4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
37 #include <sys/times.h>
41 #include <sys/ioctl.h>
42 #include <sys/resource.h>
43 #include <sys/socket.h>
44 #include <netinet/in.h>
46 #if defined(__NetBSD__)
47 #include <net/if_tap.h>
50 #include <linux/if_tun.h>
52 #include <arpa/inet.h>
55 #include <sys/select.h>
58 #if defined(__FreeBSD__) || defined(__DragonFly__)
63 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
64 #include <freebsd/stdlib.h>
69 #include <linux/rtc.h>
71 /* For the benefit of older linux systems which don't supply it,
72 we use a local copy of hpet.h. */
73 /* #include <linux/hpet.h> */
76 #include <linux/ppdev.h>
77 #include <linux/parport.h>
81 #include <sys/ethernet.h>
82 #include <sys/sockio.h>
83 #include <netinet/arp.h>
84 #include <netinet/in.h>
85 #include <netinet/in_systm.h>
86 #include <netinet/ip.h>
87 #include <netinet/ip_icmp.h> // must come after ip.h
88 #include <netinet/udp.h>
89 #include <netinet/tcp.h>
97 #if defined(__OpenBSD__)
101 #if defined(CONFIG_VDE)
102 #include <libvdeplug.h>
108 #include <sys/timeb.h>
109 #include <mmsystem.h>
110 #define getopt_long_only getopt_long
111 #define memalign(align, size) malloc(size)
117 int qemu_main(int argc
, char **argv
, char **envp
);
118 int main(int argc
, char **argv
)
120 qemu_main(argc
, argv
, NULL
);
123 #define main qemu_main
125 #endif /* CONFIG_SDL */
129 #define main qemu_main
130 #endif /* CONFIG_COCOA */
133 #include "hw/boards.h"
135 #include "hw/pcmcia.h"
137 #include "hw/audiodev.h"
141 #include "hw/watchdog.h"
142 #include "hw/smbios.h"
150 #include "qemu-timer.h"
151 #include "qemu-char.h"
152 #include "cache-utils.h"
155 #include "audio/audio.h"
156 #include "migration.h"
162 #include "exec-all.h"
164 #include "qemu_socket.h"
166 #if defined(CONFIG_SLIRP)
167 #include "libslirp.h"
170 //#define DEBUG_UNUSED_IOPORT
171 //#define DEBUG_IOPORT
173 //#define DEBUG_SLIRP
177 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
179 # define LOG_IOPORT(...) do { } while (0)
182 #define DEFAULT_RAM_SIZE 128
184 /* Max number of USB devices that can be specified on the commandline. */
185 #define MAX_USB_CMDLINE 8
187 /* Max number of bluetooth switches on the commandline. */
188 #define MAX_BT_CMDLINE 10
190 /* XXX: use a two level table to limit memory usage */
191 #define MAX_IOPORTS 65536
193 const char *bios_dir
= CONFIG_QEMU_SHAREDIR
;
194 const char *bios_name
= NULL
;
195 static void *ioport_opaque
[MAX_IOPORTS
];
196 static IOPortReadFunc
*ioport_read_table
[3][MAX_IOPORTS
];
197 static IOPortWriteFunc
*ioport_write_table
[3][MAX_IOPORTS
];
198 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
199 to store the VM snapshots */
200 DriveInfo drives_table
[MAX_DRIVES
+1];
202 enum vga_retrace_method vga_retrace_method
= VGA_RETRACE_DUMB
;
203 static DisplayState
*display_state
;
207 const char* keyboard_layout
= NULL
;
208 int64_t ticks_per_sec
;
211 NICInfo nd_table
[MAX_NICS
];
213 static int autostart
;
214 static int rtc_utc
= 1;
215 static int rtc_date_offset
= -1; /* -1 means no change */
216 int cirrus_vga_enabled
= 1;
217 int std_vga_enabled
= 0;
218 int vmsvga_enabled
= 0;
219 int xenfb_enabled
= 0;
221 int graphic_width
= 1024;
222 int graphic_height
= 768;
223 int graphic_depth
= 8;
225 int graphic_width
= 800;
226 int graphic_height
= 600;
227 int graphic_depth
= 15;
229 static int full_screen
= 0;
231 static int no_frame
= 0;
234 CharDriverState
*serial_hds
[MAX_SERIAL_PORTS
];
235 CharDriverState
*parallel_hds
[MAX_PARALLEL_PORTS
];
236 CharDriverState
*virtcon_hds
[MAX_VIRTIO_CONSOLES
];
238 int win2k_install_hack
= 0;
244 const char *vnc_display
;
245 int acpi_enabled
= 1;
251 int graphic_rotate
= 0;
255 WatchdogTimerModel
*watchdog
= NULL
;
256 int watchdog_action
= WDT_RESET
;
257 const char *option_rom
[MAX_OPTION_ROMS
];
259 int semihosting_enabled
= 0;
263 const char *qemu_name
;
265 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
266 unsigned int nb_prom_envs
= 0;
267 const char *prom_envs
[MAX_PROM_ENVS
];
270 struct drive_opt drives_opt
[MAX_DRIVES
];
273 uint64_t node_mem
[MAX_NODES
];
274 uint64_t node_cpumask
[MAX_NODES
];
276 static CPUState
*cur_cpu
;
277 static CPUState
*next_cpu
;
278 static int timer_alarm_pending
= 1;
279 /* Conversion factor from emulated instructions to virtual clock ticks. */
280 static int icount_time_shift
;
281 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
282 #define MAX_ICOUNT_SHIFT 10
283 /* Compensate for varying guest execution speed. */
284 static int64_t qemu_icount_bias
;
285 static QEMUTimer
*icount_rt_timer
;
286 static QEMUTimer
*icount_vm_timer
;
287 static QEMUTimer
*nographic_timer
;
289 uint8_t qemu_uuid
[16];
291 /***********************************************************/
292 /* x86 ISA bus support */
294 target_phys_addr_t isa_mem_base
= 0;
297 static IOPortReadFunc default_ioport_readb
, default_ioport_readw
, default_ioport_readl
;
298 static IOPortWriteFunc default_ioport_writeb
, default_ioport_writew
, default_ioport_writel
;
300 static uint32_t ioport_read(int index
, uint32_t address
)
302 static IOPortReadFunc
*default_func
[3] = {
303 default_ioport_readb
,
304 default_ioport_readw
,
307 IOPortReadFunc
*func
= ioport_read_table
[index
][address
];
309 func
= default_func
[index
];
310 return func(ioport_opaque
[address
], address
);
313 static void ioport_write(int index
, uint32_t address
, uint32_t data
)
315 static IOPortWriteFunc
*default_func
[3] = {
316 default_ioport_writeb
,
317 default_ioport_writew
,
318 default_ioport_writel
320 IOPortWriteFunc
*func
= ioport_write_table
[index
][address
];
322 func
= default_func
[index
];
323 func(ioport_opaque
[address
], address
, data
);
326 static uint32_t default_ioport_readb(void *opaque
, uint32_t address
)
328 #ifdef DEBUG_UNUSED_IOPORT
329 fprintf(stderr
, "unused inb: port=0x%04x\n", address
);
334 static void default_ioport_writeb(void *opaque
, uint32_t address
, uint32_t data
)
336 #ifdef DEBUG_UNUSED_IOPORT
337 fprintf(stderr
, "unused outb: port=0x%04x data=0x%02x\n", address
, data
);
341 /* default is to make two byte accesses */
342 static uint32_t default_ioport_readw(void *opaque
, uint32_t address
)
345 data
= ioport_read(0, address
);
346 address
= (address
+ 1) & (MAX_IOPORTS
- 1);
347 data
|= ioport_read(0, address
) << 8;
351 static void default_ioport_writew(void *opaque
, uint32_t address
, uint32_t data
)
353 ioport_write(0, address
, data
& 0xff);
354 address
= (address
+ 1) & (MAX_IOPORTS
- 1);
355 ioport_write(0, address
, (data
>> 8) & 0xff);
358 static uint32_t default_ioport_readl(void *opaque
, uint32_t address
)
360 #ifdef DEBUG_UNUSED_IOPORT
361 fprintf(stderr
, "unused inl: port=0x%04x\n", address
);
366 static void default_ioport_writel(void *opaque
, uint32_t address
, uint32_t data
)
368 #ifdef DEBUG_UNUSED_IOPORT
369 fprintf(stderr
, "unused outl: port=0x%04x data=0x%02x\n", address
, data
);
373 /* size is the word size in byte */
374 int register_ioport_read(int start
, int length
, int size
,
375 IOPortReadFunc
*func
, void *opaque
)
381 } else if (size
== 2) {
383 } else if (size
== 4) {
386 hw_error("register_ioport_read: invalid size");
389 for(i
= start
; i
< start
+ length
; i
+= size
) {
390 ioport_read_table
[bsize
][i
] = func
;
391 if (ioport_opaque
[i
] != NULL
&& ioport_opaque
[i
] != opaque
)
392 hw_error("register_ioport_read: invalid opaque");
393 ioport_opaque
[i
] = opaque
;
398 /* size is the word size in byte */
399 int register_ioport_write(int start
, int length
, int size
,
400 IOPortWriteFunc
*func
, void *opaque
)
406 } else if (size
== 2) {
408 } else if (size
== 4) {
411 hw_error("register_ioport_write: invalid size");
414 for(i
= start
; i
< start
+ length
; i
+= size
) {
415 ioport_write_table
[bsize
][i
] = func
;
416 if (ioport_opaque
[i
] != NULL
&& ioport_opaque
[i
] != opaque
)
417 hw_error("register_ioport_write: invalid opaque");
418 ioport_opaque
[i
] = opaque
;
423 void isa_unassign_ioport(int start
, int length
)
427 for(i
= start
; i
< start
+ length
; i
++) {
428 ioport_read_table
[0][i
] = default_ioport_readb
;
429 ioport_read_table
[1][i
] = default_ioport_readw
;
430 ioport_read_table
[2][i
] = default_ioport_readl
;
432 ioport_write_table
[0][i
] = default_ioport_writeb
;
433 ioport_write_table
[1][i
] = default_ioport_writew
;
434 ioport_write_table
[2][i
] = default_ioport_writel
;
436 ioport_opaque
[i
] = NULL
;
440 /***********************************************************/
442 void cpu_outb(CPUState
*env
, int addr
, int val
)
444 LOG_IOPORT("outb: %04x %02x\n", addr
, val
);
445 ioport_write(0, addr
, val
);
448 env
->last_io_time
= cpu_get_time_fast();
452 void cpu_outw(CPUState
*env
, int addr
, int val
)
454 LOG_IOPORT("outw: %04x %04x\n", addr
, val
);
455 ioport_write(1, addr
, val
);
458 env
->last_io_time
= cpu_get_time_fast();
462 void cpu_outl(CPUState
*env
, int addr
, int val
)
464 LOG_IOPORT("outl: %04x %08x\n", addr
, val
);
465 ioport_write(2, addr
, val
);
468 env
->last_io_time
= cpu_get_time_fast();
472 int cpu_inb(CPUState
*env
, int addr
)
475 val
= ioport_read(0, addr
);
476 LOG_IOPORT("inb : %04x %02x\n", addr
, val
);
479 env
->last_io_time
= cpu_get_time_fast();
484 int cpu_inw(CPUState
*env
, int addr
)
487 val
= ioport_read(1, addr
);
488 LOG_IOPORT("inw : %04x %04x\n", addr
, val
);
491 env
->last_io_time
= cpu_get_time_fast();
496 int cpu_inl(CPUState
*env
, int addr
)
499 val
= ioport_read(2, addr
);
500 LOG_IOPORT("inl : %04x %08x\n", addr
, val
);
503 env
->last_io_time
= cpu_get_time_fast();
508 /***********************************************************/
509 void hw_error(const char *fmt
, ...)
515 fprintf(stderr
, "qemu: hardware error: ");
516 vfprintf(stderr
, fmt
, ap
);
517 fprintf(stderr
, "\n");
518 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
519 fprintf(stderr
, "CPU #%d:\n", env
->cpu_index
);
521 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
);
523 cpu_dump_state(env
, stderr
, fprintf
, 0);
533 static QEMUBalloonEvent
*qemu_balloon_event
;
534 void *qemu_balloon_event_opaque
;
536 void qemu_add_balloon_handler(QEMUBalloonEvent
*func
, void *opaque
)
538 qemu_balloon_event
= func
;
539 qemu_balloon_event_opaque
= opaque
;
542 void qemu_balloon(ram_addr_t target
)
544 if (qemu_balloon_event
)
545 qemu_balloon_event(qemu_balloon_event_opaque
, target
);
548 ram_addr_t
qemu_balloon_status(void)
550 if (qemu_balloon_event
)
551 return qemu_balloon_event(qemu_balloon_event_opaque
, 0);
555 /***********************************************************/
558 static QEMUPutKBDEvent
*qemu_put_kbd_event
;
559 static void *qemu_put_kbd_event_opaque
;
560 static QEMUPutMouseEntry
*qemu_put_mouse_event_head
;
561 static QEMUPutMouseEntry
*qemu_put_mouse_event_current
;
563 void qemu_add_kbd_event_handler(QEMUPutKBDEvent
*func
, void *opaque
)
565 qemu_put_kbd_event_opaque
= opaque
;
566 qemu_put_kbd_event
= func
;
569 QEMUPutMouseEntry
*qemu_add_mouse_event_handler(QEMUPutMouseEvent
*func
,
570 void *opaque
, int absolute
,
573 QEMUPutMouseEntry
*s
, *cursor
;
575 s
= qemu_mallocz(sizeof(QEMUPutMouseEntry
));
577 s
->qemu_put_mouse_event
= func
;
578 s
->qemu_put_mouse_event_opaque
= opaque
;
579 s
->qemu_put_mouse_event_absolute
= absolute
;
580 s
->qemu_put_mouse_event_name
= qemu_strdup(name
);
583 if (!qemu_put_mouse_event_head
) {
584 qemu_put_mouse_event_head
= qemu_put_mouse_event_current
= s
;
588 cursor
= qemu_put_mouse_event_head
;
589 while (cursor
->next
!= NULL
)
590 cursor
= cursor
->next
;
593 qemu_put_mouse_event_current
= s
;
598 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry
*entry
)
600 QEMUPutMouseEntry
*prev
= NULL
, *cursor
;
602 if (!qemu_put_mouse_event_head
|| entry
== NULL
)
605 cursor
= qemu_put_mouse_event_head
;
606 while (cursor
!= NULL
&& cursor
!= entry
) {
608 cursor
= cursor
->next
;
611 if (cursor
== NULL
) // does not exist or list empty
613 else if (prev
== NULL
) { // entry is head
614 qemu_put_mouse_event_head
= cursor
->next
;
615 if (qemu_put_mouse_event_current
== entry
)
616 qemu_put_mouse_event_current
= cursor
->next
;
617 qemu_free(entry
->qemu_put_mouse_event_name
);
622 prev
->next
= entry
->next
;
624 if (qemu_put_mouse_event_current
== entry
)
625 qemu_put_mouse_event_current
= prev
;
627 qemu_free(entry
->qemu_put_mouse_event_name
);
631 void kbd_put_keycode(int keycode
)
633 if (qemu_put_kbd_event
) {
634 qemu_put_kbd_event(qemu_put_kbd_event_opaque
, keycode
);
638 void kbd_mouse_event(int dx
, int dy
, int dz
, int buttons_state
)
640 QEMUPutMouseEvent
*mouse_event
;
641 void *mouse_event_opaque
;
644 if (!qemu_put_mouse_event_current
) {
649 qemu_put_mouse_event_current
->qemu_put_mouse_event
;
651 qemu_put_mouse_event_current
->qemu_put_mouse_event_opaque
;
654 if (graphic_rotate
) {
655 if (qemu_put_mouse_event_current
->qemu_put_mouse_event_absolute
)
658 width
= graphic_width
- 1;
659 mouse_event(mouse_event_opaque
,
660 width
- dy
, dx
, dz
, buttons_state
);
662 mouse_event(mouse_event_opaque
,
663 dx
, dy
, dz
, buttons_state
);
667 int kbd_mouse_is_absolute(void)
669 if (!qemu_put_mouse_event_current
)
672 return qemu_put_mouse_event_current
->qemu_put_mouse_event_absolute
;
675 void do_info_mice(Monitor
*mon
)
677 QEMUPutMouseEntry
*cursor
;
680 if (!qemu_put_mouse_event_head
) {
681 monitor_printf(mon
, "No mouse devices connected\n");
685 monitor_printf(mon
, "Mouse devices available:\n");
686 cursor
= qemu_put_mouse_event_head
;
687 while (cursor
!= NULL
) {
688 monitor_printf(mon
, "%c Mouse #%d: %s\n",
689 (cursor
== qemu_put_mouse_event_current
? '*' : ' '),
690 index
, cursor
->qemu_put_mouse_event_name
);
692 cursor
= cursor
->next
;
696 void do_mouse_set(Monitor
*mon
, int index
)
698 QEMUPutMouseEntry
*cursor
;
701 if (!qemu_put_mouse_event_head
) {
702 monitor_printf(mon
, "No mouse devices connected\n");
706 cursor
= qemu_put_mouse_event_head
;
707 while (cursor
!= NULL
&& index
!= i
) {
709 cursor
= cursor
->next
;
713 qemu_put_mouse_event_current
= cursor
;
715 monitor_printf(mon
, "Mouse at given index not found\n");
718 /* compute with 96 bit intermediate result: (a*b)/c */
719 uint64_t muldiv64(uint64_t a
, uint32_t b
, uint32_t c
)
724 #ifdef WORDS_BIGENDIAN
734 rl
= (uint64_t)u
.l
.low
* (uint64_t)b
;
735 rh
= (uint64_t)u
.l
.high
* (uint64_t)b
;
738 res
.l
.low
= (((rh
% c
) << 32) + (rl
& 0xffffffff)) / c
;
742 /***********************************************************/
743 /* real time host monotonic timer */
745 #define QEMU_TIMER_BASE 1000000000LL
749 static int64_t clock_freq
;
751 static void init_get_clock(void)
755 ret
= QueryPerformanceFrequency(&freq
);
757 fprintf(stderr
, "Could not calibrate ticks\n");
760 clock_freq
= freq
.QuadPart
;
763 static int64_t get_clock(void)
766 QueryPerformanceCounter(&ti
);
767 return muldiv64(ti
.QuadPart
, QEMU_TIMER_BASE
, clock_freq
);
772 static int use_rt_clock
;
774 static void init_get_clock(void)
777 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
778 || defined(__DragonFly__)
781 if (clock_gettime(CLOCK_MONOTONIC
, &ts
) == 0) {
788 static int64_t get_clock(void)
790 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
791 || defined(__DragonFly__)
794 clock_gettime(CLOCK_MONOTONIC
, &ts
);
795 return ts
.tv_sec
* 1000000000LL + ts
.tv_nsec
;
799 /* XXX: using gettimeofday leads to problems if the date
800 changes, so it should be avoided. */
802 gettimeofday(&tv
, NULL
);
803 return tv
.tv_sec
* 1000000000LL + (tv
.tv_usec
* 1000);
808 /* Return the virtual CPU time, based on the instruction counter. */
809 static int64_t cpu_get_icount(void)
812 CPUState
*env
= cpu_single_env
;;
813 icount
= qemu_icount
;
816 fprintf(stderr
, "Bad clock read\n");
817 icount
-= (env
->icount_decr
.u16
.low
+ env
->icount_extra
);
819 return qemu_icount_bias
+ (icount
<< icount_time_shift
);
822 /***********************************************************/
823 /* guest cycle counter */
825 static int64_t cpu_ticks_prev
;
826 static int64_t cpu_ticks_offset
;
827 static int64_t cpu_clock_offset
;
828 static int cpu_ticks_enabled
;
830 /* return the host CPU cycle counter and handle stop/restart */
831 int64_t cpu_get_ticks(void)
834 return cpu_get_icount();
836 if (!cpu_ticks_enabled
) {
837 return cpu_ticks_offset
;
840 ticks
= cpu_get_real_ticks();
841 if (cpu_ticks_prev
> ticks
) {
842 /* Note: non increasing ticks may happen if the host uses
844 cpu_ticks_offset
+= cpu_ticks_prev
- ticks
;
846 cpu_ticks_prev
= ticks
;
847 return ticks
+ cpu_ticks_offset
;
851 /* return the host CPU monotonic timer and handle stop/restart */
852 static int64_t cpu_get_clock(void)
855 if (!cpu_ticks_enabled
) {
856 return cpu_clock_offset
;
859 return ti
+ cpu_clock_offset
;
863 /* enable cpu_get_ticks() */
864 void cpu_enable_ticks(void)
866 if (!cpu_ticks_enabled
) {
867 cpu_ticks_offset
-= cpu_get_real_ticks();
868 cpu_clock_offset
-= get_clock();
869 cpu_ticks_enabled
= 1;
873 /* disable cpu_get_ticks() : the clock is stopped. You must not call
874 cpu_get_ticks() after that. */
875 void cpu_disable_ticks(void)
877 if (cpu_ticks_enabled
) {
878 cpu_ticks_offset
= cpu_get_ticks();
879 cpu_clock_offset
= cpu_get_clock();
880 cpu_ticks_enabled
= 0;
884 /***********************************************************/
887 #define QEMU_TIMER_REALTIME 0
888 #define QEMU_TIMER_VIRTUAL 1
892 /* XXX: add frequency */
900 struct QEMUTimer
*next
;
903 struct qemu_alarm_timer
{
907 int (*start
)(struct qemu_alarm_timer
*t
);
908 void (*stop
)(struct qemu_alarm_timer
*t
);
909 void (*rearm
)(struct qemu_alarm_timer
*t
);
913 #define ALARM_FLAG_DYNTICKS 0x1
914 #define ALARM_FLAG_EXPIRED 0x2
916 static inline int alarm_has_dynticks(struct qemu_alarm_timer
*t
)
918 return t
->flags
& ALARM_FLAG_DYNTICKS
;
921 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer
*t
)
923 if (!alarm_has_dynticks(t
))
929 /* TODO: MIN_TIMER_REARM_US should be optimized */
930 #define MIN_TIMER_REARM_US 250
932 static struct qemu_alarm_timer
*alarm_timer
;
936 struct qemu_alarm_win32
{
939 } alarm_win32_data
= {0, -1};
941 static int win32_start_timer(struct qemu_alarm_timer
*t
);
942 static void win32_stop_timer(struct qemu_alarm_timer
*t
);
943 static void win32_rearm_timer(struct qemu_alarm_timer
*t
);
947 static int unix_start_timer(struct qemu_alarm_timer
*t
);
948 static void unix_stop_timer(struct qemu_alarm_timer
*t
);
952 static int dynticks_start_timer(struct qemu_alarm_timer
*t
);
953 static void dynticks_stop_timer(struct qemu_alarm_timer
*t
);
954 static void dynticks_rearm_timer(struct qemu_alarm_timer
*t
);
956 static int hpet_start_timer(struct qemu_alarm_timer
*t
);
957 static void hpet_stop_timer(struct qemu_alarm_timer
*t
);
959 static int rtc_start_timer(struct qemu_alarm_timer
*t
);
960 static void rtc_stop_timer(struct qemu_alarm_timer
*t
);
962 #endif /* __linux__ */
966 /* Correlation between real and virtual time is always going to be
967 fairly approximate, so ignore small variation.
