Fix ARMv6 translation table base address calculation.
[qemu/mini2440.git] / target-ppc / op_helper.c
blob32b347100d9023e661ed10c6a85cbbbc0a4b1125
1 /*
2 * PowerPC emulation helpers for qemu.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "exec.h"
21 #include "host-utils.h"
23 #include "helper_regs.h"
24 #include "op_helper.h"
26 #define MEMSUFFIX _raw
27 #include "op_helper.h"
28 #include "op_helper_mem.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #define MEMSUFFIX _user
31 #include "op_helper.h"
32 #include "op_helper_mem.h"
33 #define MEMSUFFIX _kernel
34 #include "op_helper.h"
35 #include "op_helper_mem.h"
36 #define MEMSUFFIX _hypv
37 #include "op_helper.h"
38 #include "op_helper_mem.h"
39 #endif
41 //#define DEBUG_OP
42 //#define DEBUG_EXCEPTIONS
43 //#define DEBUG_SOFTWARE_TLB
45 /*****************************************************************************/
46 /* Exceptions processing helpers */
48 void do_raise_exception_err (uint32_t exception, int error_code)
50 #if 0
51 printf("Raise exception %3x code : %d\n", exception, error_code);
52 #endif
53 env->exception_index = exception;
54 env->error_code = error_code;
55 cpu_loop_exit();
58 void do_raise_exception (uint32_t exception)
60 do_raise_exception_err(exception, 0);
63 /*****************************************************************************/
64 /* Registers load and stores */
65 uint32_t helper_load_cr (void)
67 return (env->crf[0] << 28) |
68 (env->crf[1] << 24) |
69 (env->crf[2] << 20) |
70 (env->crf[3] << 16) |
71 (env->crf[4] << 12) |
72 (env->crf[5] << 8) |
73 (env->crf[6] << 4) |
74 (env->crf[7] << 0);
77 void helper_store_cr (target_ulong val, uint32_t mask)
79 int i, sh;
81 for (i = 0, sh = 7; i < 8; i++, sh--) {
82 if (mask & (1 << sh))
83 env->crf[i] = (val >> (sh * 4)) & 0xFUL;
87 #if defined(TARGET_PPC64)
88 void do_store_pri (int prio)
90 env->spr[SPR_PPR] &= ~0x001C000000000000ULL;
91 env->spr[SPR_PPR] |= ((uint64_t)prio & 0x7) << 50;
93 #endif
95 target_ulong ppc_load_dump_spr (int sprn)
97 if (loglevel != 0) {
98 fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n",
99 sprn, sprn, env->spr[sprn]);
102 return env->spr[sprn];
105 void ppc_store_dump_spr (int sprn, target_ulong val)
107 if (loglevel != 0) {
108 fprintf(logfile, "Write SPR %d %03x => " ADDRX " <= " ADDRX "\n",
109 sprn, sprn, env->spr[sprn], val);
111 env->spr[sprn] = val;
114 /*****************************************************************************/
115 /* Fixed point operations helpers */
116 void do_adde (void)
118 T2 = T0;
119 T0 += T1 + xer_ca;
120 if (likely(!((uint32_t)T0 < (uint32_t)T2 ||
121 (xer_ca == 1 && (uint32_t)T0 == (uint32_t)T2)))) {
122 env->xer &= ~(1 << XER_CA);
123 } else {
124 env->xer |= (1 << XER_CA);
128 #if defined(TARGET_PPC64)
129 void do_adde_64 (void)
131 T2 = T0;
132 T0 += T1 + xer_ca;
133 if (likely(!((uint64_t)T0 < (uint64_t)T2 ||
134 (xer_ca == 1 && (uint64_t)T0 == (uint64_t)T2)))) {
135 env->xer &= ~(1 << XER_CA);
136 } else {
137 env->xer |= (1 << XER_CA);
140 #endif
142 void do_addmeo (void)
144 int ov;
145 T1 = T0;
146 T0 += xer_ca + (-1);
147 ov = ((uint32_t)T1 & ((uint32_t)T1 ^ (uint32_t)T0)) >> 31;
148 if (ov) {
149 env->xer |= (1 << XER_OV) | (1 << XER_SO);
150 } else {
151 env->xer &= ~(1 << XER_OV);
153 if (likely((uint32_t)T1 != 0))
154 env->xer |= (1 << XER_CA);
157 #if defined(TARGET_PPC64)
158 void do_addmeo_64 (void)
160 int ov;
161 T1 = T0;
162 T0 += xer_ca + (-1);
163 ov = ((uint64_t)T1 & ((uint64_t)T1 ^ (uint64_t)T0)) >> 63;
164 if (ov) {
165 env->xer |= (1 << XER_OV) | (1 << XER_SO);
166 } else {
167 env->xer &= ~(1 << XER_OV);
169 if (likely((uint64_t)T1 != 0))
170 env->xer |= (1 << XER_CA);
172 #endif
174 void do_divwo (void)
176 if (likely(!(((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
177 (int32_t)T1 == 0))) {
178 env->xer &= ~(1 << XER_OV);
179 T0 = (int32_t)T0 / (int32_t)T1;
180 } else {
181 env->xer |= (1 << XER_OV) | (1 << XER_SO);
182 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
186 #if defined(TARGET_PPC64)
187 void do_divdo (void)
189 if (likely(!(((int64_t)T0 == INT64_MIN && (int64_t)T1 == (int64_t)-1LL) ||
190 (int64_t)T1 == 0))) {
191 env->xer &= ~(1 << XER_OV);
192 T0 = (int64_t)T0 / (int64_t)T1;
193 } else {
194 env->xer |= (1 << XER_OV) | (1 << XER_SO);
195 T0 = UINT64_MAX * ((uint64_t)T0 >> 63);
198 #endif
200 void do_divwuo (void)
202 if (likely((uint32_t)T1 != 0)) {
203 env->xer &= ~(1 << XER_OV);
204 T0 = (uint32_t)T0 / (uint32_t)T1;
205 } else {
206 env->xer |= (1 << XER_OV) | (1 << XER_SO);
207 T0 = 0;
211 #if defined(TARGET_PPC64)
212 void do_divduo (void)
214 if (likely((uint64_t)T1 != 0)) {
215 env->xer &= ~(1 << XER_OV);
216 T0 = (uint64_t)T0 / (uint64_t)T1;
217 } else {
218 env->xer |= (1 << XER_OV) | (1 << XER_SO);
219 T0 = 0;
222 #endif
224 void do_mullwo (void)
226 int64_t res = (int64_t)(int32_t)T0 * (int64_t)(int32_t)T1;
228 if (likely((int32_t)res == res)) {
229 env->xer &= ~(1 << XER_OV);
230 } else {
231 env->xer |= (1 << XER_OV) | (1 << XER_SO);
233 T0 = (int32_t)res;
236 #if defined(TARGET_PPC64)
237 void do_mulldo (void)
239 int64_t th;
240 uint64_t tl;
242 muls64(&tl, (uint64_t *)&th, T0, T1);
243 T0 = (int64_t)tl;
244 /* If th != 0 && th != -1, then we had an overflow */
245 if (likely((uint64_t)(th + 1) <= 1)) {
246 env->xer &= ~(1 << XER_OV);
247 } else {
248 env->xer |= (1 << XER_OV) | (1 << XER_SO);
251 #endif
253 void do_nego (void)
255 if (likely((int32_t)T0 != INT32_MIN)) {
256 env->xer &= ~(1 << XER_OV);
257 T0 = -(int32_t)T0;
258 } else {
259 env->xer |= (1 << XER_OV) | (1 << XER_SO);
263 #if defined(TARGET_PPC64)
264 void do_nego_64 (void)
266 if (likely((int64_t)T0 != INT64_MIN)) {
267 env->xer &= ~(1 << XER_OV);
268 T0 = -(int64_t)T0;
269 } else {
270 env->xer |= (1 << XER_OV) | (1 << XER_SO);
273 #endif
275 void do_subfe (void)
277 T0 = T1 + ~T0 + xer_ca;
278 if (likely((uint32_t)T0 >= (uint32_t)T1 &&
279 (xer_ca == 0 || (uint32_t)T0 != (uint32_t)T1))) {
280 env->xer &= ~(1 << XER_CA);
281 } else {
282 env->xer |= (1 << XER_CA);
286 #if defined(TARGET_PPC64)
287 void do_subfe_64 (void)
289 T0 = T1 + ~T0 + xer_ca;
290 if (likely((uint64_t)T0 >= (uint64_t)T1 &&
291 (xer_ca == 0 || (uint64_t)T0 != (uint64_t)T1))) {
292 env->xer &= ~(1 << XER_CA);
293 } else {
294 env->xer |= (1 << XER_CA);
297 #endif
299 void do_subfmeo (void)
301 int ov;
302 T1 = T0;
303 T0 = ~T0 + xer_ca - 1;
304 ov = ((uint32_t)~T1 & ((uint32_t)~T1 ^ (uint32_t)T0)) >> 31;
305 if (ov) {
306 env->xer |= (1 << XER_OV) | (1 << XER_SO);
307 } else {
308 env->xer &= ~(1 << XER_OV);
310 if (likely((uint32_t)T1 != UINT32_MAX))
311 env->xer |= (1 << XER_CA);
314 #if defined(TARGET_PPC64)
315 void do_subfmeo_64 (void)
317 int ov;
318 T1 = T0;
319 T0 = ~T0 + xer_ca - 1;
320 ov = ((uint64_t)~T1 & ((uint64_t)~T1 ^ (uint64_t)T0)) >> 63;
321 if (ov) {
322 env->xer |= (1 << XER_OV) | (1 << XER_SO);
323 } else {
324 env->xer &= ~(1 << XER_OV);
326 if (likely((uint64_t)T1 != UINT64_MAX))
327 env->xer |= (1 << XER_CA);
329 #endif
331 void do_subfzeo (void)
333 int ov;
334 T1 = T0;
335 T0 = ~T0 + xer_ca;
336 ov = (((uint32_t)~T1 ^ UINT32_MAX) &
337 ((uint32_t)(~T1) ^ (uint32_t)T0)) >> 31;
338 if (ov) {
339 env->xer |= (1 << XER_OV) | (1 << XER_SO);
340 } else {
341 env->xer &= ~(1 << XER_OV);
343 if (likely((uint32_t)T0 >= (uint32_t)~T1)) {
344 env->xer &= ~(1 << XER_CA);
345 } else {
346 env->xer |= (1 << XER_CA);
350 #if defined(TARGET_PPC64)
351 void do_subfzeo_64 (void)
353 int ov;
354 T1 = T0;
355 T0 = ~T0 + xer_ca;
356 ov = (((uint64_t)~T1 ^ UINT64_MAX) &
357 ((uint64_t)(~T1) ^ (uint64_t)T0)) >> 63;
358 if (ov) {
359 env->xer |= (1 << XER_OV) | (1 << XER_SO);
360 } else {
361 env->xer &= ~(1 << XER_OV);
363 if (likely((uint64_t)T0 >= (uint64_t)~T1)) {
364 env->xer &= ~(1 << XER_CA);
365 } else {
366 env->xer |= (1 << XER_CA);
369 #endif
371 target_ulong helper_cntlzw (target_ulong t)
373 return clz32(t);
376 #if defined(TARGET_PPC64)
377 target_ulong helper_cntlzd (target_ulong t)
379 return clz64(t);
381 #endif
383 /* shift right arithmetic helper */
384 target_ulong helper_sraw (target_ulong value, target_ulong shift)
386 int32_t ret;
388 if (likely(!(shift & 0x20))) {
