write;
2843 chr->chr_close = tcp_chr_close;
2845 if (is_listen) {
2846 /* allow fast reuse */
2847 #ifndef _WIN32
2848 if (is_unix) {
2849 char path[109];
2850 strncpy(path, uaddr.sun_path, 108);
2851 path[108] = 0;
2852 unlink(path);
2853 } else
2854 #endif
2856 val = 1;
2857 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
2860 ret = bind(fd, addr, addrlen);
2861 if (ret < 0)
2862 goto fail;
2864 ret = listen(fd, 0);
2865 if (ret < 0)
2866 goto fail;
2868 s->listen_fd = fd;
2869 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
2870 if (is_telnet)
2871 s->do_telnetopt = 1;
2872 } else {
2873 for(;;) {
2874 ret = connect(fd, addr, addrlen);
2875 if (ret < 0) {
2876 err = socket_error();
2877 if (err == EINTR || err == EWOULDBLOCK) {
2878 } else if (err == EINPROGRESS) {
2879 break;
2880 #ifdef _WIN32
2881 } else if (err == WSAEALREADY) {
2882 break;
2883 #endif
2884 } else {
2885 goto fail;
2887 } else {
2888 s->connected = 1;
2889 break;
2892 s->fd = fd;
2893 socket_set_nodelay(fd);
2894 if (s->connected)
2895 tcp_chr_connect(chr);
2896 else
2897 qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
2900 if (is_listen && is_waitconnect) {
2901 printf("QEMU waiting for connection on: %s\n", host_str);
2902 tcp_chr_accept(chr);
2903 socket_set_nonblock(s->listen_fd);
2906 return chr;
2907 fail:
2908 if (fd >= 0)
2909 closesocket(fd);
2910 qemu_free(s);
2911 qemu_free(chr);
2912 return NULL;
2915 CharDriverState *qemu_chr_open(const char *filename)
2917 const char *p;
2919 if (!strcmp(filename, "vc")) {
2920 return text_console_init(&display_state);
2921 } else if (!strcmp(filename, "null")) {
2922 return qemu_chr_open_null();
2923 } else
2924 if (strstart(filename, "tcp:", &p)) {
2925 return qemu_chr_open_tcp(p, 0, 0);
2926 } else
2927 if (strstart(filename, "telnet:", &p)) {
2928 return qemu_chr_open_tcp(p, 1, 0);
2929 } else
2930 if (strstart(filename, "udp:", &p)) {
2931 return qemu_chr_open_udp(p);
2932 } else
2933 if (strstart(filename, "mon:", &p)) {
2934 CharDriverState *drv = qemu_chr_open(p);
2935 if (drv) {
2936 drv = qemu_chr_open_mux(drv);
2937 monitor_init(drv, !nographic);
2938 return drv;
2940 printf("Unable to open driver: %s\n", p);
2941 return 0;
2942 } else
2943 #ifndef _WIN32
2944 if (strstart(filename, "unix:", &p)) {
2945 return qemu_chr_open_tcp(p, 0, 1);
2946 } else if (strstart(filename, "file:", &p)) {
2947 return qemu_chr_open_file_out(p);
2948 } else if (strstart(filename, "pipe:", &p)) {
2949 return qemu_chr_open_pipe(p);
2950 } else if (!strcmp(filename, "pty")) {
2951 return qemu_chr_open_pty();
2952 } else if (!strcmp(filename, "stdio")) {
2953 return qemu_chr_open_stdio();
2954 } else
2955 #endif
2956 #if defined(__linux__)
2957 if (strstart(filename, "/dev/parport", NULL)) {
2958 return qemu_chr_open_pp(filename);
2959 } else
2960 if (strstart(filename, "/dev/", NULL)) {
2961 return qemu_chr_open_tty(filename);
2962 } else
2963 #endif
2964 #ifdef _WIN32
2965 if (strstart(filename, "COM", NULL)) {
2966 return qemu_chr_open_win(filename);
2967 } else
2968 if (strstart(filename, "pipe:", &p)) {
2969 return qemu_chr_open_win_pipe(p);
2970 } else
2971 if (strstart(filename, "con:", NULL)) {
2972 return qemu_chr_open_win_con(filename);
2973 } else
2974 if (strstart(filename, "file:", &p)) {
2975 return qemu_chr_open_win_file_out(p);
2977 #endif
2979 return NULL;
2983 void qemu_chr_close(CharDriverState *chr)
2985 if (chr->chr_close)
2986 chr->chr_close(chr);
2989 /***********************************************************/
2990 /* network device redirectors */
2992 void hex_dump(FILE *f, const uint8_t *buf, int size)
2994 int len, i, j, c;
2996 for(i=0;i<size;i+=16) {
2997 len = size - i;
2998 if (len > 16)
2999 len = 16;
3000 fprintf(f, "%08x ", i);
3001 for(j=0;j<16;j++) {
3002 if (j < len)
3003 fprintf(f, " %02x", buf[i+j]);
3004 else
3005 fprintf(f, " ");
3007 fprintf(f, " ");
3008 for(j=0;j<len;j++) {
3009 c = buf[i+j];
3010 if (c < ' ' || c > '~')
3011 c = '.';
3012 fprintf(f, "%c", c);
3014 fprintf(f, "\n");
3018 static int parse_macaddr(uint8_t *macaddr, const char *p)
3020 int i;
3021 for(i = 0; i < 6; i++) {
3022 macaddr[i] = strtol(p, (char **)&p, 16);
3023 if (i == 5) {
3024 if (*p != '\0')
3025 return -1;
3026 } else {
3027 if (*p != ':')
3028 return -1;
3029 p++;
3032 return 0;
3035 static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3037 const char *p, *p1;
3038 int len;
3039 p = *pp;
3040 p1 = strchr(p, sep);
3041 if (!p1)
3042 return -1;
3043 len = p1 - p;
3044 p1++;
3045 if (buf_size > 0) {
3046 if (len > buf_size - 1)
3047 len = buf_size - 1;
3048 memcpy(buf, p, len);
3049 buf[len] = '\0';
3051 *pp = p1;
3052 return 0;
3055 int parse_host_src_port(struct sockaddr_in *haddr,
3056 struct sockaddr_in *saddr,
3057 const char *input_str)
3059 char *str = strdup(input_str);
3060 char *host_str = str;
3061 char *src_str;
3062 char *ptr;
3065 * Chop off any extra arguments at the end of the string which
3066 * would start with a comma, then fill in the src port information
3067 * if it was provided else use the "any address" and "any port".
3069 if ((ptr = strchr(str,',')))
3070 *ptr = '\0';
3072 if ((src_str = strchr(input_str,'@'))) {
3073 *src_str = '\0';
3074 src_str++;
3077 if (parse_host_port(haddr, host_str) < 0)
3078 goto fail;
3080 if (!src_str || *src_str == '\0')
3081 src_str = ":0";
3083 if (parse_host_port(saddr, src_str) < 0)
3084 goto fail;
3086 free(str);
3087 return(0);
3089 fail:
3090 free(str);
3091 return -1;
3094 int parse_host_port(struct sockaddr_in *saddr, const char *str)
3096 char buf[512];
3097 struct hostent *he;
3098 const char *p, *r;
3099 int port;
3101 p = str;
3102 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3103 return -1;
3104 saddr->sin_family = AF_INET;
3105 if (buf[0] == '\0') {
3106 saddr->sin_addr.s_addr = 0;
3107 } else {
3108 if (isdigit(buf[0])) {
3109 if (!inet_aton(buf, &saddr->sin_addr))
3110 return -1;
3111 } else {
3112 if ((he = gethostbyname(buf)) == NULL)
3113 return - 1;
3114 saddr->sin_addr = *(struct in_addr *)he->h_addr;
3117 port = strtol(p, (char **)&r, 0);
3118 if (r == p)
3119 return -1;
3120 saddr->sin_port = htons(port);
3121 return 0;
3124 #ifndef _WIN32
3125 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3127 const char *p;
3128 int len;
3130 len = MIN(108, strlen(str));
3131 p = strchr(str, ',');
3132 if (p)
3133 len = MIN(len, p - str);
3135 memset(uaddr, 0, sizeof(*uaddr));
3137 uaddr->sun_family = AF_UNIX;
3138 memcpy(uaddr->sun_path, str, len);
3140 return 0;
3142 #endif
3144 /* find or alloc a new VLAN */
3145 VLANState *qemu_find_vlan(int id)
3147 VLANState **pvlan, *vlan;
3148 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3149 if (vlan->id == id)
3150 return vlan;
3152 vlan = qemu_mallocz(sizeof(VLANState));
3153 if (!vlan)
3154 return NULL;
3155 vlan->id = id;
3156 vlan->next = NULL;
3157 pvlan = &first_vlan;
3158 while (*pvlan != NULL)
3159 pvlan = &(*pvlan)->next;
3160 *pvlan = vlan;
3161 return vlan;
3164 VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3165 IOReadHandler *fd_read,
3166 IOCanRWHandler *fd_can_read,
3167 void *opaque)
3169 VLANClientState *vc, **pvc;
3170 vc = qemu_mallocz(sizeof(VLANClientState));
3171 if (!vc)
3172 return NULL;
3173 vc->fd_read = fd_read;
3174 vc->fd_can_read = fd_can_read;
3175 vc->opaque = opaque;
3176 vc->vlan = vlan;
3178 vc->next = NULL;
3179 pvc = &vlan->first_client;
3180 while (*pvc != NULL)
3181 pvc = &(*pvc)->next;
3182 *pvc = vc;
3183 return vc;
3186 int qemu_can_send_packet(VLANClientState *vc1)
3188 VLANState *vlan = vc1->vlan;
3189 VLANClientState *vc;
3191 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3192 if (vc != vc1) {
3193 if (vc->fd_can_read && !vc->fd_can_read(vc->opaque))
3194 return 0;
3197 return 1;
3200 void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3202 VLANState *vlan = vc1->vlan;
3203 VLANClientState *vc;
3205 #if 0
3206 printf("vlan %d send:\n", vlan->id);
3207 hex_dump(stdout, buf, size);
3208 #endif
3209 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3210 if (vc != vc1) {
3211 vc->fd_read(vc->opaque, buf, size);
3216 #if defined(CONFIG_SLIRP)
3218 /* slirp network adapter */
3220 static int slirp_inited;
3221 static VLANClientState *slirp_vc;
3223 int slirp_can_output(void)
3225 return !slirp_vc || qemu_can_send_packet(slirp_vc);
3228 void slirp_output(const uint8_t *pkt, int pkt_len)
3230 #if 0
3231 printf("slirp output:\n");
3232 hex_dump(stdout, pkt, pkt_len);
3233 #endif
3234 if (!slirp_vc)
3235 return;
3236 qemu_send_packet(slirp_vc, pkt, pkt_len);
3239 static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3241 #if 0
3242 printf("slirp input:\n");
3243 hex_dump(stdout, buf, size);
3244 #endif
3245 slirp_input(buf, size);
3248 static int net_slirp_init(VLANState *vlan)
3250 if (!slirp_inited) {
3251 slirp_inited = 1;
3252 slirp_init();
3254 slirp_vc = qemu_new_vlan_client(vlan,
3255 slirp_receive, NULL, NULL);
3256 snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3257 return 0;
3260 static void net_slirp_redir(const char *redir_str)
3262 int is_udp;
3263 char buf[256], *r;
3264 const char *p;
3265 struct in_addr guest_addr;
3266 int host_port, guest_port;
3268 if (!slirp_inited) {
3269 slirp_inited = 1;
3270 slirp_init();
3273 p = redir_str;
3274 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3275 goto fail;
3276 if (!strcmp(buf, "tcp")) {
3277 is_udp = 0;
3278 } else if (!strcmp(buf, "udp")) {
3279 is_udp = 1;
3280 } else {
3281 goto fail;
3284 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3285 goto fail;
3286 host_port = strtol(buf, &r, 0);
3287 if (r == buf)
3288 goto fail;
3290 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3291 goto fail;
3292 if (buf[0] == '\0') {
3293 pstrcpy(buf, sizeof(buf), "10.0.2.15");
3295 if (!inet_aton(buf, &guest_addr))
3296 goto fail;
3298 guest_port = strtol(p, &r, 0);
3299 if (r == p)
3300 goto fail;
3302 if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3303 fprintf(stderr, "qemu: could not set up redirection\n");
3304 exit(1);
3306 return;
3307 fail:
3308 fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3309 exit(1);
3312 #ifndef _WIN32
3314 char smb_dir[1024];
3316 static void smb_exit(void)
3318 DIR *d;
3319 struct dirent *de;
3320 char filename[1024];
3322 /* erase all the files in the directory */
3323 d = opendir(smb_dir);
3324 for(;;) {
3325 de = readdir(d);
3326 if (!de)
3327 break;
3328 if (strcmp(de->d_name, ".") != 0 &&
3329 strcmp(de->d_name, "..") != 0) {
3330 snprintf(filename, sizeof(filename), "%s/%s",
3331 smb_dir, de->d_name);
3332 unlink(filename);
3335 closedir(d);
3336 rmdir(smb_dir);
3339 /* automatic user mode samba server configuration */
3340 void net_slirp_smb(const char *exported_dir)
3342 char smb_conf[1024];
3343 char smb_cmdline[1024];
3344 FILE *f;
3346 if (!slirp_inited) {
3347 slirp_inited = 1;
3348 slirp_init();
3351 /* XXX: better tmp dir construction */
3352 snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3353 if (mkdir(smb_dir, 0700) < 0) {
3354 fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3355 exit(1);
3357 snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3359 f = fopen(smb_conf, "w");
3360 if (!f) {
3361 fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3362 exit(1);
3364 fprintf(f,
3365 "[global]\n"
3366 "private dir=%s\n"
3367 "smb ports=0\n"
3368 "socket address=127.0.0.1\n"
3369 "pid directory=%s\n"
3370 "lock directory=%s\n"
3371 "log file=%s/log.smbd\n"
3372 "smb passwd file=%s/smbpasswd\n"
3373 "security = share\n"
3374 "[qemu]\n"
3375 "path=%s\n"
3376 "read only=no\n"
3377 "guest ok=yes\n",
3378 smb_dir,
3379 smb_dir,
3380 smb_dir,
3381 smb_dir,
3382 smb_dir,
3383 exported_dir
3385 fclose(f);
3386 atexit(smb_exit);
3388 snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3389 SMBD_COMMAND, smb_conf);
3391 slirp_add_exec(0, smb_cmdline, 4, 139);
3394 #endif /* !defined(_WIN32) */
3396 #endif /* CONFIG_SLIRP */
3398 #if !defined(_WIN32)
3400 typedef struct TAPState {
3401 VLANClientState *vc;
3402 int fd;
3403 } TAPState;
3405 static void tap_receive(void *opaque, const uint8_t *buf, int size)
3407 TAPState *s = opaque;
3408 int ret;
3409 for(;;) {
3410 ret = write(s->fd, buf, size);
3411 if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3412 } else {
3413 break;
3418 static void tap_send(void *opaque)
3420 TAPState *s = opaque;
3421 uint8_t buf[4096];
3422 int size;
3424 #ifdef __sun__
3425 struct strbuf sbuf;
3426 int f = 0;
3427 sbuf.maxlen = sizeof(buf);
3428 sbuf.buf = buf;
3429 size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
3430 #else
3431 size = read(s->fd, buf, sizeof(buf));
3432 #endif
3433 if (size > 0) {
3434 qemu_send_packet(s->vc, buf, size);
3438 /* fd support */
3440 static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3442 TAPState *s;
3444 s = qemu_mallocz(sizeof(TAPState));
3445 if (!s)
3446 return NULL;
3447 s->fd = fd;
3448 s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3449 qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3450 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3451 return s;
3454 #ifdef _BSD
3455 static int tap_open(char *ifname, int ifname_size)
3457 int fd;
3458 char *dev;
3459 struct stat s;
3461 fd = open("/dev/tap", O_RDWR);
3462 if (fd < 0) {
3463 fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
3464 return -1;
3467 fstat(fd, &s);
3468 dev = devname(s.st_rdev, S_IFCHR);
3469 pstrcpy(ifname, ifname_size, dev);
3471 fcntl(fd, F_SETFL, O_NONBLOCK);
3472 return fd;
3474 #elif defined(__sun__)
3475 #define TUNNEWPPA (('T'<<16) | 0x0001)
3477 * Allocate TAP device, returns opened fd.
3478 * Stores dev name in the first arg(must be large enough).
