Use external clock in wm8750 slave mode.
[qemu/mini2440.git] / hw / musicpal.c
blob5cef81cda00824f44e48193f24cecd7bdf4e3de8
1 /*
2 * Marvell MV88W8618 / Freecom MusicPal emulation.
4 * Copyright (c) 2008 Jan Kiszka
6 * This code is licenced under the GNU GPL v2.
7 */
9 #include "hw.h"
10 #include "arm-misc.h"
11 #include "devices.h"
12 #include "net.h"
13 #include "sysemu.h"
14 #include "boards.h"
15 #include "pc.h"
16 #include "qemu-timer.h"
17 #include "block.h"
18 #include "flash.h"
19 #include "console.h"
20 #include "audio/audio.h"
21 #include "i2c.h"
23 #define MP_ETH_BASE 0x80008000
24 #define MP_ETH_SIZE 0x00001000
26 #define MP_UART1_BASE 0x8000C840
27 #define MP_UART2_BASE 0x8000C940
29 #define MP_FLASHCFG_BASE 0x90006000
30 #define MP_FLASHCFG_SIZE 0x00001000
32 #define MP_AUDIO_BASE 0x90007000
33 #define MP_AUDIO_SIZE 0x00001000
35 #define MP_PIC_BASE 0x90008000
36 #define MP_PIC_SIZE 0x00001000
38 #define MP_PIT_BASE 0x90009000
39 #define MP_PIT_SIZE 0x00001000
41 #define MP_LCD_BASE 0x9000c000
42 #define MP_LCD_SIZE 0x00001000
44 #define MP_SRAM_BASE 0xC0000000
45 #define MP_SRAM_SIZE 0x00020000
47 #define MP_RAM_DEFAULT_SIZE 32*1024*1024
48 #define MP_FLASH_SIZE_MAX 32*1024*1024
50 #define MP_TIMER1_IRQ 4
51 /* ... */
52 #define MP_TIMER4_IRQ 7
53 #define MP_EHCI_IRQ 8
54 #define MP_ETH_IRQ 9
55 #define MP_UART1_IRQ 11
56 #define MP_UART2_IRQ 11
57 #define MP_GPIO_IRQ 12
58 #define MP_RTC_IRQ 28
59 #define MP_AUDIO_IRQ 30
61 static uint32_t gpio_in_state = 0xffffffff;
62 static uint32_t gpio_out_state;
63 static ram_addr_t sram_off;
65 /* Address conversion helpers */
66 static void *target2host_addr(uint32_t addr)
68 if (addr < MP_SRAM_BASE) {
69 if (addr >= MP_RAM_DEFAULT_SIZE)
70 return NULL;
71 return (void *)(phys_ram_base + addr);
72 } else {
73 if (addr >= MP_SRAM_BASE + MP_SRAM_SIZE)
74 return NULL;
75 return (void *)(phys_ram_base + sram_off + addr - MP_SRAM_BASE);
79 static uint32_t host2target_addr(void *addr)
81 if (addr < ((void *)phys_ram_base) + sram_off)
82 return (unsigned long)addr - (unsigned long)phys_ram_base;
83 else
84 return (unsigned long)addr - (unsigned long)phys_ram_base -
85 sram_off + MP_SRAM_BASE;
89 typedef enum i2c_state {
90 STOPPED = 0,
91 INITIALIZING,
92 SENDING_BIT7,
93 SENDING_BIT6,
94 SENDING_BIT5,
95 SENDING_BIT4,
96 SENDING_BIT3,
97 SENDING_BIT2,
98 SENDING_BIT1,
99 SENDING_BIT0,
100 WAITING_FOR_ACK,
101 RECEIVING_BIT7,
102 RECEIVING_BIT6,
103 RECEIVING_BIT5,
104 RECEIVING_BIT4,
105 RECEIVING_BIT3,
106 RECEIVING_BIT2,
107 RECEIVING_BIT1,
108 RECEIVING_BIT0,
109 SENDING_ACK
110 } i2c_state;
112 typedef struct i2c_interface {
113 i2c_bus *bus;
114 i2c_state state;
115 int last_data;
116 int last_clock;
117 uint8_t buffer;
118 int current_addr;
119 } i2c_interface;
121 static void i2c_enter_stop(i2c_interface *i2c)
123 if (i2c->current_addr >= 0)
124 i2c_end_transfer(i2c->bus);
125 i2c->current_addr = -1;
126 i2c->state = STOPPED;
129 static void i2c_state_update(i2c_interface *i2c, int data, int clock)
131 if (!i2c)
132 return;
134 switch (i2c->state) {
135 case STOPPED:
136 if (data == 0 && i2c->last_data == 1 && clock == 1)
137 i2c->state = INITIALIZING;
138 break;
140 case INITIALIZING:
141 if (clock == 0 && i2c->last_clock == 1 && data == 0)
142 i2c->state = SENDING_BIT7;
143 else
144 i2c_enter_stop(i2c);
145 break;
147 case SENDING_BIT7 ... SENDING_BIT0:
148 if (clock == 0 && i2c->last_clock == 1) {
149 i2c->buffer = (i2c->buffer << 1) | data;
150 i2c->state++; /* will end up in WAITING_FOR_ACK */
151 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
152 i2c_enter_stop(i2c);
153 break;
155 case WAITING_FOR_ACK:
156 if (clock == 0 && i2c->last_clock == 1) {
157 if (i2c->current_addr < 0) {
158 i2c->current_addr = i2c->buffer;
159 i2c_start_transfer(i2c->bus, i2c->current_addr & 0xfe,
160 i2c->buffer & 1);
161 } else
162 i2c_send(i2c->bus, i2c->buffer);
163 if (i2c->current_addr & 1) {
164 i2c->state = RECEIVING_BIT7;
165 i2c->buffer = i2c_recv(i2c->bus);
166 } else
167 i2c->state = SENDING_BIT7;
168 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
169 i2c_enter_stop(i2c);
170 break;
172 case RECEIVING_BIT7 ... RECEIVING_BIT0:
173 if (clock == 0 && i2c->last_clock == 1) {
174 i2c->state++; /* will end up in SENDING_ACK */
175 i2c->buffer <<= 1;