968 When the guest is idle real and virtual time will be aligned in
970 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
972 static void icount_adjust(void)
977 static int64_t last_delta
;
978 /* If the VM is not running, then do nothing. */
982 cur_time
= cpu_get_clock();
983 cur_icount
= qemu_get_clock(vm_clock
);
984 delta
= cur_icount
- cur_time
;
985 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
987 && last_delta
+ ICOUNT_WOBBLE
< delta
* 2
988 && icount_time_shift
> 0) {
989 /* The guest is getting too far ahead. Slow time down. */
993 && last_delta
- ICOUNT_WOBBLE
> delta
* 2
994 && icount_time_shift
< MAX_ICOUNT_SHIFT
) {
995 /* The guest is getting too far behind. Speed time up. */
999 qemu_icount_bias
= cur_icount
- (qemu_icount
<< icount_time_shift
);
1002 static void icount_adjust_rt(void * opaque
)
1004 qemu_mod_timer(icount_rt_timer
,
1005 qemu_get_clock(rt_clock
) + 1000);
1009 static void icount_adjust_vm(void * opaque
)
1011 qemu_mod_timer(icount_vm_timer
,
1012 qemu_get_clock(vm_clock
) + QEMU_TIMER_BASE
/ 10);
1016 static void init_icount_adjust(void)
1018 /* Have both realtime and virtual time triggers for speed adjustment.
1019 The realtime trigger catches emulated time passing too slowly,
1020 the virtual time trigger catches emulated time passing too fast.
1021 Realtime triggers occur even when idle, so use them less frequently
1022 than VM triggers. */
1023 icount_rt_timer
= qemu_new_timer(rt_clock
, icount_adjust_rt
, NULL
);
1024 qemu_mod_timer(icount_rt_timer
,
1025 qemu_get_clock(rt_clock
) + 1000);
1026 icount_vm_timer
= qemu_new_timer(vm_clock
, icount_adjust_vm
, NULL
);
1027 qemu_mod_timer(icount_vm_timer
,
1028 qemu_get_clock(vm_clock
) + QEMU_TIMER_BASE
/ 10);
1031 static struct qemu_alarm_timer alarm_timers
[] = {
1034 {"dynticks", ALARM_FLAG_DYNTICKS
, dynticks_start_timer
,
1035 dynticks_stop_timer
, dynticks_rearm_timer
, NULL
},
1036 /* HPET - if available - is preferred */
1037 {"hpet", 0, hpet_start_timer
, hpet_stop_timer
, NULL
, NULL
},
1038 /* ...otherwise try RTC */
1039 {"rtc", 0, rtc_start_timer
, rtc_stop_timer
, NULL
, NULL
},
1041 {"unix", 0, unix_start_timer
, unix_stop_timer
, NULL
, NULL
},
1043 {"dynticks", ALARM_FLAG_DYNTICKS
, win32_start_timer
,
1044 win32_stop_timer
, win32_rearm_timer
, &alarm_win32_data
},
1045 {"win32", 0, win32_start_timer
,
1046 win32_stop_timer
, NULL
, &alarm_win32_data
},
1051 static void show_available_alarms(void)
1055 printf("Available alarm timers, in order of precedence:\n");
1056 for (i
= 0; alarm_timers
[i
].name
; i
++)
1057 printf("%s\n", alarm_timers
[i
].name
);
1060 static void configure_alarms(char const *opt
)
1064 int count
= ARRAY_SIZE(alarm_timers
) - 1;
1067 struct qemu_alarm_timer tmp
;
1069 if (!strcmp(opt
, "?")) {
1070 show_available_alarms();
1076 /* Reorder the array */
1077 name
= strtok(arg
, ",");
1079 for (i
= 0; i
< count
&& alarm_timers
[i
].name
; i
++) {
1080 if (!strcmp(alarm_timers
[i
].name
, name
))
1085 fprintf(stderr
, "Unknown clock %s\n", name
);
1094 tmp
= alarm_timers
[i
];
1095 alarm_timers
[i
] = alarm_timers
[cur
];
1096 alarm_timers
[cur
] = tmp
;
1100 name
= strtok(NULL
, ",");
1106 /* Disable remaining timers */
1107 for (i
= cur
; i
< count
; i
++)
1108 alarm_timers
[i
].name
= NULL
;
1110 show_available_alarms();
1115 QEMUClock
*rt_clock
;
1116 QEMUClock
*vm_clock
;
1118 static QEMUTimer
*active_timers
[2];
1120 static QEMUClock
*qemu_new_clock(int type
)
1123 clock
= qemu_mallocz(sizeof(QEMUClock
));
1128 QEMUTimer
*qemu_new_timer(QEMUClock
*clock
, QEMUTimerCB
*cb
, void *opaque
)
1132 ts
= qemu_mallocz(sizeof(QEMUTimer
));
1135 ts
->opaque
= opaque
;
1139 void qemu_free_timer(QEMUTimer
*ts
)
1144 /* stop a timer, but do not dealloc it */
1145 void qemu_del_timer(QEMUTimer
*ts
)
1149 /* NOTE: this code must be signal safe because
1150 qemu_timer_expired() can be called from a signal. */
1151 pt
= &active_timers
[ts
->clock
->type
];
1164 /* modify the current timer so that it will be fired when current_time
1165 >= expire_time. The corresponding callback will be called. */
1166 void qemu_mod_timer(QEMUTimer
*ts
, int64_t expire_time
)
1172 /* add the timer in the sorted list */
1173 /* NOTE: this code must be signal safe because
1174 qemu_timer_expired() can be called from a signal. */
1175 pt
= &active_timers
[ts
->clock
->type
];
1180 if (t
->expire_time
> expire_time
)
1184 ts
->expire_time
= expire_time
;
1188 /* Rearm if necessary */
1189 if (pt
== &active_timers
[ts
->clock
->type
]) {
1190 if ((alarm_timer
->flags
& ALARM_FLAG_EXPIRED
) == 0) {
1191 qemu_rearm_alarm_timer(alarm_timer
);
1193 /* Interrupt execution to force deadline recalculation. */
1195 qemu_notify_event();
1199 int qemu_timer_pending(QEMUTimer
*ts
)
1202 for(t
= active_timers
[ts
->clock
->type
]; t
!= NULL
; t
= t
->next
) {
1209 static inline int qemu_timer_expired(QEMUTimer
*timer_head
, int64_t current_time
)
1213 return (timer_head
->expire_time
<= current_time
);
1216 static void qemu_run_timers(QEMUTimer
**ptimer_head
, int64_t current_time
)
1222 if (!ts
|| ts
->expire_time
> current_time
)
1224 /* remove timer from the list before calling the callback */
1225 *ptimer_head
= ts
->next
;
1228 /* run the callback (the timer list can be modified) */
1233 int64_t qemu_get_clock(QEMUClock
*clock
)
1235 switch(clock
->type
) {
1236 case QEMU_TIMER_REALTIME
:
1237 return get_clock() / 1000000;
1239 case QEMU_TIMER_VIRTUAL
:
1241 return cpu_get_icount();
1243 return cpu_get_clock();
1248 static void init_timers(void)
1251 ticks_per_sec
= QEMU_TIMER_BASE
;
1252 rt_clock
= qemu_new_clock(QEMU_TIMER_REALTIME
);
1253 vm_clock
= qemu_new_clock(QEMU_TIMER_VIRTUAL
);
1257 void qemu_put_timer(QEMUFile
*f
, QEMUTimer
*ts
)
1259 uint64_t expire_time
;
1261 if (qemu_timer_pending(ts
)) {
1262 expire_time
= ts
->expire_time
;
1266 qemu_put_be64(f
, expire_time
);
1269 void qemu_get_timer(QEMUFile
*f
, QEMUTimer
*ts
)
1271 uint64_t expire_time
;
1273 expire_time
= qemu_get_be64(f
);
1274 if (expire_time
!= -1) {
1275 qemu_mod_timer(ts
, expire_time
);
1281 static void timer_save(QEMUFile
*f
, void *opaque
)
1283 if (cpu_ticks_enabled
) {
1284 hw_error("cannot save state if virtual timers are running");
1286 qemu_put_be64(f
, cpu_ticks_offset
);
1287 qemu_put_be64(f
, ticks_per_sec
);
1288 qemu_put_be64(f
, cpu_clock_offset
);
1291 static int timer_load(QEMUFile
*f
, void *opaque
, int version_id
)
1293 if (version_id
!= 1 && version_id
!= 2)
1295 if (cpu_ticks_enabled
) {
1298 cpu_ticks_offset
=qemu_get_be64(f
);
1299 ticks_per_sec
=qemu_get_be64(f
);
1300 if (version_id
== 2) {
1301 cpu_clock_offset
=qemu_get_be64(f
);
1306 static void qemu_event_increment(void);
1309 static void CALLBACK
host_alarm_handler(UINT uTimerID
, UINT uMsg
,
1310 DWORD_PTR dwUser
, DWORD_PTR dw1
,
1313 static void host_alarm_handler(int host_signum
)
1317 #define DISP_FREQ 1000
1319 static int64_t delta_min
= INT64_MAX
;
1320 static int64_t delta_max
, delta_cum
, last_clock
, delta
, ti
;
1322 ti
= qemu_get_clock(vm_clock
);
1323 if (last_clock
!= 0) {
1324 delta
= ti
- last_clock
;
1325 if (delta
< delta_min
)
1327 if (delta
> delta_max
)
1330 if (++count
== DISP_FREQ
) {
1331 printf("timer: min=%" PRId64
" us max=%" PRId64
" us avg=%" PRId64
" us avg_freq=%0.3f Hz\n",
1332 muldiv64(delta_min
, 1000000, ticks_per_sec
),
1333 muldiv64(delta_max
, 1000000, ticks_per_sec
),
1334 muldiv64(delta_cum
, 1000000 / DISP_FREQ
, ticks_per_sec
),
1335 (double)ticks_per_sec
/ ((double)delta_cum
/ DISP_FREQ
));
1337 delta_min
= INT64_MAX
;
1345 if (alarm_has_dynticks(alarm_timer
) ||
1347 qemu_timer_expired(active_timers
[QEMU_TIMER_VIRTUAL
],
1348 qemu_get_clock(vm_clock
))) ||
1349 qemu_timer_expired(active_timers
[QEMU_TIMER_REALTIME
],
1350 qemu_get_clock(rt_clock
))) {
1351 qemu_event_increment();
1352 alarm_timer
->flags
|= ALARM_FLAG_EXPIRED
;
1354 #ifndef CONFIG_IOTHREAD
1356 /* stop the currently executing cpu because a timer occured */
1359 if (next_cpu
->kqemu_enabled
) {
1360 kqemu_cpu_interrupt(next_cpu
);
1365 timer_alarm_pending
= 1;
1366 qemu_notify_event();
1370 static int64_t qemu_next_deadline(void)
1374 if (active_timers
[QEMU_TIMER_VIRTUAL
]) {
1375 delta
= active_timers
[QEMU_TIMER_VIRTUAL
]->expire_time
-
1376 qemu_get_clock(vm_clock
);
1378 /* To avoid problems with overflow limit this to 2^32. */
1388 #if defined(__linux__) || defined(_WIN32)
1389 static uint64_t qemu_next_deadline_dyntick(void)
1397 delta
= (qemu_next_deadline() + 999) / 1000;
1399 if (active_timers
[QEMU_TIMER_REALTIME
]) {
1400 rtdelta
= (active_timers
[QEMU_TIMER_REALTIME
]->expire_time
-
1401 qemu_get_clock(rt_clock
))*1000;
1402 if (rtdelta
< delta
)
1406 if (delta
< MIN_TIMER_REARM_US
)
1407 delta
= MIN_TIMER_REARM_US
;
1415 /* Sets a specific flag */
1416 static int fcntl_setfl(int fd
, int flag
)
1420 flags
= fcntl(fd
, F_GETFL
);
1424 if (fcntl(fd
, F_SETFL
, flags
| flag
) == -1)
1430 #if defined(__linux__)
1432 #define RTC_FREQ 1024
1434 static void enable_sigio_timer(int fd
)
1436 struct sigaction act
;
1439 sigfillset(&act
.sa_mask
);
1441 act
.sa_handler
= host_alarm_handler
;
1443 sigaction(SIGIO
, &act
, NULL
);
1444 fcntl_setfl(fd
, O_ASYNC
);
1445 fcntl(fd
, F_SETOWN
, getpid());
1448 static int hpet_start_timer(struct qemu_alarm_timer
*t
)
1450 struct hpet_info info
;
1453 fd
= open("/dev/hpet", O_RDONLY
);
1458 r
= ioctl(fd
, HPET_IRQFREQ
, RTC_FREQ
);
1460 fprintf(stderr
, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1461 "error, but for better emulation accuracy type:\n"
1462 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1466 /* Check capabilities */
1467 r
= ioctl(fd
, HPET_INFO
, &info
);
1471 /* Enable periodic mode */
1472 r
= ioctl(fd
, HPET_EPI
, 0);
1473 if (info
.hi_flags
&& (r
< 0))
1476 /* Enable interrupt */
1477 r
= ioctl(fd
, HPET_IE_ON
, 0);
1481 enable_sigio_timer(fd
);
1482 t
->priv
= (void *)(long)fd
;
1490 static void hpet_stop_timer(struct qemu_alarm_timer
*t
)
1492 int fd
= (long)t
->priv
;
1497 static int rtc_start_timer(struct qemu_alarm_timer
*t
)
1500 unsigned long current_rtc_freq
= 0;
1502 TFR(rtc_fd
= open("/dev/rtc", O_RDONLY
));
1505 ioctl(rtc_fd
, RTC_IRQP_READ
, ¤t_rtc_freq
);
1506 if (current_rtc_freq
!= RTC_FREQ
&&
1507 ioctl(rtc_fd
, RTC_IRQP_SET
, RTC_FREQ
) < 0) {
1508 fprintf(stderr
, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1509 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1510 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1513 if (ioctl(rtc_fd