3480 int tap_alloc(char *dev)
3482 int tap_fd, if_fd, ppa = -1;
3483 static int ip_fd = 0;
3484 char *ptr;
3486 static int arp_fd = 0;
3487 int ip_muxid, arp_muxid;
3488 struct strioctl strioc_if, strioc_ppa;
3489 int link_type = I_PLINK;;
3490 struct lifreq ifr;
3491 char actual_name[32] = "";
3493 memset(&ifr, 0x0, sizeof(ifr));
3495 if( *dev ){
3496 ptr = dev;
3497 while( *ptr && !isdigit((int)*ptr) ) ptr++;
3498 ppa = atoi(ptr);
3501 /* Check if IP device was opened */
3502 if( ip_fd )
3503 close(ip_fd);
3505 if( (ip_fd = open("/dev/udp", O_RDWR, 0)) < 0){
3506 syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
3507 return -1;
3510 if( (tap_fd = open("/dev/tap", O_RDWR, 0)) < 0){
3511 syslog(LOG_ERR, "Can't open /dev/tap");
3512 return -1;
3515 /* Assign a new PPA and get its unit number. */
3516 strioc_ppa.ic_cmd = TUNNEWPPA;
3517 strioc_ppa.ic_timout = 0;
3518 strioc_ppa.ic_len = sizeof(ppa);
3519 strioc_ppa.ic_dp = (char *)&ppa;
3520 if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
3521 syslog (LOG_ERR, "Can't assign new interface");
3523 if( (if_fd = open("/dev/tap", O_RDWR, 0)) < 0){
3524 syslog(LOG_ERR, "Can't open /dev/tap (2)");
3525 return -1;
3527 if(ioctl(if_fd, I_PUSH, "ip") < 0){
3528 syslog(LOG_ERR, "Can't push IP module");
3529 return -1;
3532 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
3533 syslog(LOG_ERR, "Can't get flags\n");
3535 snprintf (actual_name, 32, "tap%d", ppa);
3536 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3538 ifr.lifr_ppa = ppa;
3539 /* Assign ppa according to the unit number returned by tun device */
3541 if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
3542 syslog (LOG_ERR, "Can't set PPA %d", ppa);
3543 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
3544 syslog (LOG_ERR, "Can't get flags\n");
3545 /* Push arp module to if_fd */
3546 if (ioctl (if_fd, I_PUSH, "arp") < 0)
3547 syslog (LOG_ERR, "Can't push ARP module (2)");
3549 /* Push arp module to ip_fd */
3550 if (ioctl (ip_fd, I_POP, NULL) < 0)
3551 syslog (LOG_ERR, "I_POP failed\n");
3552 if (ioctl (ip_fd, I_PUSH, "arp") < 0)
3553 syslog (LOG_ERR, "Can't push ARP module (3)\n");
3554 /* Open arp_fd */
3555 if ((arp_fd = open ("/dev/tap", O_RDWR, 0)) < 0)
3556 syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
3558 /* Set ifname to arp */
3559 strioc_if.ic_cmd = SIOCSLIFNAME;
3560 strioc_if.ic_timout = 0;
3561 strioc_if.ic_len = sizeof(ifr);
3562 strioc_if.ic_dp = (char *)&ifr;
3563 if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
3564 syslog (LOG_ERR, "Can't set ifname to arp\n");
3567 if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
3568 syslog(LOG_ERR, "Can't link TAP device to IP");
3569 return -1;
3572 if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
3573 syslog (LOG_ERR, "Can't link TAP device to ARP");
3575 close (if_fd);
3577 memset(&ifr, 0x0, sizeof(ifr));
3578 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3579 ifr.lifr_ip_muxid = ip_muxid;
3580 ifr.lifr_arp_muxid = arp_muxid;
3582 if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
3584 ioctl (ip_fd, I_PUNLINK , arp_muxid);
3585 ioctl (ip_fd, I_PUNLINK, ip_muxid);
3586 syslog (LOG_ERR, "Can't set multiplexor id");
3589 sprintf(dev, "tap%d", ppa);
3590 return tap_fd;
3593 static int tap_open(char *ifname, int ifname_size)
3595 char dev[10]="";
3596 int fd;
3597 if( (fd = tap_alloc(dev)) < 0 ){
3598 fprintf(stderr, "Cannot allocate TAP device\n");
3599 return -1;
3601 pstrcpy(ifname, ifname_size, dev);
3602 fcntl(fd, F_SETFL, O_NONBLOCK);
3603 return fd;
3605 #else
3606 static int tap_open(char *ifname, int ifname_size)
3608 struct ifreq ifr;
3609 int fd, ret;
3611 fd = open("/dev/net/tun", O_RDWR);
3612 if (fd < 0) {
3613 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
3614 return -1;
3616 memset(&ifr, 0, sizeof(ifr));
3617 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
3618 if (ifname[0] != '\0')
3619 pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
3620 else
3621 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
3622 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
3623 if (ret != 0) {
3624 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
3625 close(fd);
3626 return -1;
3628 pstrcpy(ifname, ifname_size, ifr.ifr_name);
3629 fcntl(fd, F_SETFL, O_NONBLOCK);
3630 return fd;
3632 #endif
3634 static int net_tap_init(VLANState *vlan, const char *ifname1,
3635 const char *setup_script)
3637 TAPState *s;
3638 int pid, status, fd;
3639 char *args[3];
3640 char **parg;
3641 char ifname[128];
3643 if (ifname1 != NULL)
3644 pstrcpy(ifname, sizeof(ifname), ifname1);
3645 else
3646 ifname[0] = '\0';
3647 fd = tap_open(ifname, sizeof(ifname));
3648 if (fd < 0)
3649 return -1;
3651 if (!setup_script || !strcmp(setup_script, "no"))
3652 setup_script = "";
3653 if (setup_script[0] != '\0') {
3654 /* try to launch network init script */
3655 pid = fork();
3656 if (pid >= 0) {
3657 if (pid == 0) {
3658 int open_max = sysconf (_SC_OPEN_MAX), i;
3659 for (i = 0; i < open_max; i++)
3660 if (i != STDIN_FILENO &&
3661 i != STDOUT_FILENO &&
3662 i != STDERR_FILENO &&
3663 i != fd)
3664 close(i);
3666 parg = args;
3667 *parg++ = (char *)setup_script;
3668 *parg++ = ifname;
3669 *parg++ = NULL;
3670 execv(setup_script, args);
3671 _exit(1);
3673 while (waitpid(pid, &status, 0) != pid);
3674 if (!WIFEXITED(status) ||
3675 WEXITSTATUS(status) != 0) {
3676 fprintf(stderr, "%s: could not launch network script\n",
3677 setup_script);
3678 return -1;
3682 s = net_tap_fd_init(vlan, fd);
3683 if (!s)
3684 return -1;
3685 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3686 "tap: ifname=%s setup_script=%s", ifname, setup_script);
3687 return 0;
3690 #endif /* !_WIN32 */
3692 /* network connection */
3693 typedef struct NetSocketState {
3694 VLANClientState *vc;
3695 int fd;
3696 int state; /* 0 = getting length, 1 = getting data */
3697 int index;
3698 int packet_len;
3699 uint8_t buf[4096];
3700 struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
3701 } NetSocketState;
3703 typedef struct NetSocketListenState {
3704 VLANState *vlan;
3705 int fd;
3706 } NetSocketListenState;
3708 /* XXX: we consider we can send the whole packet without blocking */
3709 static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
3711 NetSocketState *s = opaque;
3712 uint32_t len;
3713 len = htonl(size);
3715 send_all(s->fd, (const uint8_t *)&len, sizeof(len));
3716 send_all(s->fd, buf, size);
3719 static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
3721 NetSocketState *s = opaque;
3722 sendto(s->fd, buf, size, 0,
3723 (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
3726 static void net_socket_send(void *opaque)
3728 NetSocketState *s = opaque;
3729 int l, size, err;
3730 uint8_t buf1[4096];
3731 const uint8_t *buf;
3733 size = recv(s->fd, buf1, sizeof(buf1), 0);
3734 if (size < 0) {
3735 err = socket_error();
3736 if (err != EWOULDBLOCK)
3737 goto eoc;
3738 } else if (size == 0) {
3739 /* end of connection */
3740 eoc:
3741 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3742 closesocket(s->fd);
3743 return;
3745 buf = buf1;
3746 while (size > 0) {
3747 /* reassemble a packet from the network */
3748 switch(s->state) {
3749 case 0:
3750 l = 4 - s->index;
3751 if (l > size)
3752 l = size;
3753 memcpy(s->buf + s->index, buf, l);
3754 buf += l;
3755 size -= l;
3756 s->index += l;
3757 if (s->index == 4) {
3758 /* got length */
3759 s->packet_len = ntohl(*(uint32_t *)s->buf);
3760 s->index = 0;
3761 s->state = 1;
3763 break;
3764 case 1:
3765 l = s->packet_len - s->index;
3766 if (l > size)
3767 l = size;
3768 memcpy(s->buf + s->index, buf, l);
3769 s->index += l;
3770 buf += l;
3771 size -= l;
3772 if (s->index >= s->packet_len) {
3773 qemu_send_packet(s->vc, s->buf, s->packet_len);
3774 s->index = 0;
3775 s->state = 0;
3777 break;
3782 static void net_socket_send_dgram(void *opaque)
3784 NetSocketState *s = opaque;
3785 int size;
3787 size = recv(s->fd, s->buf, sizeof(s->buf), 0);
3788 if (size < 0)
3789 return;
3790 if (size == 0) {
3791 /* end of connection */
3792 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3793 return;
3795 qemu_send_packet(s->vc, s->buf, size);
3798 static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
3800 struct ip_mreq imr;
3801 int fd;
3802 int val, ret;
3803 if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
3804 fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
3805 inet_ntoa(mcastaddr->sin_addr),
3806 (int)ntohl(mcastaddr->sin_addr.s_addr));
3807 return -1;
3810 fd = socket(PF_INET, SOCK_DGRAM, 0);
3811 if (fd < 0) {
3812 perror("socket(PF_INET, SOCK_DGRAM)");
3813 return -1;
3816 val = 1;
3817 ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
3818 (const char *)&val, sizeof(val));
3819 if (ret < 0) {
3820 perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
3821 goto fail;
3824 ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
3825 if (ret < 0) {
3826 perror("bind");
3827 goto fail;
3830 /* Add host to multicast group */
3831 imr.imr_multiaddr = mcastaddr->sin_addr;
3832 imr.imr_interface.s_addr = htonl(INADDR_ANY);
3834 ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
3835 (const char *)&imr, sizeof(struct ip_mreq));
3836 if (ret < 0) {
3837 perror("setsockopt(IP_ADD_MEMBERSHIP)");
3838 goto fail;
3841 /* Force mcast msgs to loopback (eg. several QEMUs in same host */
3842 val = 1;
3843 ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
3844 (const char *)&val, sizeof(val));
3845 if (ret < 0) {
3846 perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
3847 goto fail;
3850 socket_set_nonblock(fd);
3851 return fd;
3852 fail:
3853 if (fd >= 0)
3854 closesocket(fd);
3855 return -1;
3858 static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
3859 int is_connected)
3861 struct sockaddr_in saddr;
3862 int newfd;
3863 socklen_t saddr_len;
3864 NetSocketState *s;
3866 /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
3867 * Because this may be "shared" socket from a "master" process, datagrams would be recv()
3868 * by ONLY ONE process: we must "clone" this dgram socket --jjo
3871 if (is_connected) {
3872 if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
3873 /* must be bound */
3874 if (saddr.sin_addr.s_addr==0) {
3875 fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
3876 fd);
3877 return NULL;
3879 /* clone dgram socket */
3880 newfd = net_socket_mcast_create(&saddr);
3881 if (newfd < 0) {
3882 /* error already reported by net_socket_mcast_create() */
3883 close(fd);
3884 return NULL;
3886 /* clone newfd to fd, close newfd */
3887 dup2(newfd, fd);
3888 close(newfd);
3890 } else {
3891 fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
3892 fd, strerror(errno));
3893 return NULL;
3897 s = qemu_mallocz(sizeof(NetSocketState));
3898 if (!s)
3899 return NULL;
3900 s->fd = fd;
3902 s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
3903 qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
3905 /* mcast: save bound address as dst */
3906 if (is_connected) s->dgram_dst=saddr;
3908 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3909 "socket: fd=%d (%s mcast=%s:%d)",
3910 fd, is_connected? "cloned" : "",
3911 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
3912 return s;
3915 static void net_socket_connect(void *opaque)
3917 NetSocketState *s = opaque;
3918 qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
3921 static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
3922 int is_connected)
3924 NetSocketState *s;
3925 s = qemu_mallocz(sizeof(NetSocketState));
3926 if (!s)
3927 return NULL;
3928 s->fd = fd;
3929 s->vc = qemu_new_vlan_client(vlan,
3930 net_socket_receive, NULL, s);
3931 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3932 "socket: fd=%d", fd);
3933 if (is_connected) {
3934 net_socket_connect(s);
3935 } else {
3936 qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
3938 return s;
3941 static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
3942 int is_connected)
3944 int so_type=-1, optlen=sizeof(so_type);
3946 if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type, &optlen)< 0) {
3947 fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
3948 return NULL;
3950 switch(so_type) {
3951 case SOCK_DGRAM:
3952 return net_socket_fd_init_dgram(vlan, fd, is_connected);
3953 case SOCK_STREAM:
3954 return net_socket_fd_init_stream(vlan, fd, is_connected);
3955 default:
3956 /* who knows ... this could be a eg. a pty, do warn and continue as stream */
3957 fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
3958 return net_socket_fd_init_stream(vlan, fd, is_connected);
3960 return NULL;
3963 static void net_socket_accept(void *opaque)
3965 NetSocketListenState *s = opaque;
3966 NetSocketState *s1;
3967 struct sockaddr_in saddr;
3968 socklen_t len;
3969 int fd;
3971 for(;;) {
3972 len = sizeof(saddr);
3973 fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
3974 if (fd < 0 && errno != EINTR) {
3975 return;
3976 } else if (fd >= 0) {
3977 break;
3980 s1 = net_socket_fd_init(s->vlan, fd, 1);
3981 if (!s1) {
3982 closesocket(fd);
3983 } else {
3984 snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
3985 "socket: connection from %s:%d",
3986 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
3990 static int net_socket_listen_init(VLANState *vlan, const char *host_str)
3992 NetSocketListenState *s;
3993 int fd, val, ret;
3994 struct sockaddr_in saddr;
3996 if (parse_host_port(&saddr, host_str) < 0)
3997 return -1;
3999 s = qemu_mallocz(sizeof(NetSocketListenState));
4000 if (!s)
4001 return -1;
4003 fd = socket(PF_INET, SOCK_STREAM, 0);
4004 if (fd < 0) {
4005 perror("socket");
4006 return -1;
4008 socket_set_nonblock(fd);
4010 /* allow fast reuse */
4011 val = 1;
4012 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4014 ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4015 if (ret < 0) {
4016 perror("bind");
4017 return -1;
4019 ret = listen(fd, 0);
4020 if (ret < 0) {
4021 perror("listen");
4022 return -1;
4024 s->vlan = vlan;
4025 s->fd = fd;
4026 qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
4027 return 0;
4030 static int net_socket_connect_init(VLANState *vlan, const char *host_str)
4032 NetSocketState *s;
4033 int fd, connected, ret, err;
4034 struct sockaddr_in saddr;
4036 if (parse_host_port(&saddr, host_str) < 0)
4037 return -1;
4039 fd = socket(PF_INET, SOCK_STREAM, 0);
4040 if (fd < 0) {
4041 perror("socket");
4042 return -1;
4044 socket_set_nonblock(fd);
4046 connected = 0;
4047 for(;;) {
4048 ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4049 if (ret < 0) {
4050 err = socket_error();
4051 if (err == EINTR || err == EWOULDBLOCK) {
4052 } else if (err == EINPROGRESS) {
4053 break;
4054 #ifdef _WIN32
4055 } else if (err == WSAEALREADY) {
4056 break;
4057 #endif
4058 } else {
4059 perror("connect");
4060 closesocket(fd);
4061 return -1;
4063 } else {
4064 connected = 1;
4065 break;
4068 s = net_socket_fd_init(vlan, fd, connected);
4069 if (!s)
4070 return -1;
4071 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4072 "socket: connect to %s:%d",
4073 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4074 return 0;
4077 static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4079 NetSocketState *s;
4080 int fd;
4081 struct sockaddr_in saddr;
4083 if (parse_host_port(&saddr, host_str) < 0)
4084 return -1;
4087 fd = net_socket_mcast_create(&saddr);
4088 if (fd < 0)
4089 return -1;
4091 s = net_socket_fd_init(vlan, fd, 0);
4092 if (!s)
4093 return -1;
4095 s->dgram_dst = saddr;
4097 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4098 "socket: mcast=%s:%d",
4099 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4100 return 0;
4104 static int get_param_value(char *buf, int buf_size,
4105 const char *tag, const char *str)
4107 const char *p;
4108 char *q;
4109 char option[128];
4111 p = str;
4112 for(;;) {
4113 q = option;
