Fix usermode build.
[qemu/mini2440.git] / cpu-exec.c
blobea0e5b11c773aceaa5a2c3b3af8d31641040bc94
1 /*
2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "config.h"
21 #define CPU_NO_GLOBAL_REGS
22 #include "exec.h"
23 #include "disas.h"
24 #include "tcg.h"
26 #if !defined(CONFIG_SOFTMMU)
27 #undef EAX
28 #undef ECX
29 #undef EDX
30 #undef EBX
31 #undef ESP
32 #undef EBP
33 #undef ESI
34 #undef EDI
35 #undef EIP
36 #include <signal.h>
37 #include <sys/ucontext.h>
38 #endif
40 #if defined(__sparc__) && !defined(HOST_SOLARIS)
41 // Work around ugly bugs in glibc that mangle global register contents
42 #undef env
43 #define env cpu_single_env
44 #endif
46 int tb_invalidated_flag;
47 static unsigned long next_tb;
49 //#define DEBUG_EXEC
50 //#define DEBUG_SIGNAL
52 void cpu_loop_exit(void)
54 /* NOTE: the register at this point must be saved by hand because
55 longjmp restore them */
56 regs_to_env();
57 longjmp(env->jmp_env, 1);
60 #if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
61 #define reg_T2
62 #endif
64 /* exit the current TB from a signal handler. The host registers are
65 restored in a state compatible with the CPU emulator
67 void cpu_resume_from_signal(CPUState *env1, void *puc)
69 #if !defined(CONFIG_SOFTMMU)
70 struct ucontext *uc = puc;
71 #endif
73 env = env1;
75 /* XXX: restore cpu registers saved in host registers */
77 #if !defined(CONFIG_SOFTMMU)
78 if (puc) {
79 /* XXX: use siglongjmp ? */
80 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
82 #endif
83 longjmp(env->jmp_env, 1);
86 static TranslationBlock *tb_find_slow(target_ulong pc,
87 target_ulong cs_base,
88 uint64_t flags)
90 TranslationBlock *tb, **ptb1;
91 int code_gen_size;
92 unsigned int h;
93 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
94 uint8_t *tc_ptr;
96 spin_lock(&tb_lock);
98 tb_invalidated_flag = 0;
100 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
102 /* find translated block using physical mappings */
103 phys_pc = get_phys_addr_code(env, pc);
104 phys_page1 = phys_pc & TARGET_PAGE_MASK;
105 phys_page2 = -1;
106 h = tb_phys_hash_func(phys_pc);
107 ptb1 = &tb_phys_hash[h];
108 for(;;) {
109 tb = *ptb1;
110 if (!tb)
111 goto not_found;
112 if (tb->pc == pc &&
113 tb->page_addr[0] == phys_page1 &&
114 tb->cs_base == cs_base &&
115 tb->flags == flags) {
116 /* check next page if needed */
117 if (tb->page_addr[1] != -1) {
118 virt_page2 = (pc & TARGET_PAGE_MASK) +
119 TARGET_PAGE_SIZE;
120 phys_page2 = get_phys_addr_code(env, virt_page2);
121 if (tb->page_addr[1] == phys_page2)
122 goto found;
123 } else {
124 goto found;
127 ptb1 = &tb->phys_hash_next;
129 not_found:
130 /* if no translated code available, then translate it now */
131 tb = tb_alloc(pc);
132 if (!tb) {
133 /* flush must be done */
134 tb_flush(env);
135 /* cannot fail at this point */
136 tb = tb_alloc(pc);
137 /* don't forget to invalidate previous TB info */
138 tb_invalidated_flag = 1;
140 tc_ptr = code_gen_ptr;
141 tb->tc_ptr = tc_ptr;
142 tb->cs_base = cs_base;
143 tb->flags = flags;
144 cpu_gen_code(env, tb, &code_gen_size);
145 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
147 /* check next page if needed */
148 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
149 phys_page2 = -1;
150 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
151 phys_page2 = get_phys_addr_code(env, virt_page2);
153 tb_link_phys(tb, phys_pc, phys_page2);
155 found:
156 /* we add the TB in the virtual pc hash table */
157 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
158 spin_unlock(&tb_lock);
159 return tb;
162 static inline TranslationBlock *tb_find_fast(void)
164 TranslationBlock *tb;
165 target_ulong cs_base, pc;
166 uint64_t flags;
168 /* we record a subset of the CPU state. It will
169 always be the same before a given translated block
170 is executed. */
171 #if defined(TARGET_I386)
172 flags = env->hflags;
173 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
174 cs_base = env->segs[R_CS].base;
175 pc = cs_base + env->eip;
176 #elif defined(TARGET_ARM)
177 flags = env->thumb | (env->vfp.vec_len << 1)
178 | (env->vfp.vec_stride << 4);
179 if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
180 flags |= (1 << 6);
181 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
182 flags |= (1 << 7);
183 flags |= (env->condexec_bits << 8);
184 cs_base = 0;
185 pc = env->regs[15];
186 #elif defined(TARGET_SPARC)
187 #ifdef TARGET_SPARC64
188 // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
189 flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
190 | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
191 #else
192 // FPU enable . Supervisor
193 flags = (env->psref << 4) | env->psrs;
194 #endif
195 cs_base = env->npc;
196 pc = env->pc;