, RTC_PIE_ON
, 0) < 0) {
1519 enable_sigio_timer(rtc_fd
);
1521 t
->priv
= (void *)(long)rtc_fd
;
1526 static void rtc_stop_timer(struct qemu_alarm_timer
*t
)
1528 int rtc_fd
= (long)t
->priv
;
1533 static int dynticks_start_timer(struct qemu_alarm_timer
*t
)
1537 struct sigaction act
;
1539 sigfillset(&act
.sa_mask
);
1541 act
.sa_handler
= host_alarm_handler
;
1543 sigaction(SIGALRM
, &act
, NULL
);
1545 ev
.sigev_value
.sival_int
= 0;
1546 ev
.sigev_notify
= SIGEV_SIGNAL
;
1547 ev
.sigev_signo
= SIGALRM
;
1549 if (timer_create(CLOCK_REALTIME
, &ev
, &host_timer
)) {
1550 perror("timer_create");
1552 /* disable dynticks */
1553 fprintf(stderr
, "Dynamic Ticks disabled\n");
1558 t
->priv
= (void *)(long)host_timer
;
1563 static void dynticks_stop_timer(struct qemu_alarm_timer
*t
)
1565 timer_t host_timer
= (timer_t
)(long)t
->priv
;
1567 timer_delete(host_timer
);
1570 static void dynticks_rearm_timer(struct qemu_alarm_timer
*t
)
1572 timer_t host_timer
= (timer_t
)(long)t
->priv
;
1573 struct itimerspec timeout
;
1574 int64_t nearest_delta_us
= INT64_MAX
;
1577 if (!active_timers
[QEMU_TIMER_REALTIME
] &&
1578 !active_timers
[QEMU_TIMER_VIRTUAL
])
1581 nearest_delta_us
= qemu_next_deadline_dyntick();
1583 /* check whether a timer is already running */
1584 if (timer_gettime(host_timer
, &timeout
)) {
1586 fprintf(stderr
, "Internal timer error: aborting\n");
1589 current_us
= timeout
.it_value
.tv_sec
* 1000000 + timeout
.it_value
.tv_nsec
/1000;
1590 if (current_us
&& current_us
<= nearest_delta_us
)
1593 timeout
.it_interval
.tv_sec
= 0;
1594 timeout
.it_interval
.tv_nsec
= 0; /* 0 for one-shot timer */
1595 timeout
.it_value
.tv_sec
= nearest_delta_us
/ 1000000;
1596 timeout
.it_value
.tv_nsec
= (nearest_delta_us
% 1000000) * 1000;
1597 if (timer_settime(host_timer
, 0 /* RELATIVE */, &timeout
, NULL
)) {
1599 fprintf(stderr
, "Internal timer error: aborting\n");
1604 #endif /* defined(__linux__) */
1606 static int unix_start_timer(struct qemu_alarm_timer
*t
)
1608 struct sigaction act
;
1609 struct itimerval itv
;
1613 sigfillset(&act
.sa_mask
);
1615 act
.sa_handler
= host_alarm_handler
;
1617 sigaction(SIGALRM
, &act
, NULL
);
1619 itv
.it_interval
.tv_sec
= 0;
1620 /* for i386 kernel 2.6 to get 1 ms */
1621 itv
.it_interval
.tv_usec
= 999;
1622 itv
.it_value
.tv_sec
= 0;
1623 itv
.it_value
.tv_usec
= 10 * 1000;
1625 err
= setitimer(ITIMER_REAL
, &itv
, NULL
);
1632 static void unix_stop_timer(struct qemu_alarm_timer
*t
)
1634 struct itimerval itv
;
1636 memset(&itv
, 0, sizeof(itv
));
1637 setitimer(ITIMER_REAL
, &itv
, NULL
);
1640 #endif /* !defined(_WIN32) */
1645 static int win32_start_timer(struct qemu_alarm_timer
*t
)
1648 struct qemu_alarm_win32
*data
= t
->priv
;
1651 memset(&tc
, 0, sizeof(tc
));
1652 timeGetDevCaps(&tc
, sizeof(tc
));
1654 if (data
->period
< tc
.wPeriodMin
)
1655 data
->period
= tc
.wPeriodMin
;
1657 timeBeginPeriod(data
->period
);
1659 flags
= TIME_CALLBACK_FUNCTION
;
1660 if (alarm_has_dynticks(t
))
1661 flags
|= TIME_ONESHOT
;
1663 flags
|= TIME_PERIODIC
;
1665 data
->timerId
= timeSetEvent(1, // interval (ms)
1666 data
->period
, // resolution
1667 host_alarm_handler
, // function
1668 (DWORD
)t
, // parameter
1671 if (!data
->timerId
) {
1672 perror("Failed to initialize win32 alarm timer");
1673 timeEndPeriod(data
->period
);
1680 static void win32_stop_timer(struct qemu_alarm_timer
*t
)
1682 struct qemu_alarm_win32
*data
= t
->priv
;
1684 timeKillEvent(data
->timerId
);
1685 timeEndPeriod(data
->period
);
1688 static void win32_rearm_timer(struct qemu_alarm_timer
*t
)
1690 struct qemu_alarm_win32
*data
= t
->priv
;
1691 uint64_t nearest_delta_us
;
1693 if (!active_timers
[QEMU_TIMER_REALTIME
] &&
1694 !active_timers
[QEMU_TIMER_VIRTUAL
])
1697 nearest_delta_us
= qemu_next_deadline_dyntick();
1698 nearest_delta_us
/= 1000;
1700 timeKillEvent(data
->timerId
);
1702 data
->timerId
= timeSetEvent(1,
1706 TIME_ONESHOT
| TIME_PERIODIC
);
1708 if (!data
->timerId
) {
1709 perror("Failed to re-arm win32 alarm timer");
1711 timeEndPeriod(data
->period
);
1718 static int init_timer_alarm(void)
1720 struct qemu_alarm_timer
*t
= NULL
;
1723 for (i
= 0; alarm_timers
[i
].name
; i
++) {
1724 t
= &alarm_timers
[i
];
1744 static void quit_timers(void)
1746 alarm_timer
->stop(alarm_timer
);
1750 /***********************************************************/
1751 /* host time/date access */
1752 void qemu_get_timedate(struct tm
*tm
, int offset
)
1759 if (rtc_date_offset
== -1) {
1763 ret
= localtime(&ti
);
1765 ti
-= rtc_date_offset
;
1769 memcpy(tm
, ret
, sizeof(struct tm
));
1772 int qemu_timedate_diff(struct tm
*tm
)
1776 if (rtc_date_offset
== -1)
1778 seconds
= mktimegm(tm
);
1780 seconds
= mktime(tm
);
1782 seconds
= mktimegm(tm
) + rtc_date_offset
;
1784 return seconds
- time(NULL
);
1788 static void socket_cleanup(void)
1793 static int socket_init(void)
1798 ret
= WSAStartup(MAKEWORD(2,2), &Data
);
1800 err
= WSAGetLastError();
1801 fprintf(stderr
, "WSAStartup: %d\n", err
);
1804 atexit(socket_cleanup
);
1809 const char *get_opt_name(char *buf
, int buf_size
, const char *p
, char delim
)
1814 while (*p
!= '\0' && *p
!= delim
) {
1815 if (q
&& (q
- buf
) < buf_size
- 1)
1825 const char *get_opt_value(char *buf
, int buf_size
, const char *p
)
1830 while (*p
!= '\0') {
1832 if (*(p
+ 1) != ',')
1836 if (q
&& (q
- buf
) < buf_size
- 1)
1846 int get_param_value(char *buf
, int buf_size
,
1847 const char *tag
, const char *str
)
1854 p
= get_opt_name(option
, sizeof(option
), p
, '=');
1858 if (!strcmp(tag
, option
)) {
1859 (void)get_opt_value(buf
, buf_size
, p
);
1862 p
= get_opt_value(NULL
, 0, p
);
1871 int check_params(const char * const *params
, const char *str
)
1873 int name_buf_size
= 1;
1879 for (i
= 0; params
[i
] != NULL
; i
++) {
1880 len
= strlen(params
[i
]) + 1;
1881 if (len
> name_buf_size
) {
1882 name_buf_size
= len
;
1885 name_buf
= qemu_malloc(name_buf_size
);
1888 while (*p
!= '\0') {
1889 p
= get_opt_name(name_buf
, name_buf_size
, p
, '=');
1895 for(i
= 0; params
[i
] != NULL
; i
++)
1896 if (!strcmp(params
[i
], name_buf
))
1898 if (params
[i
] == NULL
) {
1902 p
= get_opt_value(NULL
, 0, p
);
1908 qemu_free(name_buf
);
1912 /***********************************************************/
1913 /* Bluetooth support */
1916 static struct HCIInfo
*hci_table
[MAX_NICS
];
1918 static struct bt_vlan_s
{
1919 struct bt_scatternet_s net
;
1921 struct bt_vlan_s
*next
;
1924 /* find or alloc a new bluetooth "VLAN" */
1925 static struct bt_scatternet_s
*qemu_find_bt_vlan(int id
)
1927 struct bt_vlan_s
**pvlan
, *vlan
;
1928 for (vlan
= first_bt_vlan
; vlan
!= NULL
; vlan
= vlan
->next
) {
1932 vlan
= qemu_mallocz(sizeof(struct bt_vlan_s
));
1934 pvlan
= &first_bt_vlan
;
1935 while (*pvlan
!= NULL
)
1936 pvlan
= &(*pvlan
)->next
;
1941 static void null_hci_send(struct HCIInfo
*hci
, const uint8_t *data
, int len
)
1945 static int null_hci_addr_set(struct HCIInfo
*hci
, const uint8_t *bd_addr
)
1950 static struct HCIInfo null_hci
= {
1951 .cmd_send
= null_hci_send
,
1952 .sco_send
= null_hci_send
,
1953 .acl_send
= null_hci_send
,
1954 .bdaddr_set
= null_hci_addr_set
,
1957 struct HCIInfo
*qemu_next_hci(void)
1959 if (cur_hci
== nb_hcis
)
1962 return hci_table
[cur_hci
++];
1965 static struct HCIInfo
*hci_init(const char *str
)
1968 struct bt_scatternet_s
*vlan
= 0;
1970 if (!strcmp(str
, "null"))
1973 else if (!strncmp(str
, "host", 4) && (str
[4] == '\0' || str
[4] == ':'))
1975 return bt_host_hci(str
[4] ? str
+ 5 : "hci0");
1976 else if (!strncmp(str
, "hci", 3)) {
1979 if (!strncmp(str
+ 3, ",vlan=", 6)) {
1980 vlan
= qemu_find_bt_vlan(strtol(str
+ 9, &endp
, 0));
1985 vlan
= qemu_find_bt_vlan(0);
1987 return bt_new_hci(vlan
);
1990 fprintf(stderr
, "qemu: Unknown bluetooth HCI `%s'.\n", str
);
1995 static int bt_hci_parse(const char *str
)
1997 struct HCIInfo
*hci
;
2000 if (nb_hcis
>= MAX_NICS
) {
2001 fprintf(stderr
, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS
);
2005 hci
= hci_init(str
);
2014 bdaddr
.b
[5] = 0x56 + nb_hcis
;
2015 hci
->bdaddr_set(hci
, bdaddr
.b
);
2017 hci_table
[nb_hcis
++] = hci
;
2022 static void bt_vhci_add(int vlan_id
)
2024 struct bt_scatternet_s
*vlan
= qemu_find_bt_vlan(vlan_id
);
2027 fprintf(stderr
, "qemu: warning: adding a VHCI to "
2028 "an empty scatternet %i\n", vlan_id
);
2030 bt_vhci_init(bt_new_hci(vlan
));
2033 static struct bt_device_s
*bt_device_add(const char *opt
)
2035 struct bt_scatternet_s
*vlan
;
2037 char *endp
= strstr(opt
, ",vlan=");
2038 int len
= (endp
? endp
- opt
: strlen(opt
)) + 1;
2041 pstrcpy(devname
, MIN(sizeof(devname
), len
), opt
);
2044 vlan_id
= strtol(endp
+ 6, &endp
, 0);
2046 fprintf(stderr
, "qemu: unrecognised bluetooth vlan Id\n");
2051 vlan
= qemu_find_bt_vlan(vlan_id
);
2054 fprintf(stderr
, "qemu: warning: adding a slave device to "
2055 "an empty scatternet %i\n", vlan_id
);
2057 if (!strcmp(devname
, "keyboard"))
2058 return bt_keyboard_init(vlan
);
2060 fprintf(stderr
, "qemu: unsupported bluetooth device `%s'\n", devname
);
2064 static int bt_parse(const char *opt
)
2066 const char *endp
, *p
;
2069 if (strstart(opt
, "hci", &endp
)) {
2070 if (!*endp
|| *endp
== ',') {
2072 if (!strstart(endp
, ",vlan=", 0))
2075 return bt_hci_parse(opt
);
2077 } else if (strstart(opt
, "vhci", &endp
)) {
2078 if (!*endp
|| *endp
== ',') {
2080 if (strstart(endp
, ",vlan=", &p
)) {
2081 vlan
= strtol(p
, (char **) &endp
, 0);
2083 fprintf(stderr
, "qemu: bad scatternet '%s'\n", p
);
2087 fprintf(stderr
, "qemu: bad parameter '%s'\n", endp
+ 1);
2096 } else if (strstart(opt
, "device:", &endp
))
2097 return !bt_device_add(endp
);
2099 fprintf(stderr
, "qemu: bad bluetooth parameter '%s'\n", opt
);
2103 /***********************************************************/
2104 /* QEMU Block devices */
2106 #define HD_ALIAS "index=%d,media=disk"
2107 #define CDROM_ALIAS "index=2,media=cdrom"
2108 #define FD_ALIAS "index=%d,if=floppy"
2109 #define PFLASH_ALIAS "if=pflash"
2110 #define MTD_ALIAS "if=mtd"
2111 #define SD_ALIAS "index=0,if=sd"
2113 static int drive_opt_get_free_idx(void)
2117 for (index
= 0; index
< MAX_DRIVES
; index
++)
2118 if (!drives_opt
[index
].used
) {
2119 drives_opt
[index
].used
= 1;
2126 static int drive_get_free_idx(void)
2130 for (index
= 0; index
< MAX_DRIVES
; index
++)
2131 if (!drives_table
[index
].used
) {
2132 drives_table
[index
].used
= 1;
2139 int drive_add(const char *file
, const char *fmt
, ...)