4114 while (*p != '\0' && *p != '=') {
4115 if ((q - option) < sizeof(option) - 1)
4116 *q++ = *p;
4117 p++;
4119 *q = '\0';
4120 if (*p != '=')
4121 break;
4122 p++;
4123 if (!strcmp(tag, option)) {
4124 q = buf;
4125 while (*p != '\0' && *p != ',') {
4126 if ((q - buf) < buf_size - 1)
4127 *q++ = *p;
4128 p++;
4130 *q = '\0';
4131 return q - buf;
4132 } else {
4133 while (*p != '\0' && *p != ',') {
4134 p++;
4137 if (*p != ',')
4138 break;
4139 p++;
4141 return 0;
4144 static int net_client_init(const char *str)
4146 const char *p;
4147 char *q;
4148 char device[64];
4149 char buf[1024];
4150 int vlan_id, ret;
4151 VLANState *vlan;
4153 p = str;
4154 q = device;
4155 while (*p != '\0' && *p != ',') {
4156 if ((q - device) < sizeof(device) - 1)
4157 *q++ = *p;
4158 p++;
4160 *q = '\0';
4161 if (*p == ',')
4162 p++;
4163 vlan_id = 0;
4164 if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4165 vlan_id = strtol(buf, NULL, 0);
4167 vlan = qemu_find_vlan(vlan_id);
4168 if (!vlan) {
4169 fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4170 return -1;
4172 if (!strcmp(device, "nic")) {
4173 NICInfo *nd;
4174 uint8_t *macaddr;
4176 if (nb_nics >= MAX_NICS) {
4177 fprintf(stderr, "Too Many NICs\n");
4178 return -1;
4180 nd = &nd_table[nb_nics];
4181 macaddr = nd->macaddr;
4182 macaddr[0] = 0x52;
4183 macaddr[1] = 0x54;
4184 macaddr[2] = 0x00;
4185 macaddr[3] = 0x12;
4186 macaddr[4] = 0x34;
4187 macaddr[5] = 0x56 + nb_nics;
4189 if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4190 if (parse_macaddr(macaddr, buf) < 0) {
4191 fprintf(stderr, "invalid syntax for ethernet address\n");
4192 return -1;
4195 if (get_param_value(buf, sizeof(buf), "model", p)) {
4196 nd->model = strdup(buf);
4198 nd->vlan = vlan;
4199 nb_nics++;
4200 ret = 0;
4201 } else
4202 if (!strcmp(device, "none")) {
4203 /* does nothing. It is needed to signal that no network cards
4204 are wanted */
4205 ret = 0;
4206 } else
4207 #ifdef CONFIG_SLIRP
4208 if (!strcmp(device, "user")) {
4209 if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4210 pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4212 ret = net_slirp_init(vlan);
4213 } else
4214 #endif
4215 #ifdef _WIN32
4216 if (!strcmp(device, "tap")) {
4217 char ifname[64];
4218 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4219 fprintf(stderr, "tap: no interface name\n");
4220 return -1;
4222 ret = tap_win32_init(vlan, ifname);
4223 } else
4224 #else
4225 if (!strcmp(device, "tap")) {
4226 char ifname[64];
4227 char setup_script[1024];
4228 int fd;
4229 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4230 fd = strtol(buf, NULL, 0);
4231 ret = -1;
4232 if (net_tap_fd_init(vlan, fd))
4233 ret = 0;
4234 } else {
4235 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4236 ifname[0] = '\0';
4238 if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4239 pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4241 ret = net_tap_init(vlan, ifname, setup_script);
4243 } else
4244 #endif
4245 if (!strcmp(device, "socket")) {
4246 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4247 int fd;
4248 fd = strtol(buf, NULL, 0);
4249 ret = -1;
4250 if (net_socket_fd_init(vlan, fd, 1))
4251 ret = 0;
4252 } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4253 ret = net_socket_listen_init(vlan, buf);
4254 } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4255 ret = net_socket_connect_init(vlan, buf);
4256 } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4257 ret = net_socket_mcast_init(vlan, buf);
4258 } else {
4259 fprintf(stderr, "Unknown socket options: %s\n", p);
4260 return -1;
4262 } else
4264 fprintf(stderr, "Unknown network device: %s\n", device);
4265 return -1;
4267 if (ret < 0) {
4268 fprintf(stderr, "Could not initialize device '%s'\n", device);
4271 return ret;
4274 void do_info_network(void)
4276 VLANState *vlan;
4277 VLANClientState *vc;
4279 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4280 term_printf("VLAN %d devices:\n", vlan->id);
4281 for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4282 term_printf(" %s\n", vc->info_str);
4286 /***********************************************************/
4287 /* USB devices */
4289 static USBPort *used_usb_ports;
4290 static USBPort *free_usb_ports;
4292 /* ??? Maybe change this to register a hub to keep track of the topology. */
4293 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
4294 usb_attachfn attach)
4296 port->opaque = opaque;
4297 port->index = index;
4298 port->attach = attach;
4299 port->next = free_usb_ports;
4300 free_usb_ports = port;
4303 static int usb_device_add(const char *devname)
4305 const char *p;
4306 USBDevice *dev;
4307 USBPort *port;
4309 if (!free_usb_ports)
4310 return -1;
4312 if (strstart(devname, "host:", &p)) {
4313 dev = usb_host_device_open(p);
4314 } else if (!strcmp(devname, "mouse")) {
4315 dev = usb_mouse_init();
4316 } else if (!strcmp(devname, "tablet")) {
4317 dev = usb_tablet_init();
4318 } else if (strstart(devname, "disk:", &p)) {
4319 dev = usb_msd_init(p);
4320 } else {
4321 return -1;
4323 if (!dev)
4324 return -1;
4326 /* Find a USB port to add the device to. */
4327 port = free_usb_ports;
4328 if (!port->next) {
4329 USBDevice *hub;
4331 /* Create a new hub and chain it on. */
4332 free_usb_ports = NULL;
4333 port->next = used_usb_ports;
4334 used_usb_ports = port;
4336 hub = usb_hub_init(VM_USB_HUB_SIZE);
4337 usb_attach(port, hub);
4338 port = free_usb_ports;
4341 free_usb_ports = port->next;
4342 port->next = used_usb_ports;
4343 used_usb_ports = port;
4344 usb_attach(port, dev);
4345 return 0;
4348 static int usb_device_del(const char *devname)
4350 USBPort *port;
4351 USBPort **lastp;
4352 USBDevice *dev;
4353 int bus_num, addr;
4354 const char *p;
4356 if (!used_usb_ports)
4357 return -1;
4359 p = strchr(devname, '.');
4360 if (!p)
4361 return -1;
4362 bus_num = strtoul(devname, NULL, 0);
4363 addr = strtoul(p + 1, NULL, 0);
4364 if (bus_num != 0)
4365 return -1;
4367 lastp = &used_usb_ports;
4368 port = used_usb_ports;
4369 while (port && port->dev->addr != addr) {
4370 lastp = &port->next;
4371 port = port->next;
4374 if (!port)
4375 return -1;
4377 dev = port->dev;
4378 *lastp = port->next;
4379 usb_attach(port, NULL);
4380 dev->handle_destroy(dev);
4381 port->next = free_usb_ports;
4382 free_usb_ports = port;
4383 return 0;
4386 void do_usb_add(const char *devname)
4388 int ret;
4389 ret = usb_device_add(devname);
4390 if (ret < 0)
4391 term_printf("Could not add USB device '%s'\n", devname);
4394 void do_usb_del(const char *devname)
4396 int ret;
4397 ret = usb_device_del(devname);
4398 if (ret < 0)
4399 term_printf("Could not remove USB device '%s'\n", devname);
4402 void usb_info(void)
4404 USBDevice *dev;
4405 USBPort *port;
4406 const char *speed_str;
4408 if (!usb_enabled) {
4409 term_printf("USB support not enabled\n");
4410 return;
4413 for (port = used_usb_ports; port; port = port->next) {
4414 dev = port->dev;
4415 if (!dev)
4416 continue;
4417 switch(dev->speed) {
4418 case USB_SPEED_LOW:
4419 speed_str = "1.5";
4420 break;
4421 case USB_SPEED_FULL:
4422 speed_str = "12";
4423 break;
4424 case USB_SPEED_HIGH:
4425 speed_str = "480";
4426 break;
4427 default:
4428 speed_str = "?";
4429 break;
4431 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
4432 0, dev->addr, speed_str, dev->devname);
4436 /***********************************************************/
4437 /* PCMCIA/Cardbus */
4439 static struct pcmcia_socket_entry_s {
4440 struct pcmcia_socket_s *socket;
4441 struct pcmcia_socket_entry_s *next;
4442 } *pcmcia_sockets = 0;
4444 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
4446 struct pcmcia_socket_entry_s *entry;
4448 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
4449 entry->socket = socket;
4450 entry->next = pcmcia_sockets;
4451 pcmcia_sockets = entry;
4454 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
4456 struct pcmcia_socket_entry_s *entry, **ptr;
4458 ptr = &pcmcia_sockets;
4459 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
4460 if (entry->socket == socket) {
4461 *ptr = entry->next;
4462 qemu_free(entry);
4466 void pcmcia_info(void)
4468 struct pcmcia_socket_entry_s *iter;
4469 if (!pcmcia_sockets)
4470 term_printf("No PCMCIA sockets\n");
4472 for (iter = pcmcia_sockets; iter; iter = iter->next)
4473 term_printf("%s: %s\n", iter->socket->slot_string,
4474 iter->socket->attached ? iter->socket->card_string :
4475 "Empty");
4478 /***********************************************************/
4479 /* dumb display */
4481 static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
4485 static void dumb_resize(DisplayState *ds, int w, int h)
4489 static void dumb_refresh(DisplayState *ds)
4491 vga_hw_update();
4494 void dumb_display_init(DisplayState *ds)
4496 ds->data = NULL;
4497 ds->linesize = 0;
4498 ds->depth = 0;
4499 ds->dpy_update = dumb_update;
4500 ds->dpy_resize = dumb_resize;
4501 ds->dpy_refresh = dumb_refresh;
4504 /***********************************************************/
4505 /* I/O handling */
4507 #define MAX_IO_HANDLERS 64
4509 typedef struct IOHandlerRecord {
4510 int fd;
4511 IOCanRWHandler *fd_read_poll;
4512 IOHandler *fd_read;
4513 IOHandler *fd_write;
4514 int deleted;
4515 void *opaque;
4516 /* temporary data */
4517 struct pollfd *ufd;
4518 struct IOHandlerRecord *next;
4519 } IOHandlerRecord;
4521 static IOHandlerRecord *first_io_handler;
4523 /* XXX: fd_read_poll should be suppressed, but an API change is
4524 necessary in the character devices to suppress fd_can_read(). */
4525 int qemu_set_fd_handler2(int fd,
4526 IOCanRWHandler *fd_read_poll,
4527 IOHandler *fd_read,
4528 IOHandler *fd_write,
4529 void *opaque)
4531 IOHandlerRecord **pioh, *ioh;
4533 if (!fd_read && !fd_write) {
4534 pioh = &first_io_handler;
4535 for(;;) {
4536 ioh = *pioh;
4537 if (ioh == NULL)
4538 break;
4539 if (ioh->fd == fd) {
4540 ioh->deleted = 1;
4541 break;
4543 pioh = &ioh->next;
4545 } else {
4546 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4547 if (ioh->fd == fd)
4548 goto found;
4550 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
4551 if (!ioh)
4552 return -1;
4553 ioh->next = first_io_handler;
4554 first_io_handler = ioh;
4555 found:
4556 ioh->fd = fd;
4557 ioh->fd_read_poll = fd_read_poll;
4558 ioh->fd_read = fd_read;
4559 ioh->fd_write = fd_write;
4560 ioh->opaque = opaque;
4561 ioh->deleted = 0;
4563 return 0;
4566 int qemu_set_fd_handler(int fd,
4567 IOHandler *fd_read,
4568 IOHandler *fd_write,
4569 void *opaque)
4571 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
4574 /***********************************************************/
4575 /* Polling handling */
4577 typedef struct PollingEntry {
4578 PollingFunc *func;
4579 void *opaque;
4580 struct PollingEntry *next;
4581 } PollingEntry;
4583 static PollingEntry *first_polling_entry;
4585 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
4587 PollingEntry **ppe, *pe;
4588 pe = qemu_mallocz(sizeof(PollingEntry));
4589 if (!pe)
4590 return -1;
4591 pe->func = func;
4592 pe->opaque = opaque;
4593 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
4594 *ppe = pe;
4595 return 0;
4598 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
4600 PollingEntry **ppe, *pe;
4601 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
4602 pe = *ppe;
4603 if (pe->func == func && pe->opaque == opaque) {
4604 *ppe = pe->next;
4605 qemu_free(pe);
4606 break;
4611 #ifdef _WIN32
4612 /***********************************************************/
4613 /* Wait objects support */
4614 typedef struct WaitObjects {
4615 int num;
4616 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
4617 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
4618 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
4619 } WaitObjects;
4621 static WaitObjects wait_objects = {0};
4623 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
4625 WaitObjects *w = &wait_objects;
4627 if (w->num >= MAXIMUM_WAIT_OBJECTS)
4628 return -1;
4629 w->events[w->num] = handle;
4630 w->func[w->num] = func;
4631 w->opaque[w->num] = opaque;
4632 w->num++;
4633 return 0;
4636 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
4638 int i, found;
4639 WaitObjects *w = &wait_objects;
4641 found = 0;
4642 for (i = 0; i < w->num; i++) {
4643 if (w->events[i] == handle)
4644 found = 1;
4645 if (found) {
4646 w->events[i] = w->events[i + 1];
4647 w->func[i] = w->func[i + 1];
4648 w->opaque[i] = w->opaque[i + 1];
4651 if (found)
4652 w->num--;
4654 #endif
4656 /***********************************************************/
4657 /* savevm/loadvm support */
4659 #define IO_BUF_SIZE 32768
4661 struct QEMUFile {
4662 FILE *outfile;
4663 BlockDriverState *bs;
4664 int is_file;
4665 int is_writable;
4666 int64_t base_offset;
4667 int64_t buf_offset; /* start of buffer when writing, end of buffer
4668 when reading */
4669 int buf_index;
4670 int buf_size; /* 0 when writing */
4671 uint8_t buf[IO_BUF_SIZE];
4674 QEMUFile *qemu_fopen(const char *filename, const char *mode)
4676 QEMUFile *f;
4678 f = qemu_mallocz(sizeof(QEMUFile));
4679 if (!f)
4680 return NULL;
4681 if (!strcmp(mode, "wb")) {
4682 f->is_writable = 1;
4683 } else if (!strcmp(mode, "rb")) {
4684 f->is_writable = 0;
4685 } else {
4686 goto fail;
4688 f->outfile = fopen(filename, mode);
4689 if (!f->outfile)
4690 goto fail;
4691 f->is_file = 1;
4692 return f;
4693 fail:
4694 if (f->outfile)
4695 fclose(f->outfile);
4696 qemu_free(f);
4697 return NULL;
4700 QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
4702 QEMUFile *f;
4704 f = qemu_mallocz(sizeof(QEMUFile));
4705 if (!f)
4706 return NULL;
4707 f->is_file = 0;
4708 f->bs = bs;
4709 f->is_writable = is_writable;
4710 f->base_offset = offset;
4711 return f;
4714 void qemu_fflush(QEMUFile *f)
4716 if (!f->is_writable)
4717 return;
4718 if (f->buf_index > 0) {
4719 if (f->is_file) {
4720 fseek(f->outfile, f->buf_offset, SEEK_SET);
4721 fwrite(f->buf, 1, f->buf_index, f->outfile);
4722 } else {
4723 bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
4724 f->buf, f->buf_index);
4726 f->buf_offset += f->buf_index;
4727 f->buf_index = 0;
4731 static void qemu_fill_buffer(QEMUFile *f)
4733 int len;
4735 if (f->is_writable)
4736 return;
4737 if (f->is_file) {
4738 fseek(f->outfile, f->buf_offset, SEEK_SET);
4739 len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
4740 if (len < 0)
4741 len = 0;
4742 } else {
4743 len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
4744 f->buf, IO_BUF_SIZE);
4745 if (len < 0)
4746 len = 0;
4748 f->buf_index = 0;
4749 f->buf_size = len;
4750 f->buf_offset += len;
4753 void qemu_fclose(QEMUFile *f)
4755 if (f->is_writable)
4756 qemu_fflush(f);
4757 if (f->is_file) {
4758 fclose(f->outfile);
4760 qemu_free(f);
4763 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
4765 int l;
4766 while (size > 0) {
4767 l = IO_BUF_SIZE - f->buf_index;
4768 if (l > size)
4769 l = size;
4770 memcpy(f->buf + f->buf_index, buf, l);
4771 f->buf_index += l;
4772 buf += l;
4773 size -= l;
4774 if (f->buf_index >= IO_BUF_SIZE)
4775 qemu_fflush(f);
4779 void qemu_put_byte(QEMUFile *f, int v)
4781 f->buf[f->buf_index++] = v;
4782 if (f->buf_index >= IO_BUF_SIZE)
4783 qemu_fflush(f);
4786 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
4788 int size, l;
4790 size = size1;
4791 while (size > 0) {
4792 l = f->buf_size - f->buf_index;
4793 if (l == 0) {
4794 qemu_fill_buffer(f);
4795 l = f->buf_size - f->buf_index;
4796 if (l == 0)
4797 break;
4799 if (l > size)
4800 l = size;
4801 memcpy(buf, f->buf + f->buf_index, l);
4802 f->buf_index += l;
4803 buf += l;
4804 size -= l;
4806 return size1 - size;
4809 int qemu_get_byte(QEMUFile *f)
4811 if (f->buf_index >= f->buf_size) {
4812 qemu_fill_buffer(f);
4813 if (f->buf_index >= f->buf_size)
4814 return 0;
4816 return f->buf[f->buf_index++];
4819 int64_t qemu_ftell(QEMUFile *f)
4821 return f->buf_offset - f->buf_size + f->buf_index;