197 #elif defined(TARGET_PPC)
198 flags = env->hflags;
199 cs_base = 0;
200 pc = env->nip;
201 #elif defined(TARGET_MIPS)
202 flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
203 cs_base = 0;
204 pc = env->PC[env->current_tc];
205 #elif defined(TARGET_M68K)
206 flags = (env->fpcr & M68K_FPCR_PREC) /* Bit 6 */
207 | (env->sr & SR_S) /* Bit 13 */
208 | ((env->macsr >> 4) & 0xf); /* Bits 0-3 */
209 cs_base = 0;
210 pc = env->pc;
211 #elif defined(TARGET_SH4)
212 flags = env->flags;
213 cs_base = 0;
214 pc = env->pc;
215 #elif defined(TARGET_ALPHA)
216 flags = env->ps;
217 cs_base = 0;
218 pc = env->pc;
219 #elif defined(TARGET_CRIS)
220 flags = env->pregs[PR_CCS] & (U_FLAG | X_FLAG);
221 flags |= env->dslot;
222 cs_base = 0;
223 pc = env->pc;
224 #else
225 #error unsupported CPU
226 #endif
227 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
228 if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
229 tb->flags != flags, 0)) {
230 tb = tb_find_slow(pc, cs_base, flags);
231 /* Note: we do it here to avoid a gcc bug on Mac OS X when
232 doing it in tb_find_slow */
233 if (tb_invalidated_flag) {
234 /* as some TB could have been invalidated because
235 of memory exceptions while generating the code, we
236 must recompute the hash index here */
237 next_tb = 0;
240 return tb;
243 /* main execution loop */
245 int cpu_exec(CPUState *env1)
247 #define DECLARE_HOST_REGS 1
248 #include "hostregs_helper.h"
249 int ret, interrupt_request;
250 TranslationBlock *tb;
251 uint8_t *tc_ptr;
253 if (cpu_halted(env1) == EXCP_HALTED)
254 return EXCP_HALTED;
256 cpu_single_env = env1;
258 /* first we save global registers */
259 #define SAVE_HOST_REGS 1
260 #include "hostregs_helper.h"
261 env = env1;
263 env_to_regs();
264 #if defined(TARGET_I386)
265 /* put eflags in CPU temporary format */
266 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
267 DF = 1 - (2 * ((env->eflags >> 10) & 1));
268 CC_OP = CC_OP_EFLAGS;
269 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
270 #elif defined(TARGET_SPARC)
271 #elif defined(TARGET_M68K)
272 env->cc_op = CC_OP_FLAGS;
273 env->cc_dest = env->sr & 0xf;
274 env->cc_x = (env->sr >> 4) & 1;
275 #elif defined(TARGET_ALPHA)
276 #elif defined(TARGET_ARM)
277 #elif defined(TARGET_PPC)
278 #elif defined(TARGET_MIPS)
279 #elif defined(TARGET_SH4)
280 #elif defined(TARGET_CRIS)
281 /* XXXXX */
282 #else
283 #error unsupported target CPU
284 #endif
285 env->exception_index = -1;
287 /* prepare setjmp context for exception handling */
288 for(;;) {
289 if (setjmp(env->jmp_env) == 0) {
290 env->current_tb = NULL;
291 /* if an exception is pending, we execute it here */
292 if (env->exception_index >= 0) {
293 if (env->exception_index >= EXCP_INTERRUPT) {
294 /* exit request from the cpu execution loop */
295 ret = env->exception_index;
296 break;
297 } else if (env->user_mode_only) {
298 /* if user mode only, we simulate a fake exception
299 which will be handled outside the cpu execution
300 loop */
301 #if defined(TARGET_I386)
302 do_interrupt_user(env->exception_index,
303 env->exception_is_int,
304 env->error_code,
305 env->exception_next_eip);
306 /* successfully delivered */
307 env->old_exception = -1;
308 #endif
309 ret = env->exception_index;
310 break;
311 } else {
312 #if defined(TARGET_I386)
313 /* simulate a real cpu exception. On i386, it can
314 trigger new exceptions, but we do not handle
315 double or triple faults yet. */
316 do_interrupt(env->exception_index,
317 env->exception_is_int,
318 env->error_code,
319 env->exception_next_eip, 0);
320 /* successfully delivered */
321 env->old_exception = -1;
322 #elif defined(TARGET_PPC)
323 do_interrupt(env);
324 #elif defined(TARGET_MIPS)
325 do_interrupt(env);
326 #elif defined(TARGET_SPARC)
327 do_interrupt(env);
328 #elif defined(TARGET_ARM)
329 do_interrupt(env);
330 #elif defined(TARGET_SH4)
331 do_interrupt(env);
332 #elif defined(TARGET_ALPHA)
333 do_interrupt(env);
334 #elif defined(TARGET_CRIS)
335 do_interrupt(env);
336 #elif defined(TARGET_M68K)
337 do_interrupt(0);
338 #endif
340 env->exception_index = -1;
342 #ifdef USE_KQEMU
343 if (kqemu_is_ok(env) && env->interrupt_request == 0) {
344 int ret;
345 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
346 ret = kqemu_cpu_exec(env);
347 /* put eflags in CPU temporary format */
348 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
349 DF = 1 - (2 * ((env->eflags >> 10) & 1));
350 CC_OP = CC_OP_EFLAGS;
351 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
352 if (ret == 1) {
353 /* exception */
354 longjmp(env->jmp_env, 1);
355 } else if (ret == 2) {
356 /* softmmu execution needed */
357 } else {
358 if (env->interrupt_request != 0) {
359 /* hardware interrupt will be executed just after */