2142 int index
= drive_opt_get_free_idx();
2144 if (nb_drives_opt
>= MAX_DRIVES
|| index
== -1) {
2145 fprintf(stderr
, "qemu: too many drives\n");
2149 drives_opt
[index
].file
= file
;
2151 vsnprintf(drives_opt
[index
].opt
,
2152 sizeof(drives_opt
[0].opt
), fmt
, ap
);
2159 void drive_remove(int index
)
2161 drives_opt
[index
].used
= 0;
2165 int drive_get_index(BlockInterfaceType type
, int bus
, int unit
)
2169 /* seek interface, bus and unit */
2171 for (index
= 0; index
< MAX_DRIVES
; index
++)
2172 if (drives_table
[index
].type
== type
&&
2173 drives_table
[index
].bus
== bus
&&
2174 drives_table
[index
].unit
== unit
&&
2175 drives_table
[index
].used
)
2181 int drive_get_max_bus(BlockInterfaceType type
)
2187 for (index
= 0; index
< nb_drives
; index
++) {
2188 if(drives_table
[index
].type
== type
&&
2189 drives_table
[index
].bus
> max_bus
)
2190 max_bus
= drives_table
[index
].bus
;
2195 const char *drive_get_serial(BlockDriverState
*bdrv
)
2199 for (index
= 0; index
< nb_drives
; index
++)
2200 if (drives_table
[index
].bdrv
== bdrv
)
2201 return drives_table
[index
].serial
;
2206 BlockInterfaceErrorAction
drive_get_onerror(BlockDriverState
*bdrv
)
2210 for (index
= 0; index
< nb_drives
; index
++)
2211 if (drives_table
[index
].bdrv
== bdrv
)
2212 return drives_table
[index
].onerror
;
2214 return BLOCK_ERR_STOP_ENOSPC
;
2217 static void bdrv_format_print(void *opaque
, const char *name
)
2219 fprintf(stderr
, " %s", name
);
2222 void drive_uninit(BlockDriverState
*bdrv
)
2226 for (i
= 0; i
< MAX_DRIVES
; i
++)
2227 if (drives_table
[i
].bdrv
== bdrv
) {
2228 drives_table
[i
].bdrv
= NULL
;
2229 drives_table
[i
].used
= 0;
2230 drive_remove(drives_table
[i
].drive_opt_idx
);
2236 int drive_init(struct drive_opt
*arg
, int snapshot
, void *opaque
)
2242 const char *mediastr
= "";
2243 BlockInterfaceType type
;
2244 enum { MEDIA_DISK
, MEDIA_CDROM
} media
;
2245 int bus_id
, unit_id
;
2246 int cyls
, heads
, secs
, translation
;
2247 BlockDriverState
*bdrv
;
2248 BlockDriver
*drv
= NULL
;
2249 QEMUMachine
*machine
= opaque
;
2253 int bdrv_flags
, onerror
;
2254 int drives_table_idx
;
2255 char *str
= arg
->opt
;
2256 static const char * const params
[] = { "bus", "unit", "if", "index",
2257 "cyls", "heads", "secs", "trans",
2258 "media", "snapshot", "file",
2259 "cache", "format", "serial", "werror",
2262 if (check_params(params
, str
) < 0) {
2263 fprintf(stderr
, "qemu: unknown parameter '%s' in '%s'\n",
2269 cyls
= heads
= secs
= 0;
2272 translation
= BIOS_ATA_TRANSLATION_AUTO
;
2276 if (machine
->use_scsi
) {
2278 max_devs
= MAX_SCSI_DEVS
;
2279 pstrcpy(devname
, sizeof(devname
), "scsi");
2282 max_devs
= MAX_IDE_DEVS
;
2283 pstrcpy(devname
, sizeof(devname
), "ide");
2287 /* extract parameters */
2289 if (get_param_value(buf
, sizeof(buf
), "bus", str
)) {
2290 bus_id
= strtol(buf
, NULL
, 0);
2292 fprintf(stderr
, "qemu: '%s' invalid bus id\n", str
);
2297 if (get_param_value(buf
, sizeof(buf
), "unit", str
)) {
2298 unit_id
= strtol(buf
, NULL
, 0);
2300 fprintf(stderr
, "qemu: '%s' invalid unit id\n", str
);
2305 if (get_param_value(buf
, sizeof(buf
), "if", str
)) {
2306 pstrcpy(devname
, sizeof(devname
), buf
);
2307 if (!strcmp(buf
, "ide")) {
2309 max_devs
= MAX_IDE_DEVS
;
2310 } else if (!strcmp(buf
, "scsi")) {
2312 max_devs
= MAX_SCSI_DEVS
;
2313 } else if (!strcmp(buf
, "floppy")) {
2316 } else if (!strcmp(buf
, "pflash")) {
2319 } else if (!strcmp(buf
, "mtd")) {
2322 } else if (!strcmp(buf
, "sd")) {
2325 } else if (!strcmp(buf
, "virtio")) {
2328 } else if (!strcmp(buf
, "xen")) {
2332 fprintf(stderr
, "qemu: '%s' unsupported bus type '%s'\n", str
, buf
);
2337 if (get_param_value(buf
, sizeof(buf
), "index", str
)) {
2338 index
= strtol(buf
, NULL
, 0);
2340 fprintf(stderr
, "qemu: '%s' invalid index\n", str
);
2345 if (get_param_value(buf
, sizeof(buf
), "cyls", str
)) {
2346 cyls
= strtol(buf
, NULL
, 0);
2349 if (get_param_value(buf
, sizeof(buf
), "heads", str
)) {
2350 heads
= strtol(buf
, NULL
, 0);
2353 if (get_param_value(buf
, sizeof(buf
), "secs", str
)) {
2354 secs
= strtol(buf
, NULL
, 0);
2357 if (cyls
|| heads
|| secs
) {
2358 if (cyls
< 1 || cyls
> 16383) {
2359 fprintf(stderr
, "qemu: '%s' invalid physical cyls number\n", str
);
2362 if (heads
< 1 || heads
> 16) {
2363 fprintf(stderr
, "qemu: '%s' invalid physical heads number\n", str
);
2366 if (secs
< 1 || secs
> 63) {
2367 fprintf(stderr
, "qemu: '%s' invalid physical secs number\n", str
);
2372 if (get_param_value(buf
, sizeof(buf
), "trans", str
)) {
2375 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2379 if (!strcmp(buf
, "none"))
2380 translation
= BIOS_ATA_TRANSLATION_NONE
;
2381 else if (!strcmp(buf
, "lba"))
2382 translation
= BIOS_ATA_TRANSLATION_LBA
;
2383 else if (!strcmp(buf
, "auto"))
2384 translation
= BIOS_ATA_TRANSLATION_AUTO
;
2386 fprintf(stderr
, "qemu: '%s' invalid translation type\n", str
);
2391 if (get_param_value(buf
, sizeof(buf
), "media", str
)) {
2392 if (!strcmp(buf
, "disk")) {
2394 } else if (!strcmp(buf
, "cdrom")) {
2395 if (cyls
|| secs
|| heads
) {
2397 "qemu: '%s' invalid physical CHS format\n", str
);
2400 media
= MEDIA_CDROM
;
2402 fprintf(stderr
, "qemu: '%s' invalid media\n", str
);
2407 if (get_param_value(buf
, sizeof(buf
), "snapshot", str
)) {
2408 if (!strcmp(buf
, "on"))
2410 else if (!strcmp(buf
, "off"))
2413 fprintf(stderr
, "qemu: '%s' invalid snapshot option\n", str
);
2418 if (get_param_value(buf
, sizeof(buf
), "cache", str
)) {
2419 if (!strcmp(buf
, "off") || !strcmp(buf
, "none"))
2421 else if (!strcmp(buf
, "writethrough"))
2423 else if (!strcmp(buf
, "writeback"))
2426 fprintf(stderr
, "qemu: invalid cache option\n");
2431 if (get_param_value(buf
, sizeof(buf
), "format", str
)) {
2432 if (strcmp(buf
, "?") == 0) {
2433 fprintf(stderr
, "qemu: Supported formats:");
2434 bdrv_iterate_format(bdrv_format_print
, NULL
);
2435 fprintf(stderr
, "\n");
2438 drv
= bdrv_find_format(buf
);
2440 fprintf(stderr
, "qemu: '%s' invalid format\n", buf
);
2445 if (arg
->file
== NULL
)
2446 get_param_value(file
, sizeof(file
), "file", str
);
2448 pstrcpy(file
, sizeof(file
), arg
->file
);
2450 if (!get_param_value(serial
, sizeof(serial
), "serial", str
))
2451 memset(serial
, 0, sizeof(serial
));
2453 onerror
= BLOCK_ERR_STOP_ENOSPC
;
2454 if (get_param_value(buf
, sizeof(serial
), "werror", str
)) {
2455 if (type
!= IF_IDE
&& type
!= IF_SCSI
&& type
!= IF_VIRTIO
) {
2456 fprintf(stderr
, "werror is no supported by this format\n");
2459 if (!strcmp(buf
, "ignore"))
2460 onerror
= BLOCK_ERR_IGNORE
;
2461 else if (!strcmp(buf
, "enospc"))
2462 onerror
= BLOCK_ERR_STOP_ENOSPC
;
2463 else if (!strcmp(buf
, "stop"))
2464 onerror
= BLOCK_ERR_STOP_ANY
;
2465 else if (!strcmp(buf
, "report"))
2466 onerror
= BLOCK_ERR_REPORT
;
2468 fprintf(stderr
, "qemu: '%s' invalid write error action\n", buf
);
2473 /* compute bus and unit according index */
2476 if (bus_id
!= 0 || unit_id
!= -1) {
2478 "qemu: '%s' index cannot be used with bus and unit\n", str
);
2486 unit_id
= index
% max_devs
;
2487 bus_id
= index
/ max_devs
;
2491 /* if user doesn't specify a unit_id,
2492 * try to find the first free
2495 if (unit_id
== -1) {
2497 while (drive_get_index(type
, bus_id
, unit_id
) != -1) {
2499 if (max_devs
&& unit_id
>= max_devs
) {
2500 unit_id
-= max_devs
;
2508 if (max_devs
&& unit_id
>= max_devs
) {
2509 fprintf(stderr
, "qemu: '%s' unit %d too big (max is %d)\n",
2510 str
, unit_id
, max_devs
- 1);
2515 * ignore multiple definitions
2518 if (drive_get_index(type
, bus_id
, unit_id
) != -1)
2523 if (type
== IF_IDE
|| type
== IF_SCSI
)
2524 mediastr
= (media
== MEDIA_CDROM
) ? "-cd" : "-hd";
2526 snprintf(buf
, sizeof(buf
), "%s%i%s%i",
2527 devname
, bus_id
, mediastr
, unit_id
);
2529 snprintf(buf
, sizeof(buf
), "%s%s%i",
2530 devname
, mediastr
, unit_id
);
2531 bdrv
= bdrv_new(buf
);
2532 drives_table_idx
= drive_get_free_idx();
2533 drives_table
[drives_table_idx
].bdrv
= bdrv
;
2534 drives_table
[drives_table_idx
].type
= type
;
2535 drives_table
[drives_table_idx
].bus
= bus_id
;
2536 drives_table
[drives_table_idx
].unit
= unit_id
;
2537 drives_table
[drives_table_idx
].onerror
= onerror
;
2538 drives_table
[drives_table_idx
].drive_opt_idx
= arg
- drives_opt
;
2539 strncpy(drives_table
[drives_table_idx
].serial
, serial
, sizeof(serial
));
2549 bdrv_set_geometry_hint(bdrv
, cyls
, heads
, secs
);
2550 bdrv_set_translation_hint(bdrv
, translation
);
2554 bdrv_set_type_hint(bdrv
, BDRV_TYPE_CDROM
);
2559 /* FIXME: This isn't really a floppy, but it's a reasonable
2562 bdrv_set_type_hint(bdrv
, BDRV_TYPE_FLOPPY
);
2575 bdrv_flags
|= BDRV_O_SNAPSHOT
;
2576 cache
= 2; /* always use write-back with snapshot */
2578 if (cache
== 0) /* no caching */
2579 bdrv_flags
|= BDRV_O_NOCACHE
;
2580 else if (cache
== 2) /* write-back */
2581 bdrv_flags
|= BDRV_O_CACHE_WB
;
2582 else if (cache
== 3) /* not specified */
2583 bdrv_flags
|= BDRV_O_CACHE_DEF
;
2584 if (bdrv_open2(bdrv
, file
, bdrv_flags
, drv
) < 0) {
2585 fprintf(stderr
, "qemu: could not open disk image %s\n",
2589 if (bdrv_key_required(bdrv
))
2591 return drives_table_idx
;
2594 static void numa_add(const char *optarg
)
2598 unsigned long long value
, endvalue
;
2601 optarg
= get_opt_name(option
, 128, optarg
, ',') + 1;
2602 if (!strcmp(option
, "node")) {
2603 if (get_param_value(option
, 128, "nodeid", optarg
) == 0) {
2604 nodenr
= nb_numa_nodes
;
2606 nodenr
= strtoull(option
, NULL
, 10);
2609 if (get_param_value(option
, 128, "mem", optarg
) == 0) {
2610 node_mem
[nodenr
] = 0;
2612 value
= strtoull(option
, &endptr
, 0);
2614 case 0: case 'M': case 'm':
2621 node_mem
[nodenr
] = value
;
2623 if (get_param_value(option
, 128, "cpus", optarg
) == 0) {
2624 node_cpumask
[nodenr
] = 0;
2626 value
= strtoull(option
, &endptr
, 10);
2629 fprintf(stderr
, "only 64 CPUs in NUMA mode supported.\n");
2631 if (*endptr
== '-') {
2632 endvalue
= strtoull(endptr
+1, &endptr
, 10);
2633 if (endvalue
>= 63) {
2636 "only 63 CPUs in NUMA mode supported.\n");
2638 value
= (1 << (endvalue
+ 1)) - (1 << value
);
2643 node_cpumask
[nodenr
] = value
;
2650 /***********************************************************/
2653 static USBPort
*used_usb_ports
;
2654 static USBPort
*free_usb_ports
;
2656 /* ??? Maybe change this to register a hub to keep track of the topology. */
2657 void qemu_register_usb_port(USBPort
*port
, void *opaque
, int index
,
2658 usb_attachfn attach
)
2660 port
->opaque
= opaque
;
2661 port
->index
= index
;
2662 port
->attach
= attach
;
2663 port
->next
= free_usb_ports
;
2664 free_usb_ports
= port
;
2667 int usb_device_add_dev(USBDevice
*dev
)
2671 /* Find a USB port to add the device to. */
2672 port
= free_usb_ports
;
2676 /* Create a new hub and chain it on. */
2677 free_usb_ports
= NULL
;
2678 port
->next
= used_usb_ports
;
2679 used_usb_ports
= port
;
2681 hub
= usb_hub_init(VM_USB_HUB_SIZE
);
2682 usb_attach(port
, hub
);
2683 port
= free_usb_ports
;
2686 free_usb_ports
= port
->next
;
2687 port
->next
= used_usb_ports
;
2688 used_usb_ports
= port
;
2689 usb_attach(port
, dev
);
2693 static void usb_msd_password_cb(void *opaque
, int err
)
2695 USBDevice
*dev
= opaque
;
2698 usb_device_add_dev(dev
);
2700 dev
->handle_destroy(dev
);
2703 static int usb_device_add(const char *devname
, int is_hotplug
)
2708 if (!free_usb_ports
)
2711 if (strstart(devname
, "host:", &p
)) {
2712 dev
= usb_host_device_open(p
);
2713 } else if (!strcmp(devname
, "mouse")) {
2714 dev
= usb_mouse_init();
2715 } else if (!strcmp(devname
, "tablet")) {
2716 dev
= usb_tablet_init();
2717 } else if (!strcmp(devname
, "keyboard")) {
2718 dev
= usb_keyboard_init();
2719 } else if (strstart(devname
, "disk:", &p
)) {
2720 BlockDriverState
*bs
;
2722 dev
= usb_msd_init(p
);
2725 bs
= usb_msd_get_bdrv(dev
);
2726 if (bdrv_key_required(bs
)) {
2729 monitor_read_bdrv_key_start(cur_mon
, bs
, usb_msd_password_cb
,
2734 } else if (!strcmp(devname
, "wacom-tablet")) {
2735 dev
= usb_wacom_init();
2736 } else if (strstart(devname
, "serial:", &p
)) {
2737 dev
= usb_serial_init(p
);
2738 #ifdef CONFIG_BRLAPI
2739 } else if (!strcmp(devname
, "braille")) {
2740 dev
= usb_baum_init();
2742 } else if (strstart(devname
, "net:", &p
)) {
2745 if (net_client_init("nic", p
) < 0)
2747 nd_table
[nic
].model
= "usb";
2748 dev
= usb_net_init(&nd_table
[nic
]);
2749 } else if (!strcmp(devname
, "bt") || strstart(devname
, "bt:", &p
)) {
2750 dev
= usb_bt_init(devname
[2] ? hci_init(p
) :
2751 bt_new_hci(qemu_find_bt_vlan(0)));
2758 return usb_device_add_dev(dev
);
2761 int usb_device_del_addr(int bus_num
, int addr
)
2767 if (!used_usb_ports
)
2773 lastp
= &used_usb_ports
;
2774 port
= used_usb_ports
;
2775 while (port
&& port
->dev
->addr
!= addr
) {
2776 lastp
= &port
->next
;
2784 *lastp
= port
->next
;
2785 usb_attach(port
, NULL
);
2786 dev
->handle_destroy(dev
);
2787 port
->next
= free_usb_ports
;
2788 free_usb_ports
= port
;
2792 static int usb_device_del(const char *devname
)
2797 if (strstart(devname
, "host:", &p
))
2798 return usb_host_device_close(p
);
2800 if (!used_usb_ports
)
2803 p
= strchr(devname
, '.');
2806 bus_num
= strtoul(devname
, NULL
, 0);
2807 addr
= strtoul(p
+ 1, NULL
, 0);
2809 return usb_device_del_addr(bus_num
, addr
);
2812 void do_usb_add(Monitor
*mon
, const char *devname
)
2814 usb_device_add(devname
, 1);
2817 void do_usb_del(Monitor
*mon
, const char *devname
)
2819 usb_device_del(devname
);
2822 void usb_info(Monitor
*mon
)
2826 const char *speed_str
;
2829 monitor_printf(mon
, "USB support not enabled\n");
2833 for (port
= used_usb_ports
; port
; port
= port
->next
) {
2837 switch(dev
->speed
) {
2841 case USB_SPEED_FULL
:
2844 case USB_SPEED_HIGH
:
2851 monitor_printf(mon
, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2852 0, dev
->addr
, speed_str
, dev
->devname
);
2856 /***********************************************************/
2857 /* PCMCIA/Cardbus */
2859 static struct pcmcia_socket_entry_s
{
2860 PCMCIASocket
*socket
;
2861 struct pcmcia_socket_entry_s
*next
;
2862 } *pcmcia_sockets
= 0;
2864 void pcmcia_socket_register(PCMCIASocket
*socket
)
2866 struct pcmcia_socket_entry_s
*entry
;
2868 entry
= qemu_malloc(sizeof(struct pcmcia_socket_entry_s
));
2869 entry
->socket
= socket
;
2870 entry
->next
= pcmcia_sockets
;
2871 pcmcia_sockets
= entry
;
2874 void pcmcia_socket_unregister(PCMCIASocket
*socket
)
2876 struct pcmcia_socket_entry_s
*entry
, **ptr
;
2878 ptr
= &pcmcia_sockets
;
2879 for (entry
= *ptr
; entry
; ptr
= &entry
->next
, entry
= *ptr
)
2880 if (entry
->socket
== socket
) {
2886 void pcmcia_info(Monitor
*mon
)
2888 struct pcmcia_socket_entry_s
*iter
;
2890 if (!pcmcia_sockets
)
2891 monitor_printf(mon
, "No PCMCIA sockets\n");
2893 for (iter
= pcmcia_sockets
; iter
; iter
= iter
->next
)
2894 monitor_printf(mon
, "%s: %s\n", iter
->socket
->slot_string
,
2895 iter
->socket
->attached
? iter
->socket
->card_string
:
2899 /***********************************************************/
2900 /* register display */
2902 struct DisplayAllocator default_allocator
= {
2903 defaultallocator_create_displaysurface
,
2904 defaultallocator_resize_displaysurface
,
2905 defaultallocator_free_displaysurface
2908 void register_displaystate(DisplayState
*ds
)
2918 DisplayState
*get_displaystate(void)
2920 return display_state
;
2923 DisplayAllocator
*register_displayallocator(DisplayState
*ds
, DisplayAllocator
*da
)
2925 if(ds
->allocator
== &default_allocator
) ds
->allocator
= da
;
2926 return ds
->allocator
;
2931 static void dumb_display_init(void)
2933 DisplayState
*ds
= qemu_mallocz(sizeof(DisplayState
));
2934 ds
->allocator
= &default_allocator
;
2935 ds
->surface
= qemu_create_displaysurface(ds
, 640, 480);
2936 register_displaystate(ds
);
2939 /***********************************************************/