4824 int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
4826 if (whence == SEEK_SET) {
4827 /* nothing to do */
4828 } else if (whence == SEEK_CUR) {
4829 pos += qemu_ftell(f);
4830 } else {
4831 /* SEEK_END not supported */
4832 return -1;
4834 if (f->is_writable) {
4835 qemu_fflush(f);
4836 f->buf_offset = pos;
4837 } else {
4838 f->buf_offset = pos;
4839 f->buf_index = 0;
4840 f->buf_size = 0;
4842 return pos;
4845 void qemu_put_be16(QEMUFile *f, unsigned int v)
4847 qemu_put_byte(f, v >> 8);
4848 qemu_put_byte(f, v);
4851 void qemu_put_be32(QEMUFile *f, unsigned int v)
4853 qemu_put_byte(f, v >> 24);
4854 qemu_put_byte(f, v >> 16);
4855 qemu_put_byte(f, v >> 8);
4856 qemu_put_byte(f, v);
4859 void qemu_put_be64(QEMUFile *f, uint64_t v)
4861 qemu_put_be32(f, v >> 32);
4862 qemu_put_be32(f, v);
4865 unsigned int qemu_get_be16(QEMUFile *f)
4867 unsigned int v;
4868 v = qemu_get_byte(f) << 8;
4869 v |= qemu_get_byte(f);
4870 return v;
4873 unsigned int qemu_get_be32(QEMUFile *f)
4875 unsigned int v;
4876 v = qemu_get_byte(f) << 24;
4877 v |= qemu_get_byte(f) << 16;
4878 v |= qemu_get_byte(f) << 8;
4879 v |= qemu_get_byte(f);
4880 return v;
4883 uint64_t qemu_get_be64(QEMUFile *f)
4885 uint64_t v;
4886 v = (uint64_t)qemu_get_be32(f) << 32;
4887 v |= qemu_get_be32(f);
4888 return v;
4891 typedef struct SaveStateEntry {
4892 char idstr[256];
4893 int instance_id;
4894 int version_id;
4895 SaveStateHandler *save_state;
4896 LoadStateHandler *load_state;
4897 void *opaque;
4898 struct SaveStateEntry *next;
4899 } SaveStateEntry;
4901 static SaveStateEntry *first_se;
4903 int register_savevm(const char *idstr,
4904 int instance_id,
4905 int version_id,
4906 SaveStateHandler *save_state,
4907 LoadStateHandler *load_state,
4908 void *opaque)
4910 SaveStateEntry *se, **pse;
4912 se = qemu_malloc(sizeof(SaveStateEntry));
4913 if (!se)
4914 return -1;
4915 pstrcpy(se->idstr, sizeof(se->idstr), idstr);
4916 se->instance_id = instance_id;
4917 se->version_id = version_id;
4918 se->save_state = save_state;
4919 se->load_state = load_state;
4920 se->opaque = opaque;
4921 se->next = NULL;
4923 /* add at the end of list */
4924 pse = &first_se;
4925 while (*pse != NULL)
4926 pse = &(*pse)->next;
4927 *pse = se;
4928 return 0;
4931 #define QEMU_VM_FILE_MAGIC 0x5145564d
4932 #define QEMU_VM_FILE_VERSION 0x00000002
4934 int qemu_savevm_state(QEMUFile *f)
4936 SaveStateEntry *se;
4937 int len, ret;
4938 int64_t cur_pos, len_pos, total_len_pos;
4940 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
4941 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
4942 total_len_pos = qemu_ftell(f);
4943 qemu_put_be64(f, 0); /* total size */
4945 for(se = first_se; se != NULL; se = se->next) {
4946 /* ID string */
4947 len = strlen(se->idstr);
4948 qemu_put_byte(f, len);
4949 qemu_put_buffer(f, se->idstr, len);
4951 qemu_put_be32(f, se->instance_id);
4952 qemu_put_be32(f, se->version_id);
4954 /* record size: filled later */
4955 len_pos = qemu_ftell(f);
4956 qemu_put_be32(f, 0);
4958 se->save_state(f, se->opaque);
4960 /* fill record size */
4961 cur_pos = qemu_ftell(f);
4962 len = cur_pos - len_pos - 4;
4963 qemu_fseek(f, len_pos, SEEK_SET);
4964 qemu_put_be32(f, len);
4965 qemu_fseek(f, cur_pos, SEEK_SET);
4967 cur_pos = qemu_ftell(f);
4968 qemu_fseek(f, total_len_pos, SEEK_SET);
4969 qemu_put_be64(f, cur_pos - total_len_pos - 8);
4970 qemu_fseek(f, cur_pos, SEEK_SET);
4972 ret = 0;
4973 return ret;
4976 static SaveStateEntry *find_se(const char *idstr, int instance_id)
4978 SaveStateEntry *se;
4980 for(se = first_se; se != NULL; se = se->next) {
4981 if (!strcmp(se->idstr, idstr) &&
4982 instance_id == se->instance_id)
4983 return se;
4985 return NULL;
4988 int qemu_loadvm_state(QEMUFile *f)
4990 SaveStateEntry *se;
4991 int len, ret, instance_id, record_len, version_id;
4992 int64_t total_len, end_pos, cur_pos;
4993 unsigned int v;
4994 char idstr[256];
4996 v = qemu_get_be32(f);
4997 if (v != QEMU_VM_FILE_MAGIC)
4998 goto fail;
4999 v = qemu_get_be32(f);
5000 if (v != QEMU_VM_FILE_VERSION) {
5001 fail:
5002 ret = -1;
5003 goto the_end;
5005 total_len = qemu_get_be64(f);
5006 end_pos = total_len + qemu_ftell(f);
5007 for(;;) {
5008 if (qemu_ftell(f) >= end_pos)
5009 break;
5010 len = qemu_get_byte(f);
5011 qemu_get_buffer(f, idstr, len);
5012 idstr[len] = '\0';
5013 instance_id = qemu_get_be32(f);
5014 version_id = qemu_get_be32(f);
5015 record_len = qemu_get_be32(f);
5016 #if 0
5017 printf("idstr=%s instance=0x%x version=%d len=%d\n",
5018 idstr, instance_id, version_id, record_len);
5019 #endif
5020 cur_pos = qemu_ftell(f);
5021 se = find_se(idstr, instance_id);
5022 if (!se) {
5023 fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
5024 instance_id, idstr);
5025 } else {
5026 ret = se->load_state(f, se->opaque, version_id);
5027 if (ret < 0) {
5028 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
5029 instance_id, idstr);
5032 /* always seek to exact end of record */
5033 qemu_fseek(f, cur_pos + record_len, SEEK_SET);
5035 ret = 0;
5036 the_end:
5037 return ret;
5040 /* device can contain snapshots */
5041 static int bdrv_can_snapshot(BlockDriverState *bs)
5043 return (bs &&
5044 !bdrv_is_removable(bs) &&
5045 !bdrv_is_read_only(bs));
5048 /* device must be snapshots in order to have a reliable snapshot */
5049 static int bdrv_has_snapshot(BlockDriverState *bs)
5051 return (bs &&
5052 !bdrv_is_removable(bs) &&
5053 !bdrv_is_read_only(bs));
5056 static BlockDriverState *get_bs_snapshots(void)
5058 BlockDriverState *bs;
5059 int i;
5061 if (bs_snapshots)
5062 return bs_snapshots;
5063 for(i = 0; i <= MAX_DISKS; i++) {
5064 bs = bs_table[i];
5065 if (bdrv_can_snapshot(bs))
5066 goto ok;
5068 return NULL;
5070 bs_snapshots = bs;
5071 return bs;
5074 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
5075 const char *name)
5077 QEMUSnapshotInfo *sn_tab, *sn;
5078 int nb_sns, i, ret;
5080 ret = -ENOENT;
5081 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5082 if (nb_sns < 0)
5083 return ret;
5084 for(i = 0; i < nb_sns; i++) {
5085 sn = &sn_tab[i];
5086 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
5087 *sn_info = *sn;
5088 ret = 0;
5089 break;
5092 qemu_free(sn_tab);
5093 return ret;
5096 void do_savevm(const char *name)
5098 BlockDriverState *bs, *bs1;
5099 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
5100 int must_delete, ret, i;
5101 BlockDriverInfo bdi1, *bdi = &bdi1;
5102 QEMUFile *f;
5103 int saved_vm_running;
5104 #ifdef _WIN32
5105 struct _timeb tb;
5106 #else
5107 struct timeval tv;
5108 #endif
5110 bs = get_bs_snapshots();
5111 if (!bs) {
5112 term_printf("No block device can accept snapshots\n");
5113 return;
5116 /* ??? Should this occur after vm_stop? */
5117 qemu_aio_flush();
5119 saved_vm_running = vm_running;
5120 vm_stop(0);
5122 must_delete = 0;
5123 if (name) {
5124 ret = bdrv_snapshot_find(bs, old_sn, name);
5125 if (ret >= 0) {
5126 must_delete = 1;
5129 memset(sn, 0, sizeof(*sn));
5130 if (must_delete) {
5131 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
5132 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
5133 } else {
5134 if (name)
5135 pstrcpy(sn->name, sizeof(sn->name), name);
5138 /* fill auxiliary fields */
5139 #ifdef _WIN32
5140 _ftime(&tb);
5141 sn->date_sec = tb.time;
5142 sn->date_nsec = tb.millitm * 1000000;
5143 #else
5144 gettimeofday(&tv, NULL);
5145 sn->date_sec = tv.tv_sec;
5146 sn->date_nsec = tv.tv_usec * 1000;
5147 #endif
5148 sn->vm_clock_nsec = qemu_get_clock(vm_clock);
5150 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5151 term_printf("Device %s does not support VM state snapshots\n",
5152 bdrv_get_device_name(bs));
5153 goto the_end;
5156 /* save the VM state */
5157 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
5158 if (!f) {
5159 term_printf("Could not open VM state file\n");
5160 goto the_end;
5162 ret = qemu_savevm_state(f);
5163 sn->vm_state_size = qemu_ftell(f);
5164 qemu_fclose(f);
5165 if (ret < 0) {
5166 term_printf("Error %d while writing VM\n", ret);
5167 goto the_end;
5170 /* create the snapshots */
5172 for(i = 0; i < MAX_DISKS; i++) {
5173 bs1 = bs_table[i];
5174 if (bdrv_has_snapshot(bs1)) {
5175 if (must_delete) {
5176 ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
5177 if (ret < 0) {
5178 term_printf("Error while deleting snapshot on '%s'\n",
5179 bdrv_get_device_name(bs1));
5182 ret = bdrv_snapshot_create(bs1, sn);
5183 if (ret < 0) {
5184 term_printf("Error while creating snapshot on '%s'\n",
5185 bdrv_get_device_name(bs1));
5190 the_end:
5191 if (saved_vm_running)
5192 vm_start();
5195 void do_loadvm(const char *name)
5197 BlockDriverState *bs, *bs1;
5198 BlockDriverInfo bdi1, *bdi = &bdi1;
5199 QEMUFile *f;
5200 int i, ret;
5201 int saved_vm_running;
5203 bs = get_bs_snapshots();
5204 if (!bs) {
5205 term_printf("No block device supports snapshots\n");
5206 return;
5209 /* Flush all IO requests so they don't interfere with the new state. */
5210 qemu_aio_flush();
5212 saved_vm_running = vm_running;
5213 vm_stop(0);
5215 for(i = 0; i <= MAX_DISKS; i++) {
5216 bs1 = bs_table[i];
5217 if (bdrv_has_snapshot(bs1)) {
5218 ret = bdrv_snapshot_goto(bs1, name);
5219 if (ret < 0) {
5220 if (bs != bs1)
5221 term_printf("Warning: ");
5222 switch(ret) {
5223 case -ENOTSUP:
5224 term_printf("Snapshots not supported on device '%s'\n",
5225 bdrv_get_device_name(bs1));
5226 break;
5227 case -ENOENT:
5228 term_printf("Could not find snapshot '%s' on device '%s'\n",
5229 name, bdrv_get_device_name(bs1));
5230 break;
5231 default:
5232 term_printf("Error %d while activating snapshot on '%s'\n",
5233 ret, bdrv_get_device_name(bs1));
5234 break;
5236 /* fatal on snapshot block device */
5237 if (bs == bs1)
5238 goto the_end;
5243 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5244 term_printf("Device %s does not support VM state snapshots\n",
5245 bdrv_get_device_name(bs));
5246 return;
5249 /* restore the VM state */
5250 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
5251 if (!f) {
5252 term_printf("Could not open VM state file\n");
5253 goto the_end;
5255 ret = qemu_loadvm_state(f);
5256 qemu_fclose(f);
5257 if (ret < 0) {
5258 term_printf("Error %d while loading VM state\n", ret);
5260 the_end:
5261 if (saved_vm_running)
5262 vm_start();
5265 void do_delvm(const char *name)
5267 BlockDriverState *bs, *bs1;
5268 int i, ret;
5270 bs = get_bs_snapshots();
5271 if (!bs) {
5272 term_printf("No block device supports snapshots\n");
5273 return;
5276 for(i = 0; i <= MAX_DISKS; i++) {
5277 bs1 = bs_table[i];
5278 if (bdrv_has_snapshot(bs1)) {
5279 ret = bdrv_snapshot_delete(bs1, name);
5280 if (ret < 0) {
5281 if (ret == -ENOTSUP)
5282 term_printf("Snapshots not supported on device '%s'\n",
5283 bdrv_get_device_name(bs1));
5284 else
5285 term_printf("Error %d while deleting snapshot on '%s'\n",
5286 ret, bdrv_get_device_name(bs1));
5292 void do_info_snapshots(void)
5294 BlockDriverState *bs, *bs1;
5295 QEMUSnapshotInfo *sn_tab, *sn;
5296 int nb_sns, i;
5297 char buf[256];
5299 bs = get_bs_snapshots();
5300 if (!bs) {
5301 term_printf("No available block device supports snapshots\n");
5302 return;
5304 term_printf("Snapshot devices:");
5305 for(i = 0; i <= MAX_DISKS; i++) {
5306 bs1 = bs_table[i];
5307 if (bdrv_has_snapshot(bs1)) {
5308 if (bs == bs1)
5309 term_printf(" %s", bdrv_get_device_name(bs1));
5312 term_printf("\n");
5314 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5315 if (nb_sns < 0) {
5316 term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
5317 return;
5319 term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
5320 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
5321 for(i = 0; i < nb_sns; i++) {
5322 sn = &sn_tab[i];
5323 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
5325 qemu_free(sn_tab);
5328 /***********************************************************/
5329 /* cpu save/restore */
5331 #if defined(TARGET_I386)
5333 static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
5335 qemu_put_be32(f, dt->selector);
5336 qemu_put_betl(f, dt->base);
5337 qemu_put_be32(f, dt->limit);
5338 qemu_put_be32(f, dt->flags);
5341 static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
5343 dt->selector = qemu_get_be32(f);
5344 dt->base = qemu_get_betl(f);
5345 dt->limit = qemu_get_be32(f);
5346 dt->flags = qemu_get_be32(f);
5349 void cpu_save(QEMUFile *f, void *opaque)
5351 CPUState *env = opaque;
5352 uint16_t fptag, fpus, fpuc, fpregs_format;
5353 uint32_t hflags;
5354 int i;
5356 for(i = 0; i < CPU_NB_REGS; i++)
5357 qemu_put_betls(f, &env->regs[i]);
5358 qemu_put_betls(f, &env->eip);
5359 qemu_put_betls(f, &env->eflags);
5360 hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
5361 qemu_put_be32s(f, &hflags);
5363 /* FPU */
5364 fpuc = env->fpuc;
5365 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
5366 fptag = 0;
5367 for(i = 0; i < 8; i++) {
5368 fptag |= ((!env->fptags[i]) << i);
5371 qemu_put_be16s(f, &fpuc);
5372 qemu_put_be16s(f, &fpus);
5373 qemu_put_be16s(f, &fptag);
5375 #ifdef USE_X86LDOUBLE
5376 fpregs_format = 0;
5377 #else
5378 fpregs_format = 1;
5379 #endif
5380 qemu_put_be16s(f, &fpregs_format);
5382 for(i = 0; i < 8; i++) {
5383 #ifdef USE_X86LDOUBLE
5385 uint64_t mant;
5386 uint16_t exp;
5387 /* we save the real CPU data (in case of MMX usage only 'mant'
5388 contains the MMX register */
5389 cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
5390 qemu_put_be64(f, mant);
5391 qemu_put_be16(f, exp);
5393 #else
5394 /* if we use doubles for float emulation, we save the doubles to
5395 avoid losing information in case of MMX usage. It can give
5396 problems if the image is restored on a CPU where long
5397 doubles are used instead. */
5398 qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
5399 #endif
5402 for(i = 0; i < 6; i++)
5403 cpu_put_seg(f, &env->segs[i]);
5404 cpu_put_seg(f, &env->ldt);
5405 cpu_put_seg(f, &env->tr);
5406 cpu_put_seg(f, &env->gdt);
5407 cpu_put_seg(f, &env->idt);
5409 qemu_put_be32s(f, &env->sysenter_cs);
5410 qemu_put_be32s(f, &env->sysenter_esp);
5411 qemu_put_be32s(f, &env->sysenter_eip);
5413 qemu_put_betls(f, &env->cr[0]);
5414 qemu_put_betls(f, &env->cr[2]);
5415 qemu_put_betls(f, &env->cr[3]);
5416 qemu_put_betls(f, &env->cr[4]);
5418 for(i = 0; i < 8; i++)
5419 qemu_put_betls(f, &env->dr[i]);
5421 /* MMU */
5422 qemu_put_be32s(f, &env->a20_mask);
5424 /* XMM */
5425 qemu_put_be32s(f, &env->mxcsr);
5426 for(i = 0; i < CPU_NB_REGS; i++) {
5427 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5428 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5431 #ifdef TARGET_X86_64
5432 qemu_put_be64s(f, &env->efer);
5433 qemu_put_be64s(f, &env->star);
5434 qemu_put_be64s(f, &env->lstar);
5435 qemu_put_be64s(f, &env->cstar);
5436 qemu_put_be64s(f, &env->fmask);
5437 qemu_put_be64s(f, &env->kernelgsbase);
5438 #endif
5439 qemu_put_be32s(f, &env->smbase);
5442 #ifdef USE_X86LDOUBLE
5443 /* XXX: add that in a FPU generic layer */
5444 union x86_longdouble {
5445 uint64_t mant;
5446 uint16_t exp;
5449 #define MANTD1(fp) (fp & ((1LL << 52) - 1))
5450 #define EXPBIAS1 1023
5451 #define EXPD1(fp) ((fp >> 52) & 0x7FF)
5452 #define SIGND1(fp) ((fp >> 32) & 0x80000000)
5454 static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
5456 int e;
5457 /* mantissa */
5458 p->mant = (MANTD1(temp) << 11) | (1LL << 63);
5459 /* exponent + sign */
5460 e = EXPD1(temp) - EXPBIAS1 + 16383;
5461 e |= SIGND1(temp) >> 16;
5462 p->exp = e;
5464 #endif
5466 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5468 CPUState *env = opaque;
5469 int i, guess_mmx;
5470 uint32_t hflags;
5471 uint16_t fpus, fpuc, fptag, fpregs_format;
5473 if (version_id != 3 && version_id != 4)
5474 return -EINVAL;
5475 for(i = 0; i < CPU_NB_REGS; i++)
5476 qemu_get_betls(f, &env->regs[i]);
5477 qemu_get_betls(f, &env->eip);
5478 qemu_get_betls(f, &env->eflags);