389 if (likely((uint32_t)shift != 0)) {
390 shift &= 0x1f;
391 ret = (int32_t)value >> shift;
392 if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
393 env->xer &= ~(1 << XER_CA);
394 } else {
395 env->xer |= (1 << XER_CA);
397 } else {
398 ret = (int32_t)value;
399 env->xer &= ~(1 << XER_CA);
401 } else {
402 ret = (int32_t)value >> 31;
403 if (ret) {
404 env->xer |= (1 << XER_CA);
405 } else {
406 env->xer &= ~(1 << XER_CA);
409 return (target_long)ret;
412 #if defined(TARGET_PPC64)
413 target_ulong helper_srad (target_ulong value, target_ulong shift)
415 int64_t ret;
417 if (likely(!(shift & 0x40))) {
418 if (likely((uint64_t)shift != 0)) {
419 shift &= 0x3f;
420 ret = (int64_t)value >> shift;
421 if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
422 env->xer &= ~(1 << XER_CA);
423 } else {
424 env->xer |= (1 << XER_CA);
426 } else {
427 ret = (int64_t)value;
428 env->xer &= ~(1 << XER_CA);
430 } else {
431 ret = (int64_t)value >> 63;
432 if (ret) {
433 env->xer |= (1 << XER_CA);
434 } else {
435 env->xer &= ~(1 << XER_CA);
438 return ret;
440 #endif
442 target_ulong helper_popcntb (target_ulong val)
444 uint32_t ret;
445 int i;
447 ret = 0;
448 for (i = 0; i < 32; i += 8)
449 ret |= ctpop8((val >> i) & 0xFF) << i;
450 return ret;
453 #if defined(TARGET_PPC64)
454 target_ulong helper_popcntb_64 (target_ulong val)
456 uint64_t ret;
457 int i;
459 ret = 0;
460 for (i = 0; i < 64; i += 8)
461 ret |= ctpop8((val >> i) & 0xFF) << i;
462 return ret;
464 #endif
466 /*****************************************************************************/
467 /* Floating point operations helpers */
468 static always_inline int fpisneg (float64 d)
470 CPU_DoubleU u;
472 u.d = d;
474 return u.ll >> 63 != 0;
477 static always_inline int isden (float64 d)
479 CPU_DoubleU u;
481 u.d = d;
483 return ((u.ll >> 52) & 0x7FF) == 0;
486 static always_inline int iszero (float64 d)
488 CPU_DoubleU u;
490 u.d = d;
492 return (u.ll & ~0x8000000000000000ULL) == 0;
495 static always_inline int isinfinity (float64 d)
497 CPU_DoubleU u;
499 u.d = d;
501 return ((u.ll >> 52) & 0x7FF) == 0x7FF &&
502 (u.ll & 0x000FFFFFFFFFFFFFULL) == 0;
505 #ifdef CONFIG_SOFTFLOAT
506 static always_inline int isfinite (float64 d)
508 CPU_DoubleU u;
510 u.d = d;
512 return (((u.ll >> 52) & 0x7FF) != 0x7FF);
515 static always_inline int isnormal (float64 d)
517 CPU_DoubleU u;
519 u.d = d;
521 uint32_t exp = (u.ll >> 52) & 0x7FF;
522 return ((0 < exp) && (exp < 0x7FF));
524 #endif
526 void do_compute_fprf (int set_fprf)
528 int isneg;
530 isneg = fpisneg(FT0);
531 if (unlikely(float64_is_nan(FT0))) {
532 if (float64_is_signaling_nan(FT0)) {
533 /* Signaling NaN: flags are undefined */
534 T0 = 0x00;
535 } else {
536 /* Quiet NaN */
537 T0 = 0x11;
539 } else if (unlikely(isinfinity(FT0))) {
540 /* +/- infinity */
541 if (isneg)
542 T0 = 0x09;
543 else
544 T0 = 0x05;
545 } else {
546 if (iszero(FT0)) {
547 /* +/- zero */
548 if (isneg)
549 T0 = 0x12;
550 else
551 T0 = 0x02;
552 } else {
553 if (isden(FT0)) {
554 /* Denormalized numbers */
555 T0 = 0x10;
556 } else {
557 /* Normalized numbers */
558 T0 = 0x00;
560 if (isneg) {
561 T0 |= 0x08;
562 } else {
563 T0 |= 0x04;
567 if (set_fprf) {
568 /* We update FPSCR_FPRF */
569 env->fpscr &= ~(0x1F << FPSCR_FPRF);
570 env->fpscr |= T0 << FPSCR_FPRF;
572 /* We just need fpcc to update Rc1 */
573 T0 &= 0xF;
576 /* Floating-point invalid operations exception */
577 static always_inline void fload_invalid_op_excp (int op)
579 int ve;
581 ve = fpscr_ve;
582 if (op & POWERPC_EXCP_FP_VXSNAN) {
583 /* Operation on signaling NaN */
584 env->fpscr |= 1 << FPSCR_VXSNAN;
586 if (op & POWERPC_EXCP_FP_VXSOFT) {
587 /* Software-defined condition */
588 env->fpscr |= 1 << FPSCR_VXSOFT;
590 switch (op & ~(POWERPC_EXCP_FP_VXSOFT | POWERPC_EXCP_FP_VXSNAN)) {
591 case POWERPC_EXCP_FP_VXISI:
592 /* Magnitude subtraction of infinities */
593 env->fpscr |= 1 << FPSCR_VXISI;
594 goto update_arith;
595 case POWERPC_EXCP_FP_VXIDI:
596 /* Division of infinity by infinity */
597 env->fpscr |= 1 << FPSCR_VXIDI;
598 goto update_arith;
599 case POWERPC_EXCP_FP_VXZDZ:
600 /* Division of zero by zero */
601 env->fpscr |= 1 << FPSCR_VXZDZ;
602 goto update_arith;
603 case POWERPC_EXCP_FP_VXIMZ:
604 /* Multiplication of zero by infinity */
605 env->fpscr |= 1 << FPSCR_VXIMZ;
606 goto update_arith;
607 case POWERPC_EXCP_FP_VXVC:
608 /* Ordered comparison of NaN */
609 env->fpscr |= 1 << FPSCR_VXVC;
610 env->fpscr &= ~(0xF << FPSCR_FPCC);
611 env->fpscr |= 0x11 << FPSCR_FPCC;
612 /* We must update the target FPR before raising the exception */
613 if (ve != 0) {
614 env->exception_index = POWERPC_EXCP_PROGRAM;
615 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
616 /* Update the floating-point enabled exception summary */
617 env->fpscr |= 1 << FPSCR_FEX;
618 /* Exception is differed */
619 ve = 0;
621 break;
622 case POWERPC_EXCP_FP_VXSQRT:
623 /* Square root of a negative number */
624 env->fpscr |= 1 << FPSCR_VXSQRT;
625 update_arith:
626 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
627 if (ve == 0) {
628 /* Set the result to quiet NaN */
629 FT0 = UINT64_MAX;
630 env->fpscr &= ~(0xF << FPSCR_FPCC);
631 env->fpscr |= 0x11 << FPSCR_FPCC;
633 break;
634 case POWERPC_EXCP_FP_VXCVI:
635 /* Invalid conversion */
636 env->fpscr |= 1 << FPSCR_VXCVI;
637 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
638 if (ve == 0) {
639 /* Set the result to quiet NaN */
640 FT0 = UINT64_MAX;
641 env->fpscr &= ~(0xF << FPSCR_FPCC);
642 env->fpscr |= 0x11 << FPSCR_FPCC;
644 break;
646 /* Update the floating-point invalid operation summary */
647 env->fpscr |= 1 << FPSCR_VX;
648 /* Update the floating-point exception summary */
649 env->fpscr |= 1 << FPSCR_FX;
650 if (ve != 0) {
651 /* Update the floating-point enabled exception summary */
652 env->fpscr |= 1 << FPSCR_FEX;
653 if (msr_fe0 != 0 || msr_fe1 != 0)
654 do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op);
658 static always_inline void float_zero_divide_excp (void)
660 CPU_DoubleU u0, u1;
662 env->fpscr |= 1 << FPSCR_ZX;
663 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
664 /* Update the floating-point exception summary */
665 env->fpscr |= 1 << FPSCR_FX;
666 if (fpscr_ze != 0) {
667 /* Update the floating-point enabled exception summary */
668 env->fpscr |= 1 << FPSCR_FEX;
669 if (msr_fe0 != 0 || msr_fe1 != 0) {
670 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
671 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
673 } else {
674 /* Set the result to infinity */
675 u0.d = FT0;
676 u1.d = FT1;
677 u0.ll = ((u0.ll ^ u1.ll) & 0x8000000000000000ULL);
678 u0.ll |= 0x7FFULL << 52;
679 FT0 = u0.d;
683 static always_inline void float_overflow_excp (void)
685 env->fpscr |= 1 << FPSCR_OX;
686 /* Update the floating-point exception summary */
687 env->fpscr |= 1 << FPSCR_FX;
688 if (fpscr_oe != 0) {
689 /* XXX: should adjust the result */
690 /* Update the floating-point enabled exception summary */
691 env->fpscr |= 1 << FPSCR_FEX;
692 /* We must update the target FPR before raising the exception */
693 env->exception_index = POWERPC_EXCP_PROGRAM;
694 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
695 } else {
696 env->fpscr |= 1 << FPSCR_XX;
697 env->fpscr |= 1 << FPSCR_FI;
701 static always_inline void float_underflow_excp (void)
703 env->fpscr |= 1 << FPSCR_UX;
704 /* Update the floating-point exception summary */
705 env->fpscr |= 1 << FPSCR_FX;
706 if (fpscr_ue != 0) {
707 /* XXX: should adjust the result */
708 /* Update the floating-point enabled exception summary */
709 env->fpscr |= 1 << FPSCR_FEX;
710 /* We must update the target FPR before raising the exception */
711 env->exception_index = POWERPC_EXCP_PROGRAM;
712 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
716 static always_inline void float_inexact_excp (void)
718 env->fpscr |= 1 << FPSCR_XX;
719 /* Update the floating-point exception summary */
720 env->fpscr |= 1 << FPSCR_FX;
721 if (fpscr_xe != 0) {
722 /* Update the floating-point enabled exception summary */
723 env->fpscr |= 1 << FPSCR_FEX;
724 /* We must update the target FPR before raising the exception */
725 env->exception_index = POWERPC_EXCP_PROGRAM;