2942 typedef struct IOHandlerRecord
{
2944 IOCanRWHandler
*fd_read_poll
;
2946 IOHandler
*fd_write
;
2949 /* temporary data */
2951 struct IOHandlerRecord
*next
;
2954 static IOHandlerRecord
*first_io_handler
;
2956 /* XXX: fd_read_poll should be suppressed, but an API change is
2957 necessary in the character devices to suppress fd_can_read(). */
2958 int qemu_set_fd_handler2(int fd
,
2959 IOCanRWHandler
*fd_read_poll
,
2961 IOHandler
*fd_write
,
2964 IOHandlerRecord
**pioh
, *ioh
;
2966 if (!fd_read
&& !fd_write
) {
2967 pioh
= &first_io_handler
;
2972 if (ioh
->fd
== fd
) {
2979 for(ioh
= first_io_handler
; ioh
!= NULL
; ioh
= ioh
->next
) {
2983 ioh
= qemu_mallocz(sizeof(IOHandlerRecord
));
2984 ioh
->next
= first_io_handler
;
2985 first_io_handler
= ioh
;
2988 ioh
->fd_read_poll
= fd_read_poll
;
2989 ioh
->fd_read
= fd_read
;
2990 ioh
->fd_write
= fd_write
;
2991 ioh
->opaque
= opaque
;
2997 int qemu_set_fd_handler(int fd
,
2999 IOHandler
*fd_write
,
3002 return qemu_set_fd_handler2(fd
, NULL
, fd_read
, fd_write
, opaque
);
3006 /***********************************************************/
3007 /* Polling handling */
3009 typedef struct PollingEntry
{
3012 struct PollingEntry
*next
;
3015 static PollingEntry
*first_polling_entry
;
3017 int qemu_add_polling_cb(PollingFunc
*func
, void *opaque
)
3019 PollingEntry
**ppe
, *pe
;
3020 pe
= qemu_mallocz(sizeof(PollingEntry
));
3022 pe
->opaque
= opaque
;
3023 for(ppe
= &first_polling_entry
; *ppe
!= NULL
; ppe
= &(*ppe
)->next
);
3028 void qemu_del_polling_cb(PollingFunc
*func
, void *opaque
)
3030 PollingEntry
**ppe
, *pe
;
3031 for(ppe
= &first_polling_entry
; *ppe
!= NULL
; ppe
= &(*ppe
)->next
) {
3033 if (pe
->func
== func
&& pe
->opaque
== opaque
) {
3041 /***********************************************************/
3042 /* Wait objects support */
3043 typedef struct WaitObjects
{
3045 HANDLE events
[MAXIMUM_WAIT_OBJECTS
+ 1];
3046 WaitObjectFunc
*func
[MAXIMUM_WAIT_OBJECTS
+ 1];
3047 void *opaque
[MAXIMUM_WAIT_OBJECTS
+ 1];
3050 static WaitObjects wait_objects
= {0};
3052 int qemu_add_wait_object(HANDLE handle
, WaitObjectFunc
*func
, void *opaque
)
3054 WaitObjects
*w
= &wait_objects
;
3056 if (w
->num
>= MAXIMUM_WAIT_OBJECTS
)
3058 w
->events
[w
->num
] = handle
;
3059 w
->func
[w
->num
] = func
;
3060 w
->opaque
[w
->num
] = opaque
;
3065 void qemu_del_wait_object(HANDLE handle
, WaitObjectFunc
*func
, void *opaque
)
3068 WaitObjects
*w
= &wait_objects
;
3071 for (i
= 0; i
< w
->num
; i
++) {
3072 if (w
->events
[i
] == handle
)
3075 w
->events
[i
] = w
->events
[i
+ 1];
3076 w
->func
[i
] = w
->func
[i
+ 1];
3077 w
->opaque
[i
] = w
->opaque
[i
+ 1];
3085 /***********************************************************/
3086 /* ram save/restore */
3088 static int ram_get_page(QEMUFile
*f
, uint8_t *buf
, int len
)
3092 v
= qemu_get_byte(f
);
3095 if (qemu_get_buffer(f
, buf
, len
) != len
)
3099 v
= qemu_get_byte(f
);
3100 memset(buf
, v
, len
);
3106 if (qemu_file_has_error(f
))
3112 static int ram_load_v1(QEMUFile
*f
, void *opaque
)
3117 if (qemu_get_be32(f
) != last_ram_offset
)
3119 for(i
= 0; i
< last_ram_offset
; i
+= TARGET_PAGE_SIZE
) {
3120 ret
= ram_get_page(f
, qemu_get_ram_ptr(i
), TARGET_PAGE_SIZE
);
3127 #define BDRV_HASH_BLOCK_SIZE 1024
3128 #define IOBUF_SIZE 4096
3129 #define RAM_CBLOCK_MAGIC 0xfabe
3131 typedef struct RamDecompressState
{
3134 uint8_t buf
[IOBUF_SIZE
];
3135 } RamDecompressState
;
3137 static int ram_decompress_open(RamDecompressState
*s
, QEMUFile
*f
)
3140 memset(s
, 0, sizeof(*s
));
3142 ret
= inflateInit(&s
->zstream
);
3148 static int ram_decompress_buf(RamDecompressState
*s
, uint8_t *buf
, int len
)
3152 s
->zstream
.avail_out
= len
;
3153 s
->zstream
.next_out
= buf
;
3154 while (s
->zstream
.avail_out
> 0) {
3155 if (s
->zstream
.avail_in
== 0) {
3156 if (qemu_get_be16(s
->f
) != RAM_CBLOCK_MAGIC
)
3158 clen
= qemu_get_be16(s
->f
);
3159 if (clen
> IOBUF_SIZE
)
3161 qemu_get_buffer(s
->f
, s
->buf
, clen
);
3162 s
->zstream
.avail_in
= clen
;
3163 s
->zstream
.next_in
= s
->buf
;
3165 ret
= inflate(&s
->zstream
, Z_PARTIAL_FLUSH
);
3166 if (ret
!= Z_OK
&& ret
!= Z_STREAM_END
) {
3173 static void ram_decompress_close(RamDecompressState
*s
)
3175 inflateEnd(&s
->zstream
);
3178 #define RAM_SAVE_FLAG_FULL 0x01
3179 #define RAM_SAVE_FLAG_COMPRESS 0x02
3180 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3181 #define RAM_SAVE_FLAG_PAGE 0x08
3182 #define RAM_SAVE_FLAG_EOS 0x10
3184 static int is_dup_page(uint8_t *page
, uint8_t ch
)
3186 uint32_t val
= ch
<< 24 | ch
<< 16 | ch
<< 8 | ch
;
3187 uint32_t *array
= (uint32_t *)page
;
3190 for (i
= 0; i
< (TARGET_PAGE_SIZE
/ 4); i
++) {
3191 if (array
[i
] != val
)
3198 static int ram_save_block(QEMUFile
*f
)
3200 static ram_addr_t current_addr
= 0;
3201 ram_addr_t saved_addr
= current_addr
;
3202 ram_addr_t addr
= 0;
3205 while (addr
< last_ram_offset
) {
3206 if (cpu_physical_memory_get_dirty(current_addr
, MIGRATION_DIRTY_FLAG
)) {
3209 cpu_physical_memory_reset_dirty(current_addr
,
3210 current_addr
+ TARGET_PAGE_SIZE
,
3211 MIGRATION_DIRTY_FLAG
);
3213 p
= qemu_get_ram_ptr(current_addr
);
3215 if (is_dup_page(p
, *p
)) {
3216 qemu_put_be64(f
, current_addr
| RAM_SAVE_FLAG_COMPRESS
);
3217 qemu_put_byte(f
, *p
);
3219 qemu_put_be64(f
, current_addr
| RAM_SAVE_FLAG_PAGE
);
3220 qemu_put_buffer(f
, p
, TARGET_PAGE_SIZE
);
3226 addr
+= TARGET_PAGE_SIZE
;
3227 current_addr
= (saved_addr
+ addr
) % last_ram_offset
;
3233 static ram_addr_t ram_save_threshold
= 10;
3235 static ram_addr_t
ram_save_remaining(void)
3238 ram_addr_t count
= 0;
3240 for (addr
= 0; addr
< last_ram_offset
; addr
+= TARGET_PAGE_SIZE
) {
3241 if (cpu_physical_memory_get_dirty(addr
, MIGRATION_DIRTY_FLAG
))
3248 static int ram_save_live(QEMUFile
*f
, int stage
, void *opaque
)
3253 /* Make sure all dirty bits are set */
3254 for (addr
= 0; addr
< last_ram_offset
; addr
+= TARGET_PAGE_SIZE
) {
3255 if (!cpu_physical_memory_get_dirty(addr
, MIGRATION_DIRTY_FLAG
))
3256 cpu_physical_memory_set_dirty(addr
);
3259 /* Enable dirty memory tracking */
3260 cpu_physical_memory_set_dirty_tracking(1);
3262 qemu_put_be64(f
, last_ram_offset
| RAM_SAVE_FLAG_MEM_SIZE
);
3265 while (!qemu_file_rate_limit(f
)) {
3268 ret
= ram_save_block(f
);
3269 if (ret
== 0) /* no more blocks */
3273 /* try transferring iterative blocks of memory */
3277 /* flush all remaining blocks regardless of rate limiting */
3278 while (ram_save_block(f
) != 0);
3279 cpu_physical_memory_set_dirty_tracking(0);
3282 qemu_put_be64(f
, RAM_SAVE_FLAG_EOS
);
3284 return (stage
== 2) && (ram_save_remaining() < ram_save_threshold
);
3287 static int ram_load_dead(QEMUFile
*f
, void *opaque
)
3289 RamDecompressState s1
, *s
= &s1
;
3293 if (ram_decompress_open(s
, f
) < 0)
3295 for(i
= 0; i
< last_ram_offset
; i
+= BDRV_HASH_BLOCK_SIZE
) {
3296 if (ram_decompress_buf(s
, buf
, 1) < 0) {
3297 fprintf(stderr
, "Error while reading ram block header\n");
3301 if (ram_decompress_buf(s
, qemu_get_ram_ptr(i
),
3302 BDRV_HASH_BLOCK_SIZE
) < 0) {
3303 fprintf(stderr
, "Error while reading ram block address=0x%08" PRIx64
, (uint64_t)i
);
3308 printf("Error block header\n");
3312 ram_decompress_close(s
);
3317 static int ram_load(QEMUFile
*f
, void *opaque
, int version_id
)
3322 if (version_id
== 1)
3323 return ram_load_v1(f
, opaque
);
3325 if (version_id
== 2) {
3326 if (qemu_get_be32(f
) != last_ram_offset
)
3328 return ram_load_dead(f
, opaque
);
3331 if (version_id
!= 3)
3335 addr
= qemu_get_be64(f
);
3337 flags
= addr
& ~TARGET_PAGE_MASK
;
3338 addr
&= TARGET_PAGE_MASK
;
3340 if (flags
& RAM_SAVE_FLAG_MEM_SIZE
) {
3341 if (addr
!= last_ram_offset
)
3345 if (flags
& RAM_SAVE_FLAG_FULL
) {
3346 if (ram_load_dead(f
, opaque
) < 0)
3350 if (flags
& RAM_SAVE_FLAG_COMPRESS
) {
3351 uint8_t ch
= qemu_get_byte(f
);
3352 memset(qemu_get_ram_ptr(addr
), ch
, TARGET_PAGE_SIZE
);
3353 } else if (flags
& RAM_SAVE_FLAG_PAGE
)
3354 qemu_get_buffer(f
, qemu_get_ram_ptr(addr
), TARGET_PAGE_SIZE
);
3355 } while (!(flags
& RAM_SAVE_FLAG_EOS
));
3360 void qemu_service_io(void)
3362 qemu_notify_event();
3365 /***********************************************************/
3366 /* bottom halves (can be seen as timers which expire ASAP) */
3377 static QEMUBH
*first_bh
= NULL
;
3379 QEMUBH
*qemu_bh_new(QEMUBHFunc
*cb
, void *opaque
)
3382 bh
= qemu_mallocz(sizeof(QEMUBH
));
3384 bh
->opaque
= opaque
;
3385 bh
->next
= first_bh
;
3390 int qemu_bh_poll(void)
3396 for (bh
= first_bh
; bh
; bh
= bh
->next
) {
3397 if (!bh
->deleted
&& bh
->scheduled
) {
3406 /* remove deleted bhs */
3420 void qemu_bh_schedule_idle(QEMUBH
*bh
)
3428 void qemu_bh_schedule(QEMUBH
*bh
)
3434 /* stop the currently executing CPU to execute the BH ASAP */
3435 qemu_notify_event();
3438 void qemu_bh_cancel(QEMUBH
*bh
)
3443 void qemu_bh_delete(QEMUBH
*bh
)
3449 static void qemu_bh_update_timeout(int *timeout
)
3453 for (bh
= first_bh
; bh
; bh
= bh
->next
) {
3454 if (!bh
->deleted
&& bh
->scheduled
) {
3456 /* idle bottom halves will be polled at least
3458 *timeout
= MIN(10, *timeout
);
3460 /* non-idle bottom halves will be executed
3469 /***********************************************************/
3470 /* machine registration */
3472 static QEMUMachine
*first_machine
= NULL
;
3473 QEMUMachine
*current_machine
= NULL
;
3475 int qemu_register_machine(QEMUMachine
*m
)
3478 pm
= &first_machine
;
3486 static QEMUMachine
*find_machine(const char *name
)
3490 for(m
= first_machine
; m
!= NULL
; m
= m
->next
) {
3491 if (!strcmp(m
->name
, name
))
3497 /***********************************************************/
3498 /* main execution loop */
3500 static void gui_update(void *opaque
)
3502 uint64_t interval
= GUI_REFRESH_INTERVAL
;
3503 DisplayState
*ds
= opaque
;
3504 DisplayChangeListener
*dcl
= ds
->listeners
;
3508 while (dcl
!= NULL
) {
3509 if (dcl
->gui_timer_interval
&&
3510 dcl
->gui_timer_interval
< interval
)
3511 interval
= dcl
->gui_timer_interval
;
3514 qemu_mod_timer(ds
->gui_timer
, interval
+ qemu_get_clock(rt_clock
));
3517 static void nographic_update(void *opaque
)
3519 uint64_t interval
= GUI_REFRESH_INTERVAL
;
3521 qemu_mod_timer(nographic_timer
, interval
+ qemu_get_clock(rt_clock
));
3524 struct vm_change_state_entry
{
3525 VMChangeStateHandler
*cb
;
3527 LIST_ENTRY (vm_change_state_entry
) entries
;
3530 static LIST_HEAD(vm_change_state_head
, vm_change_state_entry
) vm_change_state_head
;
3532 VMChangeStateEntry
*qemu_add_vm_change_state_handler(VMChangeStateHandler
*cb
,
3535 VMChangeStateEntry
*e
;
3537 e
= qemu_mallocz(sizeof (*e
));
3541 LIST_INSERT_HEAD(&vm_change_state_head
, e
, entries
);
3545 void qemu_del_vm_change_state_handler(VMChangeStateEntry
*e
)
3547 LIST_REMOVE (e
, entries
);
3551 static void vm_state_notify(int running
, int reason
)
3553 VMChangeStateEntry
*e
;
3555 for (e
= vm_change_state_head
.lh_first
; e
; e
= e
->entries
.le_next
) {
3556 e
->cb(e
->opaque
, running
, reason
);
3560 static void resume_all_vcpus(void);
3561 static void pause_all_vcpus(void);
3568 vm_state_notify(1, 0);
3569 qemu_rearm_alarm_timer(alarm_timer
);
3574 /* reset/shutdown handler */
3576 typedef struct QEMUResetEntry
{
3577 QEMUResetHandler
*func
;
3579 struct QEMUResetEntry
*next
;
3582 static QEMUResetEntry
*first_reset_entry
;
3583 static int reset_requested
;
3584 static int shutdown_requested
;
3585 static int powerdown_requested
;
3586 static int debug_requested
;
3587 static int vmstop_requested
;
3589 int qemu_shutdown_requested(void)
3591 int r
= shutdown_requested
;
3592 shutdown_requested
= 0;
3596 int qemu_reset_requested(void)
3598 int r
= reset_requested
;
3599 reset_requested
= 0;
3603 int qemu_powerdown_requested(void)
3605 int r
= powerdown_requested
;
3606 powerdown_requested
= 0;
3610 static int qemu_debug_requested(void)
3612 int r
= debug_requested
;
3613 debug_requested
= 0;
3617 static int qemu_vmstop_requested(void)
3619 int r
= vmstop_requested
;
3620 vmstop_requested
= 0;
3624 static void do_vm_stop(int reason
)
3627 cpu_disable_ticks();
3630 vm_state_notify(0, reason
);
3634 void qemu_register_reset(QEMUResetHandler
*func
, void *opaque
)
3636 QEMUResetEntry
**pre
, *re
;
3638 pre
= &first_reset_entry
;
3639 while (*pre
!= NULL
)
3640 pre
= &(*pre
)->next
;
3641 re
= qemu_mallocz(sizeof(QEMUResetEntry
));
3643 re
->opaque
= opaque
;
3648 void qemu_system_reset(void)
3652 /* reset all devices */
3653 for(re
= first_reset_entry
; re
!= NULL
; re
= re
->next
) {
3654 re
->func(re
->opaque
);
3660 void qemu_system_reset_request(void)
3663 shutdown_requested
= 1;
3665 reset_requested
= 1;
3667 qemu_notify_event();
3670 void qemu_system_shutdown_request(void)
3672 shutdown_requested
= 1;
3673 qemu_notify_event();
3676 void qemu_system_powerdown_request(void)
3678 powerdown_requested
= 1;
3679 qemu_notify_event();
3682 #ifdef CONFIG_IOTHREAD
3683 static void qemu_system_vmstop_request(int reason
)
3685 vmstop_requested
= reason
;
3686 qemu_notify_event();
3691 static int io_thread_fd
= -1;
3693 static void qemu_event_increment(void)
3695 static const char byte
= 0;
3697 if (io_thread_fd
== -1)
3700 write(io_thread_fd
, &byte
, sizeof(byte
));
3703 static void qemu_event_read(void *opaque
)
3705 int fd
= (unsigned long)opaque
;
3708 /* Drain the notify pipe */
3711 len
= read(fd
, buffer
, sizeof(buffer
));
3712 } while ((len
== -1 && errno
== EINTR
) || len
> 0);
3715 static int qemu_event_init(void)
3724 err
= fcntl_setfl(fds
[0], O_NONBLOCK
);
3728 err
= fcntl_setfl(fds
[1], O_NONBLOCK
);
3732 qemu_set_fd_handler2(fds
[0], NULL
, qemu_event_read
, NULL
,
3733 (void *)(unsigned long)fds
[0]);
3735 io_thread_fd
= fds
[1];
3744 HANDLE qemu_event_handle
;
3746 static void dummy_event_handler(void *opaque
)
3750 static int qemu_event_init(void)
3752 qemu_event_handle
= CreateEvent(NULL
, FALSE
, FALSE
, NULL
);
3753 if (!qemu_event_handle
) {
3754 perror("Failed CreateEvent");
3757 qemu_add_wait_object(qemu_event_handle
, dummy_event_handler
, NULL
);
3761 static void qemu_event_increment(void)
3763 SetEvent(qemu_event_handle
);
3767 static int cpu_can_run(CPUState
*env
)
3776 #ifndef CONFIG_IOTHREAD
3777 static int qemu_init_main_loop(void)
3779 return qemu_event_init();
3782 void qemu_init_vcpu(void *_env
)
3784 CPUState
*env
= _env
;
3791 int qemu_cpu_self(void *env
)
3796 static void resume_all_vcpus(void)
3800 static void pause_all_vcpus(void)
3804 void qemu_cpu_kick(void *env
)
3809 void qemu_notify_event(void)
3811 CPUState
*env
= cpu_single_env
;
3816 if (env
->kqemu_enabled
)
3817 kqemu_cpu_interrupt(env
);
3822 #define qemu_mutex_lock_iothread() do { } while (0)
3823 #define qemu_mutex_unlock_iothread() do { } while (0)
3825 void vm_stop(int reason
)
3830 #else /* CONFIG_IOTHREAD */
3832 #include "qemu-thread.h"
3834 QemuMutex qemu_global_mutex
;
3835 static QemuMutex qemu_fair_mutex
;
3837 static QemuThread io_thread
;
3839 static QemuThread
*tcg_cpu_thread
;
3840 static QemuCond
*tcg_halt_cond
;
3842 static int qemu_system_ready
;
3844 static QemuCond qemu_cpu_cond
;
3846 static QemuCond qemu_system_cond
;
3847 static QemuCond qemu_pause_cond
;
3849 static void block_io_signals(void);
3850 static void unblock_io_signals(void);
3851 static int tcg_has_work(void);
3853 static int qemu_init_main_loop(void)
3857 ret
= qemu_event_init();
3861 qemu_cond_init(&qemu_pause_cond
);
3862 qemu_mutex_init(&qemu_fair_mutex
);
3863 qemu_mutex_init(&qemu_global_mutex
);
3864 qemu_mutex_lock(&qemu_global_mutex
);
3866 unblock_io_signals();
3867 qemu_thread_self(&io_thread
);
3872 static void qemu_wait_io_event(CPUState
*env
)
3874 while (!tcg_has_work())
3875 qemu_cond_timedwait(env
->halt_cond
, &qemu_global_mutex
, 1000);
3877 qemu_mutex_unlock(&qemu_global_mutex
);
3880 * Users of qemu_global_mutex can be starved, having no chance
3881 * to acquire it since this path will get to it first.