176 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
177 i2c_enter_stop(i2c);
178 break;
180 case SENDING_ACK:
181 if (clock == 0 && i2c->last_clock == 1) {
182 i2c->state = RECEIVING_BIT7;
183 if (data == 0)
184 i2c->buffer = i2c_recv(i2c->bus);
185 else
186 i2c_nack(i2c->bus);
187 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
188 i2c_enter_stop(i2c);
189 break;
192 i2c->last_data = data;
193 i2c->last_clock = clock;
196 static int i2c_get_data(i2c_interface *i2c)
198 if (!i2c)
199 return 0;
201 switch (i2c->state) {
202 case RECEIVING_BIT7 ... RECEIVING_BIT0:
203 return (i2c->buffer >> 7);
205 case WAITING_FOR_ACK:
206 default:
207 return 0;
211 static i2c_interface *mixer_i2c;
213 #ifdef HAS_AUDIO
215 /* Audio register offsets */
216 #define MP_AUDIO_PLAYBACK_MODE 0x00
217 #define MP_AUDIO_CLOCK_DIV 0x18
218 #define MP_AUDIO_IRQ_STATUS 0x20
219 #define MP_AUDIO_IRQ_ENABLE 0x24
220 #define MP_AUDIO_TX_START_LO 0x28
221 #define MP_AUDIO_TX_THRESHOLD 0x2C
222 #define MP_AUDIO_TX_STATUS 0x38
223 #define MP_AUDIO_TX_START_HI 0x40
225 /* Status register and IRQ enable bits */
226 #define MP_AUDIO_TX_HALF (1 << 6)
227 #define MP_AUDIO_TX_FULL (1 << 7)
229 /* Playback mode bits */
230 #define MP_AUDIO_16BIT_SAMPLE (1 << 0)
231 #define MP_AUDIO_PLAYBACK_EN (1 << 7)
232 #define MP_AUDIO_CLOCK_24MHZ (1 << 9)
234 /* Wolfson 8750 I2C address */
235 #define MP_WM_ADDR 0x34
237 const char audio_name[] = "mv88w8618";
239 typedef struct musicpal_audio_state {
240 uint32_t base;
241 qemu_irq irq;
242 uint32_t playback_mode;
243 uint32_t status;
244 uint32_t irq_enable;
245 unsigned long phys_buf;
246 void *target_buffer;
247 unsigned int threshold;
248 unsigned int play_pos;
249 unsigned int last_free;
250 uint32_t clock_div;
251 i2c_slave *wm;
252 } musicpal_audio_state;
254 static void audio_callback(void *opaque, int free_out, int free_in)
256 musicpal_audio_state *s = opaque;
257 int16_t *codec_buffer;
258 int pos, block_size;
260 if (!(s->playback_mode & MP_AUDIO_PLAYBACK_EN))
261 return;
263 if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE)
264 free_out <<= 2;
265 else
266 free_out <<= 1;
268 block_size = s->threshold/2;
269 if (free_out - s->last_free < block_size)
270 return;
272 if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE)
273 memcpy(wm8750_dac_buffer(s->wm, block_size >> 2),
274 (uint32_t *)(s->target_buffer + s->play_pos),
275 block_size);
276 else {
277 codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
278 for (pos = 0; pos < block_size; pos += 2) {
279 *codec_buffer++ = cpu_to_le16(256 *
280 *(int8_t *)(s->target_buffer + s->play_pos + pos));
281 *codec_buffer++ = cpu_to_le16(256 *
282 *(int8_t *)(s->target_buffer + s->play_pos + pos + 1));
285 wm8750_dac_commit(s->wm);
287 s->last_free = free_out - block_size;
289 if (s->play_pos == 0) {
290 s->status |= MP_AUDIO_TX_HALF;
291 s->play_pos = block_size;
292 } else {
293 s->status |= MP_AUDIO_TX_FULL;
294 s->play_pos = 0;
297 if (s->status & s->irq_enable)
298 qemu_irq_raise(s->irq);
301 static void musicpal_audio_clock_update(musicpal_audio_state *s)
303 int rate;
305 if (s->playback_mode & MP_AUDIO_CLOCK_24MHZ)
306 rate = 24576000 / 64; /* 24.576MHz */
307 else
308 rate = 11289600 / 64; /* 11.2896MHz */
310 rate /= ((s->clock_div >> 8) & 0xff) + 1;
312 wm8750_set_bclk_in(s->wm, rate / 2);
315 static uint32_t musicpal_audio_read(void *opaque, target_phys_addr_t offset)
317 musicpal_audio_state *s = opaque;
319 offset -= s->base;
320 switch (offset) {
321 case MP_AUDIO_PLAYBACK_MODE:
322 return s->playback_mode;
324 case MP_AUDIO_CLOCK_DIV:
325 return s->clock_div;
327 case MP_AUDIO_IRQ_STATUS:
328 return s->status;
330 case MP_AUDIO_IRQ_ENABLE:
331 return s->irq_enable;
333 case MP_AUDIO_TX_STATUS:
334 return s->play_pos >> 2;
336 default:
337 return 0;
341 static void musicpal_audio_write(void *opaque, target_phys_addr_t offset,
342 uint32_t value)
344 musicpal_audio_state *s = opaque;
346 offset -= s->base;
347 switch (offset) {
348 case MP_AUDIO_PLAYBACK_MODE:
349 if (value & MP_AUDIO_PLAYBACK_EN &&
350 !(s->playback_mode & MP_AUDIO_PLAYBACK_EN)) {
351 s->status = 0;
352 s->last_free = 0;
353 s->play_pos = 0;
355 s->playback_mode = value;
356 musicpal_audio_clock_update(s);
357 break;
359 case MP_AUDIO_CLOCK_DIV:
360 s->clock_div = value;
361 s->last_free = 0;
362 s->play_pos = 0;
363 musicpal_audio_clock_update(s);
364 break;
366 case MP_AUDIO_IRQ_STATUS:
367 s->status &= ~value;
368 break;
370 case MP_AUDIO_IRQ_ENABLE:
371 s->irq_enable = value;
372 if (s->status & s->irq_enable)
373 qemu_irq_raise(s->irq);
374 break;
376 case MP_AUDIO_TX_START_LO:
377 s->phys_buf = (s->phys_buf & 0xFFFF0000) | (value & 0xFFFF);
378 s->target_buffer = target2host_addr(s->phys_buf);
379 s->play_pos = 0;
380 s->last_free = 0;
381 break;
383 case MP_AUDIO_TX_THRESHOLD:
384 s->threshold = (value + 1) * 4;
385 break;
387 case MP_AUDIO_TX_START_HI:
388 s->phys_buf = (s->phys_buf & 0xFFFF) | (value << 16);
389 s->target_buffer = target2host_addr(s->phys_buf);
390 s->play_pos = 0;
391 s->last_free = 0;
392 break;
396 static void musicpal_audio_reset(void *opaque)
398 musicpal_audio_state *s = opaque;
400 s->playback_mode = 0;
401 s->status = 0;
402 s->irq_enable = 0;
405 static CPUReadMemoryFunc *musicpal_audio_readfn[] = {
406 musicpal_audio_read,
407 musicpal_audio_read,
408 musicpal_audio_read
411 static CPUWriteMemoryFunc *musicpal_audio_writefn[] = {
412 musicpal_audio_write,
413 musicpal_audio_write,
414 musicpal_audio_write
417 static i2c_interface *musicpal_audio_init(uint32_t base, qemu_irq irq)
419 AudioState *audio;
420 musicpal_audio_state *s;
421 i2c_interface *i2c;
422 int iomemtype;
424 audio = AUD_init();
425 if (!audio) {
426 AUD_log(audio_name, "No audio state\n");
427 return NULL;
430 s = qemu_mallocz(sizeof(musicpal_audio_state));
431 if (!s)
432 return NULL;
433 s->base = base;
434 s->irq = irq;
436 i2c = qemu_mallocz(sizeof(i2c_interface));
437 if (!i2c)
438 return NULL;
439 i2c->bus = i2c_init_bus();
440 i2c->current_addr = -1;
442 s->wm = wm8750_init(i2c->bus, audio);
443 if (!s->wm)
444 return NULL;
445 i2c_set_slave_address(s->wm, MP_WM_ADDR);
446 wm8750_data_req_set(s->wm, audio_callback, s);
448 iomemtype = cpu_register_io_memory(0, musicpal_audio_readfn,
449 musicpal_audio_writefn, s);
450 cpu_register_physical_memory(base, MP_AUDIO_SIZE, iomemtype);
452 qemu_register_reset(musicpal_audio_reset, s);
454 return i2c;
456 #else /* !HAS_AUDIO */
457 static i2c_interface *musicpal_audio_init(uint32_t base, qemu_irq irq)
459 return NULL;
461 #endif /* !HAS_AUDIO */
463 /* Ethernet register offsets */
464 #define MP_ETH_SMIR 0x010
465 #define MP_ETH_PCXR 0x408
466 #define MP_ETH_SDCMR 0x448
467 #define MP_ETH_ICR 0x450
468 #define MP_ETH_IMR 0x458
469 #define MP_ETH_FRDP0 0x480
470 #define MP_ETH_FRDP1 0x484
471 #define MP_ETH_FRDP2 0x488
472 #define MP_ETH_FRDP3 0x48C
473 #define MP_ETH_CRDP0 0x4A0
474 #define MP_ETH_CRDP1 0x4A4
475 #define MP_ETH_CRDP2 0x4A8
476 #define MP_ETH_CRDP3 0x4AC
477 #define MP_ETH_CTDP0 0x4E0
478 #define MP_ETH_CTDP1 0x4E4
479 #define MP_ETH_CTDP2 0x4E8
480 #define MP_ETH_CTDP3 0x4EC
482 /* MII PHY access */
483 #define MP_ETH_SMIR_DATA 0x0000FFFF
484 #define MP_ETH_SMIR_ADDR 0x03FF0000
485 #define MP_ETH_SMIR_OPCODE (1 << 26) /* Read value */
486 #define MP_ETH_SMIR_RDVALID (1 << 27)
488 /* PHY registers */
489 #define MP_ETH_PHY1_BMSR 0x00210000
490 #define MP_ETH_PHY1_PHYSID1 0x00410000
491 #define MP_ETH_PHY1_PHYSID2 0x00610000
493 #define MP_PHY_BMSR_LINK 0x0004
494 #define MP_PHY_BMSR_AUTONEG 0x0008
496 #define MP_PHY_88E3015 0x01410E20
498 /* TX descriptor status */
499 #define MP_ETH_TX_OWN (1 << 31)
501 /* RX descriptor status */
502 #define MP_ETH_RX_OWN (1 << 31)
504 /* Interrupt cause/mask bits */
505 #define MP_ETH_IRQ_RX_BIT 0
506 #define MP_ETH_IRQ_RX (1 << MP_ETH_IRQ_RX_BIT)
507 #define MP_ETH_IRQ_TXHI_BIT 2
508 #define MP_ETH_IRQ_TXLO_BIT 3
510 /* Port config bits */
511 #define MP_ETH_PCXR_2BSM_BIT 28 /* 2-byte incoming suffix */
513 /* SDMA command bits */
514 #define MP_ETH_CMD_TXHI (1 << 23)
515 #define MP_ETH_CMD_TXLO (1 << 22)
517 typedef struct mv88w8618_tx_desc {
518 uint32_t cmdstat;
519 uint16_t res;
520 uint16_t bytes;
521 uint32_t buffer;
522 uint32_t next;
523 } mv88w8618_tx_desc;
525 typedef struct mv88w8618_rx_desc {
526 uint32_t cmdstat;
527 uint16_t bytes;
528 uint16_t buffer_size;
529 uint32_t buffer;
530 uint32_t next;
531 } mv88w8618_rx_desc;
533 typedef struct mv88w8618_eth_state {
534 uint32_t base;
535 qemu_irq irq;
536 uint32_t smir;
537 uint32_t icr;
538 uint32_t imr;