726 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
730 static always_inline void fpscr_set_rounding_mode (void)
732 int rnd_type;
734 /* Set rounding mode */
735 switch (fpscr_rn) {
736 case 0:
737 /* Best approximation (round to nearest) */
738 rnd_type = float_round_nearest_even;
739 break;
740 case 1:
741 /* Smaller magnitude (round toward zero) */
742 rnd_type = float_round_to_zero;
743 break;
744 case 2:
745 /* Round toward +infinite */
746 rnd_type = float_round_up;
747 break;
748 default:
749 case 3:
750 /* Round toward -infinite */
751 rnd_type = float_round_down;
752 break;
754 set_float_rounding_mode(rnd_type, &env->fp_status);
757 void do_fpscr_setbit (int bit)
759 int prev;
761 prev = (env->fpscr >> bit) & 1;
762 env->fpscr |= 1 << bit;
763 if (prev == 0) {
764 switch (bit) {
765 case FPSCR_VX:
766 env->fpscr |= 1 << FPSCR_FX;
767 if (fpscr_ve)
768 goto raise_ve;
769 case FPSCR_OX:
770 env->fpscr |= 1 << FPSCR_FX;
771 if (fpscr_oe)
772 goto raise_oe;
773 break;
774 case FPSCR_UX:
775 env->fpscr |= 1 << FPSCR_FX;
776 if (fpscr_ue)
777 goto raise_ue;
778 break;
779 case FPSCR_ZX:
780 env->fpscr |= 1 << FPSCR_FX;
781 if (fpscr_ze)
782 goto raise_ze;
783 break;
784 case FPSCR_XX:
785 env->fpscr |= 1 << FPSCR_FX;
786 if (fpscr_xe)
787 goto raise_xe;
788 break;
789 case FPSCR_VXSNAN:
790 case FPSCR_VXISI:
791 case FPSCR_VXIDI:
792 case FPSCR_VXZDZ:
793 case FPSCR_VXIMZ:
794 case FPSCR_VXVC:
795 case FPSCR_VXSOFT:
796 case FPSCR_VXSQRT:
797 case FPSCR_VXCVI:
798 env->fpscr |= 1 << FPSCR_VX;
799 env->fpscr |= 1 << FPSCR_FX;
800 if (fpscr_ve != 0)
801 goto raise_ve;
802 break;
803 case FPSCR_VE:
804 if (fpscr_vx != 0) {
805 raise_ve:
806 env->error_code = POWERPC_EXCP_FP;
807 if (fpscr_vxsnan)
808 env->error_code |= POWERPC_EXCP_FP_VXSNAN;
809 if (fpscr_vxisi)
810 env->error_code |= POWERPC_EXCP_FP_VXISI;
811 if (fpscr_vxidi)
812 env->error_code |= POWERPC_EXCP_FP_VXIDI;
813 if (fpscr_vxzdz)
814 env->error_code |= POWERPC_EXCP_FP_VXZDZ;
815 if (fpscr_vximz)
816 env->error_code |= POWERPC_EXCP_FP_VXIMZ;
817 if (fpscr_vxvc)
818 env->error_code |= POWERPC_EXCP_FP_VXVC;
819 if (fpscr_vxsoft)
820 env->error_code |= POWERPC_EXCP_FP_VXSOFT;
821 if (fpscr_vxsqrt)
822 env->error_code |= POWERPC_EXCP_FP_VXSQRT;
823 if (fpscr_vxcvi)
824 env->error_code |= POWERPC_EXCP_FP_VXCVI;
825 goto raise_excp;
827 break;
828 case FPSCR_OE:
829 if (fpscr_ox != 0) {
830 raise_oe:
831 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
832 goto raise_excp;
834 break;
835 case FPSCR_UE:
836 if (fpscr_ux != 0) {
837 raise_ue:
838 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
839 goto raise_excp;
841 break;
842 case FPSCR_ZE:
843 if (fpscr_zx != 0) {
844 raise_ze:
845 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
846 goto raise_excp;
848 break;
849 case FPSCR_XE:
850 if (fpscr_xx != 0) {
851 raise_xe:
852 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
853 goto raise_excp;
855 break;
856 case FPSCR_RN1:
857 case FPSCR_RN:
858 fpscr_set_rounding_mode();
859 break;
860 default:
861 break;
862 raise_excp:
863 /* Update the floating-point enabled exception summary */
864 env->fpscr |= 1 << FPSCR_FEX;
865 /* We have to update Rc1 before raising the exception */
866 env->exception_index = POWERPC_EXCP_PROGRAM;
867 break;
872 #if defined(WORDS_BIGENDIAN)
873 #define WORD0 0
874 #define WORD1 1
875 #else
876 #define WORD0 1
877 #define WORD1 0
878 #endif
879 void do_store_fpscr (uint32_t mask)
882 * We use only the 32 LSB of the incoming fpr
884 CPU_DoubleU u;
885 uint32_t prev, new;
886 int i;
888 u.d = FT0;
889 prev = env->fpscr;
890 new = u.l.lower;
891 new &= ~0x90000000;
892 new |= prev & 0x90000000;
893 for (i = 0; i < 7; i++) {
894 if (mask & (1 << i)) {
895 env->fpscr &= ~(0xF << (4 * i));
896 env->fpscr |= new & (0xF << (4 * i));
899 /* Update VX and FEX */
900 if (fpscr_ix != 0)
901 env->fpscr |= 1 << FPSCR_VX;
902 else
903 env->fpscr &= ~(1 << FPSCR_VX);
904 if ((fpscr_ex & fpscr_eex) != 0) {
905 env->fpscr |= 1 << FPSCR_FEX;
906 env->exception_index = POWERPC_EXCP_PROGRAM;
907 /* XXX: we should compute it properly */
908 env->error_code = POWERPC_EXCP_FP;
910 else
911 env->fpscr &= ~(1 << FPSCR_FEX);
912 fpscr_set_rounding_mode();
914 #undef WORD0
915 #undef WORD1
917 #ifdef CONFIG_SOFTFLOAT
918 void do_float_check_status (void)
920 if (env->exception_index == POWERPC_EXCP_PROGRAM &&
921 (env->error_code & POWERPC_EXCP_FP)) {
922 /* Differred floating-point exception after target FPR update */
923 if (msr_fe0 != 0 || msr_fe1 != 0)
924 do_raise_exception_err(env->exception_index, env->error_code);
925 } else if (env->fp_status.float_exception_flags & float_flag_overflow) {
926 float_overflow_excp();
927 } else if (env->fp_status.float_exception_flags & float_flag_underflow) {
928 float_underflow_excp();
929 } else if (env->fp_status.float_exception_flags & float_flag_inexact) {
930 float_inexact_excp();
933 #endif
935 #if USE_PRECISE_EMULATION
936 void do_fadd (void)
938 if (unlikely(float64_is_signaling_nan(FT0) ||
939 float64_is_signaling_nan(FT1))) {
940 /* sNaN addition */
941 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
942 } else if (likely(isfinite(FT0) || isfinite(FT1) ||
943 fpisneg(FT0) == fpisneg(FT1))) {
944 FT0 = float64_add(FT0, FT1, &env->fp_status);
945 } else {
946 /* Magnitude subtraction of infinities */
947 fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
951 void do_fsub (void)
953 if (unlikely(float64_is_signaling_nan(FT0) ||
954 float64_is_signaling_nan(FT1))) {
955 /* sNaN subtraction */
956 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
957 } else if (likely(isfinite(FT0) || isfinite(FT1) ||
958 fpisneg(FT0) != fpisneg(FT1))) {
959 FT0 = float64_sub(FT0, FT1, &env->fp_status);
960 } else {
961 /* Magnitude subtraction of infinities */
962 fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
966 void do_fmul (void)
968 if (unlikely(float64_is_signaling_nan(FT0) ||
969 float64_is_signaling_nan(FT1))) {
970 /* sNaN multiplication */
971 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
972 } else if (unlikely((isinfinity(FT0) && iszero(FT1)) ||
973 (iszero(FT0) && isinfinity(FT1)))) {
974 /* Multiplication of zero by infinity */
975 fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
976 } else {
977 FT0 = float64_mul(FT0, FT1, &env->fp_status);
981 void do_fdiv (void)
983 if (unlikely(float64_is_signaling_nan(FT0) ||
984 float64_is_signaling_nan(FT1))) {
985 /* sNaN division */
986 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
987 } else if (unlikely(isinfinity(FT0) && isinfinity(FT1))) {
988 /* Division of infinity by infinity */
989 fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI);
990 } else if (unlikely(iszero(FT1))) {
991 if (iszero(FT0)) {
992 /* Division of zero by zero */
993 fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ);
994 } else {
995 /* Division by zero */
996 float_zero_divide_excp();
998 } else {
999 FT0 = float64_div(FT0, FT1, &env->fp_status);
1002 #endif /* USE_PRECISE_EMULATION */
1004 void do_fctiw (void)
1006 CPU_DoubleU p;
1008 if (unlikely(float64_is_signaling_nan(FT0))) {
1009 /* sNaN conversion */
1010 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1011 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1012 /* qNan / infinity conversion */
1013 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1014 } else {
1015 p.ll = float64_to_int32(FT0, &env->fp_status);
1016 #if USE_PRECISE_EMULATION
1017 /* XXX: higher bits are not supposed to be significant.
1018 * to make tests easier, return the same as a real PowerPC 750
1020 p.ll |= 0xFFF80000ULL << 32;
1021 #endif
1022 FT0 = p.d;
1026 void do_fctiwz (void)
1028 CPU_DoubleU p;
1030 if (unlikely(float64_is_signaling_nan(FT0))) {
1031 /* sNaN conversion */
1032 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1033 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1034 /* qNan / infinity conversion */
1035 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1036 } else {
1037 p.ll = float64_to_int32_round_to_zero(FT0, &env->fp_status);
1038 #if USE_PRECISE_EMULATION
1039 /* XXX: higher bits are not supposed to be significant.