5479 qemu_get_be32s(f, &hflags);
5481 qemu_get_be16s(f, &fpuc);
5482 qemu_get_be16s(f, &fpus);
5483 qemu_get_be16s(f, &fptag);
5484 qemu_get_be16s(f, &fpregs_format);
5486 /* NOTE: we cannot always restore the FPU state if the image come
5487 from a host with a different 'USE_X86LDOUBLE' define. We guess
5488 if we are in an MMX state to restore correctly in that case. */
5489 guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
5490 for(i = 0; i < 8; i++) {
5491 uint64_t mant;
5492 uint16_t exp;
5494 switch(fpregs_format) {
5495 case 0:
5496 mant = qemu_get_be64(f);
5497 exp = qemu_get_be16(f);
5498 #ifdef USE_X86LDOUBLE
5499 env->fpregs[i].d = cpu_set_fp80(mant, exp);
5500 #else
5501 /* difficult case */
5502 if (guess_mmx)
5503 env->fpregs[i].mmx.MMX_Q(0) = mant;
5504 else
5505 env->fpregs[i].d = cpu_set_fp80(mant, exp);
5506 #endif
5507 break;
5508 case 1:
5509 mant = qemu_get_be64(f);
5510 #ifdef USE_X86LDOUBLE
5512 union x86_longdouble *p;
5513 /* difficult case */
5514 p = (void *)&env->fpregs[i];
5515 if (guess_mmx) {
5516 p->mant = mant;
5517 p->exp = 0xffff;
5518 } else {
5519 fp64_to_fp80(p, mant);
5522 #else
5523 env->fpregs[i].mmx.MMX_Q(0) = mant;
5524 #endif
5525 break;
5526 default:
5527 return -EINVAL;
5531 env->fpuc = fpuc;
5532 /* XXX: restore FPU round state */
5533 env->fpstt = (fpus >> 11) & 7;
5534 env->fpus = fpus & ~0x3800;
5535 fptag ^= 0xff;
5536 for(i = 0; i < 8; i++) {
5537 env->fptags[i] = (fptag >> i) & 1;
5540 for(i = 0; i < 6; i++)
5541 cpu_get_seg(f, &env->segs[i]);
5542 cpu_get_seg(f, &env->ldt);
5543 cpu_get_seg(f, &env->tr);
5544 cpu_get_seg(f, &env->gdt);
5545 cpu_get_seg(f, &env->idt);
5547 qemu_get_be32s(f, &env->sysenter_cs);
5548 qemu_get_be32s(f, &env->sysenter_esp);
5549 qemu_get_be32s(f, &env->sysenter_eip);
5551 qemu_get_betls(f, &env->cr[0]);
5552 qemu_get_betls(f, &env->cr[2]);
5553 qemu_get_betls(f, &env->cr[3]);
5554 qemu_get_betls(f, &env->cr[4]);
5556 for(i = 0; i < 8; i++)
5557 qemu_get_betls(f, &env->dr[i]);
5559 /* MMU */
5560 qemu_get_be32s(f, &env->a20_mask);
5562 qemu_get_be32s(f, &env->mxcsr);
5563 for(i = 0; i < CPU_NB_REGS; i++) {
5564 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5565 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5568 #ifdef TARGET_X86_64
5569 qemu_get_be64s(f, &env->efer);
5570 qemu_get_be64s(f, &env->star);
5571 qemu_get_be64s(f, &env->lstar);
5572 qemu_get_be64s(f, &env->cstar);
5573 qemu_get_be64s(f, &env->fmask);
5574 qemu_get_be64s(f, &env->kernelgsbase);
5575 #endif
5576 if (version_id >= 4)
5577 qemu_get_be32s(f, &env->smbase);
5579 /* XXX: compute hflags from scratch, except for CPL and IIF */
5580 env->hflags = hflags;
5581 tlb_flush(env, 1);
5582 return 0;
5585 #elif defined(TARGET_PPC)
5586 void cpu_save(QEMUFile *f, void *opaque)
5590 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5592 return 0;
5595 #elif defined(TARGET_MIPS)
5596 void cpu_save(QEMUFile *f, void *opaque)
5600 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5602 return 0;
5605 #elif defined(TARGET_SPARC)
5606 void cpu_save(QEMUFile *f, void *opaque)
5608 CPUState *env = opaque;
5609 int i;
5610 uint32_t tmp;
5612 for(i = 0; i < 8; i++)
5613 qemu_put_betls(f, &env->gregs[i]);
5614 for(i = 0; i < NWINDOWS * 16; i++)
5615 qemu_put_betls(f, &env->regbase[i]);
5617 /* FPU */
5618 for(i = 0; i < TARGET_FPREGS; i++) {
5619 union {
5620 float32 f;
5621 uint32_t i;
5622 } u;
5623 u.f = env->fpr[i];
5624 qemu_put_be32(f, u.i);
5627 qemu_put_betls(f, &env->pc);
5628 qemu_put_betls(f, &env->npc);
5629 qemu_put_betls(f, &env->y);
5630 tmp = GET_PSR(env);
5631 qemu_put_be32(f, tmp);
5632 qemu_put_betls(f, &env->fsr);
5633 qemu_put_betls(f, &env->tbr);
5634 #ifndef TARGET_SPARC64
5635 qemu_put_be32s(f, &env->wim);
5636 /* MMU */
5637 for(i = 0; i < 16; i++)
5638 qemu_put_be32s(f, &env->mmuregs[i]);
5639 #endif
5642 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5644 CPUState *env = opaque;
5645 int i;
5646 uint32_t tmp;
5648 for(i = 0; i < 8; i++)
5649 qemu_get_betls(f, &env->gregs[i]);
5650 for(i = 0; i < NWINDOWS * 16; i++)
5651 qemu_get_betls(f, &env->regbase[i]);
5653 /* FPU */
5654 for(i = 0; i < TARGET_FPREGS; i++) {
5655 union {
5656 float32 f;
5657 uint32_t i;
5658 } u;
5659 u.i = qemu_get_be32(f);
5660 env->fpr[i] = u.f;
5663 qemu_get_betls(f, &env->pc);
5664 qemu_get_betls(f, &env->npc);
5665 qemu_get_betls(f, &env->y);
5666 tmp = qemu_get_be32(f);
5667 env->cwp = 0; /* needed to ensure that the wrapping registers are
5668 correctly updated */
5669 PUT_PSR(env, tmp);
5670 qemu_get_betls(f, &env->fsr);
5671 qemu_get_betls(f, &env->tbr);
5672 #ifndef TARGET_SPARC64
5673 qemu_get_be32s(f, &env->wim);
5674 /* MMU */
5675 for(i = 0; i < 16; i++)
5676 qemu_get_be32s(f, &env->mmuregs[i]);
5677 #endif
5678 tlb_flush(env, 1);
5679 return 0;
5682 #elif defined(TARGET_ARM)
5684 void cpu_save(QEMUFile *f, void *opaque)
5686 int i;
5687 CPUARMState *env = (CPUARMState *)opaque;
5689 for (i = 0; i < 16; i++) {
5690 qemu_put_be32(f, env->regs[i]);
5692 qemu_put_be32(f, cpsr_read(env));
5693 qemu_put_be32(f, env->spsr);
5694 for (i = 0; i < 6; i++) {
5695 qemu_put_be32(f, env->banked_spsr[i]);
5696 qemu_put_be32(f, env->banked_r13[i]);
5697 qemu_put_be32(f, env->banked_r14[i]);
5699 for (i = 0; i < 5; i++) {
5700 qemu_put_be32(f, env->usr_regs[i]);
5701 qemu_put_be32(f, env->fiq_regs[i]);
5703 qemu_put_be32(f, env->cp15.c0_cpuid);
5704 qemu_put_be32(f, env->cp15.c0_cachetype);
5705 qemu_put_be32(f, env->cp15.c1_sys);
5706 qemu_put_be32(f, env->cp15.c1_coproc);
5707 qemu_put_be32(f, env->cp15.c2_base);
5708 qemu_put_be32(f, env->cp15.c2_data);
5709 qemu_put_be32(f, env->cp15.c2_insn);
5710 qemu_put_be32(f, env->cp15.c3);
5711 qemu_put_be32(f, env->cp15.c5_insn);
5712 qemu_put_be32(f, env->cp15.c5_data);
5713 for (i = 0; i < 8; i++) {
5714 qemu_put_be32(f, env->cp15.c6_region[i]);
5716 qemu_put_be32(f, env->cp15.c6_insn);
5717 qemu_put_be32(f, env->cp15.c6_data);
5718 qemu_put_be32(f, env->cp15.c9_insn);
5719 qemu_put_be32(f, env->cp15.c9_data);
5720 qemu_put_be32(f, env->cp15.c13_fcse);
5721 qemu_put_be32(f, env->cp15.c13_context);
5722 qemu_put_be32(f, env->cp15.c15_cpar);
5724 qemu_put_be32(f, env->features);
5726 if (arm_feature(env, ARM_FEATURE_VFP)) {
5727 for (i = 0; i < 16; i++) {
5728 CPU_DoubleU u;
5729 u.d = env->vfp.regs[i];
5730 qemu_put_be32(f, u.l.upper);
5731 qemu_put_be32(f, u.l.lower);
5733 for (i = 0; i < 16; i++) {
5734 qemu_put_be32(f, env->vfp.xregs[i]);
5737 /* TODO: Should use proper FPSCR access functions. */
5738 qemu_put_be32(f, env->vfp.vec_len);
5739 qemu_put_be32(f, env->vfp.vec_stride);
5742 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
5743 for (i = 0; i < 16; i++) {
5744 qemu_put_be64(f, env->iwmmxt.regs[i]);
5746 for (i = 0; i < 16; i++) {
5747 qemu_put_be32(f, env->iwmmxt.cregs[i]);
5752 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5754 CPUARMState *env = (CPUARMState *)opaque;
5755 int i;
5757 if (version_id != 0)
5758 return -EINVAL;
5760 for (i = 0; i < 16; i++) {
5761 env->regs[i] = qemu_get_be32(f);
5763 cpsr_write(env, qemu_get_be32(f), 0xffffffff);
5764 env->spsr = qemu_get_be32(f);
5765 for (i = 0; i < 6; i++) {
5766 env->banked_spsr[i] = qemu_get_be32(f);
5767 env->banked_r13[i] = qemu_get_be32(f);
5768 env->banked_r14[i] = qemu_get_be32(f);
5770 for (i = 0; i < 5; i++) {
5771 env->usr_regs[i] = qemu_get_be32(f);
5772 env->fiq_regs[i] = qemu_get_be32(f);
5774 env->cp15.c0_cpuid = qemu_get_be32(f);
5775 env->cp15.c0_cachetype = qemu_get_be32(f);
5776 env->cp15.c1_sys = qemu_get_be32(f);
5777 env->cp15.c1_coproc = qemu_get_be32(f);
5778 env->cp15.c2_base = qemu_get_be32(f);
5779 env->cp15.c2_data = qemu_get_be32(f);
5780 env->cp15.c2_insn = qemu_get_be32(f);
5781 env->cp15.c3 = qemu_get_be32(f);
5782 env->cp15.c5_insn = qemu_get_be32(f);
5783 env->cp15.c5_data = qemu_get_be32(f);
5784 for (i = 0; i < 8; i++) {
5785 env->cp15.c6_region[i] = qemu_get_be32(f);
5787 env->cp15.c6_insn = qemu_get_be32(f);
5788 env->cp15.c6_data = qemu_get_be32(f);
5789 env->cp15.c9_insn = qemu_get_be32(f);
5790 env->cp15.c9_data = qemu_get_be32(f);
5791 env->cp15.c13_fcse = qemu_get_be32(f);
5792 env->cp15.c13_context = qemu_get_be32(f);
5793 env->cp15.c15_cpar = qemu_get_be32(f);
5795 env->features = qemu_get_be32(f);
5797 if (arm_feature(env, ARM_FEATURE_VFP)) {
5798 for (i = 0; i < 16; i++) {
5799 CPU_DoubleU u;
5800 u.l.upper = qemu_get_be32(f);
5801 u.l.lower = qemu_get_be32(f);
5802 env->vfp.regs[i] = u.d;
5804 for (i = 0; i < 16; i++) {
5805 env->vfp.xregs[i] = qemu_get_be32(f);
5808 /* TODO: Should use proper FPSCR access functions. */
5809 env->vfp.vec_len = qemu_get_be32(f);
5810 env->vfp.vec_stride = qemu_get_be32(f);
5813 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
5814 for (i = 0; i < 16; i++) {
5815 env->iwmmxt.regs[i] = qemu_get_be64(f);
5817 for (i = 0; i < 16; i++) {
5818 env->iwmmxt.cregs[i] = qemu_get_be32(f);
5822 return 0;
5825 #else
5827 #warning No CPU save/restore functions
5829 #endif
5831 /***********************************************************/
5832 /* ram save/restore */
5834 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
5836 int v;
5838 v = qemu_get_byte(f);
5839 switch(v) {
5840 case 0:
5841 if (qemu_get_buffer(f, buf, len) != len)
5842 return -EIO;
5843 break;
5844 case 1:
5845 v = qemu_get_byte(f);
5846 memset(buf, v, len);
5847 break;
5848 default:
5849 return -EINVAL;
5851 return 0;
5854 static int ram_load_v1(QEMUFile *f, void *opaque)
5856 int i, ret;
5858 if (qemu_get_be32(f) != phys_ram_size)
5859 return -EINVAL;
5860 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
5861 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
5862 if (ret)
5863 return ret;
5865 return 0;
5868 #define BDRV_HASH_BLOCK_SIZE 1024
5869 #define IOBUF_SIZE 4096
5870 #define RAM_CBLOCK_MAGIC 0xfabe
5872 typedef struct RamCompressState {
5873 z_stream zstream;
5874 QEMUFile *f;
5875 uint8_t buf[IOBUF_SIZE];
5876 } RamCompressState;
5878 static int ram_compress_open(RamCompressState *s, QEMUFile *f)
5880 int ret;
5881 memset(s, 0, sizeof(*s));
5882 s->f = f;
5883 ret = deflateInit2(&s->zstream, 1,
5884 Z_DEFLATED, 15,
5885 9, Z_DEFAULT_STRATEGY);
5886 if (ret != Z_OK)
5887 return -1;
5888 s->zstream.avail_out = IOBUF_SIZE;
5889 s->zstream.next_out = s->buf;
5890 return 0;
5893 static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
5895 qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
5896 qemu_put_be16(s->f, len);
5897 qemu_put_buffer(s->f, buf, len);
5900 static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
5902 int ret;
5904 s->zstream.avail_in = len;
5905 s->zstream.next_in = (uint8_t *)buf;
5906 while (s->zstream.avail_in > 0) {
5907 ret = deflate(&s->zstream, Z_NO_FLUSH);
5908 if (ret != Z_OK)
5909 return -1;
5910 if (s->zstream.avail_out == 0) {
5911 ram_put_cblock(s, s->buf, IOBUF_SIZE);
5912 s->zstream.avail_out = IOBUF_SIZE;
5913 s->zstream.next_out = s->buf;
5916 return 0;
5919 static void ram_compress_close(RamCompressState *s)
5921 int len, ret;
5923 /* compress last bytes */
5924 for(;;) {
5925 ret = deflate(&s->zstream, Z_FINISH);
5926 if (ret == Z_OK || ret == Z_STREAM_END) {
5927 len = IOBUF_SIZE - s->zstream.avail_out;
5928 if (len > 0) {
5929 ram_put_cblock(s, s->buf, len);
5931 s->zstream.avail_out = IOBUF_SIZE;
5932 s->zstream.next_out = s->buf;
5933 if (ret == Z_STREAM_END)
5934 break;
5935 } else {
5936 goto fail;
5939 fail:
5940 deflateEnd(&s->zstream);
5943 typedef struct RamDecompressState {
5944 z_stream zstream;
5945 QEMUFile *f;
5946 uint8_t buf[IOBUF_SIZE];
5947 } RamDecompressState;
5949 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
5951 int ret;
5952 memset(s, 0, sizeof(*s));
5953 s->f = f;
5954 ret = inflateInit(&s->zstream);
5955 if (ret != Z_OK)
5956 return -1;
5957 return 0;
5960 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
5962 int ret, clen;
5964 s->zstream.avail_out = len;
5965 s->zstream.next_out = buf;
5966 while (s->zstream.avail_out > 0) {
5967 if (s->zstream.avail_in == 0) {
5968 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
5969 return -1;
5970 clen = qemu_get_be16(s->f);
5971 if (clen > IOBUF_SIZE)
5972 return -1;
5973 qemu_get_buffer(s->f, s->buf, clen);
5974 s->zstream.avail_in = clen;
5975 s->zstream.next_in = s->buf;
5977 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
5978 if (ret != Z_OK && ret != Z_STREAM_END) {
5979 return -1;
5982 return 0;
5985 static void ram_decompress_close(RamDecompressState *s)
5987 inflateEnd(&s->zstream);
5990 static void ram_save(QEMUFile *f, void *opaque)
5992 int i;
5993 RamCompressState s1, *s = &s1;
5994 uint8_t buf[10];
5996 qemu_put_be32(f, phys_ram_size);
5997 if (ram_compress_open(s, f) < 0)
5998 return;
5999 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6000 #if 0
6001 if (tight_savevm_enabled) {
6002 int64_t sector_num;
6003 int j;
6005 /* find if the memory block is available on a virtual
6006 block device */
6007 sector_num = -1;
6008 for(j = 0; j < MAX_DISKS; j++) {
6009 if (bs_table[j]) {
6010 sector_num = bdrv_hash_find(bs_table[j],
6011 phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6012 if (sector_num >= 0)
6013 break;
6016 if (j == MAX_DISKS)
6017 goto normal_compress;
6018 buf[0] = 1;
6019 buf[1] = j;
6020 cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
6021 ram_compress_buf(s, buf, 10);
6022 } else
6023 #endif
6025 // normal_compress:
6026 buf[0] = 0;
6027 ram_compress_buf(s, buf, 1);
6028 ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6031 ram_compress_close(s);
6034 static int ram_load(QEMUFile *f, void *opaque, int version_id)
6036 RamDecompressState s1, *s = &s1;
6037 uint8_t buf[10];
6038 int i;
6040 if (version_id == 1)
6041 return ram_load_v1(f, opaque);
6042 if (version_id != 2)
6043 return -EINVAL;
6044 if (qemu_get_be32(f) != phys_ram_size)
6045 return -EINVAL;
6046 if (ram_decompress_open(s, f) < 0)
6047 return -EINVAL;
6048 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6049 if (ram_decompress_buf(s, buf, 1) < 0) {
6050 fprintf(stderr, "Error while reading ram block header\n");
6051 goto error;
6053 if (buf[0] == 0) {
6054 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
6055 fprintf(stderr, "Error while reading ram block address=0x%08x", i);
6056 goto error;
6058 } else
6059 #if 0
6060 if (buf[0] == 1) {
6061 int bs_index;
6062 int64_t sector_num;
6064 ram_decompress_buf(s, buf + 1, 9);
6065 bs_index = buf[1];
6066 sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
6067 if (bs_index >= MAX_DISKS || bs_table[bs_index] == NULL) {
6068 fprintf(stderr, "Invalid block device index %d\n", bs_index);
6069 goto error;
6071 if (bdrv_read(bs_table[bs_index], sector_num, phys_ram_base + i,
6072 BDRV_HASH_BLOCK_SIZE / 512) < 0) {
6073 fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
6074 bs_index, sector_num);
6075 goto error;
6077 } else
6078 #endif
6080 error:
6081 printf("Error block header\n");
6082 return -EINVAL;
6085 ram_decompress_close(s);
6086 return 0;
6089 /***********************************************************/
6090 /* bottom halves (can be seen as timers which expire ASAP) */
6092 struct QEMUBH {
6093 QEMUBHFunc *cb;
6094 void *opaque;
6095 int scheduled;
6096 QEMUBH *next;
6099 static QEMUBH *first_bh = NULL;
6101 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
6103 QEMUBH *bh;
6104 bh = qemu_mallocz(sizeof(QEMUBH));
6105 if (!bh)
6106 return NULL;
6107 bh->cb = cb;
6108 bh->opaque = opaque;
6109 return bh;
6112 int qemu_bh_poll(void)
6114 QEMUBH *bh, **pbh;
6115 int ret;
6117 ret = 0;
6118 for(;;) {
6119 pbh = &first_bh;
6120 bh = *pbh;
6121 if (!bh)
6122 break;
6123 ret = 1;
6124 *pbh = bh->next;
6125 bh->scheduled = 0;
6126 bh->cb(bh->opaque);
6128 return ret;
6131 void qemu_bh_schedule(QEMUBH *bh)
6133 CPUState *env = cpu_single_env;
6134 if (bh->scheduled)
6135 return;
6136 bh->scheduled = 1;