539 int vlan_header;
540 mv88w8618_tx_desc *tx_queue[2];
541 mv88w8618_rx_desc *rx_queue[4];
542 mv88w8618_rx_desc *frx_queue[4];
543 mv88w8618_rx_desc *cur_rx[4];
544 VLANClientState *vc;
545 } mv88w8618_eth_state;
547 static int eth_can_receive(void *opaque)
549 return 1;
552 static void eth_receive(void *opaque, const uint8_t *buf, int size)
554 mv88w8618_eth_state *s = opaque;
555 mv88w8618_rx_desc *desc;
556 int i;
558 for (i = 0; i < 4; i++) {
559 desc = s->cur_rx[i];
560 if (!desc)
561 continue;
562 do {
563 if (le32_to_cpu(desc->cmdstat) & MP_ETH_RX_OWN &&
564 le16_to_cpu(desc->buffer_size) >= size) {
565 memcpy(target2host_addr(le32_to_cpu(desc->buffer) +
566 s->vlan_header),
567 buf, size);
568 desc->bytes = cpu_to_le16(size + s->vlan_header);
569 desc->cmdstat &= cpu_to_le32(~MP_ETH_RX_OWN);
570 s->cur_rx[i] = target2host_addr(le32_to_cpu(desc->next));
572 s->icr |= MP_ETH_IRQ_RX;
573 if (s->icr & s->imr)
574 qemu_irq_raise(s->irq);
575 return;
577 desc = target2host_addr(le32_to_cpu(desc->next));
578 } while (desc != s->rx_queue[i]);
582 static void eth_send(mv88w8618_eth_state *s, int queue_index)
584 mv88w8618_tx_desc *desc = s->tx_queue[queue_index];
586 do {
587 if (le32_to_cpu(desc->cmdstat) & MP_ETH_TX_OWN) {
588 qemu_send_packet(s->vc,
589 target2host_addr(le32_to_cpu(desc->buffer)),
590 le16_to_cpu(desc->bytes));
591 desc->cmdstat &= cpu_to_le32(~MP_ETH_TX_OWN);
592 s->icr |= 1 << (MP_ETH_IRQ_TXLO_BIT - queue_index);
594 desc = target2host_addr(le32_to_cpu(desc->next));
595 } while (desc != s->tx_queue[queue_index]);
598 static uint32_t mv88w8618_eth_read(void *opaque, target_phys_addr_t offset)
600 mv88w8618_eth_state *s = opaque;
602 offset -= s->base;
603 switch (offset) {
604 case MP_ETH_SMIR:
605 if (s->smir & MP_ETH_SMIR_OPCODE) {
606 switch (s->smir & MP_ETH_SMIR_ADDR) {
607 case MP_ETH_PHY1_BMSR:
608 return MP_PHY_BMSR_LINK | MP_PHY_BMSR_AUTONEG |
609 MP_ETH_SMIR_RDVALID;
610 case MP_ETH_PHY1_PHYSID1:
611 return (MP_PHY_88E3015 >> 16) | MP_ETH_SMIR_RDVALID;
612 case MP_ETH_PHY1_PHYSID2:
613 return (MP_PHY_88E3015 & 0xFFFF) | MP_ETH_SMIR_RDVALID;
614 default:
615 return MP_ETH_SMIR_RDVALID;
618 return 0;
620 case MP_ETH_ICR:
621 return s->icr;
623 case MP_ETH_IMR:
624 return s->imr;
626 case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
627 return host2target_addr(s->frx_queue[(offset - MP_ETH_FRDP0)/4]);
629 case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
630 return host2target_addr(s->rx_queue[(offset - MP_ETH_CRDP0)/4]);
632 case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
633 return host2target_addr(s->tx_queue[(offset - MP_ETH_CTDP0)/4]);
635 default:
636 return 0;
640 static void mv88w8618_eth_write(void *opaque, target_phys_addr_t offset,
641 uint32_t value)
643 mv88w8618_eth_state *s = opaque;
645 offset -= s->base;
646 switch (offset) {
647 case MP_ETH_SMIR:
648 s->smir = value;
649 break;
651 case MP_ETH_PCXR:
652 s->vlan_header = ((value >> MP_ETH_PCXR_2BSM_BIT) & 1) * 2;
653 break;
655 case MP_ETH_SDCMR:
656 if (value & MP_ETH_CMD_TXHI)
657 eth_send(s, 1);
658 if (value & MP_ETH_CMD_TXLO)
659 eth_send(s, 0);
660 if (value & (MP_ETH_CMD_TXHI | MP_ETH_CMD_TXLO) && s->icr & s->imr)
661 qemu_irq_raise(s->irq);
662 break;
664 case MP_ETH_ICR:
665 s->icr &= value;
666 break;
668 case MP_ETH_IMR:
669 s->imr = value;
670 if (s->icr & s->imr)
671 qemu_irq_raise(s->irq);
672 break;
674 case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
675 s->frx_queue[(offset - MP_ETH_FRDP0)/4] = target2host_addr(value);
676 break;
678 case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
679 s->rx_queue[(offset - MP_ETH_CRDP0)/4] =
680 s->cur_rx[(offset - MP_ETH_CRDP0)/4] = target2host_addr(value);
681 break;
683 case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
684 s->tx_queue[(offset - MP_ETH_CTDP0)/4] = target2host_addr(value);
685 break;
689 static CPUReadMemoryFunc *mv88w8618_eth_readfn[] = {
690 mv88w8618_eth_read,
691 mv88w8618_eth_read,
692 mv88w8618_eth_read
695 static CPUWriteMemoryFunc *mv88w8618_eth_writefn[] = {
696 mv88w8618_eth_write,
697 mv88w8618_eth_write,
698 mv88w8618_eth_write
701 static void mv88w8618_eth_init(NICInfo *nd, uint32_t base, qemu_irq irq)
703 mv88w8618_eth_state *s;
704 int iomemtype;
706 s = qemu_mallocz(sizeof(mv88w8618_eth_state));