360 } else {
361 /* otherwise, we restart */
362 longjmp(env->jmp_env, 1);
366 #endif
368 next_tb = 0; /* force lookup of first TB */
369 for(;;) {
370 interrupt_request = env->interrupt_request;
371 if (__builtin_expect(interrupt_request, 0)
372 #if defined(TARGET_I386)
373 && env->hflags & HF_GIF_MASK
374 #endif
375 && likely(!(env->singlestep_enabled & SSTEP_NOIRQ))) {
376 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
377 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
378 env->exception_index = EXCP_DEBUG;
379 cpu_loop_exit();
381 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
382 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS)
383 if (interrupt_request & CPU_INTERRUPT_HALT) {
384 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
385 env->halted = 1;
386 env->exception_index = EXCP_HLT;
387 cpu_loop_exit();
389 #endif
390 #if defined(TARGET_I386)
391 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
392 !(env->hflags & HF_SMM_MASK)) {
393 svm_check_intercept(SVM_EXIT_SMI);
394 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
395 do_smm_enter();
396 next_tb = 0;
397 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
398 !(env->hflags & HF_NMI_MASK)) {
399 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
400 env->hflags |= HF_NMI_MASK;
401 do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
402 next_tb = 0;
403 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
404 (env->eflags & IF_MASK || env->hflags & HF_HIF_MASK) &&
405 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
406 int intno;
407 svm_check_intercept(SVM_EXIT_INTR);
408 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
409 intno = cpu_get_pic_interrupt(env);
410 if (loglevel & CPU_LOG_TB_IN_ASM) {
411 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
413 do_interrupt(intno, 0, 0, 0, 1);
414 /* ensure that no TB jump will be modified as
415 the program flow was changed */
416 next_tb = 0;
417 #if !defined(CONFIG_USER_ONLY)
418 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
419 (env->eflags & IF_MASK) && !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
420 int intno;
421 /* FIXME: this should respect TPR */
422 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
423 svm_check_intercept(SVM_EXIT_VINTR);
424 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
425 if (loglevel & CPU_LOG_TB_IN_ASM)
426 fprintf(logfile, "Servicing virtual hardware INT=0x%02x\n", intno);
427 do_interrupt(intno, 0, 0, -1, 1);
428 stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl),
429 ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl)) & ~V_IRQ_MASK);
430 next_tb = 0;
431 #endif
433 #elif defined(TARGET_PPC)
434 #if 0
435 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
436 cpu_ppc_reset(env);
438 #endif
439 if (interrupt_request & CPU_INTERRUPT_HARD) {
440 ppc_hw_interrupt(env);
441 if (env->pending_interrupts == 0)
442 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
443 next_tb = 0;
445 #elif defined(TARGET_MIPS)
446 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
447 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
448 (env->CP0_Status & (1 << CP0St_IE)) &&
449 !(env->CP0_Status & (1 << CP0St_EXL)) &&
450 !(env->CP0_Status & (1 << CP0St_ERL)) &&
451 !(env->hflags & MIPS_HFLAG_DM)) {
452 /* Raise it */
453 env->exception_index = EXCP_EXT_INTERRUPT;
454 env->error_code = 0;
455 do_interrupt(env);
456 next_tb = 0;
458 #elif defined(TARGET_SPARC)
459 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
460 (env->psret != 0)) {
461 int pil = env->interrupt_index & 15;
462 int type = env->interrupt_index & 0xf0;
464 if (((type == TT_EXTINT) &&
465 (pil == 15 || pil > env->psrpil)) ||
466 type != TT_EXTINT) {
467 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
468 env->exception_index = env->interrupt_index;
469 do_interrupt(env);
470 env->interrupt_index = 0;
471 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
472 cpu_check_irqs(env);
473 #endif
474 next_tb = 0;
476 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
477 //do_interrupt(0, 0, 0, 0, 0);
478 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
480 #elif defined(TARGET_ARM)
481 if (interrupt_request & CPU_INTERRUPT_FIQ
482 && !(env->uncached_cpsr & CPSR_F)) {
483 env->exception_index = EXCP_FIQ;
484 do_interrupt(env);
485 next_tb = 0;
487 /* ARMv7-M interrupt return works by loading a magic value
488 into the PC. On real hardware the load causes the
489 return to occur. The qemu implementation performs the
490 jump normally, then does the exception return when the
491 CPU tries to execute code at the magic address.
492 This will cause the magic PC value to be pushed to
493 the stack if an interrupt occured at the wrong time.