6137 bh->next = first_bh;
6138 first_bh = bh;
6140 /* stop the currently executing CPU to execute the BH ASAP */
6141 if (env) {
6142 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
6146 void qemu_bh_cancel(QEMUBH *bh)
6148 QEMUBH **pbh;
6149 if (bh->scheduled) {
6150 pbh = &first_bh;
6151 while (*pbh != bh)
6152 pbh = &(*pbh)->next;
6153 *pbh = bh->next;
6154 bh->scheduled = 0;
6158 void qemu_bh_delete(QEMUBH *bh)
6160 qemu_bh_cancel(bh);
6161 qemu_free(bh);
6164 /***********************************************************/
6165 /* machine registration */
6167 QEMUMachine *first_machine = NULL;
6169 int qemu_register_machine(QEMUMachine *m)
6171 QEMUMachine **pm;
6172 pm = &first_machine;
6173 while (*pm != NULL)
6174 pm = &(*pm)->next;
6175 m->next = NULL;
6176 *pm = m;
6177 return 0;
6180 QEMUMachine *find_machine(const char *name)
6182 QEMUMachine *m;
6184 for(m = first_machine; m != NULL; m = m->next) {
6185 if (!strcmp(m->name, name))
6186 return m;
6188 return NULL;
6191 /***********************************************************/
6192 /* main execution loop */
6194 void gui_update(void *opaque)
6196 display_state.dpy_refresh(&display_state);
6197 qemu_mod_timer(gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
6200 struct vm_change_state_entry {
6201 VMChangeStateHandler *cb;
6202 void *opaque;
6203 LIST_ENTRY (vm_change_state_entry) entries;
6206 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
6208 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
6209 void *opaque)
6211 VMChangeStateEntry *e;
6213 e = qemu_mallocz(sizeof (*e));
6214 if (!e)
6215 return NULL;
6217 e->cb = cb;
6218 e->opaque = opaque;
6219 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
6220 return e;
6223 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
6225 LIST_REMOVE (e, entries);
6226 qemu_free (e);
6229 static void vm_state_notify(int running)
6231 VMChangeStateEntry *e;
6233 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
6234 e->cb(e->opaque, running);
6238 /* XXX: support several handlers */
6239 static VMStopHandler *vm_stop_cb;
6240 static void *vm_stop_opaque;
6242 int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
6244 vm_stop_cb = cb;
6245 vm_stop_opaque = opaque;
6246 return 0;
6249 void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
6251 vm_stop_cb = NULL;
6254 void vm_start(void)
6256 if (!vm_running) {
6257 cpu_enable_ticks();
6258 vm_running = 1;
6259 vm_state_notify(1);
6263 void vm_stop(int reason)
6265 if (vm_running) {
6266 cpu_disable_ticks();
6267 vm_running = 0;
6268 if (reason != 0) {
6269 if (vm_stop_cb) {
6270 vm_stop_cb(vm_stop_opaque, reason);
6273 vm_state_notify(0);
6277 /* reset/shutdown handler */
6279 typedef struct QEMUResetEntry {
6280 QEMUResetHandler *func;
6281 void *opaque;
6282 struct QEMUResetEntry *next;
6283 } QEMUResetEntry;
6285 static QEMUResetEntry *first_reset_entry;
6286 static int reset_requested;
6287 static int shutdown_requested;
6288 static int powerdown_requested;
6290 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
6292 QEMUResetEntry **pre, *re;
6294 pre = &first_reset_entry;
6295 while (*pre != NULL)
6296 pre = &(*pre)->next;
6297 re = qemu_mallocz(sizeof(QEMUResetEntry));
6298 re->func = func;
6299 re->opaque = opaque;
6300 re->next = NULL;
6301 *pre = re;
6304 static void qemu_system_reset(void)
6306 QEMUResetEntry *re;
6308 /* reset all devices */
6309 for(re = first_reset_entry; re != NULL; re = re->next) {
6310 re->func(re->opaque);
6314 void qemu_system_reset_request(void)
6316 if (no_reboot) {
6317 shutdown_requested = 1;
6318 } else {
6319 reset_requested = 1;
6321 if (cpu_single_env)
6322 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6325 void qemu_system_shutdown_request(void)
6327 shutdown_requested = 1;
6328 if (cpu_single_env)
6329 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6332 void qemu_system_powerdown_request(void)
6334 powerdown_requested = 1;
6335 if (cpu_single_env)
6336 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6339 void main_loop_wait(int timeout)
6341 IOHandlerRecord *ioh;
6342 fd_set rfds, wfds, xfds;
6343 int ret, nfds;
6344 #ifdef _WIN32
6345 int ret2, i;
6346 #endif
6347 struct timeval tv;
6348 PollingEntry *pe;
6351 /* XXX: need to suppress polling by better using win32 events */
6352 ret = 0;
6353 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
6354 ret |= pe->func(pe->opaque);
6356 #ifdef _WIN32
6357 if (ret == 0) {
6358 int err;
6359 WaitObjects *w = &wait_objects;
6361 ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
6362 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
6363 if (w->func[ret - WAIT_OBJECT_0])
6364 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
6366 /* Check for additional signaled events */
6367 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
6369 /* Check if event is signaled */
6370 ret2 = WaitForSingleObject(w->events[i], 0);
6371 if(ret2 == WAIT_OBJECT_0) {
6372 if (w->func[i])
6373 w->func[i](w->opaque[i]);
6374 } else if (ret2 == WAIT_TIMEOUT) {
6375 } else {
6376 err = GetLastError();
6377 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
6380 } else if (ret == WAIT_TIMEOUT) {
6381 } else {
6382 err = GetLastError();
6383 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
6386 #endif
6387 /* poll any events */
6388 /* XXX: separate device handlers from system ones */
6389 nfds = -1;
6390 FD_ZERO(&rfds);
6391 FD_ZERO(&wfds);
6392 FD_ZERO(&xfds);
6393 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6394 if (ioh->deleted)
6395 continue;
6396 if (ioh->fd_read &&
6397 (!ioh->fd_read_poll ||
6398 ioh->fd_read_poll(ioh->opaque) != 0)) {
6399 FD_SET(ioh->fd, &rfds);
6400 if (ioh->fd > nfds)
6401 nfds = ioh->fd;
6403 if (ioh->fd_write) {
6404 FD_SET(ioh->fd, &wfds);
6405 if (ioh->fd > nfds)
6406 nfds = ioh->fd;
6410 tv.tv_sec = 0;
6411 #ifdef _WIN32
6412 tv.tv_usec = 0;
6413 #else
6414 tv.tv_usec = timeout * 1000;
6415 #endif
6416 #if defined(CONFIG_SLIRP)
6417 if (slirp_inited) {
6418 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
6420 #endif
6421 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
6422 if (ret > 0) {
6423 IOHandlerRecord **pioh;
6425 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6426 if (ioh->deleted)
6427 continue;
6428 if (FD_ISSET(ioh->fd, &rfds)) {
6429 ioh->fd_read(ioh->opaque);
6431 if (FD_ISSET(ioh->fd, &wfds)) {
6432 ioh->fd_write(ioh->opaque);
6436 /* remove deleted IO handlers */
6437 pioh = &first_io_handler;
6438 while (*pioh) {
6439 ioh = *pioh;
6440 if (ioh->deleted) {
6441 *pioh = ioh->next;
6442 qemu_free(ioh);
6443 } else
6444 pioh = &ioh->next;
6447 #if defined(CONFIG_SLIRP)
6448 if (slirp_inited) {
6449 if (ret < 0) {
6450 FD_ZERO(&rfds);
6451 FD_ZERO(&wfds);
6452 FD_ZERO(&xfds);
6454 slirp_select_poll(&rfds, &wfds, &xfds);
6456 #endif
6457 qemu_aio_poll();
6459 if (vm_running) {
6460 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
6461 qemu_get_clock(vm_clock));
6462 /* run dma transfers, if any */
6463 DMA_run();
6466 /* real time timers */
6467 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
6468 qemu_get_clock(rt_clock));
6470 /* Check bottom-halves last in case any of the earlier events triggered
6471 them. */
6472 qemu_bh_poll();
6476 static CPUState *cur_cpu;
6478 int main_loop(void)
6480 int ret, timeout;
6481 #ifdef CONFIG_PROFILER
6482 int64_t ti;
6483 #endif
6484 CPUState *env;
6486 cur_cpu = first_cpu;
6487 for(;;) {
6488 if (vm_running) {
6490 env = cur_cpu;
6491 for(;;) {
6492 /* get next cpu */
6493 env = env->next_cpu;
6494 if (!env)
6495 env = first_cpu;
6496 #ifdef CONFIG_PROFILER
6497 ti = profile_getclock();
6498 #endif
6499 ret = cpu_exec(env);
6500 #ifdef CONFIG_PROFILER
6501 qemu_time += profile_getclock() - ti;
6502 #endif
6503 if (ret == EXCP_HLT) {
6504 /* Give the next CPU a chance to run. */
6505 cur_cpu = env;
6506 continue;
6508 if (ret != EXCP_HALTED)
6509 break;
6510 /* all CPUs are halted ? */
6511 if (env == cur_cpu)
6512 break;
6514 cur_cpu = env;
6516 if (shutdown_requested) {
6517 ret = EXCP_INTERRUPT;
6518 break;
6520 if (reset_requested) {
6521 reset_requested = 0;
6522 qemu_system_reset();
6523 ret = EXCP_INTERRUPT;
6525 if (powerdown_requested) {
6526 powerdown_requested = 0;
6527 qemu_system_powerdown();
6528 ret = EXCP_INTERRUPT;
6530 if (ret == EXCP_DEBUG) {
6531 vm_stop(EXCP_DEBUG);
6533 /* If all cpus are halted then wait until the next IRQ */
6534 /* XXX: use timeout computed from timers */
6535 if (ret == EXCP_HALTED)
6536 timeout = 10;
6537 else
6538 timeout = 0;
6539 } else {
6540 timeout = 10;
6542 #ifdef CONFIG_PROFILER
6543 ti = profile_getclock();
6544 #endif
6545 main_loop_wait(timeout);
6546 #ifdef CONFIG_PROFILER
6547 dev_time += profile_getclock() - ti;
6548 #endif
6550 cpu_disable_ticks();
6551 return ret;
6554 void help(void)
6556 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2007 Fabrice Bellard\n"
6557 "usage: %s [options] [disk_image]\n"
6558 "\n"
6559 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
6560 "\n"
6561 "Standard options:\n"
6562 "-M machine select emulated machine (-M ? for list)\n"
6563 "-cpu cpu select CPU (-cpu ? for list)\n"
6564 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
6565 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
6566 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
6567 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
6568 "-mtdblock file use 'file' as on-board Flash memory image\n"
6569 "-sd file use 'file' as SecureDigital card image\n"
6570 "-pflash file use 'file' as a parallel flash image\n"
6571 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
6572 "-snapshot write to temporary files instead of disk image files\n"
6573 #ifdef CONFIG_SDL
6574 "-no-frame open SDL window without a frame and window decorations\n"
6575 "-no-quit disable SDL window close capability\n"
6576 #endif
6577 #ifdef TARGET_I386
6578 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
6579 #endif
6580 "-m megs set virtual RAM size to megs MB [default=%d]\n"
6581 "-smp n set the number of CPUs to 'n' [default=1]\n"
6582 "-nographic disable graphical output and redirect serial I/Os to console\n"
6583 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n"
6584 #ifndef _WIN32
6585 "-k language use keyboard layout (for example \"fr\" for French)\n"
6586 #endif
6587 #ifdef HAS_AUDIO
6588 "-audio-help print list of audio drivers and their options\n"
6589 "-soundhw c1,... enable audio support\n"
6590 " and only specified sound cards (comma separated list)\n"
6591 " use -soundhw ? to get the list of supported cards\n"
6592 " use -soundhw all to enable all of them\n"
6593 #endif
6594 "-localtime set the real time clock to local time [default=utc]\n"
6595 "-full-screen start in full screen\n"
6596 #ifdef TARGET_I386
6597 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
6598 #endif
6599 "-usb enable the USB driver (will be the default soon)\n"
6600 "-usbdevice name add the host or guest USB device 'name'\n"
6601 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
6602 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
6603 #endif
6604 "-name string set the name of the guest\n"
6605 "\n"
6606 "Network options:\n"
6607 "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
6608 " create a new Network Interface Card and connect it to VLAN 'n'\n"
6609 #ifdef CONFIG_SLIRP
6610 "-net user[,vlan=n][,hostname=host]\n"
6611 " connect the user mode network stack to VLAN 'n' and send\n"
6612 " hostname 'host' to DHCP clients\n"
6613 #endif
6614 #ifdef _WIN32
6615 "-net tap[,vlan=n],ifname=name\n"
6616 " connect the host TAP network interface to VLAN 'n'\n"
6617 #else
6618 "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file]\n"
6619 " connect the host TAP network interface to VLAN 'n' and use\n"
6620 " the network script 'file' (default=%s);\n"
6621 " use 'script=no' to disable script execution;\n"
6622 " use 'fd=h' to connect to an already opened TAP interface\n"
6623 #endif
6624 "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
6625 " connect the vlan 'n' to another VLAN using a socket connection\n"
6626 "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
6627 " connect the vlan 'n' to multicast maddr and port\n"
6628 "-net none use it alone to have zero network devices; if no -net option\n"
6629 " is provided, the default is '-net nic -net user'\n"
6630 "\n"
6631 #ifdef CONFIG_SLIRP
6632 "-tftp dir allow tftp access to files in dir [-net user]\n"
6633 "-bootp file advertise file in BOOTP replies\n"
6634 #ifndef _WIN32
6635 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
6636 #endif
6637 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
6638 " redirect TCP or UDP connections from host to guest [-net user]\n"
6639 #endif
6640 "\n"
6641 "Linux boot specific:\n"
6642 "-kernel bzImage use 'bzImage' as kernel image\n"
6643 "-append cmdline use 'cmdline' as kernel command line\n"
6644 "-initrd file use 'file' as initial ram disk\n"
6645 "\n"
6646 "Debug/Expert options:\n"
6647 "-monitor dev redirect the monitor to char device 'dev'\n"
6648 "-serial dev redirect the serial port to char device 'dev'\n"
6649 "-parallel dev redirect the parallel port to char device 'dev'\n"
6650 "-pidfile file Write PID to 'file'\n"
6651 "-S freeze CPU at startup (use 'c' to start execution)\n"
6652 "-s wait gdb connection to port\n"
6653 "-p port set gdb connection port [default=%s]\n"
6654 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
6655 "-hdachs c,h,s[,t] force hard disk 0 physical geometry and the optional BIOS\n"
6656 " translation (t=none or lba) (usually qemu can guess them)\n"
6657 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
6658 #ifdef USE_KQEMU
6659 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
6660 "-no-kqemu disable KQEMU kernel module usage\n"
6661 #endif
6662 #ifdef USE_CODE_COPY
6663 "-no-code-copy disable code copy acceleration\n"
6664 #endif
6665 #ifdef TARGET_I386
6666 "-std-vga simulate a standard VGA card with VESA Bochs Extensions\n"
6667 " (default is CL-GD5446 PCI VGA)\n"
6668 "-no-acpi disable ACPI\n"
6669 #endif
6670 "-no-reboot exit instead of rebooting\n"
6671 "-loadvm file start right away with a saved state (loadvm in monitor)\n"
6672 "-vnc display start a VNC server on display\n"
6673 #ifndef _WIN32
6674 "-daemonize daemonize QEMU after initializing\n"
6675 #endif
6676 "-option-rom rom load a file, rom, into the option ROM space\n"
6677 #ifdef TARGET_SPARC
6678 "-prom-env variable=value set OpenBIOS nvram variables\n"
6679 #endif
6680 "\n"
6681 "During emulation, the following keys are useful:\n"
6682 "ctrl-alt-f toggle full screen\n"
6683 "ctrl-alt-n switch to virtual console 'n'\n"
6684 "ctrl-alt toggle mouse and keyboard grab\n"
6685 "\n"
6686 "When using -nographic, press 'ctrl-a h' to get some help.\n"
6688 "qemu",
6689 DEFAULT_RAM_SIZE,
6690 #ifndef _WIN32
6691 DEFAULT_NETWORK_SCRIPT,
6692 #endif
6693 DEFAULT_GDBSTUB_PORT,
6694 "/tmp/qemu.log");
6695 exit(1);
6698 #define HAS_ARG 0x0001
6700 enum {
6701 QEMU_OPTION_h,
6703 QEMU_OPTION_M,
6704 QEMU_OPTION_cpu,
6705 QEMU_OPTION_fda,
6706 QEMU_OPTION_fdb,
6707 QEMU_OPTION_hda,
6708 QEMU_OPTION_hdb,
6709 QEMU_OPTION_hdc,
6710 QEMU_OPTION_hdd,
6711 QEMU_OPTION_cdrom,
6712 QEMU_OPTION_mtdblock,
6713 QEMU_OPTION_sd,
6714 QEMU_OPTION_pflash,
6715 QEMU_OPTION_boot,
6716 QEMU_OPTION_snapshot,
6717 #ifdef TARGET_I386
6718 QEMU_OPTION_no_fd_bootchk,
6719 #endif
6720 QEMU_OPTION_m,
6721 QEMU_OPTION_nographic,
6722 QEMU_OPTION_portrait,
6723 #ifdef HAS_AUDIO
6724 QEMU_OPTION_audio_help,
6725 QEMU_OPTION_soundhw,
6726 #endif
6728 QEMU_OPTION_net,
6729 QEMU_OPTION_tftp,
6730 QEMU_OPTION_bootp,
6731 QEMU_OPTION_smb,
6732 QEMU_OPTION_redir,
6734 QEMU_OPTION_kernel,
6735 QEMU_OPTION_append,
6736 QEMU_OPTION_initrd,
6738 QEMU_OPTION_S,
6739 QEMU_OPTION_s,
6740 QEMU_OPTION_p,
6741 QEMU_OPTION_d,