707 if (!s)
708 return;
709 s->base = base;
710 s->irq = irq;
711 s->vc = qemu_new_vlan_client(nd->vlan, eth_receive, eth_can_receive, s);
712 iomemtype = cpu_register_io_memory(0, mv88w8618_eth_readfn,
713 mv88w8618_eth_writefn, s);
714 cpu_register_physical_memory(base, MP_ETH_SIZE, iomemtype);
717 /* LCD register offsets */
718 #define MP_LCD_IRQCTRL 0x180
719 #define MP_LCD_IRQSTAT 0x184
720 #define MP_LCD_SPICTRL 0x1ac
721 #define MP_LCD_INST 0x1bc
722 #define MP_LCD_DATA 0x1c0
724 /* Mode magics */
725 #define MP_LCD_SPI_DATA 0x00100011
726 #define MP_LCD_SPI_CMD 0x00104011
727 #define MP_LCD_SPI_INVALID 0x00000000
729 /* Commmands */
730 #define MP_LCD_INST_SETPAGE0 0xB0
731 /* ... */
732 #define MP_LCD_INST_SETPAGE7 0xB7
734 #define MP_LCD_TEXTCOLOR 0xe0e0ff /* RRGGBB */
736 typedef struct musicpal_lcd_state {
737 uint32_t base;
738 uint32_t mode;
739 uint32_t irqctrl;
740 int page;
741 int page_off;
742 DisplayState *ds;
743 uint8_t video_ram[128*64/8];
744 } musicpal_lcd_state;
746 static uint32_t lcd_brightness;
748 static uint8_t scale_lcd_color(uint8_t col)
750 int tmp = col;
752 switch (lcd_brightness) {
753 case 0x00000007: /* 0 */
754 return 0;
756 case 0x00020000: /* 1 */
757 return (tmp * 1) / 7;
759 case 0x00020001: /* 2 */
760 return (tmp * 2) / 7;
762 case 0x00040000: /* 3 */
763 return (tmp * 3) / 7;
765 case 0x00010006: /* 4 */
766 return (tmp * 4) / 7;
768 case 0x00020005: /* 5 */
769 return (tmp * 5) / 7;
771 case 0x00040003: /* 6 */
772 return (tmp * 6) / 7;
774 case 0x00030004: /* 7 */
775 default:
776 return col;
780 #define SET_LCD_PIXEL(depth, type) \
781 static inline void glue(set_lcd_pixel, depth) \
782 (musicpal_lcd_state *s, int x, int y, type col) \
784 int dx, dy; \
785 type *pixel = &((type *) s->ds->data)[(y * 128 * 3 + x) * 3]; \
787 for (dy = 0; dy < 3; dy++, pixel += 127 * 3) \
788 for (dx = 0; dx < 3; dx++, pixel++) \
789 *pixel = col; \
791 SET_LCD_PIXEL(8, uint8_t)
792 SET_LCD_PIXEL(16, uint16_t)
793 SET_LCD_PIXEL(32, uint32_t)
795 #include "pixel_ops.h"
797 static void lcd_refresh(void *opaque)
799 musicpal_lcd_state *s = opaque;
800 int x, y, col;
802 switch (s->ds->depth) {
803 case 0:
804 return;
805 #define LCD_REFRESH(depth, func) \
806 case depth: \
807 col = func(scale_lcd_color((MP_LCD_TEXTCOLOR >> 16) & 0xff), \
808 scale_lcd_color((MP_LCD_TEXTCOLOR >> 8) & 0xff), \
809 scale_lcd_color(MP_LCD_TEXTCOLOR & 0xff)); \
810 for (x = 0; x < 128; x++) \
811 for (y = 0; y < 64; y++) \
812 if (s->video_ram[x + (y/8)*128] & (1 << (y % 8))) \
813 glue(set_lcd_pixel, depth)(s, x, y, col); \
814 else \
815 glue(set_lcd_pixel, depth)(s, x, y, 0); \
816 break;
817 LCD_REFRESH(8, rgb_to_pixel8)
818 LCD_REFRESH(16, rgb_to_pixel16)
819 LCD_REFRESH(32, (s->ds->bgr ? rgb_to_pixel32bgr : rgb_to_pixel32))
820 default:
821 cpu_abort(cpu_single_env, "unsupported colour depth %i\n",
822 s->ds->depth);
825 dpy_update(s->ds, 0, 0, 128*3, 64*3);
828 static uint32_t musicpal_lcd_read(void *opaque, target_phys_addr_t offset)
830 musicpal_lcd_state *s = opaque;
832 offset -= s->base;
833 switch (offset) {
834 case MP_LCD_IRQCTRL:
835 return s->irqctrl;
837 default:
838 return 0;
842 static void musicpal_lcd_write(void *opaque, target_phys_addr_t offset,
843 uint32_t value)
845 musicpal_lcd_state *s = opaque;
847 offset -= s->base;
848 switch (offset) {
849 case MP_LCD_IRQCTRL:
850 s->irqctrl = value;
851 break;
853 case MP_LCD_SPICTRL:
854 if (value == MP_LCD_SPI_DATA || value == MP_LCD_SPI_CMD)
855 s->mode = value;
856 else
857 s->mode = MP_LCD_SPI_INVALID;
858 break;
860 case MP_LCD_INST:
861 if (value >= MP_LCD_INST_SETPAGE0 && value <= MP_LCD_INST_SETPAGE7) {
862 s->page = value - MP_LCD_INST_SETPAGE0;
863 s->page_off = 0;
865 break;
867 case MP_LCD_DATA:
868 if (s->mode == MP_LCD_SPI_CMD) {
869 if (value >= MP_LCD_INST_SETPAGE0 &&
870 value <= MP_LCD_INST_SETPAGE7) {
871 s->page = value - MP_LCD_INST_SETPAGE0;
872 s->page_off = 0;
874 } else if (s->mode == MP_LCD_SPI_DATA) {
875 s->video_ram[s->page*128 + s->page_off] = value;
876 s->page_off = (s->page_off + 1) & 127;
878 break;
882 static CPUReadMemoryFunc *musicpal_lcd_readfn[] = {
883 musicpal_lcd_read,
884 musicpal_lcd_read,
885 musicpal_lcd_read
888 static CPUWriteMemoryFunc *musicpal_lcd_writefn[] = {