494 We avoid this by disabling interrupts when
495 pc contains a magic address. */
496 if (interrupt_request & CPU_INTERRUPT_HARD
497 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
498 || !(env->uncached_cpsr & CPSR_I))) {
499 env->exception_index = EXCP_IRQ;
500 do_interrupt(env);
501 next_tb = 0;
503 #elif defined(TARGET_SH4)
504 if (interrupt_request & CPU_INTERRUPT_HARD) {
505 do_interrupt(env);
506 next_tb = 0;
508 #elif defined(TARGET_ALPHA)
509 if (interrupt_request & CPU_INTERRUPT_HARD) {
510 do_interrupt(env);
511 next_tb = 0;
513 #elif defined(TARGET_CRIS)
514 if (interrupt_request & CPU_INTERRUPT_HARD) {
515 do_interrupt(env);
516 next_tb = 0;
518 #elif defined(TARGET_M68K)
519 if (interrupt_request & CPU_INTERRUPT_HARD
520 && ((env->sr & SR_I) >> SR_I_SHIFT)
521 < env->pending_level) {
522 /* Real hardware gets the interrupt vector via an
523 IACK cycle at this point. Current emulated
524 hardware doesn't rely on this, so we
525 provide/save the vector when the interrupt is
526 first signalled. */
527 env->exception_index = env->pending_vector;
528 do_interrupt(1);
529 next_tb = 0;
531 #endif
532 /* Don't use the cached interupt_request value,
533 do_interrupt may have updated the EXITTB flag. */
534 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
535 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
536 /* ensure that no TB jump will be modified as
537 the program flow was changed */
538 next_tb = 0;
540 if (interrupt_request & CPU_INTERRUPT_EXIT) {
541 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
542 env->exception_index = EXCP_INTERRUPT;
543 cpu_loop_exit();
546 #ifdef DEBUG_EXEC
547 if ((loglevel & CPU_LOG_TB_CPU)) {
548 /* restore flags in standard format */
549 regs_to_env();
550 #if defined(TARGET_I386)
551 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
552 cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
553 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
554 #elif defined(TARGET_ARM)
555 cpu_dump_state(env, logfile, fprintf, 0);
556 #elif defined(TARGET_SPARC)
557 cpu_dump_state(env, logfile, fprintf, 0);
558 #elif defined(TARGET_PPC)
559 cpu_dump_state(env, logfile, fprintf, 0);
560 #elif defined(TARGET_M68K)
561 cpu_m68k_flush_flags(env, env->cc_op);
562 env->cc_op = CC_OP_FLAGS;
563 env->sr = (env->sr & 0xffe0)
564 | env->cc_dest | (env->cc_x << 4);
565 cpu_dump_state(env, logfile, fprintf, 0);
566 #elif defined(TARGET_MIPS)
567 cpu_dump_state(env, logfile, fprintf, 0);
568 #elif defined(TARGET_SH4)
569 cpu_dump_state(env, logfile, fprintf, 0);
570 #elif defined(TARGET_ALPHA)
571 cpu_dump_state(env, logfile, fprintf, 0);
572 #elif defined(TARGET_CRIS)
573 cpu_dump_state(env, logfile, fprintf, 0);
574 #else
575 #error unsupported target CPU
576 #endif
578 #endif
579 tb = tb_find_fast();
580 #ifdef DEBUG_EXEC
581 if ((loglevel & CPU_LOG_EXEC)) {
582 fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
583 (long)tb->tc_ptr, tb->pc,
584 lookup_symbol(tb->pc));
586 #endif
587 /* see if we can patch the calling TB. When the TB
588 spans two pages, we cannot safely do a direct
589 jump. */
591 if (next_tb != 0 &&
592 #ifdef USE_KQEMU
593 (env->kqemu_enabled != 2) &&
594 #endif
595 tb->page_addr[1] == -1) {
596 spin_lock(&tb_lock);
597 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
598 spin_unlock(&tb_lock);
601 tc_ptr = tb->tc_ptr;
602 env->current_tb = tb;
603 /* execute the generated code */
604 #if defined(__sparc__) && !defined(HOST_SOLARIS)
605 #undef env
606 env = cpu_single_env;
607 #define env cpu_single_env
608 #endif
609 next_tb = tcg_qemu_tb_exec(tc_ptr);
610 env->current_tb = NULL;
611 /* reset soft MMU for next block (it can currently
612 only be set by a memory fault) */
613 #if defined(USE_KQEMU)
614 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
615 if (kqemu_is_ok(env) &&
616 (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
617 cpu_loop_exit();
619 #endif
620 } /* for(;;) */
621 } else {
622 env_to_regs();
624 } /* for(;;) */
627 #if defined(TARGET_I386)
628 /* restore flags in standard format */
629 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
630 #elif defined(TARGET_ARM)
631 /* XXX: Save/restore host fpu exception state?. */
632 #elif defined(TARGET_SPARC)
633 #elif defined(TARGET_PPC)
634 #elif defined(TARGET_M68K)
635 cpu_m68k_flush_flags(env, env->cc_op);
636 env->cc_op = CC_OP_FLAGS;
637 env->sr = (env->sr & 0xffe0)
638 | env->cc_dest | (env->cc_x << 4);
639 #elif defined(TARGET_MIPS)
640 #elif defined(TARGET_SH4)
641 #elif defined(TARGET_ALPHA)
642 #elif defined(TARGET_CRIS)
643 /* XXXXX */
644 #else
645 #error unsupported target CPU
646 #endif
648 /* restore global registers */
649 #include "hostregs_helper.h"
651 /* fail safe : never use cpu_single_env outside cpu_exec() */
652 cpu_single_env = NULL;
653 return ret;
656 /* must only be called from the generated code as an exception can be
657 generated */
658 void tb_invalidate_page_range(target_ulong start, target_ulong end)
660 /* XXX: cannot enable it yet because it yields to MMU exception
661 where NIP != read address on PowerPC */
662 #if 0
663 target_ulong phys_addr;
664 phys_addr = get_phys_addr_code(env, start);
665 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
666 #endif
669 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
671 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
673 CPUX86State *saved_env;
675 saved_env = env;
676 env = s;