6742 QEMU_OPTION_hdachs,
6743 QEMU_OPTION_L,
6744 QEMU_OPTION_no_code_copy,
6745 QEMU_OPTION_k,
6746 QEMU_OPTION_localtime,
6747 QEMU_OPTION_cirrusvga,
6748 QEMU_OPTION_vmsvga,
6749 QEMU_OPTION_g,
6750 QEMU_OPTION_std_vga,
6751 QEMU_OPTION_echr,
6752 QEMU_OPTION_monitor,
6753 QEMU_OPTION_serial,
6754 QEMU_OPTION_parallel,
6755 QEMU_OPTION_loadvm,
6756 QEMU_OPTION_full_screen,
6757 QEMU_OPTION_no_frame,
6758 QEMU_OPTION_no_quit,
6759 QEMU_OPTION_pidfile,
6760 QEMU_OPTION_no_kqemu,
6761 QEMU_OPTION_kernel_kqemu,
6762 QEMU_OPTION_win2k_hack,
6763 QEMU_OPTION_usb,
6764 QEMU_OPTION_usbdevice,
6765 QEMU_OPTION_smp,
6766 QEMU_OPTION_vnc,
6767 QEMU_OPTION_no_acpi,
6768 QEMU_OPTION_no_reboot,
6769 QEMU_OPTION_show_cursor,
6770 QEMU_OPTION_daemonize,
6771 QEMU_OPTION_option_rom,
6772 QEMU_OPTION_semihosting,
6773 QEMU_OPTION_name,
6774 QEMU_OPTION_prom_env,
6777 typedef struct QEMUOption {
6778 const char *name;
6779 int flags;
6780 int index;
6781 } QEMUOption;
6783 const QEMUOption qemu_options[] = {
6784 { "h", 0, QEMU_OPTION_h },
6785 { "help", 0, QEMU_OPTION_h },
6787 { "M", HAS_ARG, QEMU_OPTION_M },
6788 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
6789 { "fda", HAS_ARG, QEMU_OPTION_fda },
6790 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
6791 { "hda", HAS_ARG, QEMU_OPTION_hda },
6792 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
6793 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
6794 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
6795 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
6796 { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
6797 { "sd", HAS_ARG, QEMU_OPTION_sd },
6798 { "pflash", HAS_ARG, QEMU_OPTION_pflash },
6799 { "boot", HAS_ARG, QEMU_OPTION_boot },
6800 { "snapshot", 0, QEMU_OPTION_snapshot },
6801 #ifdef TARGET_I386
6802 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
6803 #endif
6804 { "m", HAS_ARG, QEMU_OPTION_m },
6805 { "nographic", 0, QEMU_OPTION_nographic },
6806 { "portrait", 0, QEMU_OPTION_portrait },
6807 { "k", HAS_ARG, QEMU_OPTION_k },
6808 #ifdef HAS_AUDIO
6809 { "audio-help", 0, QEMU_OPTION_audio_help },
6810 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
6811 #endif
6813 { "net", HAS_ARG, QEMU_OPTION_net},
6814 #ifdef CONFIG_SLIRP
6815 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
6816 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
6817 #ifndef _WIN32
6818 { "smb", HAS_ARG, QEMU_OPTION_smb },
6819 #endif
6820 { "redir", HAS_ARG, QEMU_OPTION_redir },
6821 #endif
6823 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
6824 { "append", HAS_ARG, QEMU_OPTION_append },
6825 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
6827 { "S", 0, QEMU_OPTION_S },
6828 { "s", 0, QEMU_OPTION_s },
6829 { "p", HAS_ARG, QEMU_OPTION_p },
6830 { "d", HAS_ARG, QEMU_OPTION_d },
6831 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
6832 { "L", HAS_ARG, QEMU_OPTION_L },
6833 { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
6834 #ifdef USE_KQEMU
6835 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
6836 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
6837 #endif
6838 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
6839 { "g", 1, QEMU_OPTION_g },
6840 #endif
6841 { "localtime", 0, QEMU_OPTION_localtime },
6842 { "std-vga", 0, QEMU_OPTION_std_vga },
6843 { "echr", 1, QEMU_OPTION_echr },
6844 { "monitor", 1, QEMU_OPTION_monitor },
6845 { "serial", 1, QEMU_OPTION_serial },
6846 { "parallel", 1, QEMU_OPTION_parallel },
6847 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
6848 { "full-screen", 0, QEMU_OPTION_full_screen },
6849 #ifdef CONFIG_SDL
6850 { "no-frame", 0, QEMU_OPTION_no_frame },
6851 { "no-quit", 0, QEMU_OPTION_no_quit },
6852 #endif
6853 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
6854 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
6855 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
6856 { "smp", HAS_ARG, QEMU_OPTION_smp },
6857 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
6859 /* temporary options */
6860 { "usb", 0, QEMU_OPTION_usb },
6861 { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
6862 { "vmwarevga", 0, QEMU_OPTION_vmsvga },
6863 { "no-acpi", 0, QEMU_OPTION_no_acpi },
6864 { "no-reboot", 0, QEMU_OPTION_no_reboot },
6865 { "show-cursor", 0, QEMU_OPTION_show_cursor },
6866 { "daemonize", 0, QEMU_OPTION_daemonize },
6867 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
6868 #if defined(TARGET_ARM) || defined(TARGET_M68K)
6869 { "semihosting", 0, QEMU_OPTION_semihosting },
6870 #endif
6871 { "name", HAS_ARG, QEMU_OPTION_name },
6872 #if defined(TARGET_SPARC)
6873 { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
6874 #endif
6875 { NULL },
6878 #if defined (TARGET_I386) && defined(USE_CODE_COPY)
6880 /* this stack is only used during signal handling */
6881 #define SIGNAL_STACK_SIZE 32768
6883 static uint8_t *signal_stack;
6885 #endif
6887 /* password input */
6889 int qemu_key_check(BlockDriverState *bs, const char *name)
6891 char password[256];
6892 int i;
6894 if (!bdrv_is_encrypted(bs))
6895 return 0;
6897 term_printf("%s is encrypted.\n", name);
6898 for(i = 0; i < 3; i++) {
6899 monitor_readline("Password: ", 1, password, sizeof(password));
6900 if (bdrv_set_key(bs, password) == 0)
6901 return 0;
6902 term_printf("invalid password\n");
6904 return -EPERM;
6907 static BlockDriverState *get_bdrv(int index)
6909 BlockDriverState *bs;
6911 if (index < 4) {
6912 bs = bs_table[index];
6913 } else if (index < 6) {
6914 bs = fd_table[index - 4];
6915 } else {
6916 bs = NULL;
6918 return bs;
6921 static void read_passwords(void)
6923 BlockDriverState *bs;
6924 int i;
6926 for(i = 0; i < 6; i++) {
6927 bs = get_bdrv(i);
6928 if (bs)
6929 qemu_key_check(bs, bdrv_get_device_name(bs));
6933 /* XXX: currently we cannot use simultaneously different CPUs */
6934 void register_machines(void)
6936 #if defined(TARGET_I386)
6937 qemu_register_machine(&pc_machine);
6938 qemu_register_machine(&isapc_machine);
6939 #elif defined(TARGET_PPC)
6940 qemu_register_machine(&heathrow_machine);
6941 qemu_register_machine(&core99_machine);
6942 qemu_register_machine(&prep_machine);
6943 qemu_register_machine(&ref405ep_machine);
6944 qemu_register_machine(&taihu_machine);
6945 #elif defined(TARGET_MIPS)
6946 qemu_register_machine(&mips_machine);
6947 qemu_register_machine(&mips_malta_machine);
6948 qemu_register_machine(&mips_pica61_machine);
6949 #elif defined(TARGET_SPARC)
6950 #ifdef TARGET_SPARC64
6951 qemu_register_machine(&sun4u_machine);
6952 #else
6953 qemu_register_machine(&ss5_machine);
6954 qemu_register_machine(&ss10_machine);
6955 #endif
6956 #elif defined(TARGET_ARM)
6957 qemu_register_machine(&integratorcp_machine);
6958 qemu_register_machine(&versatilepb_machine);
6959 qemu_register_machine(&versatileab_machine);
6960 qemu_register_machine(&realview_machine);
6961 qemu_register_machine(&akitapda_machine);
6962 qemu_register_machine(&spitzpda_machine);
6963 qemu_register_machine(&borzoipda_machine);
6964 qemu_register_machine(&terrierpda_machine);
6965 #elif defined(TARGET_SH4)
6966 qemu_register_machine(&shix_machine);
6967 #elif defined(TARGET_ALPHA)
6968 /* XXX: TODO */
6969 #elif defined(TARGET_M68K)
6970 qemu_register_machine(&an5206_machine);
6971 #else
6972 #error unsupported CPU
6973 #endif
6976 #ifdef HAS_AUDIO
6977 struct soundhw soundhw[] = {
6978 #ifdef HAS_AUDIO_CHOICE
6979 #ifdef TARGET_I386
6981 "pcspk",
6982 "PC speaker",
6985 { .init_isa = pcspk_audio_init }
6987 #endif
6989 "sb16",
6990 "Creative Sound Blaster 16",
6993 { .init_isa = SB16_init }
6996 #ifdef CONFIG_ADLIB
6998 "adlib",
6999 #ifdef HAS_YMF262
7000 "Yamaha YMF262 (OPL3)",
7001 #else
7002 "Yamaha YM3812 (OPL2)",
7003 #endif
7006 { .init_isa = Adlib_init }
7008 #endif
7010 #ifdef CONFIG_GUS
7012 "gus",
7013 "Gravis Ultrasound GF1",
7016 { .init_isa = GUS_init }
7018 #endif
7021 "es1370",
7022 "ENSONIQ AudioPCI ES1370",
7025 { .init_pci = es1370_init }
7027 #endif
7029 { NULL, NULL, 0, 0, { NULL } }
7032 static void select_soundhw (const char *optarg)
7034 struct soundhw *c;
7036 if (*optarg == '?') {
7037 show_valid_cards:
7039 printf ("Valid sound card names (comma separated):\n");
7040 for (c = soundhw; c->name; ++c) {
7041 printf ("%-11s %s\n", c->name, c->descr);
7043 printf ("\n-soundhw all will enable all of the above\n");
7044 exit (*optarg != '?');
7046 else {
7047 size_t l;
7048 const char *p;
7049 char *e;
7050 int bad_card = 0;
7052 if (!strcmp (optarg, "all")) {
7053 for (c = soundhw; c->name; ++c) {
7054 c->enabled = 1;
7056 return;
7059 p = optarg;
7060 while (*p) {
7061 e = strchr (p, ',');
7062 l = !e ? strlen (p) : (size_t) (e - p);
7064 for (c = soundhw; c->name; ++c) {
7065 if (!strncmp (c->name, p, l)) {
7066 c->enabled = 1;
7067 break;
7071 if (!c->name) {
7072 if (l > 80) {
7073 fprintf (stderr,
7074 "Unknown sound card name (too big to show)\n");
7076 else {
7077 fprintf (stderr, "Unknown sound card name `%.*s'\n",
7078 (int) l, p);
7080 bad_card = 1;
7082 p += l + (e != NULL);
7085 if (bad_card)
7086 goto show_valid_cards;
7089 #endif
7091 #ifdef _WIN32
7092 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
7094 exit(STATUS_CONTROL_C_EXIT);
7095 return TRUE;
7097 #endif
7099 #define MAX_NET_CLIENTS 32
7101 int main(int argc, char **argv)
7103 #ifdef CONFIG_GDBSTUB
7104 int use_gdbstub;
7105 const char *gdbstub_port;
7106 #endif
7107 int i, cdrom_index, pflash_index;
7108 int snapshot, linux_boot;
7109 const char *initrd_filename;
7110 const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
7111 const char *pflash_filename[MAX_PFLASH];
7112 const char *sd_filename;
7113 const char *mtd_filename;
7114 const char *kernel_filename, *kernel_cmdline;
7115 DisplayState *ds = &display_state;
7116 int cyls, heads, secs, translation;
7117 char net_clients[MAX_NET_CLIENTS][256];
7118 int nb_net_clients;
7119 int optind;
7120 const char *r, *optarg;
7121 CharDriverState *monitor_hd;
7122 char monitor_device[128];
7123 char serial_devices[MAX_SERIAL_PORTS][128];
7124 int serial_device_index;
7125 char parallel_devices[MAX_PARALLEL_PORTS][128];
7126 int parallel_device_index;
7127 const char *loadvm = NULL;
7128 QEMUMachine *machine;
7129 const char *cpu_model;
7130 char usb_devices[MAX_USB_CMDLINE][128];
7131 int usb_devices_index;
7132 int fds[2];
7133 const char *pid_file = NULL;
7135 LIST_INIT (&vm_change_state_head);
7136 #ifndef _WIN32
7138 struct sigaction act;
7139 sigfillset(&act.sa_mask);
7140 act.sa_flags = 0;
7141 act.sa_handler = SIG_IGN;
7142 sigaction(SIGPIPE, &act, NULL);
7144 #else
7145 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
7146 /* Note: cpu_interrupt() is currently not SMP safe, so we force
7147 QEMU to run on a single CPU */
7149 HANDLE h;
7150 DWORD mask, smask;
7151 int i;
7152 h = GetCurrentProcess();
7153 if (GetProcessAffinityMask(h, &mask, &smask)) {
7154 for(i = 0; i < 32; i++) {
7155 if (mask & (1 << i))
7156 break;
7158 if (i != 32) {
7159 mask = 1 << i;
7160 SetProcessAffinityMask(h, mask);
7164 #endif
7166 register_machines();
7167 machine = first_machine;
7168 cpu_model = NULL;
7169 initrd_filename = NULL;
7170 for(i = 0; i < MAX_FD; i++)
7171 fd_filename[i] = NULL;
7172 for(i = 0; i < MAX_DISKS; i++)
7173 hd_filename[i] = NULL;
7174 for(i = 0; i < MAX_PFLASH; i++)
7175 pflash_filename[i] = NULL;
7176 pflash_index = 0;
7177 sd_filename = NULL;
7178 mtd_filename = NULL;
7179 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
7180 vga_ram_size = VGA_RAM_SIZE;
7181 #ifdef CONFIG_GDBSTUB
7182 use_gdbstub = 0;
7183 gdbstub_port = DEFAULT_GDBSTUB_PORT;
7184 #endif
7185 snapshot = 0;
7186 nographic = 0;
7187 kernel_filename = NULL;
7188 kernel_cmdline = "";
7189 #ifdef TARGET_PPC
7190 cdrom_index = 1;
7191 #else
7192 cdrom_index = 2;
7193 #endif
7194 cyls = heads = secs = 0;
7195 translation = BIOS_ATA_TRANSLATION_AUTO;
7196 pstrcpy(monitor_device, sizeof(monitor_device), "vc");
7198 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "vc");
7199 for(i = 1; i < MAX_SERIAL_PORTS; i++)
7200 serial_devices[i][0] = '\0';
7201 serial_device_index = 0;
7203 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "vc");
7204 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
7205 parallel_devices[i][0] = '\0';
7206 parallel_device_index = 0;
7208 usb_devices_index = 0;
7210 nb_net_clients = 0;
7212 nb_nics = 0;
7213 /* default mac address of the first network interface */
7215 optind = 1;
7216 for(;;) {
7217 if (optind >= argc)
7218 break;
7219 r = argv[optind];
7220 if (r[0] != '-') {
7221 hd_filename[0] = argv[optind++];
7222 } else {
7223 const QEMUOption *popt;
7225 optind++;
7226 /* Treat --foo the same as -foo. */
7227 if (r[1] == '-')
7228 r++;
7229 popt = qemu_options;
7230 for(;;) {
7231 if (!popt->name) {
7232 fprintf(stderr, "%s: invalid option -- '%s'\n",
7233 argv[0], r);
7234 exit(1);
7236 if (!strcmp(popt->name, r + 1))
7237 break;
7238 popt++;
7240 if (popt->flags & HAS_ARG) {
7241 if (optind >= argc) {
7242 fprintf(stderr, "%s: option '%s' requires an argument\n",
7243 argv[0], r);
7244 exit(1);
7246 optarg = argv[optind++];
7247 } else {
7248 optarg = NULL;
7251 switch(popt->index) {
7252 case QEMU_OPTION_M:
7253 machine = find_machine(optarg);
7254 if (!machine) {
7255 QEMUMachine *m;
7256 printf("Supported machines are:\n");
7257 for(m = first_machine; m != NULL; m = m->next) {
7258 printf("%-10s %s%s\n",
7259 m->name, m->desc,
7260 m == first_machine ? " (default)" : "");
7262 exit(1);
7264 break;
7265 case QEMU_OPTION_cpu:
7266 /* hw initialization will check this */
7267 if (optarg[0] == '?') {
7268 #if defined(TARGET_PPC)
7269 ppc_cpu_list(stdout, &fprintf);
7270 #elif defined(TARGET_ARM)
7271 arm_cpu_list();
7272 #elif defined(TARGET_MIPS)
7273 mips_cpu_list(stdout, &fprintf);
7274 #elif defined(TARGET_SPARC)
7275 sparc_cpu_list(stdout, &fprintf);
7276 #endif
7277 exit(1);
7278 } else {
7279 cpu_model = optarg;
7281 break;
7282 case QEMU_OPTION_initrd:
7283 initrd_filename = optarg;
7284 break;
7285 case QEMU_OPTION_hda:
7286 case QEMU_OPTION_hdb:
7287 case QEMU_OPTION_hdc:
7288 case QEMU_OPTION_hdd:
7290 int hd_index;
7291 hd_index = popt->index - QEMU_OPTION_hda;
7292 hd_filename[hd_index] = optarg;
7293 if (hd_index == cdrom_index)
7294 cdrom_index = -1;
7296 break;
7297 case QEMU_OPTION_mtdblock:
7298 mtd_filename = optarg;
7299 break;
7300 case QEMU_OPTION_sd:
7301 sd_filename = optarg;
7302 break;
7303 case QEMU_OPTION_pflash:
7304 if (pflash_index >= MAX_PFLASH) {
7305 fprintf(stderr, "qemu: too many parallel flash images\n");
7306 exit(1);
7308 pflash_filename[pflash_index++] = optarg;
7309 break;
7310 case QEMU_OPTION_snapshot:
7311 snapshot = 1;
7312 break;
7313 case QEMU_OPTION_hdachs:
7315 const char *p;
7316 p = optarg;
7317 cyls = strtol(p, (char **)&p, 0);
7318 if (cyls < 1 || cyls > 16383)
7319 goto chs_fail;
7320 if (*p != ',')
7321 goto chs_fail;
7322 p++;
7323 heads = strtol(p, (char **)&p, 0);
7324 if (heads < 1 || heads > 16)
7325 goto chs_fail;
7326 if (*p != ',')
7327 goto chs_fail;
7328 p++;
7329 secs = strtol(p, (char **)&p, 0);
7330 if (secs < 1 || secs > 63)
7331 goto chs_fail;
7332 if (*p == ',') {
7333 p++;
7334 if (!strcmp(p, "none"))
7335 translation = BIOS_ATA_TRANSLATION_NONE;
7336 else if (!strcmp(p, "lba"))
7337 translation = BIOS_ATA_TRANSLATION_LBA;
7338 else if (!strcmp(p, "auto"))
7339 translation = BIOS_ATA_TRANSLATION_AUTO;
7340 else
7341 goto chs_fail;
7342 } else if (*p != '\0') {
7343 chs_fail:
7344 fprintf(stderr, "qemu: invalid physical CHS format\n");
7345 exit(1);
7348 break;
7349 case QEMU_OPTION_nographic:
7350 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "stdio");
7351 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "null");
7352 pstrcpy(monitor_device, sizeof(monitor_device), "stdio");
7353 nographic = 1;
7354 break;
7355 case QEMU_OPTION_portrait:
7356 graphic_rotate = 1;