889 musicpal_lcd_write,
890 musicpal_lcd_write,
891 musicpal_lcd_write
894 static void musicpal_lcd_init(DisplayState *ds, uint32_t base)
896 musicpal_lcd_state *s;
897 int iomemtype;
899 s = qemu_mallocz(sizeof(musicpal_lcd_state));
900 if (!s)
901 return;
902 s->base = base;
903 s->ds = ds;
904 iomemtype = cpu_register_io_memory(0, musicpal_lcd_readfn,
905 musicpal_lcd_writefn, s);
906 cpu_register_physical_memory(base, MP_LCD_SIZE, iomemtype);
908 graphic_console_init(ds, lcd_refresh, NULL, NULL, NULL, s);
909 dpy_resize(ds, 128*3, 64*3);
912 /* PIC register offsets */
913 #define MP_PIC_STATUS 0x00
914 #define MP_PIC_ENABLE_SET 0x08
915 #define MP_PIC_ENABLE_CLR 0x0C
917 typedef struct mv88w8618_pic_state
919 uint32_t base;
920 uint32_t level;
921 uint32_t enabled;
922 qemu_irq parent_irq;
923 } mv88w8618_pic_state;
925 static void mv88w8618_pic_update(mv88w8618_pic_state *s)
927 qemu_set_irq(s->parent_irq, (s->level & s->enabled));
930 static void mv88w8618_pic_set_irq(void *opaque, int irq, int level)
932 mv88w8618_pic_state *s = opaque;
934 if (level)
935 s->level |= 1 << irq;
936 else
937 s->level &= ~(1 << irq);
938 mv88w8618_pic_update(s);
941 static uint32_t mv88w8618_pic_read(void *opaque, target_phys_addr_t offset)
943 mv88w8618_pic_state *s = opaque;
945 offset -= s->base;
946 switch (offset) {
947 case MP_PIC_STATUS:
948 return s->level & s->enabled;
950 default:
951 return 0;
955 static void mv88w8618_pic_write(void *opaque, target_phys_addr_t offset,
956 uint32_t value)
958 mv88w8618_pic_state *s = opaque;
960 offset -= s->base;
961 switch (offset) {
962 case MP_PIC_ENABLE_SET:
963 s->enabled |= value;
964 break;
966 case MP_PIC_ENABLE_CLR:
967 s->enabled &= ~value;
968 s->level &= ~value;
969 break;
971 mv88w8618_pic_update(s);
974 static void mv88w8618_pic_reset(void *opaque)
976 mv88w8618_pic_state *s = opaque;
978 s->level = 0;
979 s->enabled = 0;
982 static CPUReadMemoryFunc *mv88w8618_pic_readfn[] = {
983 mv88w8618_pic_read,
984 mv88w8618_pic_read,
985 mv88w8618_pic_read
988 static CPUWriteMemoryFunc *mv88w8618_pic_writefn[] = {
989 mv88w8618_pic_write,
990 mv88w8618_pic_write,
991 mv88w8618_pic_write
994 static qemu_irq *mv88w8618_pic_init(uint32_t base, qemu_irq parent_irq)
996 mv88w8618_pic_state *s;
997 int iomemtype;
998 qemu_irq *qi;
1000 s = qemu_mallocz(sizeof(mv88w8618_pic_state));
1001 if (!s)
1002 return NULL;
1003 qi = qemu_allocate_irqs(mv88w8618_pic_set_irq, s, 32);
1004 s->base = base;
1005 s->parent_irq = parent_irq;
1006 iomemtype = cpu_register_io_memory(0, mv88w8618_pic_readfn,
1007 mv88w8618_pic_writefn, s);
1008 cpu_register_physical_memory(base, MP_PIC_SIZE, iomemtype);
1010 qemu_register_reset(mv88w8618_pic_reset, s);
1012 return qi;
1015 /* PIT register offsets */
1016 #define MP_PIT_TIMER1_LENGTH 0x00
1017 /* ... */
1018 #define MP_PIT_TIMER4_LENGTH 0x0C
1019 #define MP_PIT_CONTROL 0x10
1020 #define MP_PIT_TIMER1_VALUE 0x14
1021 /* ... */
1022 #define MP_PIT_TIMER4_VALUE 0x20
1023 #define MP_BOARD_RESET 0x34
1025 /* Magic board reset value (probably some watchdog behind it) */
1026 #define MP_BOARD_RESET_MAGIC 0x10000
1028 typedef struct mv88w8618_timer_state {
1029 ptimer_state *timer;
1030 uint32_t limit;
1031 int freq;
1032 qemu_irq irq;
1033 } mv88w8618_timer_state;
1035 typedef struct mv88w8618_pit_state {
1036 void *timer[4];
1037 uint32_t control;
1038 uint32_t base;
1039 } mv88w8618_pit_state;
1041 static void mv88w8618_timer_tick(void *opaque)
1043 mv88w8618_timer_state *s = opaque;
1045 qemu_irq_raise(s->irq);
1048 static void *mv88w8618_timer_init(uint32_t freq, qemu_irq irq)
1050 mv88w8618_timer_state *s;
1051 QEMUBH *bh;
1053 s = qemu_mallocz(sizeof(mv88w8618_timer_state));
1054 s->irq = irq;
1055 s->freq = freq;
1057 bh = qemu_bh_new(mv88w8618_timer_tick, s);
1058 s->timer = ptimer_init(bh);
1060 return s;
1063 static uint32_t mv88w8618_pit_read(void *opaque, target_phys_addr_t offset)
1065 mv88w8618_pit_state *s = opaque;
1066 mv88w8618_timer_state *t;
1068 offset -= s->base;
1069 switch (offset) {
1070 case MP_PIT_TIMER1_VALUE ... MP_PIT_TIMER4_VALUE:
1071 t = s->timer[(offset-MP_PIT_TIMER1_VALUE) >> 2];
1072 return ptimer_get_count(t->timer);
1074 default:
1075 return 0;
1079 static void mv88w8618_pit_write(void *opaque, target_phys_addr_t offset,