677 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
678 selector &= 0xffff;
679 cpu_x86_load_seg_cache(env, seg_reg, selector,
680 (selector << 4), 0xffff, 0);
681 } else {
682 helper_load_seg(seg_reg, selector);
684 env = saved_env;
687 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
689 CPUX86State *saved_env;
691 saved_env = env;
692 env = s;
694 helper_fsave(ptr, data32);
696 env = saved_env;
699 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
701 CPUX86State *saved_env;
703 saved_env = env;
704 env = s;
706 helper_frstor(ptr, data32);
708 env = saved_env;
711 #endif /* TARGET_I386 */
713 #if !defined(CONFIG_SOFTMMU)
715 #if defined(TARGET_I386)
717 /* 'pc' is the host PC at which the exception was raised. 'address' is
718 the effective address of the memory exception. 'is_write' is 1 if a
719 write caused the exception and otherwise 0'. 'old_set' is the
720 signal set which should be restored */
721 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
722 int is_write, sigset_t *old_set,
723 void *puc)
725 TranslationBlock *tb;
726 int ret;
728 if (cpu_single_env)
729 env = cpu_single_env; /* XXX: find a correct solution for multithread */
730 #if defined(DEBUG_SIGNAL)
731 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
732 pc, address, is_write, *(unsigned long *)old_set);
733 #endif
734 /* XXX: locking issue */
735 if (is_write && page_unprotect(h2g(address), pc, puc)) {
736 return 1;
739 /* see if it is an MMU fault */
740 ret = cpu_x86_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
741 if (ret < 0)
742 return 0; /* not an MMU fault */
743 if (ret == 0)
744 return 1; /* the MMU fault was handled without causing real CPU fault */
745 /* now we have a real cpu fault */
746 tb = tb_find_pc(pc);
747 if (tb) {
748 /* the PC is inside the translated code. It means that we have
749 a virtual CPU fault */
750 cpu_restore_state(tb, env, pc, puc);
752 if (ret == 1) {
753 #if 0
754 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
755 env->eip, env->cr[2], env->error_code);
756 #endif
757 /* we restore the process signal mask as the sigreturn should
758 do it (XXX: use sigsetjmp) */
759 sigprocmask(SIG_SETMASK, old_set, NULL);
760 raise_exception_err(env->exception_index, env->error_code);
761 } else {
762 /* activate soft MMU for this block */
763 env->hflags |= HF_SOFTMMU_MASK;
764 cpu_resume_from_signal(env, puc);
766 /* never comes here */
767 return 1;
770 #elif defined(TARGET_ARM)
771 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
772 int is_write, sigset_t *old_set,
773 void *puc)
775 TranslationBlock *tb;
776 int ret;
778 if (cpu_single_env)
779 env = cpu_single_env; /* XXX: find a correct solution for multithread */
780 #if defined(DEBUG_SIGNAL)
781 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
782 pc, address, is_write, *(unsigned long *)old_set);
783 #endif
784 /* XXX: locking issue */
785 if (is_write && page_unprotect(h2g(address), pc, puc)) {
786 return 1;
788 /* see if it is an MMU fault */
789 ret = cpu_arm_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
790 if (ret < 0)
791 return 0; /* not an MMU fault */
792 if (ret == 0)
793 return 1; /* the MMU fault was handled without causing real CPU fault */
794 /* now we have a real cpu fault */
795 tb = tb_find_pc(pc);
796 if (tb) {
797 /* the PC is inside the translated code. It means that we have
798 a virtual CPU fault */
799 cpu_restore_state(tb, env, pc, puc);
801 /* we restore the process signal mask as the sigreturn should
802 do it (XXX: use sigsetjmp) */
803 sigprocmask(SIG_SETMASK, old_set, NULL);
804 cpu_loop_exit();
805 /* never comes here */
806 return 1;
808 #elif defined(TARGET_SPARC)
809 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
810 int is_write, sigset_t *old_set,
811 void *puc)
813 TranslationBlock *tb;
814 int ret;
816 if (cpu_single_env)
817 env = cpu_single_env; /* XXX: find a correct solution for multithread */
818 #if defined(DEBUG_SIGNAL)
819 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
820 pc, address, is_write, *(unsigned long *)old_set);
821 #endif
822 /* XXX: locking issue */
823 if (is_write && page_unprotect(h2g(address), pc, puc)) {
824 return 1;
826 /* see if it is an MMU fault */
827 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
828 if (ret < 0)
829 return 0; /* not an MMU fault */
830 if (ret == 0)
831 return 1; /* the MMU fault was handled without causing real CPU fault */
832 /* now we have a real cpu fault */
833 tb = tb_find_pc(pc);
834 if (tb) {
835 /* the PC is inside the translated code. It means that we have
836 a virtual CPU fault */
837 cpu_restore_state(tb, env, pc, puc);
839 /* we restore the process signal mask as the sigreturn should
840 do it (XXX: use sigsetjmp) */
841 sigprocmask(SIG_SETMASK, old_set, NULL);
842 cpu_loop_exit();
843 /* never comes here */
844 return 1;
846 #elif defined (TARGET_PPC)
847 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
848 int is_write, sigset_t *old_set,
849 void *puc)
851 TranslationBlock *tb;
852 int ret;
854 if (cpu_single_env)
855 env = cpu_single_env; /* XXX: find a correct solution for multithread */
856 #if defined(DEBUG_SIGNAL)
857 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
858 pc, address, is_write, *(unsigned long *)old_set);
859 #endif
860 /* XXX: locking issue */
861 if (is_write && page_unprotect(h2g(address), pc, puc)) {
862 return 1;
865 /* see if it is an MMU fault */
866 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