1040 * to make tests easier, return the same as a real PowerPC 750
1042 p.ll |= 0xFFF80000ULL << 32;
1043 #endif
1044 FT0 = p.d;
1048 #if defined(TARGET_PPC64)
1049 void do_fcfid (void)
1051 CPU_DoubleU p;
1053 p.d = FT0;
1054 FT0 = int64_to_float64(p.ll, &env->fp_status);
1057 void do_fctid (void)
1059 CPU_DoubleU p;
1061 if (unlikely(float64_is_signaling_nan(FT0))) {
1062 /* sNaN conversion */
1063 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1064 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1065 /* qNan / infinity conversion */
1066 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1067 } else {
1068 p.ll = float64_to_int64(FT0, &env->fp_status);
1069 FT0 = p.d;
1073 void do_fctidz (void)
1075 CPU_DoubleU p;
1077 if (unlikely(float64_is_signaling_nan(FT0))) {
1078 /* sNaN conversion */
1079 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1080 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1081 /* qNan / infinity conversion */
1082 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1083 } else {
1084 p.ll = float64_to_int64_round_to_zero(FT0, &env->fp_status);
1085 FT0 = p.d;
1089 #endif
1091 static always_inline void do_fri (int rounding_mode)
1093 if (unlikely(float64_is_signaling_nan(FT0))) {
1094 /* sNaN round */
1095 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1096 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1097 /* qNan / infinity round */
1098 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1099 } else {
1100 set_float_rounding_mode(rounding_mode, &env->fp_status);
1101 FT0 = float64_round_to_int(FT0, &env->fp_status);
1102 /* Restore rounding mode from FPSCR */
1103 fpscr_set_rounding_mode();
1107 void do_frin (void)
1109 do_fri(float_round_nearest_even);
1112 void do_friz (void)
1114 do_fri(float_round_to_zero);
1117 void do_frip (void)
1119 do_fri(float_round_up);
1122 void do_frim (void)
1124 do_fri(float_round_down);
1127 #if USE_PRECISE_EMULATION
1128 void do_fmadd (void)
1130 if (unlikely(float64_is_signaling_nan(FT0) ||
1131 float64_is_signaling_nan(FT1) ||
1132 float64_is_signaling_nan(FT2))) {
1133 /* sNaN operation */
1134 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1135 } else {
1136 #ifdef FLOAT128
1137 /* This is the way the PowerPC specification defines it */
1138 float128 ft0_128, ft1_128;
1140 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1141 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1142 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1143 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1144 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1145 FT0 = float128_to_float64(ft0_128, &env->fp_status);
1146 #else
1147 /* This is OK on x86 hosts */
1148 FT0 = (FT0 * FT1) + FT2;
1149 #endif
1153 void do_fmsub (void)
1155 if (unlikely(float64_is_signaling_nan(FT0) ||
1156 float64_is_signaling_nan(FT1) ||
1157 float64_is_signaling_nan(FT2))) {
1158 /* sNaN operation */
1159 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1160 } else {
1161 #ifdef FLOAT128
1162 /* This is the way the PowerPC specification defines it */
1163 float128 ft0_128, ft1_128;
1165 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1166 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1167 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1168 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1169 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1170 FT0 = float128_to_float64(ft0_128, &env->fp_status);
1171 #else
1172 /* This is OK on x86 hosts */
1173 FT0 = (FT0 * FT1) - FT2;
1174 #endif
1177 #endif /* USE_PRECISE_EMULATION */
1179 void do_fnmadd (void)
1181 if (unlikely(float64_is_signaling_nan(FT0) ||
1182 float64_is_signaling_nan(FT1) ||
1183 float64_is_signaling_nan(FT2))) {
1184 /* sNaN operation */
1185 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1186 } else {
1187 #if USE_PRECISE_EMULATION
1188 #ifdef FLOAT128
1189 /* This is the way the PowerPC specification defines it */
1190 float128 ft0_128, ft1_128;
1192 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1193 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1194 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1195 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1196 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1197 FT0 = float128_to_float64(ft0_128, &env->fp_status);
1198 #else
1199 /* This is OK on x86 hosts */
1200 FT0 = (FT0 * FT1) + FT2;
1201 #endif
1202 #else
1203 FT0 = float64_mul(FT0, FT1, &env->fp_status);
1204 FT0 = float64_add(FT0, FT2, &env->fp_status);
1205 #endif
1206 if (likely(!isnan(FT0)))
1207 FT0 = float64_chs(FT0);
1211 void do_fnmsub (void)
1213 if (unlikely(float64_is_signaling_nan(FT0) ||
1214 float64_is_signaling_nan(FT1) ||
1215 float64_is_signaling_nan(FT2))) {
1216 /* sNaN operation */
1217 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1218 } else {
1219 #if USE_PRECISE_EMULATION
1220 #ifdef FLOAT128
1221 /* This is the way the PowerPC specification defines it */
1222 float128 ft0_128, ft1_128;
1224 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1225 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1226 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1227 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1228 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1229 FT0 = float128_to_float64(ft0_128, &env->fp_status);
1230 #else
1231 /* This is OK on x86 hosts */
1232 FT0 = (FT0 * FT1) - FT2;
1233 #endif
1234 #else
1235 FT0 = float64_mul(FT0, FT1, &env->fp_status);
1236 FT0 = float64_sub(FT0, FT2, &env->fp_status);
1237 #endif
1238 if (likely(!isnan(FT0)))
1239 FT0 = float64_chs(FT0);
1243 #if USE_PRECISE_EMULATION
1244 void do_frsp (void)
1246 if (unlikely(float64_is_signaling_nan(FT0))) {
1247 /* sNaN square root */
1248 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1249 } else {
1250 FT0 = float64_to_float32(FT0, &env->fp_status);
1253 #endif /* USE_PRECISE_EMULATION */
1255 void do_fsqrt (void)
1257 if (unlikely(float64_is_signaling_nan(FT0))) {
1258 /* sNaN square root */
1259 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1260 } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) {
1261 /* Square root of a negative nonzero number */
1262 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1263 } else {
1264 FT0 = float64_sqrt(FT0, &env->fp_status);
1268 void do_fre (void)
1270 CPU_DoubleU p;
1272 if (unlikely(float64_is_signaling_nan(FT0))) {
1273 /* sNaN reciprocal */
1274 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1275 } else if (unlikely(iszero(FT0))) {
1276 /* Zero reciprocal */
1277 float_zero_divide_excp();
1278 } else if (likely(isnormal(FT0))) {
1279 FT0 = float64_div(1.0, FT0, &env->fp_status);
1280 } else {
1281 p.d = FT0;
1282 if (p.ll == 0x8000000000000000ULL) {
1283 p.ll = 0xFFF0000000000000ULL;
1284 } else if (p.ll == 0x0000000000000000ULL) {
1285 p.ll = 0x7FF0000000000000ULL;
1286 } else if (isnan(FT0)) {
1287 p.ll = 0x7FF8000000000000ULL;
1288 } else if (fpisneg(FT0)) {
1289 p.ll = 0x8000000000000000ULL;
1290 } else {
1291 p.ll = 0x0000000000000000ULL;
1293 FT0 = p.d;
1297 void do_fres (void)
1299 CPU_DoubleU p;
1301 if (unlikely(float64_is_signaling_nan(FT0))) {
1302 /* sNaN reciprocal */
1303 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1304 } else if (unlikely(iszero(FT0))) {
1305 /* Zero reciprocal */
1306 float_zero_divide_excp();
1307 } else if (likely(isnormal(FT0))) {
1308 #if USE_PRECISE_EMULATION
1309 FT0 = float64_div(1.0, FT0, &env->fp_status);
1310 FT0 = float64_to_float32(FT0, &env->fp_status);
1311 #else
1312 FT0 = float32_div(1.0, FT0, &env->fp_status);
1313 #endif
1314 } else {
1315 p.d = FT0;
1316 if (p.ll == 0x8000000000000000ULL) {
1317 p.ll = 0xFFF0000000000000ULL;
1318 } else if (p.ll == 0x0000000000000000ULL) {
1319 p.ll = 0x7FF0000000000000ULL;
1320 } else if (isnan(FT0)) {
1321 p.ll = 0x7FF8000000000000ULL;
1322 } else if (fpisneg(FT0)) {
1323 p.ll = 0x8000000000000000ULL;
1324 } else {
1325 p.ll = 0x0000000000000000ULL;
1327 FT0 = p.d;
1331 void do_frsqrte (void)
1333 CPU_DoubleU p;
1335 if (unlikely(float64_is_signaling_nan(FT0))) {
1336 /* sNaN reciprocal square root */
1337 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1338 } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) {
1339 /* Reciprocal square root of a negative nonzero number */
1340 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1341 } else if (likely(isnormal(FT0))) {
1342 FT0 = float64_sqrt(FT0, &env->fp_status);
1343 FT0 = float32_div(1.0, FT0, &env->fp_status);
1344 } else {
1345 p.d = FT0;
1346 if (p.ll == 0x8000000000000000ULL) {
1347 p.ll = 0xFFF0000000000000ULL;
1348 } else if (p.ll == 0x0000000000000000ULL) {
1349 p.ll = 0x7FF0000000000000ULL;
1350 } else if (isnan(FT0)) {
1351 p.ll |= 0x000FFFFFFFFFFFFFULL;
1352 } else if (fpisneg(FT0)) {
1353 p.ll = 0x7FF8000000000000ULL;
1354 } else {
1355 p.ll = 0x0000000000000000ULL;
1357 FT0 = p.d;
1361 void do_fsel (void)
1363 if (!fpisneg(FT0) || iszero(FT0))
1364 FT0 = FT1;
1365 else
1366 FT0 = FT2;
1369 uint32_t helper_fcmpu (void)
1371 uint32_t ret = 0;
1373 if (unlikely(float64_is_signaling_nan(FT0) ||
1374 float64_is_signaling_nan(FT1))) {
1375 /* sNaN comparison */
1376 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1377 } else {
1378 if (float64_lt(FT0, FT1, &env->fp_status)) {
1379 ret = 0x08UL;
1380 } else if (!float64_le(FT0, FT1, &env->fp_status)) {
1381 ret = 0x04UL;
1382 } else {
1383 ret = 0x02UL;
1386 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1387 env->fpscr |= ret << FPSCR_FPRF;
1388 return ret;
1391 uint32_t helper_fcmpo (void)
1393 uint32_t ret = 0;
1395 if (unlikely(float64_is_nan(FT0) ||
1396 float64_is_nan(FT1))) {
1397 if (float64_is_signaling_nan(FT0) ||
1398 float64_is_signaling_nan(FT1)) {
1399 /* sNaN comparison */
1400 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN |
1401 POWERPC_EXCP_FP_VXVC);
1402 } else {
1403 /* qNaN comparison */
1404 fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC);
1406 } else {
1407 if (float64_lt(FT0, FT1, &env->fp_status)) {
1408 ret = 0x08UL;
1409 } else if (!float64_le(FT0, FT1, &env->fp_status)) {
1410 ret = 0x04UL;
1411 } else {
1412 ret = 0x02UL;
1415 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1416 env->fpscr |= ret << FPSCR_FPRF;
1417 return ret;
1420 #if !defined (CONFIG_USER_ONLY)
1421 void cpu_dump_rfi (target_ulong RA, target_ulong msr);
1423 void do_store_msr (void)
1425 T0 = hreg_store_msr(env, T0, 0);
1426 if (T0 != 0) {
1427 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1428 do_raise_exception(T0);
1432 static always_inline void __do_rfi (target_ulong nip, target_ulong msr,
1433 target_ulong msrm, int keep_msrh)
1435 #if defined(TARGET_PPC64)
1436 if (msr & (1ULL << MSR_SF)) {
1437 nip = (uint64_t)nip;
1438 msr &= (uint64_t)msrm;
1439 } else {
1440 nip = (uint32_t)nip;
1441 msr = (uint32_t)(msr & msrm);
1442 if (keep_msrh)
1443 msr |= env->msr & ~((uint64_t)0xFFFFFFFF);
1445 #else
1446 nip = (uint32_t)nip;
1447 msr &= (uint32_t)msrm;
1448 #endif
1449 /* XXX: beware: this is false if VLE is supported */
1450 env->nip = nip & ~((target_ulong)0x00000003);
1451 hreg_store_msr(env, msr, 1);
1452 #if defined (DEBUG_OP)
1453 cpu_dump_rfi(env->nip, env->msr);
1454 #endif
1455 /* No need to raise an exception here,
1456 * as rfi is always the last insn of a TB
1458 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1461 void do_rfi (void)
1463 __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1464 ~((target_ulong)0xFFFF0000), 1);
1467 #if defined(TARGET_PPC64)
1468 void do_rfid (void)
1470 __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1471 ~((target_ulong)0xFFFF0000), 0);
1474 void do_hrfid (void)
1476 __do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1],
1477 ~((target_ulong)0xFFFF0000), 0);
1479 #endif
1480 #endif
1482 void do_tw (int flags)
1484 if (!likely(!(((int32_t)T0 < (int32_t)T1 && (flags & 0x10)) ||
1485 ((int32_t)T0 > (int32_t)T1 && (flags & 0x08)) ||
1486 ((int32_t)T0 == (int32_t)T1 && (flags & 0x04)) ||
1487 ((uint32_t)T0 < (uint32_t)T1 && (flags & 0x02)) ||
1488 ((uint32_t)T0 > (uint32_t)T1 && (flags & 0x01))))) {
1489 do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
1493 #if defined(TARGET_PPC64)
1494 void do_td (int flags)
1496 if (!likely(!(((int64_t)T0 < (int64_t)T1 && (flags & 0x10)) ||
1497 ((int64_t)T0 > (int64_t)T1 && (flags & 0x08)) ||
1498 ((int64_t)T0 == (int64_t)T1 && (flags & 0x04)) ||
1499 ((uint64_t)T0 < (uint64_t)T1 && (flags & 0x02)) ||
1500 ((uint64_t)T0 > (uint64_t)T1 && (flags & 0x01)))))
1501 do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
1503 #endif
1505 /*****************************************************************************/
1506 /* PowerPC 601 specific instructions (POWER bridge) */
1507 void do_POWER_abso (void)
1509 if ((int32_t)T0 == INT32_MIN) {
1510 T0 = INT32_MAX;
1511 env->xer |= (1 << XER_OV) | (1 << XER_SO);
1512 } else if ((int32_t)T0 < 0) {
1513 T0 = -T0;
1514 env->xer &= ~(1 << XER_OV);
1515 } else {
1516 env->xer &= ~(1 << XER_OV);
1520 void do_POWER_clcs (void)
1522 switch (T0) {
1523 case 0x0CUL:
1524 /* Instruction cache line size */
1525 T0 = env->icache_line_size;
1526 break;
1527 case 0x0DUL:
1528 /* Data cache line size */
1529 T0 = env->dcache_line_size;
1530 break;
1531 case 0x0EUL:
1532 /* Minimum cache line size */
1533 T0 = env->icache_line_size < env->dcache_line_size ?
1534 env->icache_line_size : env->dcache_line_size;
1535 break;
1536 case 0x0FUL:
1537 /* Maximum cache line size */
1538 T0 = env->icache_line_size > env->dcache_line_size ?
1539 env->icache_line_size : env->dcache_line_size;
1540 break;
1541 default:
1542 /* Undefined */
1543 break;
1547 void do_POWER_div (void)
1549 uint64_t tmp;
1551 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1552 (int32_t)T1 == 0) {
1553 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
1554 env->spr[SPR_MQ] = 0;
1555 } else {
1556 tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1557 env->spr[SPR_MQ] = tmp % T1;
1558 T0 = tmp / (int32_t)T1;
1562 void do_POWER_divo (void)
1564 int64_t tmp;
1566 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1567 (int32_t)T1 == 0) {
1568 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
1569 env->spr[SPR_MQ] = 0;
1570 env->xer |= (1 << XER_OV) | (1 << XER_SO);
1571 } else {
1572 tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1573 env->spr[SPR_MQ] = tmp % T1;
1574 tmp /= (int32_t)T1;
1575 if (tmp > (int64_t)INT32_MAX || tmp < (int64_t)INT32_MIN) {
1576 env->xer |= (1 << XER_OV) | (1 << XER_SO);
1577 } else {
1578 env->xer &= ~(1 << XER_OV);
1580 T0 = tmp;
1584 void do_POWER_divs (void)
1586 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1587 (int32_t)T1 == 0) {
1588 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
1589 env->spr[SPR_MQ] = 0;
1590 } else {
1591 env->spr[SPR_MQ] = T0 % T1;
1592 T0 = (int32_t)T0 / (int32_t)T1;
1596 void do_POWER_divso (void)
1598 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1599 (int32_t)T1 == 0) {
1600 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
1601 env->spr[SPR_MQ] = 0;
1602 env->xer |= (1 << XER_OV) | (1 << XER_SO);
1603 } else {
1604 T0 = (int32_t)T0 / (int32_t)T1;
1605 env->spr[SPR_MQ] = (int32_t)T0 % (int32_t)T1;
1606 env->xer &= ~(1 << XER_OV);
1610 void do_POWER_dozo (void)
1612 if ((int32_t)T1 > (int32_t)T0) {
1613 T2 = T0;
1614 T0 = T1 - T0;
1615 if (((uint32_t)(~T2) ^ (uint32_t)T1 ^ UINT32_MAX) &
1616 ((uint32_t)(~T2) ^ (uint32_t)T0) & (1UL << 31)) {
1617 env->xer |= (1 << XER_OV) | (1 << XER_SO);
1618 } else {
1619 env->xer &= ~(1 << XER_OV);
1621 } else {
1622 T0 = 0;
1623 env->xer &= ~(1 << XER_OV);
1627 void do_POWER_maskg (void)
1629 uint32_t ret;
1631 if ((uint32_t)T0 == (uint32_t)(T1 + 1)) {
1632 ret = UINT32_MAX;
1633 } else {
1634 ret = (UINT32_MAX >> ((uint32_t)T0)) ^
1635 ((UINT32_MAX >> ((uint32_t)T1)) >> 1);
1636 if ((uint32_t)T0 > (uint32_t)T1)
1637 ret = ~ret;
1639 T0 = ret;
1642 void do_POWER_mulo (void)
1644 uint64_t tmp;
1646 tmp = (uint64_t)T0 * (uint64_t)T1;
1647 env->spr[SPR_MQ] = tmp >> 32;
1648 T0 = tmp;
1649 if (tmp >> 32 != ((uint64_t)T0 >> 16) * ((uint64_t)T1 >> 16)) {
1650 env->xer |= (1 << XER_OV) | (1 << XER_SO);
1651 } else {
1652 env->xer &= ~(1 << XER_OV);
1656 #if !defined (CONFIG_USER_ONLY)
1657 void do_POWER_rac (void)
1659 mmu_ctx_t ctx;
1660 int nb_BATs;
1662 /* We don't have to generate many instances of this instruction,
1663 * as rac is supervisor only.
1665 /* XXX: FIX THIS: Pretend we have no BAT */
1666 nb_BATs = env->nb_BATs;
1667 env->nb_BATs = 0;
1668 if (get_physical_address(env, &ctx, T0, 0, ACCESS_INT) == 0)
1669 T0 = ctx.raddr;
1670 env->nb_BATs = nb_BATs;
1673 void do_POWER_rfsvc (void)
1675 __do_rfi(env->lr, env->ctr, 0x0000FFFF, 0);
1678 void do_store_hid0_601 (void)
1680 uint32_t hid0;
1682 hid0 = env->spr[SPR_HID0];
1683 if ((T0 ^ hid0) & 0x00000008) {
1684 /* Change current endianness */
1685 env->hflags &= ~(1 << MSR_LE);
1686 env->hflags_nmsr &= ~(1 << MSR_LE);
1687 env->hflags_nmsr |= (1 << MSR_LE) & (((T0 >> 3) & 1) << MSR_LE);
1688 env->hflags |= env->hflags_nmsr;
1689 if (loglevel != 0) {
1690 fprintf(logfile, "%s: set endianness to %c => " ADDRX "\n",
1691 __func__, T0 & 0x8 ? 'l' : 'b', env->hflags);
1694 env->spr[SPR_HID0] = T0;
1696 #endif
1698 /*****************************************************************************/
1699 /* 602 specific instructions */
1700 /* mfrom is the most crazy instruction ever seen, imho ! */
1701 /* Real implementation uses a ROM table. Do the same */
1702 #define USE_MFROM_ROM_TABLE
1703 void do_op_602_mfrom (void)
1705 if (likely(T0 < 602)) {
1706 #if defined(USE_MFROM_ROM_TABLE)
1707 #include "mfrom_table.c"
1708 T0 = mfrom_ROM_table[T0];
1709 #else
1710 double d;
1711 /* Extremly decomposed:
1712 * -T0 / 256
1713 * T0 = 256 * log10(10 + 1.0) + 0.5
1715 d = T0;
1716 d = float64_div(d, 256, &env->fp_status);
1717 d = float64_chs(d);
1718 d = exp10(d); // XXX: use float emulation function
1719 d = float64_add(d, 1.0, &env->fp_status);
1720 d = log10(d); // XXX: use float emulation function
1721 d = float64_mul(d, 256, &env->fp_status);
1722 d = float64_add(d, 0.5, &env->fp_status);
1723 T0 = float64_round_to_int(d, &env->fp_status);
1724 #endif
1725 } else {
1726 T0 = 0;
1730 /*****************************************************************************/
1731 /* Embedded PowerPC specific helpers */
1732 void do_405_check_sat (void)
1734 if (!likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) ||
1735 !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) {
1736 /* Saturate result */
1737 if (T2 >> 31) {
1738 T0 = INT32_MIN;
1739 } else {
1740 T0 = INT32_MAX;
1745 /* XXX: to be improved to check access rights when in user-mode */
1746 void do_load_dcr (void)
1748 target_ulong val;
1750 if (unlikely(env->dcr_env == NULL)) {
1751 if (loglevel != 0) {
1752 fprintf(logfile, "No DCR environment\n");
1754 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1755 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
1756 } else if (unlikely(ppc_dcr_read(env->dcr_env, T0, &val) != 0)) {
1757 if (loglevel != 0) {
1758 fprintf(logfile, "DCR read error %d %03x\n", (int)T0, (int)T0);
1760 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1761 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
1762 } else {
1763 T0 = val;
1767 void do_store_dcr (void)
1769 if (unlikely(env->dcr_env == NULL)) {
1770 if (loglevel != 0) {
1771 fprintf(logfile, "No DCR environment\n");
1773 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1774 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
1775 } else if (unlikely(ppc_dcr_write(env->dcr_env, T0, T1) != 0)) {
1776 if (loglevel != 0) {
1777 fprintf(logfile, "DCR write error %d %03x\n", (int)T0, (int)T0);
1779 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1780 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
1784 #if !defined(CONFIG_USER_ONLY)
1785 void do_40x_rfci (void)
1787 __do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3],
1788 ~((target_ulong)0xFFFF0000), 0);
1791 void do_rfci (void)
1793 __do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1,
1794 ~((target_ulong)0x3FFF0000), 0);
1797 void do_rfdi (void)
1799 __do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1,
1800 ~((target_ulong)0x3FFF0000), 0);
1803 void do_rfmci (void)
1805 __do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1,
1806 ~((target_ulong)0x3FFF0000), 0);
1809 void do_load_403_pb (int num)
1811 T0 = env->pb[num];
1814 void do_store_403_pb (int num)
1816 if (likely(env->pb[num] != T0)) {
1817 env->pb[num] = T0;
1818 /* Should be optimized */
1819 tlb_flush(env, 1);
1822 #endif
1824 /* 440 specific */
1825 void do_440_dlmzb (void)
1827 target_ulong mask;
1828 int i;
1830 i = 1;
1831 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1832 if ((T0 & mask) == 0)
1833 goto done;
1834 i++;
1836 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1837 if ((T1 & mask) == 0)
1838 break;
1839 i++;
1841 done:
1842 T0 = i;
1845 /* SPE extension helpers */
1846 /* Use a table to make this quicker */
1847 static uint8_t hbrev[16] = {
1848 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
1849 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
1852 static always_inline uint8_t byte_reverse (uint8_t val)
1854 return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
1857 static always_inline uint32_t word_reverse (uint32_t val)
1859 return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
1860 (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
1863 #define MASKBITS 16 // Random value - to be fixed (implementation dependant)
1864 void do_brinc (void)
1866 uint32_t a, b, d, mask;
1868 mask = UINT32_MAX >> (32 - MASKBITS);
1869 a = T0 & mask;
1870 b = T1 & mask;
1871 d = word_reverse(1 + word_reverse(a | ~b));
1872 T0 = (T0 & ~mask) | (d & b);
1875 #define DO_SPE_OP2(name) \
1876 void do_ev##name (void) \