3882 * So use another lock to provide fairness.
3884 qemu_mutex_lock(&qemu_fair_mutex
);
3885 qemu_mutex_unlock(&qemu_fair_mutex
);
3887 qemu_mutex_lock(&qemu_global_mutex
);
3891 qemu_cond_signal(&qemu_pause_cond
);
3895 static int qemu_cpu_exec(CPUState
*env
);
3897 static void *kvm_cpu_thread_fn(void *arg
)
3899 CPUState
*env
= arg
;
3902 qemu_thread_self(env
->thread
);
3904 /* signal CPU creation */
3905 qemu_mutex_lock(&qemu_global_mutex
);
3907 qemu_cond_signal(&qemu_cpu_cond
);
3909 /* and wait for machine initialization */
3910 while (!qemu_system_ready
)
3911 qemu_cond_timedwait(&qemu_system_cond
, &qemu_global_mutex
, 100);
3914 if (cpu_can_run(env
))
3916 qemu_wait_io_event(env
);
3922 static void tcg_cpu_exec(void);
3924 static void *tcg_cpu_thread_fn(void *arg
)
3926 CPUState
*env
= arg
;
3929 qemu_thread_self(env
->thread
);
3931 /* signal CPU creation */
3932 qemu_mutex_lock(&qemu_global_mutex
);
3933 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
3935 qemu_cond_signal(&qemu_cpu_cond
);
3937 /* and wait for machine initialization */
3938 while (!qemu_system_ready
)
3939 qemu_cond_timedwait(&qemu_system_cond
, &qemu_global_mutex
, 100);
3943 qemu_wait_io_event(cur_cpu
);
3949 void qemu_cpu_kick(void *_env
)
3951 CPUState
*env
= _env
;
3952 qemu_cond_broadcast(env
->halt_cond
);
3954 qemu_thread_signal(env
->thread
, SIGUSR1
);
3957 int qemu_cpu_self(void *env
)
3959 return (cpu_single_env
!= NULL
);
3962 static void cpu_signal(int sig
)
3965 cpu_exit(cpu_single_env
);
3968 static void block_io_signals(void)
3971 struct sigaction sigact
;
3974 sigaddset(&set
, SIGUSR2
);
3975 sigaddset(&set
, SIGIO
);
3976 sigaddset(&set
, SIGALRM
);
3977 pthread_sigmask(SIG_BLOCK
, &set
, NULL
);
3980 sigaddset(&set
, SIGUSR1
);
3981 pthread_sigmask(SIG_UNBLOCK
, &set
, NULL
);
3983 memset(&sigact
, 0, sizeof(sigact
));
3984 sigact
.sa_handler
= cpu_signal
;
3985 sigaction(SIGUSR1
, &sigact
, NULL
);
3988 static void unblock_io_signals(void)
3993 sigaddset(&set
, SIGUSR2
);
3994 sigaddset(&set
, SIGIO
);
3995 sigaddset(&set
, SIGALRM
);
3996 pthread_sigmask(SIG_UNBLOCK
, &set
, NULL
);
3999 sigaddset(&set
, SIGUSR1
);
4000 pthread_sigmask(SIG_BLOCK
, &set
, NULL
);
4003 static void qemu_signal_lock(unsigned int msecs
)
4005 qemu_mutex_lock(&qemu_fair_mutex
);
4007 while (qemu_mutex_trylock(&qemu_global_mutex
)) {
4008 qemu_thread_signal(tcg_cpu_thread
, SIGUSR1
);
4009 if (!qemu_mutex_timedlock(&qemu_global_mutex
, msecs
))
4012 qemu_mutex_unlock(&qemu_fair_mutex
);
4015 static void qemu_mutex_lock_iothread(void)
4017 if (kvm_enabled()) {
4018 qemu_mutex_lock(&qemu_fair_mutex
);
4019 qemu_mutex_lock(&qemu_global_mutex
);
4020 qemu_mutex_unlock(&qemu_fair_mutex
);
4022 qemu_signal_lock(100);
4025 static void qemu_mutex_unlock_iothread(void)
4027 qemu_mutex_unlock(&qemu_global_mutex
);
4030 static int all_vcpus_paused(void)
4032 CPUState
*penv
= first_cpu
;
4037 penv
= (CPUState
*)penv
->next_cpu
;
4043 static void pause_all_vcpus(void)
4045 CPUState
*penv
= first_cpu
;
4049 qemu_thread_signal(penv
->thread
, SIGUSR1
);
4050 qemu_cpu_kick(penv
);
4051 penv
= (CPUState
*)penv
->next_cpu
;
4054 while (!all_vcpus_paused()) {
4055 qemu_cond_timedwait(&qemu_pause_cond
, &qemu_global_mutex
, 100);
4058 qemu_thread_signal(penv
->thread
, SIGUSR1
);
4059 penv
= (CPUState
*)penv
->next_cpu
;
4064 static void resume_all_vcpus(void)
4066 CPUState
*penv
= first_cpu
;
4071 qemu_thread_signal(penv
->thread
, SIGUSR1
);
4072 qemu_cpu_kick(penv
);
4073 penv
= (CPUState
*)penv
->next_cpu
;
4077 static void tcg_init_vcpu(void *_env
)
4079 CPUState
*env
= _env
;
4080 /* share a single thread for all cpus with TCG */
4081 if (!tcg_cpu_thread
) {
4082 env
->thread
= qemu_mallocz(sizeof(QemuThread
));
4083 env
->halt_cond
= qemu_mallocz(sizeof(QemuCond
));
4084 qemu_cond_init(env
->halt_cond
);
4085 qemu_thread_create(env
->thread
, tcg_cpu_thread_fn
, env
);
4086 while (env
->created
== 0)
4087 qemu_cond_timedwait(&qemu_cpu_cond
, &qemu_global_mutex
, 100);
4088 tcg_cpu_thread
= env
->thread
;
4089 tcg_halt_cond
= env
->halt_cond
;
4091 env
->thread
= tcg_cpu_thread
;
4092 env
->halt_cond
= tcg_halt_cond
;
4096 static void kvm_start_vcpu(CPUState
*env
)
4099 env
->thread
= qemu_mallocz(sizeof(QemuThread
));
4100 env
->halt_cond
= qemu_mallocz(sizeof(QemuCond
));
4101 qemu_cond_init(env
->halt_cond
);
4102 qemu_thread_create(env
->thread
, kvm_cpu_thread_fn
, env
);
4103 while (env
->created
== 0)
4104 qemu_cond_timedwait(&qemu_cpu_cond
, &qemu_global_mutex
, 100);
4107 void qemu_init_vcpu(void *_env
)
4109 CPUState
*env
= _env
;
4112 kvm_start_vcpu(env
);
4117 void qemu_notify_event(void)
4119 qemu_event_increment();
4122 void vm_stop(int reason
)
4125 qemu_thread_self(&me
);
4127 if (!qemu_thread_equal(&me
, &io_thread
)) {
4128 qemu_system_vmstop_request(reason
);
4130 * FIXME: should not return to device code in case
4131 * vm_stop() has been requested.
4133 if (cpu_single_env
) {
4134 cpu_exit(cpu_single_env
);
4135 cpu_single_env
->stop
= 1;
4146 static void host_main_loop_wait(int *timeout
)
4152 /* XXX: need to suppress polling by better using win32 events */
4154 for(pe
= first_polling_entry
; pe
!= NULL
; pe
= pe
->next
) {
4155 ret
|= pe
->func(pe
->opaque
);
4159 WaitObjects
*w
= &wait_objects
;
4161 ret
= WaitForMultipleObjects(w
->num
, w
->events
, FALSE
, *timeout
);
4162 if (WAIT_OBJECT_0
+ 0 <= ret
&& ret
<= WAIT_OBJECT_0
+ w
->num
- 1) {
4163 if (w
->func
[ret
- WAIT_OBJECT_0
])
4164 w
->func
[ret
- WAIT_OBJECT_0
](w
->opaque
[ret
- WAIT_OBJECT_0
]);
4166 /* Check for additional signaled events */
4167 for(i
= (ret
- WAIT_OBJECT_0
+ 1); i
< w
->num
; i
++) {
4169 /* Check if event is signaled */
4170 ret2
= WaitForSingleObject(w
->events
[i
], 0);
4171 if(ret2
== WAIT_OBJECT_0
) {
4173 w
->func
[i
](w
->opaque
[i
]);
4174 } else if (ret2
== WAIT_TIMEOUT
) {
4176 err
= GetLastError();
4177 fprintf(stderr
, "WaitForSingleObject error %d %d\n", i
, err
);
4180 } else if (ret
== WAIT_TIMEOUT
) {
4182 err
= GetLastError();
4183 fprintf(stderr
, "WaitForMultipleObjects error %d %d\n", ret
, err
);
4190 static void host_main_loop_wait(int *timeout
)
4195 void main_loop_wait(int timeout
)
4197 IOHandlerRecord
*ioh
;
4198 fd_set rfds
, wfds
, xfds
;
4202 qemu_bh_update_timeout(&timeout
);
4204 host_main_loop_wait(&timeout
);
4206 /* poll any events */
4207 /* XXX: separate device handlers from system ones */
4212 for(ioh
= first_io_handler
; ioh
!= NULL
; ioh
= ioh
->next
) {
4216 (!ioh
->fd_read_poll
||
4217 ioh
->fd_read_poll(ioh
->opaque
) != 0)) {
4218 FD_SET(ioh
->fd
, &rfds
);
4222 if (ioh
->fd_write
) {
4223 FD_SET(ioh
->fd
, &wfds
);
4229 tv
.tv_sec
= timeout
/ 1000;
4230 tv
.tv_usec
= (timeout
% 1000) * 1000;
4232 #if defined(CONFIG_SLIRP)
4233 if (slirp_is_inited()) {
4234 slirp_select_fill(&nfds
, &rfds
, &wfds
, &xfds
);
4237 qemu_mutex_unlock_iothread();
4238 ret
= select(nfds
+ 1, &rfds
, &wfds
, &xfds
, &tv
);
4239 qemu_mutex_lock_iothread();
4241 IOHandlerRecord
**pioh
;
4243 for(ioh
= first_io_handler
; ioh
!= NULL
; ioh
= ioh
->next
) {
4244 if (!ioh
->deleted
&& ioh
->fd_read
&& FD_ISSET(ioh
->fd
, &rfds
)) {
4245 ioh
->fd_read(ioh
->opaque
);
4247 if (!ioh
->deleted
&& ioh
->fd_write
&& FD_ISSET(ioh
->fd
, &wfds
)) {
4248 ioh
->fd_write(ioh
->opaque
);
4252 /* remove deleted IO handlers */
4253 pioh
= &first_io_handler
;
4263 #if defined(CONFIG_SLIRP)
4264 if (slirp_is_inited()) {
4270 slirp_select_poll(&rfds
, &wfds
, &xfds
);
4274 /* rearm timer, if not periodic */
4275 if (alarm_timer
->flags
& ALARM_FLAG_EXPIRED
) {
4276 alarm_timer
->flags
&= ~ALARM_FLAG_EXPIRED
;
4277 qemu_rearm_alarm_timer(alarm_timer
);
4280 /* vm time timers */
4282 if (!cur_cpu
|| likely(!(cur_cpu
->singlestep_enabled
& SSTEP_NOTIMER
)))
4283 qemu_run_timers(&active_timers
[QEMU_TIMER_VIRTUAL
],
4284 qemu_get_clock(vm_clock
));
4287 /* real time timers */
4288 qemu_run_timers(&active_timers
[QEMU_TIMER_REALTIME
],
4289 qemu_get_clock(rt_clock
));
4291 /* Check bottom-halves last in case any of the earlier events triggered
4297 static int qemu_cpu_exec(CPUState
*env
)
4300 #ifdef CONFIG_PROFILER
4304 #ifdef CONFIG_PROFILER
4305 ti
= profile_getclock();
4310 qemu_icount
-= (env
->icount_decr
.u16
.low
+ env
->icount_extra
);
4311 env
->icount_decr
.u16
.low
= 0;
4312 env
->icount_extra
= 0;
4313 count
= qemu_next_deadline();
4314 count
= (count
+ (1 << icount_time_shift
) - 1)
4315 >> icount_time_shift
;
4316 qemu_icount
+= count
;
4317 decr
= (count
> 0xffff) ? 0xffff : count
;
4319 env
->icount_decr
.u16
.low
= decr
;
4320 env
->icount_extra
= count
;
4322 ret
= cpu_exec(env
);
4323 #ifdef CONFIG_PROFILER
4324 qemu_time
+= profile_getclock() - ti
;
4327 /* Fold pending instructions back into the
4328 instruction counter, and clear the interrupt flag. */
4329 qemu_icount
-= (env
->icount_decr
.u16
.low
4330 + env
->icount_extra
);
4331 env
->icount_decr
.u32
= 0;
4332 env
->icount_extra
= 0;
4337 static void tcg_cpu_exec(void)
4341 if (next_cpu
== NULL
)
4342 next_cpu
= first_cpu
;
4343 for (; next_cpu
!= NULL
; next_cpu
= next_cpu
->next_cpu
) {
4344 CPUState
*env
= cur_cpu
= next_cpu
;
4348 if (timer_alarm_pending
) {
4349 timer_alarm_pending
= 0;
4352 if (cpu_can_run(env
))
4353 ret
= qemu_cpu_exec(env
);
4354 if (ret
== EXCP_DEBUG
) {
4355 gdb_set_stop_cpu(env
);
4356 debug_requested
= 1;
4362 static int cpu_has_work(CPUState
*env
)
4370 if (qemu_cpu_has_work(env
))
4375 static int tcg_has_work(void)
4379 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
4380 if (cpu_has_work(env
))
4385 static int qemu_calculate_timeout(void)
4391 else if (tcg_has_work())
4393 else if (!use_icount
)
4396 /* XXX: use timeout computed from timers */
4399 /* Advance virtual time to the next event. */
4400 if (use_icount
== 1) {
4401 /* When not using an adaptive execution frequency
4402 we tend to get badly out of sync with real time,
4403 so just delay for a reasonable amount of time. */
4406 delta
= cpu_get_icount() - cpu_get_clock();
4409 /* If virtual time is ahead of real time then just
4411 timeout
= (delta
/ 1000000) + 1;
4413 /* Wait for either IO to occur or the next
4415 add
= qemu_next_deadline();
4416 /* We advance the timer before checking for IO.