1080 uint32_t value)
1082 mv88w8618_pit_state *s = opaque;
1083 mv88w8618_timer_state *t;
1084 int i;
1086 offset -= s->base;
1087 switch (offset) {
1088 case MP_PIT_TIMER1_LENGTH ... MP_PIT_TIMER4_LENGTH:
1089 t = s->timer[offset >> 2];
1090 t->limit = value;
1091 ptimer_set_limit(t->timer, t->limit, 1);
1092 break;
1094 case MP_PIT_CONTROL:
1095 for (i = 0; i < 4; i++) {
1096 if (value & 0xf) {
1097 t = s->timer[i];
1098 ptimer_set_limit(t->timer, t->limit, 0);
1099 ptimer_set_freq(t->timer, t->freq);
1100 ptimer_run(t->timer, 0);
1102 value >>= 4;
1104 break;
1106 case MP_BOARD_RESET:
1107 if (value == MP_BOARD_RESET_MAGIC)
1108 qemu_system_reset_request();
1109 break;
1113 static CPUReadMemoryFunc *mv88w8618_pit_readfn[] = {
1114 mv88w8618_pit_read,
1115 mv88w8618_pit_read,
1116 mv88w8618_pit_read
1119 static CPUWriteMemoryFunc *mv88w8618_pit_writefn[] = {
1120 mv88w8618_pit_write,
1121 mv88w8618_pit_write,
1122 mv88w8618_pit_write
1125 static void mv88w8618_pit_init(uint32_t base, qemu_irq *pic, int irq)
1127 int iomemtype;
1128 mv88w8618_pit_state *s;
1130 s = qemu_mallocz(sizeof(mv88w8618_pit_state));
1131 if (!s)
1132 return;
1134 s->base = base;
1135 /* Letting them all run at 1 MHz is likely just a pragmatic
1136 * simplification. */
1137 s->timer[0] = mv88w8618_timer_init(1000000, pic[irq]);
1138 s->timer[1] = mv88w8618_timer_init(1000000, pic[irq + 1]);
1139 s->timer[2] = mv88w8618_timer_init(1000000, pic[irq + 2]);
1140 s->timer[3] = mv88w8618_timer_init(1000000, pic[irq + 3]);
1142 iomemtype = cpu_register_io_memory(0, mv88w8618_pit_readfn,
1143 mv88w8618_pit_writefn, s);
1144 cpu_register_physical_memory(base, MP_PIT_SIZE, iomemtype);
1147 /* Flash config register offsets */
1148 #define MP_FLASHCFG_CFGR0 0x04
1150 typedef struct mv88w8618_flashcfg_state {
1151 uint32_t base;
1152 uint32_t cfgr0;
1153 } mv88w8618_flashcfg_state;
1155 static uint32_t mv88w8618_flashcfg_read(void *opaque,
1156 target_phys_addr_t offset)
1158 mv88w8618_flashcfg_state *s = opaque;
1160 offset -= s->base;
1161 switch (offset) {
1162 case MP_FLASHCFG_CFGR0:
1163 return s->cfgr0;
1165 default:
1166 return 0;
1170 static void mv88w8618_flashcfg_write(void *opaque, target_phys_addr_t offset,
1171 uint32_t value)
1173 mv88w8618_flashcfg_state *s = opaque;
1175 offset -= s->base;
1176 switch (offset) {
1177 case MP_FLASHCFG_CFGR0:
1178 s->cfgr0 = value;
1179 break;
1183 static CPUReadMemoryFunc *mv88w8618_flashcfg_readfn[] = {
1184 mv88w8618_flashcfg_read,
1185 mv88w8618_flashcfg_read,
1186 mv88w8618_flashcfg_read
1189 static CPUWriteMemoryFunc *mv88w8618_flashcfg_writefn[] = {
1190 mv88w8618_flashcfg_write,
1191 mv88w8618_flashcfg_write,
1192 mv88w8618_flashcfg_write
1195 static void mv88w8618_flashcfg_init(uint32_t base)
1197 int iomemtype;
1198 mv88w8618_flashcfg_state *s;
1200 s = qemu_mallocz(sizeof(mv88w8618_flashcfg_state));
1201 if (!s)
1202 return;
1204 s->base = base;
1205 s->cfgr0 = 0xfffe4285; /* Default as set by U-Boot for 8 MB flash */
1206 iomemtype = cpu_register_io_memory(0, mv88w8618_flashcfg_readfn,
1207 mv88w8618_flashcfg_writefn, s);
1208 cpu_register_physical_memory(base, MP_FLASHCFG_SIZE, iomemtype);
1211 /* Various registers in the 0x80000000 domain */
1212 #define MP_BOARD_REVISION 0x2018
1214 #define MP_WLAN_MAGIC1 0xc11c
1215 #define MP_WLAN_MAGIC2 0xc124
1217 #define MP_GPIO_OE_LO 0xd008
1218 #define MP_GPIO_OUT_LO 0xd00c
1219 #define MP_GPIO_IN_LO 0xd010
1220 #define MP_GPIO_ISR_LO 0xd020
1221 #define MP_GPIO_OE_HI 0xd508
1222 #define MP_GPIO_OUT_HI 0xd50c
1223 #define MP_GPIO_IN_HI 0xd510
1224 #define MP_GPIO_ISR_HI 0xd520
1226 /* GPIO bits & masks */
1227 #define MP_GPIO_WHEEL_VOL (1 << 8)
1228 #define MP_GPIO_WHEEL_VOL_INV (1 << 9)
1229 #define MP_GPIO_WHEEL_NAV (1 << 10)
1230 #define MP_GPIO_WHEEL_NAV_INV (1 << 11)
1231 #define MP_GPIO_LCD_BRIGHTNESS 0x00070000
1232 #define MP_GPIO_BTN_FAVORITS (1 << 19)
1233 #define MP_GPIO_BTN_MENU (1 << 20)
1234 #define MP_GPIO_BTN_VOLUME (1 << 21)
1235 #define MP_GPIO_BTN_NAVIGATION (1 << 22)
1236 #define MP_GPIO_I2C_DATA_BIT 29
1237 #define MP_GPIO_I2C_DATA (1 << MP_GPIO_I2C_DATA_BIT)
1238 #define MP_GPIO_I2C_CLOCK_BIT 30
1240 /* LCD brightness bits in GPIO_OE_HI */
1241 #define MP_OE_LCD_BRIGHTNESS 0x0007
1243 static uint32_t musicpal_read(void *opaque, target_phys_addr_t offset)