867 if (ret < 0)
868 return 0; /* not an MMU fault */
869 if (ret == 0)
870 return 1; /* the MMU fault was handled without causing real CPU fault */
872 /* now we have a real cpu fault */
873 tb = tb_find_pc(pc);
874 if (tb) {
875 /* the PC is inside the translated code. It means that we have
876 a virtual CPU fault */
877 cpu_restore_state(tb, env, pc, puc);
879 if (ret == 1) {
880 #if 0
881 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
882 env->nip, env->error_code, tb);
883 #endif
884 /* we restore the process signal mask as the sigreturn should
885 do it (XXX: use sigsetjmp) */
886 sigprocmask(SIG_SETMASK, old_set, NULL);
887 do_raise_exception_err(env->exception_index, env->error_code);
888 } else {
889 /* activate soft MMU for this block */
890 cpu_resume_from_signal(env, puc);
892 /* never comes here */
893 return 1;
896 #elif defined(TARGET_M68K)
897 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
898 int is_write, sigset_t *old_set,
899 void *puc)
901 TranslationBlock *tb;
902 int ret;
904 if (cpu_single_env)
905 env = cpu_single_env; /* XXX: find a correct solution for multithread */
906 #if defined(DEBUG_SIGNAL)
907 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
908 pc, address, is_write, *(unsigned long *)old_set);
909 #endif
910 /* XXX: locking issue */
911 if (is_write && page_unprotect(address, pc, puc)) {
912 return 1;
914 /* see if it is an MMU fault */
915 ret = cpu_m68k_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
916 if (ret < 0)
917 return 0; /* not an MMU fault */
918 if (ret == 0)
919 return 1; /* the MMU fault was handled without causing real CPU fault */
920 /* now we have a real cpu fault */
921 tb = tb_find_pc(pc);
922 if (tb) {
923 /* the PC is inside the translated code. It means that we have
924 a virtual CPU fault */
925 cpu_restore_state(tb, env, pc, puc);
927 /* we restore the process signal mask as the sigreturn should
928 do it (XXX: use sigsetjmp) */
929 sigprocmask(SIG_SETMASK, old_set, NULL);
930 cpu_loop_exit();
931 /* never comes here */
932 return 1;
935 #elif defined (TARGET_MIPS)
936 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
937 int is_write, sigset_t *old_set,
938 void *puc)
940 TranslationBlock *tb;
941 int ret;
943 if (cpu_single_env)
944 env = cpu_single_env; /* XXX: find a correct solution for multithread */
945 #if defined(DEBUG_SIGNAL)
946 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
947 pc, address, is_write, *(unsigned long *)old_set);
948 #endif
949 /* XXX: locking issue */
950 if (is_write && page_unprotect(h2g(address), pc, puc)) {
951 return 1;
954 /* see if it is an MMU fault */
955 ret = cpu_mips_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
956 if (ret < 0)
957 return 0; /* not an MMU fault */
958 if (ret == 0)
959 return 1; /* the MMU fault was handled without causing real CPU fault */
961 /* now we have a real cpu fault */
962 tb = tb_find_pc(pc);
963 if (tb) {
964 /* the PC is inside the translated code. It means that we have
965 a virtual CPU fault */
966 cpu_restore_state(tb, env, pc, puc);
968 if (ret == 1) {
969 #if 0
970 printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
971 env->PC, env->error_code, tb);
972 #endif
973 /* we restore the process signal mask as the sigreturn should
974 do it (XXX: use sigsetjmp) */
975 sigprocmask(SIG_SETMASK, old_set, NULL);
976 do_raise_exception_err(env->exception_index, env->error_code);
977 } else {
978 /* activate soft MMU for this block */
979 cpu_resume_from_signal(env, puc);
981 /* never comes here */
982 return 1;
985 #elif defined (TARGET_SH4)
986 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
987 int is_write, sigset_t *old_set,
988 void *puc)
990 TranslationBlock *tb;
991 int ret;
993 if (cpu_single_env)
994 env = cpu_single_env; /* XXX: find a correct solution for multithread */
995 #if defined(DEBUG_SIGNAL)
996 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
997 pc, address, is_write, *(unsigned long *)old_set);
998 #endif
999 /* XXX: locking issue */
1000 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1001 return 1;
1004 /* see if it is an MMU fault */
1005 ret = cpu_sh4_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1006 if (ret < 0)
1007 return 0; /* not an MMU fault */
1008 if (ret == 0)
1009 return 1; /* the MMU fault was handled without causing real CPU fault */
1011 /* now we have a real cpu fault */
1012 tb = tb_find_pc(pc);
1013 if (tb) {
1014 /* the PC is inside the translated code. It means that we have
1015 a virtual CPU fault */
1016 cpu_restore_state(tb, env, pc, puc);
1018 #if 0
1019 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1020 env->nip, env->error_code, tb);
1021 #endif
1022 /* we restore the process signal mask as the sigreturn should
1023 do it (XXX: use sigsetjmp) */
1024 sigprocmask(SIG_SETMASK, old_set, NULL);
1025 cpu_loop_exit();
1026 /* never comes here */
1027 return 1;
1030 #elif defined (TARGET_ALPHA)
1031 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1032 int is_write, sigset_t *old_set,
1033 void *puc)
1035 TranslationBlock *tb;
1036 int ret;
1038 if (cpu_single_env)
1039 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1040 #if defined(DEBUG_SIGNAL)
1041 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1042 pc, address, is_write, *(unsigned long *)old_set);
1043 #endif
1044 /* XXX: locking issue */
1045 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1046 return 1;