7357 break;
7358 case QEMU_OPTION_kernel:
7359 kernel_filename = optarg;
7360 break;
7361 case QEMU_OPTION_append:
7362 kernel_cmdline = optarg;
7363 break;
7364 case QEMU_OPTION_cdrom:
7365 if (cdrom_index >= 0) {
7366 hd_filename[cdrom_index] = optarg;
7368 break;
7369 case QEMU_OPTION_boot:
7370 boot_device = optarg[0];
7371 if (boot_device != 'a' &&
7372 #if defined(TARGET_SPARC) || defined(TARGET_I386)
7373 // Network boot
7374 boot_device != 'n' &&
7375 #endif
7376 boot_device != 'c' && boot_device != 'd') {
7377 fprintf(stderr, "qemu: invalid boot device '%c'\n", boot_device);
7378 exit(1);
7380 break;
7381 case QEMU_OPTION_fda:
7382 fd_filename[0] = optarg;
7383 break;
7384 case QEMU_OPTION_fdb:
7385 fd_filename[1] = optarg;
7386 break;
7387 #ifdef TARGET_I386
7388 case QEMU_OPTION_no_fd_bootchk:
7389 fd_bootchk = 0;
7390 break;
7391 #endif
7392 case QEMU_OPTION_no_code_copy:
7393 code_copy_enabled = 0;
7394 break;
7395 case QEMU_OPTION_net:
7396 if (nb_net_clients >= MAX_NET_CLIENTS) {
7397 fprintf(stderr, "qemu: too many network clients\n");
7398 exit(1);
7400 pstrcpy(net_clients[nb_net_clients],
7401 sizeof(net_clients[0]),
7402 optarg);
7403 nb_net_clients++;
7404 break;
7405 #ifdef CONFIG_SLIRP
7406 case QEMU_OPTION_tftp:
7407 tftp_prefix = optarg;
7408 break;
7409 case QEMU_OPTION_bootp:
7410 bootp_filename = optarg;
7411 break;
7412 #ifndef _WIN32
7413 case QEMU_OPTION_smb:
7414 net_slirp_smb(optarg);
7415 break;
7416 #endif
7417 case QEMU_OPTION_redir:
7418 net_slirp_redir(optarg);
7419 break;
7420 #endif
7421 #ifdef HAS_AUDIO
7422 case QEMU_OPTION_audio_help:
7423 AUD_help ();
7424 exit (0);
7425 break;
7426 case QEMU_OPTION_soundhw:
7427 select_soundhw (optarg);
7428 break;
7429 #endif
7430 case QEMU_OPTION_h:
7431 help();
7432 break;
7433 case QEMU_OPTION_m:
7434 ram_size = atoi(optarg) * 1024 * 1024;
7435 if (ram_size <= 0)
7436 help();
7437 if (ram_size > PHYS_RAM_MAX_SIZE) {
7438 fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
7439 PHYS_RAM_MAX_SIZE / (1024 * 1024));
7440 exit(1);
7442 break;
7443 case QEMU_OPTION_d:
7445 int mask;
7446 CPULogItem *item;
7448 mask = cpu_str_to_log_mask(optarg);
7449 if (!mask) {
7450 printf("Log items (comma separated):\n");
7451 for(item = cpu_log_items; item->mask != 0; item++) {
7452 printf("%-10s %s\n", item->name, item->help);
7454 exit(1);
7456 cpu_set_log(mask);
7458 break;
7459 #ifdef CONFIG_GDBSTUB
7460 case QEMU_OPTION_s:
7461 use_gdbstub = 1;
7462 break;
7463 case QEMU_OPTION_p:
7464 gdbstub_port = optarg;
7465 break;
7466 #endif
7467 case QEMU_OPTION_L:
7468 bios_dir = optarg;
7469 break;
7470 case QEMU_OPTION_S:
7471 autostart = 0;
7472 break;
7473 case QEMU_OPTION_k:
7474 keyboard_layout = optarg;
7475 break;
7476 case QEMU_OPTION_localtime:
7477 rtc_utc = 0;
7478 break;
7479 case QEMU_OPTION_cirrusvga:
7480 cirrus_vga_enabled = 1;
7481 vmsvga_enabled = 0;
7482 break;
7483 case QEMU_OPTION_vmsvga:
7484 cirrus_vga_enabled = 0;
7485 vmsvga_enabled = 1;
7486 break;
7487 case QEMU_OPTION_std_vga:
7488 cirrus_vga_enabled = 0;
7489 vmsvga_enabled = 0;
7490 break;
7491 case QEMU_OPTION_g:
7493 const char *p;
7494 int w, h, depth;
7495 p = optarg;
7496 w = strtol(p, (char **)&p, 10);
7497 if (w <= 0) {
7498 graphic_error:
7499 fprintf(stderr, "qemu: invalid resolution or depth\n");
7500 exit(1);
7502 if (*p != 'x')
7503 goto graphic_error;
7504 p++;
7505 h = strtol(p, (char **)&p, 10);
7506 if (h <= 0)
7507 goto graphic_error;
7508 if (*p == 'x') {
7509 p++;
7510 depth = strtol(p, (char **)&p, 10);
7511 if (depth != 8 && depth != 15 && depth != 16 &&
7512 depth != 24 && depth != 32)
7513 goto graphic_error;
7514 } else if (*p == '\0') {
7515 depth = graphic_depth;
7516 } else {
7517 goto graphic_error;
7520 graphic_width = w;
7521 graphic_height = h;
7522 graphic_depth = depth;
7524 break;
7525 case QEMU_OPTION_echr:
7527 char *r;
7528 term_escape_char = strtol(optarg, &r, 0);
7529 if (r == optarg)
7530 printf("Bad argument to echr\n");
7531 break;
7533 case QEMU_OPTION_monitor:
7534 pstrcpy(monitor_device, sizeof(monitor_device), optarg);
7535 break;
7536 case QEMU_OPTION_serial:
7537 if (serial_device_index >= MAX_SERIAL_PORTS) {
7538 fprintf(stderr, "qemu: too many serial ports\n");
7539 exit(1);
7541 pstrcpy(serial_devices[serial_device_index],
7542 sizeof(serial_devices[0]), optarg);
7543 serial_device_index++;
7544 break;
7545 case QEMU_OPTION_parallel:
7546 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
7547 fprintf(stderr, "qemu: too many parallel ports\n");
7548 exit(1);
7550 pstrcpy(parallel_devices[parallel_device_index],
7551 sizeof(parallel_devices[0]), optarg);
7552 parallel_device_index++;
7553 break;
7554 case QEMU_OPTION_loadvm:
7555 loadvm = optarg;
7556 break;
7557 case QEMU_OPTION_full_screen:
7558 full_screen = 1;
7559 break;
7560 #ifdef CONFIG_SDL
7561 case QEMU_OPTION_no_frame:
7562 no_frame = 1;
7563 break;
7564 case QEMU_OPTION_no_quit:
7565 no_quit = 1;
7566 break;
7567 #endif
7568 case QEMU_OPTION_pidfile:
7569 pid_file = optarg;
7570 break;
7571 #ifdef TARGET_I386
7572 case QEMU_OPTION_win2k_hack:
7573 win2k_install_hack = 1;
7574 break;
7575 #endif
7576 #ifdef USE_KQEMU
7577 case QEMU_OPTION_no_kqemu:
7578 kqemu_allowed = 0;
7579 break;
7580 case QEMU_OPTION_kernel_kqemu:
7581 kqemu_allowed = 2;
7582 break;
7583 #endif
7584 case QEMU_OPTION_usb:
7585 usb_enabled = 1;
7586 break;
7587 case QEMU_OPTION_usbdevice:
7588 usb_enabled = 1;
7589 if (usb_devices_index >= MAX_USB_CMDLINE) {
7590 fprintf(stderr, "Too many USB devices\n");
7591 exit(1);
7593 pstrcpy(usb_devices[usb_devices_index],
7594 sizeof(usb_devices[usb_devices_index]),
7595 optarg);
7596 usb_devices_index++;
7597 break;
7598 case QEMU_OPTION_smp:
7599 smp_cpus = atoi(optarg);
7600 if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
7601 fprintf(stderr, "Invalid number of CPUs\n");
7602 exit(1);
7604 break;
7605 case QEMU_OPTION_vnc:
7606 vnc_display = optarg;
7607 break;
7608 case QEMU_OPTION_no_acpi:
7609 acpi_enabled = 0;
7610 break;
7611 case QEMU_OPTION_no_reboot:
7612 no_reboot = 1;
7613 break;
7614 case QEMU_OPTION_show_cursor:
7615 cursor_hide = 0;
7616 break;
7617 case QEMU_OPTION_daemonize:
7618 daemonize = 1;
7619 break;
7620 case QEMU_OPTION_option_rom:
7621 if (nb_option_roms >= MAX_OPTION_ROMS) {
7622 fprintf(stderr, "Too many option ROMs\n");
7623 exit(1);
7625 option_rom[nb_option_roms] = optarg;
7626 nb_option_roms++;
7627 break;
7628 case QEMU_OPTION_semihosting:
7629 semihosting_enabled = 1;
7630 break;
7631 case QEMU_OPTION_name:
7632 qemu_name = optarg;
7633 break;
7634 #ifdef TARGET_SPARC
7635 case QEMU_OPTION_prom_env:
7636 if (nb_prom_envs >= MAX_PROM_ENVS) {
7637 fprintf(stderr, "Too many prom variables\n");
7638 exit(1);
7640 prom_envs[nb_prom_envs] = optarg;
7641 nb_prom_envs++;
7642 break;
7643 #endif
7648 #ifndef _WIN32
7649 if (daemonize && !nographic && vnc_display == NULL) {
7650 fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
7651 daemonize = 0;
7654 if (daemonize) {
7655 pid_t pid;
7657 if (pipe(fds) == -1)
7658 exit(1);
7660 pid = fork();
7661 if (pid > 0) {
7662 uint8_t status;
7663 ssize_t len;
7665 close(fds[1]);
7667 again:
7668 len = read(fds[0], &status, 1);
7669 if (len == -1 && (errno == EINTR))
7670 goto again;
7672 if (len != 1)
7673 exit(1);
7674 else if (status == 1) {
7675 fprintf(stderr, "Could not acquire pidfile\n");
7676 exit(1);
7677 } else
7678 exit(0);
7679 } else if (pid < 0)
7680 exit(1);
7682 setsid();
7684 pid = fork();
7685 if (pid > 0)
7686 exit(0);
7687 else if (pid < 0)
7688 exit(1);
7690 umask(027);
7691 chdir("/");
7693 signal(SIGTSTP, SIG_IGN);
7694 signal(SIGTTOU, SIG_IGN);
7695 signal(SIGTTIN, SIG_IGN);
7697 #endif
7699 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
7700 if (daemonize) {
7701 uint8_t status = 1;
7702 write(fds[1], &status, 1);
7703 } else
7704 fprintf(stderr, "Could not acquire pid file\n");
7705 exit(1);
7708 #ifdef USE_KQEMU
7709 if (smp_cpus > 1)
7710 kqemu_allowed = 0;
7711 #endif
7712 linux_boot = (kernel_filename != NULL);
7714 if (!linux_boot &&
7715 boot_device != 'n' &&
7716 hd_filename[0] == '\0' &&
7717 (cdrom_index >= 0 && hd_filename[cdrom_index] == '\0') &&
7718 fd_filename[0] == '\0')
7719 help();
7721 /* boot to floppy or the default cd if no hard disk defined yet */
7722 if (hd_filename[0] == '\0' && boot_device == 'c') {
7723 if (fd_filename[0] != '\0')
7724 boot_device = 'a';
7725 else
7726 boot_device = 'd';
7729 setvbuf(stdout, NULL, _IOLBF, 0);
7731 init_timers();
7732 init_timer_alarm();
7733 qemu_aio_init();
7735 #ifdef _WIN32
7736 socket_init();
7737 #endif
7739 /* init network clients */
7740 if (nb_net_clients == 0) {
7741 /* if no clients, we use a default config */
7742 pstrcpy(net_clients[0], sizeof(net_clients[0]),
7743 "nic");
7744 pstrcpy(net_clients[1], sizeof(net_clients[0]),
7745 "user");
7746 nb_net_clients = 2;
7749 for(i = 0;i < nb_net_clients; i++) {
7750 if (net_client_init(net_clients[i]) < 0)
7751 exit(1);
7754 #ifdef TARGET_I386
7755 if (boot_device == 'n') {
7756 for (i = 0; i < nb_nics; i++) {
7757 const char *model = nd_table[i].model;
7758 char buf[1024];
7759 if (model == NULL)
7760 model = "ne2k_pci";
7761 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
7762 if (get_image_size(buf) > 0) {
7763 option_rom[nb_option_roms] = strdup(buf);
7764 nb_option_roms++;
7765 break;
7768 if (i == nb_nics) {
7769 fprintf(stderr, "No valid PXE rom found for network device\n");
7770 exit(1);
7772 boot_device = 'c'; /* to prevent confusion by the BIOS */
7774 #endif
7776 /* init the memory */
7777 phys_ram_size = ram_size + vga_ram_size + MAX_BIOS_SIZE;
7779 phys_ram_base = qemu_vmalloc(phys_ram_size);
7780 if (!phys_ram_base) {
7781 fprintf(stderr, "Could not allocate physical memory\n");
7782 exit(1);
7785 /* we always create the cdrom drive, even if no disk is there */
7786 bdrv_init();
7787 if (cdrom_index >= 0) {
7788 bs_table[cdrom_index] = bdrv_new("cdrom");
7789 bdrv_set_type_hint(bs_table[cdrom_index], BDRV_TYPE_CDROM);
7792 /* open the virtual block devices */
7793 for(i = 0; i < MAX_DISKS; i++) {
7794 if (hd_filename[i]) {
7795 if (!bs_table[i]) {
7796 char buf[64];
7797 snprintf(buf, sizeof(buf), "hd%c", i + 'a');
7798 bs_table[i] = bdrv_new(buf);
7800 if (bdrv_open(bs_table[i], hd_filename[i], snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7801 fprintf(stderr, "qemu: could not open hard disk image '%s'\n",
7802 hd_filename[i]);
7803 exit(1);
7805 if (i == 0 && cyls != 0) {
7806 bdrv_set_geometry_hint(bs_table[i], cyls, heads, secs);
7807 bdrv_set_translation_hint(bs_table[i], translation);
7812 /* we always create at least one floppy disk */
7813 fd_table[0] = bdrv_new("fda");
7814 bdrv_set_type_hint(fd_table[0], BDRV_TYPE_FLOPPY);
7816 for(i = 0; i < MAX_FD; i++) {
7817 if (fd_filename[i]) {
7818 if (!fd_table[i]) {
7819 char buf[64];
7820 snprintf(buf, sizeof(buf), "fd%c", i + 'a');
7821 fd_table[i] = bdrv_new(buf);
7822 bdrv_set_type_hint(fd_table[i], BDRV_TYPE_FLOPPY);
7824 if (fd_filename[i][0] != '\0') {
7825 if (bdrv_open(fd_table[i], fd_filename[i],
7826 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7827 fprintf(stderr, "qemu: could not open floppy disk image '%s'\n",
7828 fd_filename[i]);
7829 exit(1);
7835 /* Open the virtual parallel flash block devices */
7836 for(i = 0; i < MAX_PFLASH; i++) {
7837 if (pflash_filename[i]) {
7838 if (!pflash_table[i]) {
7839 char buf[64];
7840 snprintf(buf, sizeof(buf), "fl%c", i + 'a');
7841 pflash_table[i] = bdrv_new(buf);
7843 if (bdrv_open(pflash_table[i], pflash_filename[i],
7844 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7845 fprintf(stderr, "qemu: could not open flash image '%s'\n",
7846 pflash_filename[i]);
7847 exit(1);
7852 sd_bdrv = bdrv_new ("sd");
7853 /* FIXME: This isn't really a floppy, but it's a reasonable
7854 approximation. */
7855 bdrv_set_type_hint(sd_bdrv, BDRV_TYPE_FLOPPY);
7856 if (sd_filename) {
7857 if (bdrv_open(sd_bdrv, sd_filename,
7858 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7859 fprintf(stderr, "qemu: could not open SD card image %s\n",
7860 sd_filename);
7861 } else
7862 qemu_key_check(sd_bdrv, sd_filename);
7865 if (mtd_filename) {
7866 mtd_bdrv = bdrv_new ("mtd");
7867 if (bdrv_open(mtd_bdrv, mtd_filename,
7868 snapshot ? BDRV_O_SNAPSHOT : 0) < 0 ||
7869 qemu_key_check(mtd_bdrv, mtd_filename)) {
7870 fprintf(stderr, "qemu: could not open Flash image %s\n",
7871 mtd_filename);
7872 bdrv_delete(mtd_bdrv);
7873 mtd_bdrv = 0;
7877 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
7878 register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
7880 init_ioports();
7882 /* terminal init */
7883 if (nographic) {
7884 dumb_display_init(ds);
7885 } else if (vnc_display != NULL) {
7886 vnc_display_init(ds, vnc_display);
7887 } else {
7888 #if defined(CONFIG_SDL)
7889 sdl_display_init(ds, full_screen, no_frame);
7890 #elif defined(CONFIG_COCOA)
7891 cocoa_display_init(ds, full_screen);
7892 #else
7893 dumb_display_init(ds);
7894 #endif
7897 /* Maintain compatibility with multiple stdio monitors */
7898 if (!strcmp(monitor_device,"stdio")) {
7899 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
7900 if (!strcmp(serial_devices[i],"mon:stdio")) {
7901 monitor_device[0] = '\0';
7902 break;
7903 } else if (!strcmp(serial_devices[i],"stdio")) {
7904 monitor_device[0] = '\0';
7905 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "mon:stdio");
7906 break;
7910 if (monitor_device[0] != '\0') {
7911 monitor_hd = qemu_chr_open(monitor_device);
7912 if (!monitor_hd) {
7913 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
7914 exit(1);
7916 monitor_init(monitor_hd, !nographic);
7919 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
7920 const char *devname = serial_devices[i];
7921 if (devname[0] != '\0' && strcmp(devname, "none")) {
7922 serial_hds[i] = qemu_chr_open(devname);
7923 if (!serial_hds[i]) {
7924 fprintf(stderr, "qemu: could not open serial device '%s'\n",
7925 devname);
7926 exit(1);
7928 if (!strcmp(devname, "vc"))
7929 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
7933 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
7934 const char *devname = parallel_devices[i];
7935 if (devname[0] != '\0' && strcmp(devname, "none")) {
7936 parallel_hds[i] = qemu_chr_open(devname);
7937 if (!parallel_hds[i]) {
7938 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
7939 devname);
7940 exit(1);
7942 if (!strcmp(devname, "vc"))
7943 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
7947 machine->init(ram_size, vga_ram_size, boot_device,
7948 ds, fd_filename, snapshot,
7949 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
7951 /* init USB devices */
7952 if (usb_enabled) {
7953 for(i = 0; i < usb_devices_index; i++) {
7954 if (usb_device_add(usb_devices[i]) < 0) {
7955 fprintf(stderr, "Warning: could not add USB device %s\n",
7956 usb_devices[i]);
7961 gui_timer = qemu_new_timer(rt_clock, gui_update, NULL);
7962 qemu_mod_timer(gui_timer, qemu_get_clock(rt_clock));
7964 #ifdef CONFIG_GDBSTUB
7965 if (use_gdbstub) {
7966 /* XXX: use standard host:port notation and modify options
7967 accordingly. */
7968 if (gdbserver_start(gdbstub_port) < 0) {
7969 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
7970 gdbstub_port);
7971 exit(1);
7973 } else
7974 #endif
7975 if (loadvm)
7976 do_loadvm(loadvm);
7979 /* XXX: simplify init */
7980 read_passwords();
7981 if (autostart) {
7982 vm_start();
7986 if (daemonize) {
7987 uint8_t status = 0;
7988 ssize_t len;
7989 int fd;
7991 again1:
7992 len = write(fds[1], &status, 1);
7993 if (len == -1 && (errno == EINTR))
7994 goto again1;
7996 if (len != 1)
7997 exit(1);
7999 fd = open("/dev/null", O_RDWR);
8000 if (fd == -1)
8001 exit(1);
8003 dup2(fd, 0);
8004 dup2(fd, 1);
8005 dup2(fd, 2);
8007 close(fd);
8010 main_loop();
8011 quit_timers();
8012 return 0;