4417 Limit the amount we advance so that early IO
4418 activity won't get the guest too far ahead. */
4422 add
= (add
+ (1 << icount_time_shift
) - 1)
4423 >> icount_time_shift
;
4425 timeout
= delta
/ 1000000;
4434 static int vm_can_run(void)
4436 if (powerdown_requested
)
4438 if (reset_requested
)
4440 if (shutdown_requested
)
4442 if (debug_requested
)
4447 static void main_loop(void)
4451 #ifdef CONFIG_IOTHREAD
4452 qemu_system_ready
= 1;
4453 qemu_cond_broadcast(&qemu_system_cond
);
4458 #ifdef CONFIG_PROFILER
4461 #ifndef CONFIG_IOTHREAD
4464 #ifdef CONFIG_PROFILER
4465 ti
= profile_getclock();
4467 #ifdef CONFIG_IOTHREAD
4468 main_loop_wait(1000);
4470 main_loop_wait(qemu_calculate_timeout());
4472 #ifdef CONFIG_PROFILER
4473 dev_time
+= profile_getclock() - ti
;
4475 } while (vm_can_run());
4477 if (qemu_debug_requested())
4478 vm_stop(EXCP_DEBUG
);
4479 if (qemu_shutdown_requested()) {
4486 if (qemu_reset_requested()) {
4488 qemu_system_reset();
4491 if (qemu_powerdown_requested())
4492 qemu_system_powerdown();
4493 if ((r
= qemu_vmstop_requested()))
4499 static void version(void)
4501 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION
", Copyright (c) 2003-2008 Fabrice Bellard\n");
4504 static void help(int exitcode
)
4507 printf("usage: %s [options] [disk_image]\n"
4509 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4511 #define DEF(option, opt_arg, opt_enum, opt_help) \
4513 #define DEFHEADING(text) stringify(text) "\n"
4514 #include "qemu-options.h"
4519 "During emulation, the following keys are useful:\n"
4520 "ctrl-alt-f toggle full screen\n"
4521 "ctrl-alt-n switch to virtual console 'n'\n"
4522 "ctrl-alt toggle mouse and keyboard grab\n"
4524 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4529 DEFAULT_NETWORK_SCRIPT
,
4530 DEFAULT_NETWORK_DOWN_SCRIPT
,
4532 DEFAULT_GDBSTUB_PORT
,
4537 #define HAS_ARG 0x0001
4540 #define DEF(option, opt_arg, opt_enum, opt_help) \
4542 #define DEFHEADING(text)
4543 #include "qemu-options.h"
4549 typedef struct QEMUOption
{
4555 static const QEMUOption qemu_options
[] = {
4556 { "h", 0, QEMU_OPTION_h
},
4557 #define DEF(option, opt_arg, opt_enum, opt_help) \
4558 { option, opt_arg, opt_enum },
4559 #define DEFHEADING(text)
4560 #include "qemu-options.h"
4568 struct soundhw soundhw
[] = {
4569 #ifdef HAS_AUDIO_CHOICE
4570 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4576 { .init_isa
= pcspk_audio_init
}
4583 "Creative Sound Blaster 16",
4586 { .init_isa
= SB16_init
}
4590 #ifdef CONFIG_CS4231A
4596 { .init_isa
= cs4231a_init
}
4604 "Yamaha YMF262 (OPL3)",
4606 "Yamaha YM3812 (OPL2)",
4610 { .init_isa
= Adlib_init
}
4617 "Gravis Ultrasound GF1",
4620 { .init_isa
= GUS_init
}
4627 "Intel 82801AA AC97 Audio",
4630 { .init_pci
= ac97_init
}
4634 #ifdef CONFIG_ES1370
4637 "ENSONIQ AudioPCI ES1370",
4640 { .init_pci
= es1370_init
}
4644 #endif /* HAS_AUDIO_CHOICE */
4646 { NULL
, NULL
, 0, 0, { NULL
} }
4649 static void select_soundhw (const char *optarg
)
4653 if (*optarg
== '?') {
4656 printf ("Valid sound card names (comma separated):\n");
4657 for (c
= soundhw
; c
->name
; ++c
) {
4658 printf ("%-11s %s\n", c
->name
, c
->descr
);
4660 printf ("\n-soundhw all will enable all of the above\n");
4661 exit (*optarg
!= '?');
4669 if (!strcmp (optarg
, "all")) {
4670 for (c
= soundhw
; c
->name
; ++c
) {
4678 e
= strchr (p
, ',');
4679 l
= !e
? strlen (p
) : (size_t) (e
- p
);
4681 for (c
= soundhw
; c
->name
; ++c
) {
4682 if (!strncmp (c
->name
, p
, l
)) {
4691 "Unknown sound card name (too big to show)\n");
4694 fprintf (stderr
, "Unknown sound card name `%.*s'\n",
4699 p
+= l
+ (e
!= NULL
);
4703 goto show_valid_cards
;
4708 static void select_vgahw (const char *p
)
4712 cirrus_vga_enabled
= 0;
4713 std_vga_enabled
= 0;
4716 if (strstart(p
, "std", &opts
)) {
4717 std_vga_enabled
= 1;
4718 } else if (strstart(p
, "cirrus", &opts
)) {
4719 cirrus_vga_enabled
= 1;
4720 } else if (strstart(p
, "vmware", &opts
)) {
4722 } else if (strstart(p
, "xenfb", &opts
)) {
4724 } else if (!strstart(p
, "none", &opts
)) {
4726 fprintf(stderr
, "Unknown vga type: %s\n", p
);
4730 const char *nextopt
;
4732 if (strstart(opts
, ",retrace=", &nextopt
)) {
4734 if (strstart(opts
, "dumb", &nextopt
))
4735 vga_retrace_method
= VGA_RETRACE_DUMB
;
4736 else if (strstart(opts
, "precise", &nextopt
))
4737 vga_retrace_method
= VGA_RETRACE_PRECISE
;
4738 else goto invalid_vga
;
4739 } else goto invalid_vga
;
4745 static BOOL WINAPI
qemu_ctrl_handler(DWORD type
)
4747 exit(STATUS_CONTROL_C_EXIT
);
4752 int qemu_uuid_parse(const char *str
, uint8_t *uuid
)
4756 if(strlen(str
) != 36)
4759 ret
= sscanf(str
, UUID_FMT
, &uuid
[0], &uuid
[1], &uuid
[2], &uuid
[3],
4760 &uuid
[4], &uuid
[5], &uuid
[6], &uuid
[7], &uuid
[8], &uuid
[9],
4761 &uuid
[10], &uuid
[11], &uuid
[12], &uuid
[13], &uuid
[14], &uuid
[15]);
4767 smbios_add_field(1, offsetof(struct smbios_type_1
, uuid
), 16, uuid
);
4773 #define MAX_NET_CLIENTS 32
4777 static void termsig_handler(int signal
)
4779 qemu_system_shutdown_request();
4782 static void termsig_setup(void)
4784 struct sigaction act
;
4786 memset(&act
, 0, sizeof(act
));
4787 act
.sa_handler
= termsig_handler
;
4788 sigaction(SIGINT
, &act
, NULL
);
4789 sigaction(SIGHUP
, &act
, NULL
);
4790 sigaction(SIGTERM
, &act
, NULL
);
4795 int main(int argc
, char **argv
, char **envp
)
4797 const char *gdbstub_dev
= NULL
;
4798 uint32_t boot_devices_bitmap
= 0;
4800 int snapshot
, linux_boot
, net_boot
;
4801 const char *initrd_filename
;
4802 const char *kernel_filename
, *kernel_cmdline
;
4803 const char *boot_devices
= "";
4805 DisplayChangeListener
*dcl
;
4806 int cyls
, heads
, secs
, translation
;
4807 const char *net_clients
[MAX_NET_CLIENTS
];
4809 const char *bt_opts
[MAX_BT_CMDLINE
];
4813 const char *r
, *optarg
;
4814 CharDriverState
*monitor_hd
= NULL
;
4815 const char *monitor_device
;
4816 const char *serial_devices
[MAX_SERIAL_PORTS
];
4817 int serial_device_index
;
4818 const char *parallel_devices
[MAX_PARALLEL_PORTS
];
4819 int parallel_device_index
;
4820 const char *virtio_consoles
[MAX_VIRTIO_CONSOLES
];
4821 int virtio_console_index
;
4822 const char *loadvm
= NULL
;
4823 QEMUMachine
*machine
;
4824 const char *cpu_model
;
4825 const char *usb_devices
[MAX_USB_CMDLINE
];
4826 int usb_devices_index
;
4831 const char *pid_file
= NULL
;
4832 const char *incoming
= NULL
;
4835 struct passwd
*pwd
= NULL
;
4836 const char *chroot_dir
= NULL
;
4837 const char *run_as
= NULL
;
4841 qemu_cache_utils_init(envp
);
4843 LIST_INIT (&vm_change_state_head
);
4846 struct sigaction act
;
4847 sigfillset(&act
.sa_mask
);
4849 act
.sa_handler
= SIG_IGN
;
4850 sigaction(SIGPIPE
, &act
, NULL
);
4853 SetConsoleCtrlHandler(qemu_ctrl_handler
, TRUE
);
4854 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4855 QEMU to run on a single CPU */
4860 h
= GetCurrentProcess();
4861 if (GetProcessAffinityMask(h
, &mask
, &smask
)) {
4862 for(i
= 0; i
< 32; i
++) {
4863 if (mask
& (1 << i
))
4868 SetProcessAffinityMask(h
, mask
);
4874 register_machines();
4875 machine
= first_machine
;
4877 initrd_filename
= NULL
;
4882 kernel_filename
= NULL
;
4883 kernel_cmdline
= "";
4884 cyls
= heads
= secs
= 0;
4885 translation
= BIOS_ATA_TRANSLATION_AUTO
;
4886 monitor_device
= "vc:80Cx24C";
4888 serial_devices
[0] = "vc:80Cx24C";
4889 for(i
= 1; i
< MAX_SERIAL_PORTS
; i
++)
4890 serial_devices
[i
] = NULL
;
4891 serial_device_index
= 0;
4893 parallel_devices
[0] = "vc:80Cx24C";
4894 for(i
= 1; i
< MAX_PARALLEL_PORTS
; i
++)
4895 parallel_devices
[i
] = NULL
;
4896 parallel_device_index
= 0;
4898 for(i
= 0; i
< MAX_VIRTIO_CONSOLES
; i
++)
4899 virtio_consoles
[i
] = NULL
;
4900 virtio_console_index
= 0;
4902 for (i
= 0; i
< MAX_NODES
; i
++) {
4904 node_cpumask
[i
] = 0;
4907 usb_devices_index
= 0;
4921 register_watchdogs();
4929 hda_index
= drive_add(argv
[optind
++], HD_ALIAS
, 0);
4931 const QEMUOption
*popt
;
4934 /* Treat --foo the same as -foo. */
4937 popt
= qemu_options
;
4940 fprintf(stderr
, "%s: invalid option -- '%s'\n",
4944 if (!strcmp(popt
->name
, r
+ 1))
4948 if (popt
->flags
& HAS_ARG
) {
4949 if (optind
>= argc
) {
4950 fprintf(stderr
, "%s: option '%s' requires an argument\n",
4954 optarg
= argv
[optind
++];
4959 switch(popt
->index
) {
4961 machine
= find_machine(optarg
);
4964 printf("Supported machines are:\n");
4965 for(m
= first_machine
; m
!= NULL
; m
= m
->next
) {
4966 printf("%-10s %s%s\n",
4968 m
== first_machine
? " (default)" : "");
4970 exit(*optarg
!= '?');
4973 case QEMU_OPTION_cpu
:
4974 /* hw initialization will check this */
4975 if (*optarg
== '?') {
4976 /* XXX: implement xxx_cpu_list for targets that still miss it */
4977 #if defined(cpu_list)
4978 cpu_list(stdout
, &fprintf
);
4985 case QEMU_OPTION_initrd
:
4986 initrd_filename
= optarg
;
4988 case QEMU_OPTION_hda
:
4990 hda_index
= drive_add(optarg
, HD_ALIAS
, 0);
4992 hda_index
= drive_add(optarg
, HD_ALIAS
4993 ",cyls=%d,heads=%d,secs=%d%s",
4994 0, cyls
, heads
, secs
,
4995 translation
== BIOS_ATA_TRANSLATION_LBA
?
4997 translation
== BIOS_ATA_TRANSLATION_NONE
?
4998 ",trans=none" : "");
5000 case QEMU_OPTION_hdb
:
5001 case QEMU_OPTION_hdc
:
5002 case QEMU_OPTION_hdd
:
5003 drive_add(optarg
, HD_ALIAS
, popt
->index
- QEMU_OPTION_hda
);
5005 case QEMU_OPTION_drive
:
5006 drive_add(NULL
, "%s", optarg
);
5008 case QEMU_OPTION_mtdblock
:
5009 drive_add(optarg
, MTD_ALIAS
);
5011 case QEMU_OPTION_sd
:
5012 drive_add(optarg
, SD_ALIAS
);
5014 case QEMU_OPTION_pflash
:
5015 drive_add(optarg
, PFLASH_ALIAS
);
5017 case QEMU_OPTION_snapshot
:
5020 case QEMU_OPTION_hdachs
:
5024 cyls
= strtol(p
, (char **)&p
, 0);
5025 if (cyls
< 1 || cyls
> 16383)
5030 heads
= strtol(p
, (char **)&p
, 0);
5031 if (heads
< 1 || heads
> 16)
5036 secs
= strtol(p
, (char **)&p
, 0);
5037 if (secs
< 1 || secs
> 63)
5041 if (!strcmp(p
, "none"))
5042 translation
= BIOS_ATA_TRANSLATION_NONE
;
5043 else if (!strcmp(p
, "lba"))
5044 translation
= BIOS_ATA_TRANSLATION_LBA
;
5045 else if (!strcmp(p
, "auto"))
5046 translation
= BIOS_ATA_TRANSLATION_AUTO
;
5049 } else if (*p
!= '\0') {
5051 fprintf(stderr
, "qemu: invalid physical CHS format\n");
5054 if (hda_index
!= -1)
5055 snprintf(drives_opt
[hda_index
].opt
,
5056 sizeof(drives_opt
[hda_index
].opt
),
5057 HD_ALIAS
",cyls=%d,heads=%d,secs=%d%s",
5058 0, cyls
, heads
, secs
,
5059 translation
== BIOS_ATA_TRANSLATION_LBA
?
5061 translation
== BIOS_ATA_TRANSLATION_NONE
?
5062 ",trans=none" : "");
5065 case QEMU_OPTION_numa
:
5066 if (nb_numa_nodes
>= MAX_NODES
) {
5067 fprintf(stderr
, "qemu: too many NUMA nodes\n");
5072 case QEMU_OPTION_nographic
:
5075 #ifdef CONFIG_CURSES
5076 case QEMU_OPTION_curses
:
5080 case QEMU_OPTION_portrait
:
5083 case QEMU_OPTION_kernel
:
5084 kernel_filename
= optarg
;
5086 case QEMU_OPTION_append
:
5087 kernel_cmdline
= optarg
;
5089 case QEMU_OPTION_cdrom
:
5090 drive_add(optarg
, CDROM_ALIAS
);
5092 case QEMU_OPTION_boot
:
5093 boot_devices
= optarg
;
5094 /* We just do some generic consistency checks */
5096 /* Could easily be extended to 64 devices if needed */
5099 boot_devices_bitmap
= 0;
5100 for (p
= boot_devices
; *p
!= '\0'; p
++) {
5101 /* Allowed boot devices are:
5102 * a b : floppy disk drives
5103 * c ... f : IDE disk drives
5104 * g ... m : machine implementation dependant drives
5105 * n ... p : network devices
5106 * It's up to each machine implementation to check
5107 * if the given boot devices match the actual hardware
5108 * implementation and firmware features.
5110 if (*p
< 'a' || *p
> 'q') {
5111 fprintf(stderr
, "Invalid boot device '%c'\n", *p
);
5114 if (boot_devices_bitmap
& (1 << (*p
- 'a'))) {
5116 "Boot device '%c' was given twice\n",*p
);
5119 boot_devices_bitmap
|= 1 << (*p
- 'a');
5123 case QEMU_OPTION_fda
:
5124 case QEMU_OPTION_fdb
:
5125 drive_add(optarg
, FD_ALIAS
, popt
->index
- QEMU_OPTION_fda
);
5128 case QEMU_OPTION_no_fd_bootchk
:
5132 case QEMU_OPTION_net
:
5133 if (nb_net_clients
>= MAX_NET_CLIENTS
) {
5134 fprintf(stderr
, "qemu: too many network clients\n");
5137 net_clients
[nb_net_clients
] = optarg
;
5141 case QEMU_OPTION_tftp
:
5142 tftp_prefix
= optarg
;
5144 case QEMU_OPTION_bootp
:
5145 bootp_filename
= optarg
;
5148 case QEMU_OPTION_smb
:
5149 net_slirp_smb(optarg
);
5152 case QEMU_OPTION_redir
:
5153 net_slirp_redir(NULL
, optarg
);
5156 case QEMU_OPTION_bt
:
5157 if (nb_bt_opts
>= MAX_BT_CMDLINE
) {
5158 fprintf(stderr
, "qemu: too many bluetooth options\n");
5161 bt_opts
[nb_bt_opts
++] = optarg
;
5164 case QEMU_OPTION_audio_help
:
5168 case QEMU_OPTION_soundhw
:
5169 select_soundhw (optarg
);
5175 case QEMU_OPTION_version
:
5179 case QEMU_OPTION_m
: {
5183 value
= strtoul(optarg
, &ptr
, 10);
5185 case 0: case 'M': case 'm':
5192 fprintf(stderr
, "qemu: invalid ram size: %s\n", optarg
);
5196 /* On 32-bit hosts, QEMU is limited by virtual address space */
5197 if (value
> (2047 << 20)
5198 #ifndef CONFIG_KQEMU
5199 && HOST_LONG_BITS
== 32
5202 fprintf(stderr
, "qemu: at most 2047 MB RAM can be simulated\n");
5205 if (value
!= (uint64_t)(ram_addr_t
)value
) {
5206 fprintf(stderr
, "qemu: ram size too large\n");
5215 const CPULogItem
*item
;
5217 mask
= cpu_str_to_log_mask(optarg
);
5219 printf("Log items (comma separated):\n");
5220 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
5221 printf("%-10s %s\n", item
->name
, item
->help
);
5229 gdbstub_dev
= "tcp::" DEFAULT_GDBSTUB_PORT
;
5231 case QEMU_OPTION_gdb
:
5232 gdbstub_dev
= optarg
;
5237 case QEMU_OPTION_bios
:
5240 case QEMU_OPTION_singlestep
:
5248 keyboard_layout
= optarg
;
5251 case QEMU_OPTION_localtime
:
5254 case QEMU_OPTION_vga
:
5255 select_vgahw (optarg
);
5257 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5263 w
= strtol(p
, (char **)&p
, 10);
5266 fprintf(stderr
, "qemu: invalid resolution or depth\n");
5272 h
= strtol(p
, (char **)&p
, 10);
5277 depth
= strtol(p
, (char **)&p
, 10);
5278 if (depth
!= 8 && depth
!= 15 && depth
!= 16 &&
5279 depth
!= 24 && depth
!= 32)
5281 } else if (*p
== '\0') {
5282 depth
= graphic_depth
;
5289 graphic_depth
= depth
;
5293 case QEMU_OPTION_echr
:
5296 term_escape_char
= strtol(optarg
, &r
, 0);
5298 printf("Bad argument to echr\n");
5301 case QEMU_OPTION_monitor
:
5302 monitor_device
= optarg
;
5304 case QEMU_OPTION_serial
:
5305 if (serial_device_index
>= MAX_SERIAL_PORTS
) {
5306 fprintf(stderr
, "qemu: too many serial ports\n");
5309 serial_devices
[serial_device_index
] = optarg
;
5310 serial_device_index
++;
5312 case QEMU_OPTION_watchdog
:
5313 i
= select_watchdog(optarg
);
5315 exit (i
== 1 ? 1 : 0);
5317 case QEMU_OPTION_watchdog_action
:
5318 if (select_watchdog_action(optarg
) == -1) {
5319 fprintf(stderr
, "Unknown -watchdog-action parameter\n");
5323 case QEMU_OPTION_virtiocon
:
5324 if (virtio_console_index
>= MAX_VIRTIO_CONSOLES
) {
5325 fprintf(stderr
, "qemu: too many virtio consoles\n");
5328 virtio_consoles
[virtio_console_index
] = optarg
;
5329 virtio_console_index
++;
5331 case QEMU_OPTION_parallel
:
5332 if (parallel_device_index
>= MAX_PARALLEL_PORTS
) {
5333 fprintf(stderr
, "qemu: too many parallel ports\n");
5336 parallel_devices
[parallel_device_index
] = optarg
;
5337 parallel_device_index
++;
5339 case QEMU_OPTION_loadvm
:
5342 case QEMU_OPTION_full_screen
:
5346 case QEMU_OPTION_no_frame
:
5349 case QEMU_OPTION_alt_grab
:
5352 case QEMU_OPTION_no_quit
:
5355 case QEMU_OPTION_sdl
:
5359 case QEMU_OPTION_pidfile
:
5363 case QEMU_OPTION_win2k_hack
:
5364 win2k_install_hack
= 1;
5366 case QEMU_OPTION_rtc_td_hack
:
5369 case QEMU_OPTION_acpitable
:
5370 if(acpi_table_add(optarg
) < 0) {
5371 fprintf(stderr
, "Wrong acpi table provided\n");
5375 case QEMU_OPTION_smbios
:
5376 if(smbios_entry_add(optarg
) < 0) {
5377 fprintf(stderr
, "Wrong smbios provided\n");
5383 case QEMU_OPTION_no_kqemu
:
5386 case QEMU_OPTION_kernel_kqemu
:
5391 case QEMU_OPTION_enable_kvm
:
5398 case QEMU_OPTION_usb
:
5401 case QEMU_OPTION_usbdevice
:
5403 if (usb_devices_index
>= MAX_USB_CMDLINE
) {
5404 fprintf(stderr
, "Too many USB devices\n");
5407 usb_devices
[usb_devices_index
] = optarg
;
5408 usb_devices_index
++;
5410 case QEMU_OPTION_smp
:
5411 smp_cpus
= atoi(optarg
);
5413 fprintf(stderr
, "Invalid number of CPUs\n");
5417 case QEMU_OPTION_vnc
:
5418 vnc_display
= optarg
;
5421 case QEMU_OPTION_no_acpi
:
5424 case QEMU_OPTION_no_hpet
:
5428 case QEMU_OPTION_no_reboot
:
5431 case QEMU_OPTION_no_shutdown
:
5434 case QEMU_OPTION_show_cursor
:
5437 case QEMU_OPTION_uuid
:
5438 if(qemu_uuid_parse(optarg
, qemu_uuid
) < 0) {
5439 fprintf(stderr
, "Fail to parse UUID string."