1049 /* see if it is an MMU fault */
1050 ret = cpu_alpha_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1051 if (ret < 0)
1052 return 0; /* not an MMU fault */
1053 if (ret == 0)
1054 return 1; /* the MMU fault was handled without causing real CPU fault */
1056 /* now we have a real cpu fault */
1057 tb = tb_find_pc(pc);
1058 if (tb) {
1059 /* the PC is inside the translated code. It means that we have
1060 a virtual CPU fault */
1061 cpu_restore_state(tb, env, pc, puc);
1063 #if 0
1064 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1065 env->nip, env->error_code, tb);
1066 #endif
1067 /* we restore the process signal mask as the sigreturn should
1068 do it (XXX: use sigsetjmp) */
1069 sigprocmask(SIG_SETMASK, old_set, NULL);
1070 cpu_loop_exit();
1071 /* never comes here */
1072 return 1;
1074 #elif defined (TARGET_CRIS)
1075 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1076 int is_write, sigset_t *old_set,
1077 void *puc)
1079 TranslationBlock *tb;
1080 int ret;
1082 if (cpu_single_env)
1083 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1084 #if defined(DEBUG_SIGNAL)
1085 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1086 pc, address, is_write, *(unsigned long *)old_set);
1087 #endif
1088 /* XXX: locking issue */
1089 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1090 return 1;
1093 /* see if it is an MMU fault */
1094 ret = cpu_cris_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1095 if (ret < 0)
1096 return 0; /* not an MMU fault */
1097 if (ret == 0)
1098 return 1; /* the MMU fault was handled without causing real CPU fault */
1100 /* now we have a real cpu fault */
1101 tb = tb_find_pc(pc);
1102 if (tb) {
1103 /* the PC is inside the translated code. It means that we have
1104 a virtual CPU fault */
1105 cpu_restore_state(tb, env, pc, puc);
1107 /* we restore the process signal mask as the sigreturn should
1108 do it (XXX: use sigsetjmp) */
1109 sigprocmask(SIG_SETMASK, old_set, NULL);
1110 cpu_loop_exit();
1111 /* never comes here */
1112 return 1;
1115 #else
1116 #error unsupported target CPU
1117 #endif
1119 #if defined(__i386__)
1121 #if defined(__APPLE__)
1122 # include <sys/ucontext.h>
1124 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1125 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1126 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1127 #else
1128 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1129 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1130 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1131 #endif
1133 int cpu_signal_handler(int host_signum, void *pinfo,
1134 void *puc)
1136 siginfo_t *info = pinfo;
1137 struct ucontext *uc = puc;
1138 unsigned long pc;
1139 int trapno;
1141 #ifndef REG_EIP
1142 /* for glibc 2.1 */
1143 #define REG_EIP EIP
1144 #define REG_ERR ERR
1145 #define REG_TRAPNO TRAPNO
1146 #endif
1147 pc = EIP_sig(uc);
1148 trapno = TRAP_sig(uc);
1149 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1150 trapno == 0xe ?
1151 (ERROR_sig(uc) >> 1) & 1 : 0,
1152 &uc->uc_sigmask, puc);
1155 #elif defined(__x86_64__)
1157 int cpu_signal_handler(int host_signum, void *pinfo,
1158 void *puc)
1160 siginfo_t *info = pinfo;
1161 struct ucontext *uc = puc;
1162 unsigned long pc;
1164 pc = uc->uc_mcontext.gregs[REG_RIP];
1165 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1166 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
1167 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1168 &uc->uc_sigmask, puc);
1171 #elif defined(__powerpc__)
1173 /***********************************************************************
1174 * signal context platform-specific definitions
1175 * From Wine
1177 #ifdef linux
1178 /* All Registers access - only for local access */
1179 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1180 /* Gpr Registers access */
1181 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1182 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1183 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1184 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1185 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1186 # define LR_sig(context) REG_sig(link, context) /* Link register */
1187 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1188 /* Float Registers access */
1189 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1190 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1191 /* Exception Registers access */
1192 # define DAR_sig(context) REG_sig(dar, context)
1193 # define DSISR_sig(context) REG_sig(dsisr, context)
1194 # define TRAP_sig(context) REG_sig(trap, context)
1195 #endif /* linux */
1197 #ifdef __APPLE__
1198 # include <sys/ucontext.h>
1199 typedef struct ucontext SIGCONTEXT;
1200 /* All Registers access - only for local access */
1201 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1202 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1203 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1204 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1205 /* Gpr Registers access */
1206 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1207 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1208 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1209 # define CTR_sig(context) REG_sig(ctr, context)
1210 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1211 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1212 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1213 /* Float Registers access */