1878 T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32, T1_64 >> 32) << 32) | \
1879 (uint64_t)_do_e##name(T0_64, T1_64); \
1882 #define DO_SPE_OP1(name) \
1883 void do_ev##name (void) \
1885 T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32) << 32) | \
1886 (uint64_t)_do_e##name(T0_64); \
1889 /* Fixed-point vector arithmetic */
1890 static always_inline uint32_t _do_eabs (uint32_t val)
1892 if ((val & 0x80000000) && val != 0x80000000)
1893 val -= val;
1895 return val;
1898 static always_inline uint32_t _do_eaddw (uint32_t op1, uint32_t op2)
1900 return op1 + op2;
1903 static always_inline int _do_ecntlsw (uint32_t val)
1905 if (val & 0x80000000)
1906 return clz32(~val);
1907 else
1908 return clz32(val);
1911 static always_inline int _do_ecntlzw (uint32_t val)
1913 return clz32(val);
1916 static always_inline uint32_t _do_eneg (uint32_t val)
1918 if (val != 0x80000000)
1919 val -= val;
1921 return val;
1924 static always_inline uint32_t _do_erlw (uint32_t op1, uint32_t op2)
1926 return rotl32(op1, op2);
1929 static always_inline uint32_t _do_erndw (uint32_t val)
1931 return (val + 0x000080000000) & 0xFFFF0000;
1934 static always_inline uint32_t _do_eslw (uint32_t op1, uint32_t op2)
1936 /* No error here: 6 bits are used */
1937 return op1 << (op2 & 0x3F);
1940 static always_inline int32_t _do_esrws (int32_t op1, uint32_t op2)
1942 /* No error here: 6 bits are used */
1943 return op1 >> (op2 & 0x3F);
1946 static always_inline uint32_t _do_esrwu (uint32_t op1, uint32_t op2)
1948 /* No error here: 6 bits are used */
1949 return op1 >> (op2 & 0x3F);
1952 static always_inline uint32_t _do_esubfw (uint32_t op1, uint32_t op2)
1954 return op2 - op1;
1957 /* evabs */
1958 DO_SPE_OP1(abs);
1959 /* evaddw */
1960 DO_SPE_OP2(addw);
1961 /* evcntlsw */
1962 DO_SPE_OP1(cntlsw);
1963 /* evcntlzw */
1964 DO_SPE_OP1(cntlzw);
1965 /* evneg */
1966 DO_SPE_OP1(neg);
1967 /* evrlw */
1968 DO_SPE_OP2(rlw);
1969 /* evrnd */
1970 DO_SPE_OP1(rndw);
1971 /* evslw */
1972 DO_SPE_OP2(slw);
1973 /* evsrws */
1974 DO_SPE_OP2(srws);
1975 /* evsrwu */
1976 DO_SPE_OP2(srwu);
1977 /* evsubfw */
1978 DO_SPE_OP2(subfw);
1980 /* evsel is a little bit more complicated... */
1981 static always_inline uint32_t _do_esel (uint32_t op1, uint32_t op2, int n)
1983 if (n)
1984 return op1;
1985 else
1986 return op2;
1989 void do_evsel (void)
1991 T0_64 = ((uint64_t)_do_esel(T0_64 >> 32, T1_64 >> 32, T0 >> 3) << 32) |
1992 (uint64_t)_do_esel(T0_64, T1_64, (T0 >> 2) & 1);
1995 /* Fixed-point vector comparisons */
1996 #define DO_SPE_CMP(name) \
1997 void do_ev##name (void) \
1999 T0 = _do_evcmp_merge((uint64_t)_do_e##name(T0_64 >> 32, \
2000 T1_64 >> 32) << 32, \
2001 _do_e##name(T0_64, T1_64)); \
2004 static always_inline uint32_t _do_evcmp_merge (int t0, int t1)
2006 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
2008 static always_inline int _do_ecmpeq (uint32_t op1, uint32_t op2)
2010 return op1 == op2 ? 1 : 0;
2013 static always_inline int _do_ecmpgts (int32_t op1, int32_t op2)
2015 return op1 > op2 ? 1 : 0;
2018 static always_inline int _do_ecmpgtu (uint32_t op1, uint32_t op2)
2020 return op1 > op2 ? 1 : 0;
2023 static always_inline int _do_ecmplts (int32_t op1, int32_t op2)
2025 return op1 < op2 ? 1 : 0;
2028 static always_inline int _do_ecmpltu (uint32_t op1, uint32_t op2)
2030 return op1 < op2 ? 1 : 0;
2033 /* evcmpeq */
2034 DO_SPE_CMP(cmpeq);
2035 /* evcmpgts */
2036 DO_SPE_CMP(cmpgts);
2037 /* evcmpgtu */
2038 DO_SPE_CMP(cmpgtu);
2039 /* evcmplts */
2040 DO_SPE_CMP(cmplts);
2041 /* evcmpltu */
2042 DO_SPE_CMP(cmpltu);
2044 /* Single precision floating-point conversions from/to integer */
2045 static always_inline uint32_t _do_efscfsi (int32_t val)
2047 CPU_FloatU u;
2049 u.f = int32_to_float32(val, &env->spe_status);
2051 return u.l;
2054 static always_inline uint32_t _do_efscfui (uint32_t val)
2056 CPU_FloatU u;
2058 u.f = uint32_to_float32(val, &env->spe_status);
2060 return u.l;
2063 static always_inline int32_t _do_efsctsi (uint32_t val)
2065 CPU_FloatU u;
2067 u.l = val;
2068 /* NaN are not treated the same way IEEE 754 does */
2069 if (unlikely(isnan(u.f)))
2070 return 0;
2072 return float32_to_int32(u.f, &env->spe_status);
2075 static always_inline uint32_t _do_efsctui (uint32_t val)
2077 CPU_FloatU u;
2079 u.l = val;
2080 /* NaN are not treated the same way IEEE 754 does */
2081 if (unlikely(isnan(u.f)))
2082 return 0;
2084 return float32_to_uint32(u.f, &env->spe_status);
2087 static always_inline int32_t _do_efsctsiz (uint32_t val)
2089 CPU_FloatU u;
2091 u.l = val;
2092 /* NaN are not treated the same way IEEE 754 does */
2093 if (unlikely(isnan(u.f)))
2094 return 0;
2096 return float32_to_int32_round_to_zero(u.f, &env->spe_status);
2099 static always_inline uint32_t _do_efsctuiz (uint32_t val)
2101 CPU_FloatU u;
2103 u.l = val;
2104 /* NaN are not treated the same way IEEE 754 does */
2105 if (unlikely(isnan(u.f)))
2106 return 0;
2108 return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
2111 void do_efscfsi (void)
2113 T0_64 = _do_efscfsi(T0_64);
2116 void do_efscfui (void)
2118 T0_64 = _do_efscfui(T0_64);
2121 void do_efsctsi (void)
2123 T0_64 = _do_efsctsi(T0_64);
2126 void do_efsctui (void)
2128 T0_64 = _do_efsctui(T0_64);
2131 void do_efsctsiz (void)
2133 T0_64 = _do_efsctsiz(T0_64);
2136 void do_efsctuiz (void)
2138 T0_64 = _do_efsctuiz(T0_64);
2141 /* Single precision floating-point conversion to/from fractional */
2142 static always_inline uint32_t _do_efscfsf (uint32_t val)
2144 CPU_FloatU u;
2145 float32 tmp;
2147 u.f = int32_to_float32(val, &env->spe_status);
2148 tmp = int64_to_float32(1ULL << 32, &env->spe_status);
2149 u.f = float32_div(u.f, tmp, &env->spe_status);
2151 return u.l;
2154 static always_inline uint32_t _do_efscfuf (uint32_t val)
2156 CPU_FloatU u;
2157 float32 tmp;
2159 u.f = uint32_to_float32(val, &env->spe_status);
2160 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2161 u.f = float32_div(u.f, tmp, &env->spe_status);
2163 return u.l;
2166 static always_inline int32_t _do_efsctsf (uint32_t val)
2168 CPU_FloatU u;
2169 float32 tmp;
2171 u.l = val;
2172 /* NaN are not treated the same way IEEE 754 does */
2173 if (unlikely(isnan(u.f)))
2174 return 0;
2175 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2176 u.f = float32_mul(u.f, tmp, &env->spe_status);
2178 return float32_to_int32(u.f, &env->spe_status);
2181 static always_inline uint32_t _do_efsctuf (uint32_t val)
2183 CPU_FloatU u;
2184 float32 tmp;
2186 u.l = val;
2187 /* NaN are not treated the same way IEEE 754 does */
2188 if (unlikely(isnan(u.f)))
2189 return 0;
2190 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2191 u.f = float32_mul(u.f, tmp, &env->spe_status);
2193 return float32_to_uint32(u.f, &env->spe_status);
2196 static always_inline int32_t _do_efsctsfz (uint32_t val)
2198 CPU_FloatU u;
2199 float32 tmp;
2201 u.l = val;
2202 /* NaN are not treated the same way IEEE 754 does */
2203 if (unlikely(isnan(u.f)))
2204 return 0;
2205 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2206 u.f = float32_mul(u.f, tmp, &env->spe_status);
2208 return float32_to_int32_round_to_zero(u.f, &env->spe_status);
2211 static always_inline uint32_t _do_efsctufz (uint32_t val)
2213 CPU_FloatU u;
2214 float32 tmp;
2216 u.l = val;
2217 /* NaN are not treated the same way IEEE 754 does */
2218 if (unlikely(isnan(u.f)))
2219 return 0;
2220 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2221 u.f = float32_mul(u.f, tmp, &env->spe_status);
2223 return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
2226 void do_efscfsf (void)
2228 T0_64 = _do_efscfsf(T0_64);
2231 void do_efscfuf (void)
2233 T0_64 = _do_efscfuf(T0_64);
2236 void do_efsctsf (void)
2238 T0_64 = _do_efsctsf(T0_64);
2241 void do_efsctuf (void)
2243 T0_64 = _do_efsctuf(T0_64);
2246 void do_efsctsfz (void)
2248 T0_64 = _do_efsctsfz(T0_64);
2251 void do_efsctufz (void)
2253 T0_64 = _do_efsctufz(T0_64);
2256 /* Double precision floating point helpers */
2257 static always_inline int _do_efdcmplt (uint64_t op1, uint64_t op2)
2259 /* XXX: TODO: test special values (NaN, infinites, ...) */
2260 return _do_efdtstlt(op1, op2);
2263 static always_inline int _do_efdcmpgt (uint64_t op1, uint64_t op2)
2265 /* XXX: TODO: test special values (NaN, infinites, ...) */
2266 return _do_efdtstgt(op1, op2);
2269 static always_inline int _do_efdcmpeq (uint64_t op1, uint64_t op2)
2271 /* XXX: TODO: test special values (NaN, infinites, ...) */
2272 return _do_efdtsteq(op1, op2);
2275 void do_efdcmplt (void)
2277 T0 = _do_efdcmplt(T0_64, T1_64);
2280 void do_efdcmpgt (void)
2282 T0 = _do_efdcmpgt(T0_64, T1_64);
2285 void do_efdcmpeq (void)