5440 " Wrong format.\n");
5445 case QEMU_OPTION_daemonize
:
5449 case QEMU_OPTION_option_rom
:
5450 if (nb_option_roms
>= MAX_OPTION_ROMS
) {
5451 fprintf(stderr
, "Too many option ROMs\n");
5454 option_rom
[nb_option_roms
] = optarg
;
5457 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5458 case QEMU_OPTION_semihosting
:
5459 semihosting_enabled
= 1;
5462 case QEMU_OPTION_name
:
5465 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5466 case QEMU_OPTION_prom_env
:
5467 if (nb_prom_envs
>= MAX_PROM_ENVS
) {
5468 fprintf(stderr
, "Too many prom variables\n");
5471 prom_envs
[nb_prom_envs
] = optarg
;
5476 case QEMU_OPTION_old_param
:
5480 case QEMU_OPTION_clock
:
5481 configure_alarms(optarg
);
5483 case QEMU_OPTION_startdate
:
5486 time_t rtc_start_date
;
5487 if (!strcmp(optarg
, "now")) {
5488 rtc_date_offset
= -1;
5490 if (sscanf(optarg
, "%d-%d-%dT%d:%d:%d",
5498 } else if (sscanf(optarg
, "%d-%d-%d",
5501 &tm
.tm_mday
) == 3) {
5510 rtc_start_date
= mktimegm(&tm
);
5511 if (rtc_start_date
== -1) {
5513 fprintf(stderr
, "Invalid date format. Valid format are:\n"
5514 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5517 rtc_date_offset
= time(NULL
) - rtc_start_date
;
5521 case QEMU_OPTION_tb_size
:
5522 tb_size
= strtol(optarg
, NULL
, 0);
5526 case QEMU_OPTION_icount
:
5528 if (strcmp(optarg
, "auto") == 0) {
5529 icount_time_shift
= -1;
5531 icount_time_shift
= strtol(optarg
, NULL
, 0);
5534 case QEMU_OPTION_incoming
:
5538 case QEMU_OPTION_chroot
:
5539 chroot_dir
= optarg
;
5541 case QEMU_OPTION_runas
:
5546 case QEMU_OPTION_xen_domid
:
5547 xen_domid
= atoi(optarg
);
5549 case QEMU_OPTION_xen_create
:
5550 xen_mode
= XEN_CREATE
;
5552 case QEMU_OPTION_xen_attach
:
5553 xen_mode
= XEN_ATTACH
;
5560 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5561 if (kvm_allowed
&& kqemu_allowed
) {
5563 "You can not enable both KVM and kqemu at the same time\n");
5568 machine
->max_cpus
= machine
->max_cpus
?: 1; /* Default to UP */
5569 if (smp_cpus
> machine
->max_cpus
) {
5570 fprintf(stderr
, "Number of SMP cpus requested (%d), exceeds max cpus "
5571 "supported by machine `%s' (%d)\n", smp_cpus
, machine
->name
,
5577 if (serial_device_index
== 0)
5578 serial_devices
[0] = "stdio";
5579 if (parallel_device_index
== 0)
5580 parallel_devices
[0] = "null";
5581 if (strncmp(monitor_device
, "vc", 2) == 0)
5582 monitor_device
= "stdio";
5589 if (pipe(fds
) == -1)
5600 len
= read(fds
[0], &status
, 1);
5601 if (len
== -1 && (errno
== EINTR
))
5606 else if (status
== 1) {
5607 fprintf(stderr
, "Could not acquire pidfile\n");
5624 signal(SIGTSTP
, SIG_IGN
);
5625 signal(SIGTTOU
, SIG_IGN
);
5626 signal(SIGTTIN
, SIG_IGN
);
5629 if (pid_file
&& qemu_create_pidfile(pid_file
) != 0) {
5632 write(fds
[1], &status
, 1);
5634 fprintf(stderr
, "Could not acquire pid file\n");
5643 if (qemu_init_main_loop()) {
5644 fprintf(stderr
, "qemu_init_main_loop failed\n");
5647 linux_boot
= (kernel_filename
!= NULL
);
5648 net_boot
= (boot_devices_bitmap
>> ('n' - 'a')) & 0xF;
5650 if (!linux_boot
&& *kernel_cmdline
!= '\0') {
5651 fprintf(stderr
, "-append only allowed with -kernel option\n");
5655 if (!linux_boot
&& initrd_filename
!= NULL
) {
5656 fprintf(stderr
, "-initrd only allowed with -kernel option\n");
5660 /* boot to floppy or the default cd if no hard disk defined yet */
5661 if (!boot_devices
[0]) {
5662 boot_devices
= "cad";
5664 setvbuf(stdout
, NULL
, _IOLBF
, 0);
5667 if (init_timer_alarm() < 0) {
5668 fprintf(stderr
, "could not initialize alarm timer\n");
5671 if (use_icount
&& icount_time_shift
< 0) {
5673 /* 125MIPS seems a reasonable initial guess at the guest speed.
5674 It will be corrected fairly quickly anyway. */
5675 icount_time_shift
= 3;
5676 init_icount_adjust();
5683 /* init network clients */
5684 if (nb_net_clients
== 0) {
5685 /* if no clients, we use a default config */
5686 net_clients
[nb_net_clients
++] = "nic";
5688 net_clients
[nb_net_clients
++] = "user";
5692 for(i
= 0;i
< nb_net_clients
; i
++) {
5693 if (net_client_parse(net_clients
[i
]) < 0)
5699 /* XXX: this should be moved in the PC machine instantiation code */
5700 if (net_boot
!= 0) {
5702 for (i
= 0; i
< nb_nics
&& i
< 4; i
++) {
5703 const char *model
= nd_table
[i
].model
;
5705 if (net_boot
& (1 << i
)) {
5708 snprintf(buf
, sizeof(buf
), "%s/pxe-%s.bin", bios_dir
, model
);
5709 if (get_image_size(buf
) > 0) {
5710 if (nb_option_roms
>= MAX_OPTION_ROMS
) {
5711 fprintf(stderr
, "Too many option ROMs\n");
5714 option_rom
[nb_option_roms
] = strdup(buf
);
5721 fprintf(stderr
, "No valid PXE rom found for network device\n");
5727 /* init the bluetooth world */
5728 for (i
= 0; i
< nb_bt_opts
; i
++)
5729 if (bt_parse(bt_opts
[i
]))
5732 /* init the memory */
5734 ram_size
= DEFAULT_RAM_SIZE
* 1024 * 1024;
5737 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5738 guest ram allocation. It needs to go away. */
5739 if (kqemu_allowed
) {
5740 kqemu_phys_ram_size
= ram_size
+ 8 * 1024 * 1024 + 4 * 1024 * 1024;
5741 kqemu_phys_ram_base
= qemu_vmalloc(kqemu_phys_ram_size
);
5742 if (!kqemu_phys_ram_base
) {
5743 fprintf(stderr
, "Could not allocate physical memory\n");
5749 /* init the dynamic translator */
5750 cpu_exec_init_all(tb_size
* 1024 * 1024);
5755 /* we always create the cdrom drive, even if no disk is there */
5757 if (nb_drives_opt
< MAX_DRIVES
)
5758 drive_add(NULL
, CDROM_ALIAS
);
5760 /* we always create at least one floppy */
5762 if (nb_drives_opt
< MAX_DRIVES
)
5763 drive_add(NULL
, FD_ALIAS
, 0);
5765 /* we always create one sd slot, even if no card is in it */
5767 if (nb_drives_opt
< MAX_DRIVES
)
5768 drive_add(NULL
, SD_ALIAS
);
5770 /* open the virtual block devices */
5772 for(i
= 0; i
< nb_drives_opt
; i
++)
5773 if (drive_init(&drives_opt
[i
], snapshot
, machine
) == -1)
5776 register_savevm("timer", 0, 2, timer_save
, timer_load
, NULL
);
5777 register_savevm_live("ram", 0, 3, ram_save_live
, NULL
, ram_load
, NULL
);
5780 /* must be after terminal init, SDL library changes signal handlers */
5784 /* Maintain compatibility with multiple stdio monitors */
5785 if (!strcmp(monitor_device
,"stdio")) {
5786 for (i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
5787 const char *devname
= serial_devices
[i
];
5788 if (devname
&& !strcmp(devname
,"mon:stdio")) {
5789 monitor_device
= NULL
;
5791 } else if (devname
&& !strcmp(devname
,"stdio")) {
5792 monitor_device
= NULL
;
5793 serial_devices
[i
] = "mon:stdio";
5799 if (nb_numa_nodes
> 0) {
5802 if (nb_numa_nodes
> smp_cpus
) {
5803 nb_numa_nodes
= smp_cpus
;
5806 /* If no memory size if given for any node, assume the default case
5807 * and distribute the available memory equally across all nodes
5809 for (i
= 0; i
< nb_numa_nodes
; i
++) {
5810 if (node_mem
[i
] != 0)
5813 if (i
== nb_numa_nodes
) {
5814 uint64_t usedmem
= 0;
5816 /* On Linux, the each node's border has to be 8MB aligned,
5817 * the final node gets the rest.
5819 for (i
= 0; i
< nb_numa_nodes
- 1; i
++) {
5820 node_mem
[i
] = (ram_size
/ nb_numa_nodes
) & ~((1 << 23UL) - 1);
5821 usedmem
+= node_mem
[i
];
5823 node_mem
[i
] = ram_size
- usedmem
;
5826 for (i
= 0; i
< nb_numa_nodes
; i
++) {
5827 if (node_cpumask
[i
] != 0)
5830 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5831 * must cope with this anyway, because there are BIOSes out there in
5832 * real machines which also use this scheme.
5834 if (i
== nb_numa_nodes
) {
5835 for (i
= 0; i
< smp_cpus
; i
++) {
5836 node_cpumask
[i
% nb_numa_nodes
] |= 1 << i
;
5841 if (kvm_enabled()) {
5844 ret
= kvm_init(smp_cpus
);
5846 fprintf(stderr
, "failed to initialize KVM\n");
5851 if (monitor_device
) {
5852 monitor_hd
= qemu_chr_open("monitor", monitor_device
, NULL
);
5854 fprintf(stderr
, "qemu: could not open monitor device '%s'\n", monitor_device
);
5859 for(i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
5860 const char *devname
= serial_devices
[i
];
5861 if (devname
&& strcmp(devname
, "none")) {
5863 snprintf(label
, sizeof(label
), "serial%d", i
);
5864 serial_hds
[i
] = qemu_chr_open(label
, devname
, NULL
);
5865 if (!serial_hds
[i
]) {
5866 fprintf(stderr
, "qemu: could not open serial device '%s'\n",
5873 for(i
= 0; i
< MAX_PARALLEL_PORTS
; i
++) {
5874 const char *devname
= parallel_devices
[i
];
5875 if (devname
&& strcmp(devname
, "none")) {
5877 snprintf(label
, sizeof(label
), "parallel%d", i
);
5878 parallel_hds
[i
] = qemu_chr_open(label
, devname
, NULL
);
5879 if (!parallel_hds
[i
]) {
5880 fprintf(stderr
, "qemu: could not open parallel device '%s'\n",
5887 for(i
= 0; i
< MAX_VIRTIO_CONSOLES
; i
++) {
5888 const char *devname
= virtio_consoles
[i
];
5889 if (devname
&& strcmp(devname
, "none")) {
5891 snprintf(label
, sizeof(label
), "virtcon%d", i
);
5892 virtcon_hds
[i
] = qemu_chr_open(label
, devname
, NULL
);
5893 if (!virtcon_hds
[i
]) {
5894 fprintf(stderr
, "qemu: could not open virtio console '%s'\n",
5901 module_call_init(MODULE_INIT_DEVICE
);
5903 machine
->init(ram_size
, boot_devices
,
5904 kernel_filename
, kernel_cmdline
, initrd_filename
, cpu_model
);
5907 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
5908 for (i
= 0; i
< nb_numa_nodes
; i
++) {
5909 if (node_cpumask
[i
] & (1 << env
->cpu_index
)) {
5915 current_machine
= machine
;
5917 /* Set KVM's vcpu state to qemu's initial CPUState. */
5918 if (kvm_enabled()) {
5921 ret
= kvm_sync_vcpus();
5923 fprintf(stderr
, "failed to initialize vcpus\n");
5928 /* init USB devices */
5930 for(i
= 0; i
< usb_devices_index
; i
++) {
5931 if (usb_device_add(usb_devices
[i
], 0) < 0) {
5932 fprintf(stderr
, "Warning: could not add USB device %s\n",
5939 dumb_display_init();
5940 /* just use the first displaystate for the moment */
5945 fprintf(stderr
, "fatal: -nographic can't be used with -curses\n");
5949 #if defined(CONFIG_CURSES)
5951 /* At the moment curses cannot be used with other displays */
5952 curses_display_init(ds
, full_screen
);
5956 if (vnc_display
!= NULL
) {
5957 vnc_display_init(ds
);
5958 if (vnc_display_open(ds
, vnc_display
) < 0)
5961 #if defined(CONFIG_SDL)
5962 if (sdl
|| !vnc_display
)
5963 sdl_display_init(ds
, full_screen
, no_frame
);
5964 #elif defined(CONFIG_COCOA)
5965 if (sdl
|| !vnc_display
)
5966 cocoa_display_init(ds
, full_screen
);
5972 dcl
= ds
->listeners
;
5973 while (dcl
!= NULL
) {
5974 if (dcl
->dpy_refresh
!= NULL
) {
5975 ds
->gui_timer
= qemu_new_timer(rt_clock
, gui_update
, ds
);
5976 qemu_mod_timer(ds
->gui_timer
, qemu_get_clock(rt_clock
));
5981 if (nographic
|| (vnc_display
&& !sdl
)) {
5982 nographic_timer
= qemu_new_timer(rt_clock
, nographic_update
, NULL
);
5983 qemu_mod_timer(nographic_timer
, qemu_get_clock(rt_clock
));
5986 text_consoles_set_display(display_state
);
5987 qemu_chr_initial_reset();
5989 if (monitor_device
&& monitor_hd
)
5990 monitor_init(monitor_hd
, MONITOR_USE_READLINE
| MONITOR_IS_DEFAULT
);
5992 for(i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
5993 const char *devname
= serial_devices
[i
];
5994 if (devname
&& strcmp(devname
, "none")) {
5996 snprintf(label
, sizeof(label
), "serial%d", i
);
5997 if (strstart(devname
, "vc", 0))
5998 qemu_chr_printf(serial_hds
[i
], "serial%d console\r\n", i
);
6002 for(i
= 0; i
< MAX_PARALLEL_PORTS
; i
++) {
6003 const char *devname
= parallel_devices
[i
];
6004 if (devname
&& strcmp(devname
, "none")) {
6006 snprintf(label
, sizeof(label
), "parallel%d", i
);
6007 if (strstart(devname
, "vc", 0))
6008 qemu_chr_printf(parallel_hds
[i
], "parallel%d console\r\n", i
);
6012 for(i
= 0; i
< MAX_VIRTIO_CONSOLES
; i
++) {
6013 const char *devname
= virtio_consoles
[i
];
6014 if (virtcon_hds
[i
] && devname
) {
6016 snprintf(label
, sizeof(label
), "virtcon%d", i
);
6017 if (strstart(devname
, "vc", 0))
6018 qemu_chr_printf(virtcon_hds
[i
], "virtio console%d\r\n", i
);
6022 if (gdbstub_dev
&& gdbserver_start(gdbstub_dev
) < 0) {
6023 fprintf(stderr
, "qemu: could not open gdbserver on device '%s'\n",
6029 do_loadvm(cur_mon
, loadvm
);
6032 autostart
= 0; /* fixme how to deal with -daemonize */
6033 qemu_start_incoming_migration(incoming
);
6045 len
= write(fds
[1], &status
, 1);
6046 if (len
== -1 && (errno
== EINTR
))
6053 TFR(fd
= open("/dev/null", O_RDWR
));
6059 pwd
= getpwnam(run_as
);
6061 fprintf(stderr
, "User \"%s\" doesn't exist\n", run_as
);
6067 if (chroot(chroot_dir
) < 0) {
6068 fprintf(stderr
, "chroot failed\n");
6075 if (setgid(pwd
->pw_gid
) < 0) {
6076 fprintf(stderr
, "Failed to setgid(%d)\n", pwd
->pw_gid
);
6079 if (setuid(pwd
->pw_uid
) < 0) {
6080 fprintf(stderr
, "Failed to setuid(%d)\n", pwd
->pw_uid
);
6083 if (setuid(0) != -1) {
6084 fprintf(stderr
, "Dropping privileges failed\n");