1214 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1215 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1216 /* Exception Registers access */
1217 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1218 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1219 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1220 #endif /* __APPLE__ */
1222 int cpu_signal_handler(int host_signum, void *pinfo,
1223 void *puc)
1225 siginfo_t *info = pinfo;
1226 struct ucontext *uc = puc;
1227 unsigned long pc;
1228 int is_write;
1230 pc = IAR_sig(uc);
1231 is_write = 0;
1232 #if 0
1233 /* ppc 4xx case */
1234 if (DSISR_sig(uc) & 0x00800000)
1235 is_write = 1;
1236 #else
1237 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1238 is_write = 1;
1239 #endif
1240 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1241 is_write, &uc->uc_sigmask, puc);
1244 #elif defined(__alpha__)
1246 int cpu_signal_handler(int host_signum, void *pinfo,
1247 void *puc)
1249 siginfo_t *info = pinfo;
1250 struct ucontext *uc = puc;
1251 uint32_t *pc = uc->uc_mcontext.sc_pc;
1252 uint32_t insn = *pc;
1253 int is_write = 0;
1255 /* XXX: need kernel patch to get write flag faster */
1256 switch (insn >> 26) {
1257 case 0x0d: // stw
1258 case 0x0e: // stb
1259 case 0x0f: // stq_u
1260 case 0x24: // stf
1261 case 0x25: // stg
1262 case 0x26: // sts
1263 case 0x27: // stt
1264 case 0x2c: // stl
1265 case 0x2d: // stq
1266 case 0x2e: // stl_c
1267 case 0x2f: // stq_c
1268 is_write = 1;
1271 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1272 is_write, &uc->uc_sigmask, puc);
1274 #elif defined(__sparc__)
1276 int cpu_signal_handler(int host_signum, void *pinfo,
1277 void *puc)
1279 siginfo_t *info = pinfo;
1280 int is_write;
1281 uint32_t insn;
1282 #if !defined(__arch64__) || defined(HOST_SOLARIS)
1283 uint32_t *regs = (uint32_t *)(info + 1);
1284 void *sigmask = (regs + 20);
1285 /* XXX: is there a standard glibc define ? */
1286 unsigned long pc = regs[1];
1287 #else
1288 struct sigcontext *sc = puc;
1289 unsigned long pc = sc->sigc_regs.tpc;
1290 void *sigmask = (void *)sc->sigc_mask;
1291 #endif
1293 /* XXX: need kernel patch to get write flag faster */
1294 is_write = 0;
1295 insn = *(uint32_t *)pc;
1296 if ((insn >> 30) == 3) {
1297 switch((insn >> 19) & 0x3f) {
1298 case 0x05: // stb
1299 case 0x06: // sth
1300 case 0x04: // st
1301 case 0x07: // std
1302 case 0x24: // stf
1303 case 0x27: // stdf
1304 case 0x25: // stfsr
1305 is_write = 1;
1306 break;
1309 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1310 is_write, sigmask, NULL);
1313 #elif defined(__arm__)
1315 int cpu_signal_handler(int host_signum, void *pinfo,
1316 void *puc)
1318 siginfo_t *info = pinfo;
1319 struct ucontext *uc = puc;
1320 unsigned long pc;
1321 int is_write;
1323 pc = uc->uc_mcontext.arm_pc;
1324 /* XXX: compute is_write */
1325 is_write = 0;
1326 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1327 is_write,
1328 &uc->uc_sigmask, puc);
1331 #elif defined(__mc68000)
1333 int cpu_signal_handler(int host_signum, void *pinfo,
1334 void *puc)
1336 siginfo_t *info = pinfo;
1337 struct ucontext *uc = puc;
1338 unsigned long pc;
1339 int is_write;
1341 pc = uc->uc_mcontext.gregs[16];
1342 /* XXX: compute is_write */
1343 is_write = 0;
1344 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1345 is_write,
1346 &uc->uc_sigmask, puc);
1349 #elif defined(__ia64)
1351 #ifndef __ISR_VALID
1352 /* This ought to be in <bits/siginfo.h>... */
1353 # define __ISR_VALID 1
1354 #endif
1356 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1358 siginfo_t *info = pinfo;
1359 struct ucontext *uc = puc;
1360 unsigned long ip;
1361 int is_write = 0;
1363 ip = uc->uc_mcontext.sc_ip;
1364 switch (host_signum) {
1365 case SIGILL:
1366 case SIGFPE:
1367 case SIGSEGV:
1368 case SIGBUS:
1369 case SIGTRAP:
1370 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1371 /* ISR.W (write-access) is bit 33: */
1372 is_write = (info->si_isr >> 33) & 1;
1373 break;
1375 default:
1376 break;
1378 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1379 is_write,
1380 &uc->uc_sigmask, puc);
1383 #elif defined(__s390__)
1385 int cpu_signal_handler(int host_signum, void *pinfo,
1386 void *puc)
1388 siginfo_t *info = pinfo;
1389 struct ucontext *uc = puc;
1390 unsigned long pc;
1391 int is_write;
1393 pc = uc->uc_mcontext.psw.addr;
1394 /* XXX: compute is_write */
1395 is_write = 0;
1396 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1397 is_write, &uc->uc_sigmask, puc);
1400 #elif defined(__mips__)
1402 int cpu_signal_handler(int host_signum, void *pinfo,
1403 void *puc)
1405 siginfo_t *info = pinfo;
1406 struct ucontext *uc = puc;
1407 greg_t pc = uc->uc_mcontext.pc;
1408 int is_write;
1410 /* XXX: compute is_write */
1411 is_write = 0;
1412 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1413 is_write, &uc->uc_sigmask, puc);
1416 #elif defined(__hppa__)
1418 int cpu_signal_handler(int host_signum, void *pinfo,
1419 void *puc)
1421 struct siginfo *info = pinfo;
1422 struct ucontext *uc = puc;
1423 unsigned long pc;
1424 int is_write;
1426 pc = uc->uc_mcontext.sc_iaoq[0];
1427 /* FIXME: compute is_write */
1428 is_write = 0;
1429 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1430 is_write,
1431 &uc->uc_sigmask, puc);
1434 #else
1436 #error host CPU specific signal handler needed
1438 #endif
1440 #endif /* !defined(CONFIG_SOFTMMU) */