2287 T0 = _do_efdcmpeq(T0_64, T1_64);
2290 /* Double precision floating-point conversion to/from integer */
2291 static always_inline uint64_t _do_efdcfsi (int64_t val)
2293 CPU_DoubleU u;
2295 u.d = int64_to_float64(val, &env->spe_status);
2297 return u.ll;
2300 static always_inline uint64_t _do_efdcfui (uint64_t val)
2302 CPU_DoubleU u;
2304 u.d = uint64_to_float64(val, &env->spe_status);
2306 return u.ll;
2309 static always_inline int64_t _do_efdctsi (uint64_t val)
2311 CPU_DoubleU u;
2313 u.ll = val;
2314 /* NaN are not treated the same way IEEE 754 does */
2315 if (unlikely(isnan(u.d)))
2316 return 0;
2318 return float64_to_int64(u.d, &env->spe_status);
2321 static always_inline uint64_t _do_efdctui (uint64_t val)
2323 CPU_DoubleU u;
2325 u.ll = val;
2326 /* NaN are not treated the same way IEEE 754 does */
2327 if (unlikely(isnan(u.d)))
2328 return 0;
2330 return float64_to_uint64(u.d, &env->spe_status);
2333 static always_inline int64_t _do_efdctsiz (uint64_t val)
2335 CPU_DoubleU u;
2337 u.ll = val;
2338 /* NaN are not treated the same way IEEE 754 does */
2339 if (unlikely(isnan(u.d)))
2340 return 0;
2342 return float64_to_int64_round_to_zero(u.d, &env->spe_status);
2345 static always_inline uint64_t _do_efdctuiz (uint64_t val)
2347 CPU_DoubleU u;
2349 u.ll = val;
2350 /* NaN are not treated the same way IEEE 754 does */
2351 if (unlikely(isnan(u.d)))
2352 return 0;
2354 return float64_to_uint64_round_to_zero(u.d, &env->spe_status);
2357 void do_efdcfsi (void)
2359 T0_64 = _do_efdcfsi(T0_64);
2362 void do_efdcfui (void)
2364 T0_64 = _do_efdcfui(T0_64);
2367 void do_efdctsi (void)
2369 T0_64 = _do_efdctsi(T0_64);
2372 void do_efdctui (void)
2374 T0_64 = _do_efdctui(T0_64);
2377 void do_efdctsiz (void)
2379 T0_64 = _do_efdctsiz(T0_64);
2382 void do_efdctuiz (void)
2384 T0_64 = _do_efdctuiz(T0_64);
2387 /* Double precision floating-point conversion to/from fractional */
2388 static always_inline uint64_t _do_efdcfsf (int64_t val)
2390 CPU_DoubleU u;
2391 float64 tmp;
2393 u.d = int32_to_float64(val, &env->spe_status);
2394 tmp = int64_to_float64(1ULL << 32, &env->spe_status);
2395 u.d = float64_div(u.d, tmp, &env->spe_status);
2397 return u.ll;
2400 static always_inline uint64_t _do_efdcfuf (uint64_t val)
2402 CPU_DoubleU u;
2403 float64 tmp;
2405 u.d = uint32_to_float64(val, &env->spe_status);
2406 tmp = int64_to_float64(1ULL << 32, &env->spe_status);
2407 u.d = float64_div(u.d, tmp, &env->spe_status);
2409 return u.ll;
2412 static always_inline int64_t _do_efdctsf (uint64_t val)
2414 CPU_DoubleU u;
2415 float64 tmp;
2417 u.ll = val;
2418 /* NaN are not treated the same way IEEE 754 does */
2419 if (unlikely(isnan(u.d)))
2420 return 0;
2421 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2422 u.d = float64_mul(u.d, tmp, &env->spe_status);
2424 return float64_to_int32(u.d, &env->spe_status);
2427 static always_inline uint64_t _do_efdctuf (uint64_t val)
2429 CPU_DoubleU u;
2430 float64 tmp;
2432 u.ll = val;
2433 /* NaN are not treated the same way IEEE 754 does */
2434 if (unlikely(isnan(u.d)))
2435 return 0;
2436 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2437 u.d = float64_mul(u.d, tmp, &env->spe_status);
2439 return float64_to_uint32(u.d, &env->spe_status);
2442 static always_inline int64_t _do_efdctsfz (uint64_t val)
2444 CPU_DoubleU u;
2445 float64 tmp;
2447 u.ll = val;
2448 /* NaN are not treated the same way IEEE 754 does */
2449 if (unlikely(isnan(u.d)))
2450 return 0;
2451 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2452 u.d = float64_mul(u.d, tmp, &env->spe_status);
2454 return float64_to_int32_round_to_zero(u.d, &env->spe_status);
2457 static always_inline uint64_t _do_efdctufz (uint64_t val)
2459 CPU_DoubleU u;
2460 float64 tmp;
2462 u.ll = val;
2463 /* NaN are not treated the same way IEEE 754 does */
2464 if (unlikely(isnan(u.d)))
2465 return 0;
2466 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2467 u.d = float64_mul(u.d, tmp, &env->spe_status);
2469 return float64_to_uint32_round_to_zero(u.d, &env->spe_status);
2472 void do_efdcfsf (void)
2474 T0_64 = _do_efdcfsf(T0_64);
2477 void do_efdcfuf (void)
2479 T0_64 = _do_efdcfuf(T0_64);
2482 void do_efdctsf (void)
2484 T0_64 = _do_efdctsf(T0_64);
2487 void do_efdctuf (void)
2489 T0_64 = _do_efdctuf(T0_64);
2492 void do_efdctsfz (void)
2494 T0_64 = _do_efdctsfz(T0_64);
2497 void do_efdctufz (void)
2499 T0_64 = _do_efdctufz(T0_64);
2502 /* Floating point conversion between single and double precision */
2503 static always_inline uint32_t _do_efscfd (uint64_t val)
2505 CPU_DoubleU u1;
2506 CPU_FloatU u2;
2508 u1.ll = val;
2509 u2.f = float64_to_float32(u1.d, &env->spe_status);
2511 return u2.l;
2514 static always_inline uint64_t _do_efdcfs (uint32_t val)
2516 CPU_DoubleU u2;
2517 CPU_FloatU u1;
2519 u1.l = val;
2520 u2.d = float32_to_float64(u1.f, &env->spe_status);
2522 return u2.ll;
2525 void do_efscfd (void)
2527 T0_64 = _do_efscfd(T0_64);
2530 void do_efdcfs (void)
2532 T0_64 = _do_efdcfs(T0_64);
2535 /* Single precision fixed-point vector arithmetic */
2536 /* evfsabs */
2537 DO_SPE_OP1(fsabs);
2538 /* evfsnabs */
2539 DO_SPE_OP1(fsnabs);
2540 /* evfsneg */
2541 DO_SPE_OP1(fsneg);
2542 /* evfsadd */
2543 DO_SPE_OP2(fsadd);
2544 /* evfssub */
2545 DO_SPE_OP2(fssub);
2546 /* evfsmul */
2547 DO_SPE_OP2(fsmul);
2548 /* evfsdiv */
2549 DO_SPE_OP2(fsdiv);
2551 /* Single-precision floating-point comparisons */
2552 static always_inline int _do_efscmplt (uint32_t op1, uint32_t op2)
2554 /* XXX: TODO: test special values (NaN, infinites, ...) */
2555 return _do_efststlt(op1, op2);
2558 static always_inline int _do_efscmpgt (uint32_t op1, uint32_t op2)
2560 /* XXX: TODO: test special values (NaN, infinites, ...) */
2561 return _do_efststgt(op1, op2);
2564 static always_inline int _do_efscmpeq (uint32_t op1, uint32_t op2)
2566 /* XXX: TODO: test special values (NaN, infinites, ...) */
2567 return _do_efststeq(op1, op2);
2570 void do_efscmplt (void)
2572 T0 = _do_efscmplt(T0_64, T1_64);
2575 void do_efscmpgt (void)
2577 T0 = _do_efscmpgt(T0_64, T1_64);
2580 void do_efscmpeq (void)
2582 T0 = _do_efscmpeq(T0_64, T1_64);
2585 /* Single-precision floating-point vector comparisons */
2586 /* evfscmplt */
2587 DO_SPE_CMP(fscmplt);
2588 /* evfscmpgt */
2589 DO_SPE_CMP(fscmpgt);
2590 /* evfscmpeq */
2591 DO_SPE_CMP(fscmpeq);
2592 /* evfststlt */
2593 DO_SPE_CMP(fststlt);
2594 /* evfststgt */
2595 DO_SPE_CMP(fststgt);
2596 /* evfststeq */
2597 DO_SPE_CMP(fststeq);
2599 /* Single-precision floating-point vector conversions */
2600 /* evfscfsi */
2601 DO_SPE_OP1(fscfsi);
2602 /* evfscfui */
2603 DO_SPE_OP1(fscfui);
2604 /* evfscfuf */
2605 DO_SPE_OP1(fscfuf);
2606 /* evfscfsf */
2607 DO_SPE_OP1(fscfsf);
2608 /* evfsctsi */
2609 DO_SPE_OP1(fsctsi);
2610 /* evfsctui */
2611 DO_SPE_OP1(fsctui);
2612 /* evfsctsiz */
2613 DO_SPE_OP1(fsctsiz);
2614 /* evfsctuiz */
2615 DO_SPE_OP1(fsctuiz);
2616 /* evfsctsf */
2617 DO_SPE_OP1(fsctsf);
2618 /* evfsctuf */
2619 DO_SPE_OP1(fsctuf);
2621 /*****************************************************************************/
2622 /* Softmmu support */
2623 #if !defined (CONFIG_USER_ONLY)
2625 #define MMUSUFFIX _mmu
2627 #define SHIFT 0
2628 #include "softmmu_template.h"
2630 #define SHIFT 1
2631 #include "softmmu_template.h"
2633 #define SHIFT 2
2634 #include "softmmu_template.h"
2636 #define SHIFT 3
2637 #include "softmmu_template.h"
2639 /* try to fill the TLB and return an exception if error. If retaddr is
2640 NULL, it means that the function was called in C code (i.e. not
2641 from generated code or from helper.c) */
2642 /* XXX: fix it to restore all registers */
2643 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
2645 TranslationBlock *tb;
2646 CPUState *saved_env;
2647 unsigned long pc;
2648 int ret;
2650 /* XXX: hack to restore env in all cases, even if not called from
2651 generated code */
2652 saved_env = env;
2653 env = cpu_single_env;
2654 ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
2655 if (unlikely(ret != 0)) {
2656 if (likely(retaddr)) {
2657 /* now we have a real cpu fault */
2658 pc = (unsigned long)retaddr;
2659 tb = tb_find_pc(pc);
2660 if (likely(tb)) {
2661 /* the PC is inside the translated code. It means that we have
2662 a virtual CPU fault */
2663 cpu_restore_state(tb, env, pc, NULL);
2666 do_raise_exception_err(env->exception_index, env->error_code);
2668 env = saved_env;
2671 /* Software driven TLBs management */
2672 /* PowerPC 602/603 software TLB load instructions helpers */
2673 void do_load_6xx_tlb (int is_code)
2675 target_ulong RPN, CMP, EPN;
2676 int way;
2678 RPN = env->spr[SPR_RPA];
2679 if (is_code) {
2680 CMP = env->spr[SPR_ICMP];
2681 EPN = env->spr[SPR_IMISS];
2682 } else {
2683 CMP = env->spr[SPR_DCMP];
2684 EPN = env->spr[SPR_DMISS];
2686 way = (env->spr[SPR_SRR1] >> 17) & 1;
2687 #if defined (DEBUG_SOFTWARE_TLB)
2688 if (loglevel != 0) {
2689 fprintf(logfile, "%s: EPN " TDX " " ADDRX " PTE0 " ADDRX
2690 " PTE1 " ADDRX " way %d\n",
2691 __func__, T0, EPN, CMP, RPN, way);
2693 #endif
2694 /* Store this TLB */
2695 ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
2696 way, is_code, CMP, RPN);
2699 void do_load_74xx_tlb (int is_code)
2701 target_ulong RPN, CMP, EPN;
2702 int way;
2704 RPN = env->spr[SPR_PTELO];
2705 CMP = env->spr[SPR_PTEHI];
2706 EPN = env->spr[SPR_TLBMISS] & ~0x3;
2707 way = env->spr[SPR_TLBMISS] & 0x3;
2708 #if defined (DEBUG_SOFTWARE_TLB)
2709 if (loglevel != 0) {
2710 fprintf(logfile, "%s: EPN " TDX " " ADDRX " PTE0 " ADDRX
2711 " PTE1 " ADDRX " way %d\n",
2712 __func__, T0, EPN, CMP, RPN, way);
2714 #endif
2715 /* Store this TLB */
2716 ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
2717 way, is_code, CMP, RPN);
2720 static always_inline target_ulong booke_tlb_to_page_size (int size)
2722 return 1024 << (2 * size);
2725 static always_inline int booke_page_size_to_tlb (target_ulong page_size)
2727 int size;
2729 switch (page_size) {
2730 case 0x00000400UL:
2731 size = 0x0;
2732 break;
2733 case 0x00001000UL:
2734 size = 0x1;
2735 break;
2736 case 0x00004000UL:
2737 size = 0x2;
2738 break;
2739 case 0x00010000UL:
2740 size = 0x3;
2741 break;
2742 case 0x00040000UL:
2743 size = 0x4;
2744 break;
2745 case 0x00100000UL:
2746 size = 0x5;
2747 break;
2748 case 0x00400000UL:
2749 size = 0x6;
2750 break;
2751 case 0x01000000UL:
2752 size = 0x7;
2753 break;
2754 case 0x04000000UL:
2755 size = 0x8;
2756 break;
2757 case 0x10000000UL:
2758 size = 0x9;
2759 break;
2760 case 0x40000000UL:
2761 size = 0xA;
2762 break;
2763 #if defined (TARGET_PPC64)
2764 case 0x000100000000ULL:
2765 size = 0xB;
2766 break;
2767 case 0x000400000000ULL:
2768 size = 0xC;
2769 break;
2770 case 0x001000000000ULL:
2771 size = 0xD;
2772 break;
2773 case 0x004000000000ULL:
2774 size = 0xE;
2775 break;
2776 case 0x010000000000ULL:
2777 size = 0xF;
2778 break;
2779 #endif
2780 default:
2781 size = -1;
2782 break;
2785 return size;
2788 /* Helpers for 4xx TLB management */
2789 void do_4xx_tlbre_lo (void)
2791 ppcemb_tlb_t *tlb;
2792 int size;
2794 T0 &= 0x3F;
2795 tlb = &env->tlb[T0].tlbe;
2796 T0 = tlb->EPN;
2797 if (tlb->prot & PAGE_VALID)
2798 T0 |= 0x400;
2799 size = booke_page_size_to_tlb(tlb->size);
2800 if (size < 0 || size > 0x7)
2801 size = 1;
2802 T0 |= size << 7;
2803 env->spr[SPR_40x_PID] = tlb->PID;
2806 void do_4xx_tlbre_hi (void)
2808 ppcemb_tlb_t *tlb;
2810 T0 &= 0x3F;
2811 tlb = &env->tlb[T0].tlbe;
2812 T0 = tlb->RPN;
2813 if (tlb->prot & PAGE_EXEC)
2814 T0 |= 0x200;
2815 if (tlb->prot & PAGE_WRITE)
2816 T0 |= 0x100;
2819 void do_4xx_tlbwe_hi (void)
2821 ppcemb_tlb_t *tlb;
2822 target_ulong page, end;
2824 #if defined (DEBUG_SOFTWARE_TLB)
2825 if (loglevel != 0) {
2826 fprintf(logfile, "%s T0 " TDX " T1 " TDX "\n", __func__, T0, T1);
2828 #endif
2829 T0 &= 0x3F;
2830 tlb = &env->tlb[T0].tlbe;
2831 /* Invalidate previous TLB (if it's valid) */
2832 if (tlb->prot & PAGE_VALID) {
2833 end = tlb->EPN + tlb->size;
2834 #if defined (DEBUG_SOFTWARE_TLB)
2835 if (loglevel != 0) {
2836 fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX
2837 " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
2839 #endif
2840 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2841 tlb_flush_page(env, page);
2843 tlb->size = booke_tlb_to_page_size((T1 >> 7) & 0x7);
2844 /* We cannot handle TLB size < TARGET_PAGE_SIZE.
2845 * If this ever occurs, one should use the ppcemb target instead
2846 * of the ppc or ppc64 one
2848 if ((T1 & 0x40) && tlb->size < TARGET_PAGE_SIZE) {
2849 cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u "
2850 "are not supported (%d)\n",
2851 tlb->size, TARGET_PAGE_SIZE, (int)((T1 >> 7) & 0x7));
2853 tlb->EPN = T1 & ~(tlb->size - 1);
2854 if (T1 & 0x40)
2855 tlb->prot |= PAGE_VALID;
2856 else
2857 tlb->prot &= ~PAGE_VALID;
2858 if (T1 & 0x20) {
2859 /* XXX: TO BE FIXED */
2860 cpu_abort(env, "Little-endian TLB entries are not supported by now\n");
2862 tlb->PID = env->spr[SPR_40x_PID]; /* PID */
2863 tlb->attr = T1 & 0xFF;
2864 #if defined (DEBUG_SOFTWARE_TLB)
2865 if (loglevel != 0) {
2866 fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
2867 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
2868 (int)T0, tlb->RPN, tlb->EPN, tlb->size,
2869 tlb->prot & PAGE_READ ? 'r' : '-',
2870 tlb->prot & PAGE_WRITE ? 'w' : '-',
2871 tlb->prot & PAGE_EXEC ? 'x' : '-',
2872 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
2874 #endif
2875 /* Invalidate new TLB (if valid) */
2876 if (tlb->prot & PAGE_VALID) {
2877 end = tlb->EPN + tlb->size;
2878 #if defined (DEBUG_SOFTWARE_TLB)
2879 if (loglevel != 0) {
2880 fprintf(logfile, "%s: invalidate TLB %d start " ADDRX
2881 " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
2883 #endif
2884 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2885 tlb_flush_page(env, page);
2889 void do_4xx_tlbwe_lo (void)
2891 ppcemb_tlb_t *tlb;
2893 #if defined (DEBUG_SOFTWARE_TLB)
2894 if (loglevel != 0) {
2895 fprintf(logfile, "%s T0 " TDX " T1 " TDX "\n", __func__, T0, T1);
2897 #endif
2898 T0 &= 0x3F;
2899 tlb = &env->tlb[T0].tlbe;
2900 tlb->RPN = T1 & 0xFFFFFC00;
2901 tlb->prot = PAGE_READ;
2902 if (T1 & 0x200)
2903 tlb->prot |= PAGE_EXEC;
2904 if (T1 & 0x100)
2905 tlb->prot |= PAGE_WRITE;
2906 #if defined (DEBUG_SOFTWARE_TLB)
2907 if (loglevel != 0) {
2908 fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
2909 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
2910 (int)T0, tlb->RPN, tlb->EPN, tlb->size,
2911 tlb->prot & PAGE_READ ? 'r' : '-',
2912 tlb->prot & PAGE_WRITE ? 'w' : '-',
2913 tlb->prot & PAGE_EXEC ? 'x' : '-',
2914 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
2916 #endif
2919 /* PowerPC 440 TLB management */
2920 void do_440_tlbwe (int word)
2922 ppcemb_tlb_t *tlb;
2923 target_ulong EPN, RPN, size;
2924 int do_flush_tlbs;
2926 #if defined (DEBUG_SOFTWARE_TLB)
2927 if (loglevel != 0) {
2928 fprintf(logfile, "%s word %d T0 " TDX " T1 " TDX "\n",
2929 __func__, word, T0, T1);
2931 #endif
2932 do_flush_tlbs = 0;
2933 T0 &= 0x3F;
2934 tlb = &env->tlb[T0].tlbe;
2935 switch (word) {
2936 default:
2937 /* Just here to please gcc */
2938 case 0:
2939 EPN = T1 & 0xFFFFFC00;
2940 if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN)
2941 do_flush_tlbs = 1;
2942 tlb->EPN = EPN;
2943 size = booke_tlb_to_page_size((T1 >> 4) & 0xF);
2944 if ((tlb->prot & PAGE_VALID) && tlb->size < size)
2945 do_flush_tlbs = 1;
2946 tlb->size = size;
2947 tlb->attr &= ~0x1;
2948 tlb->attr |= (T1 >> 8) & 1;
2949 if (T1 & 0x200) {
2950 tlb->prot |= PAGE_VALID;
2951 } else {
2952 if (tlb->prot & PAGE_VALID) {
2953 tlb->prot &= ~PAGE_VALID;
2954 do_flush_tlbs = 1;
2957 tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF;
2958 if (do_flush_tlbs)
2959 tlb_flush(env, 1);
2960 break;
2961 case 1:
2962 RPN = T1 & 0xFFFFFC0F;
2963 if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN)
2964 tlb_flush(env, 1);
2965 tlb->RPN = RPN;
2966 break;
2967 case 2:
2968 tlb->attr = (tlb->attr & 0x1) | (T1 & 0x0000FF00);
2969 tlb->prot = tlb->prot & PAGE_VALID;
2970 if (T1 & 0x1)
2971 tlb->prot |= PAGE_READ << 4;
2972 if (T1 & 0x2)
2973 tlb->prot |= PAGE_WRITE << 4;
2974 if (T1 & 0x4)
2975 tlb->prot |= PAGE_EXEC << 4;
2976 if (T1 & 0x8)
2977 tlb->prot |= PAGE_READ;
2978 if (T1 & 0x10)
2979 tlb->prot |= PAGE_WRITE;
2980 if (T1 & 0x20)
2981 tlb->prot |= PAGE_EXEC;
2982 break;
2986 void do_440_tlbre (int word)
2988 ppcemb_tlb_t *tlb;
2989 int size;
2991 T0 &= 0x3F;
2992 tlb = &env->tlb[T0].tlbe;
2993 switch (word) {
2994 default:
2995 /* Just here to please gcc */
2996 case 0:
2997 T0 = tlb->EPN;
2998 size = booke_page_size_to_tlb(tlb->size);
2999 if (size < 0 || size > 0xF)
3000 size = 1;
3001 T0 |= size << 4;
3002 if (tlb->attr & 0x1)
3003 T0 |= 0x100;
3004 if (tlb->prot & PAGE_VALID)
3005 T0 |= 0x200;
3006 env->spr[SPR_440_MMUCR] &= ~0x000000FF;
3007 env->spr[SPR_440_MMUCR] |= tlb->PID;
3008 break;
3009 case 1:
3010 T0 = tlb->RPN;
3011 break;
3012 case 2:
3013 T0 = tlb->attr & ~0x1;
3014 if (tlb->prot & (PAGE_READ << 4))
3015 T0 |= 0x1;
3016 if (tlb->prot & (PAGE_WRITE << 4))
3017 T0 |= 0x2;
3018 if (tlb->prot & (PAGE_EXEC << 4))
3019 T0 |= 0x4;
3020 if (tlb->prot & PAGE_READ)
3021 T0 |= 0x8;
3022 if (tlb->prot & PAGE_WRITE)
3023 T0 |= 0x10;
3024 if (tlb->prot & PAGE_EXEC)
3025 T0 |= 0x20;
3026 break;
3029 #endif /* !CONFIG_USER_ONLY */