1245 offset -= 0x80000000;
1246 switch (offset) {
1247 case MP_BOARD_REVISION:
1248 return 0x0031;
1250 case MP_GPIO_OE_HI: /* used for LCD brightness control */
1251 return lcd_brightness & MP_OE_LCD_BRIGHTNESS;
1253 case MP_GPIO_OUT_LO:
1254 return gpio_out_state & 0xFFFF;
1255 case MP_GPIO_OUT_HI:
1256 return gpio_out_state >> 16;
1258 case MP_GPIO_IN_LO:
1259 return gpio_in_state & 0xFFFF;
1260 case MP_GPIO_IN_HI:
1261 /* Update received I2C data */
1262 gpio_in_state = (gpio_in_state & ~MP_GPIO_I2C_DATA) |
1263 (i2c_get_data(mixer_i2c) << MP_GPIO_I2C_DATA_BIT);
1264 return gpio_in_state >> 16;
1266 /* This is a simplification of reality */
1267 case MP_GPIO_ISR_LO:
1268 return ~gpio_in_state & 0xFFFF;
1269 case MP_GPIO_ISR_HI:
1270 return ~gpio_in_state >> 16;
1272 /* Workaround to allow loading the binary-only wlandrv.ko crap
1273 * from the original Freecom firmware. */
1274 case MP_WLAN_MAGIC1:
1275 return ~3;
1276 case MP_WLAN_MAGIC2:
1277 return -1;
1279 default:
1280 return 0;
1284 static void musicpal_write(void *opaque, target_phys_addr_t offset,
1285 uint32_t value)
1287 offset -= 0x80000000;
1288 switch (offset) {
1289 case MP_GPIO_OE_HI: /* used for LCD brightness control */
1290 lcd_brightness = (lcd_brightness & MP_GPIO_LCD_BRIGHTNESS) |
1291 (value & MP_OE_LCD_BRIGHTNESS);
1292 break;
1294 case MP_GPIO_OUT_LO:
1295 gpio_out_state = (gpio_out_state & 0xFFFF0000) | (value & 0xFFFF);
1296 break;
1297 case MP_GPIO_OUT_HI:
1298 gpio_out_state = (gpio_out_state & 0xFFFF) | (value << 16);
1299 lcd_brightness = (lcd_brightness & 0xFFFF) |
1300 (gpio_out_state & MP_GPIO_LCD_BRIGHTNESS);
1301 i2c_state_update(mixer_i2c,
1302 (gpio_out_state >> MP_GPIO_I2C_DATA_BIT) & 1,
1303 (gpio_out_state >> MP_GPIO_I2C_CLOCK_BIT) & 1);
1304 break;
1309 /* Keyboard codes & masks */
1310 #define KEY_PRESSED 0x80
1311 #define KEY_CODE 0x7f
1313 #define KEYCODE_TAB 0x0f
1314 #define KEYCODE_ENTER 0x1c
1315 #define KEYCODE_F 0x21
1316 #define KEYCODE_M 0x32
1318 #define KEYCODE_EXTENDED 0xe0
1319 #define KEYCODE_UP 0x48
1320 #define KEYCODE_DOWN 0x50
1321 #define KEYCODE_LEFT 0x4b
1322 #define KEYCODE_RIGHT 0x4d
1324 static void musicpal_key_event(void *opaque, int keycode)
1326 qemu_irq irq = opaque;
1327 uint32_t event = 0;
1328 static int kbd_extended;
1330 if (keycode == KEYCODE_EXTENDED) {
1331 kbd_extended = 1;
1332 return;
1335 if (kbd_extended)
1336 switch (keycode & KEY_CODE) {
1337 case KEYCODE_UP:
1338 event = MP_GPIO_WHEEL_NAV | MP_GPIO_WHEEL_NAV_INV;
1339 break;
1341 case KEYCODE_DOWN:
1342 event = MP_GPIO_WHEEL_NAV;
1343 break;
1345 case KEYCODE_LEFT:
1346 event = MP_GPIO_WHEEL_VOL | MP_GPIO_WHEEL_VOL_INV;
1347 break;
1349 case KEYCODE_RIGHT:
1350 event = MP_GPIO_WHEEL_VOL;
1351 break;
1353 else
1354 switch (keycode & KEY_CODE) {
1355 case KEYCODE_F:
1356 event = MP_GPIO_BTN_FAVORITS;
1357 break;
1359 case KEYCODE_TAB:
1360 event = MP_GPIO_BTN_VOLUME;
1361 break;
1363 case KEYCODE_ENTER:
1364 event = MP_GPIO_BTN_NAVIGATION;
1365 break;
1367 case KEYCODE_M:
1368 event = MP_GPIO_BTN_MENU;
1369 break;
1372 if (keycode & KEY_PRESSED)
1373 gpio_in_state |= event;
1374 else if (gpio_in_state & event) {
1375 gpio_in_state &= ~event;
1376 qemu_irq_raise(irq);
1379 kbd_extended = 0;
1382 static CPUReadMemoryFunc *musicpal_readfn[] = {
1383 musicpal_read,
1384 musicpal_read,
1385 musicpal_read,
1388 static CPUWriteMemoryFunc *musicpal_writefn[] = {
1389 musicpal_write,
1390 musicpal_write,
1391 musicpal_write,
1394 static struct arm_boot_info musicpal_binfo = {
1395 .loader_start = 0x0,
1396 .board_id = 0x20e,
1399 static void musicpal_init(ram_addr_t ram_size, int vga_ram_size,
1400 const char *boot_device, DisplayState *ds,
1401 const char *kernel_filename, const char *kernel_cmdline,
1402 const char *initrd_filename, const char *cpu_model)
1404 CPUState *env;
1405 qemu_irq *pic;
1406 int index;
1407 int iomemtype;
1408 unsigned long flash_size;
1410 if (!cpu_model)
1411 cpu_model = "arm926";
1413 env = cpu_init(cpu_model);
1414 if (!env) {
1415 fprintf(stderr, "Unable to find CPU definition\n");
1416 exit(1);
1418 pic = arm_pic_init_cpu(env);
1420 /* For now we use a fixed - the original - RAM size */
1421 cpu_register_physical_memory(0, MP_RAM_DEFAULT_SIZE,
1422 qemu_ram_alloc(MP_RAM_DEFAULT_SIZE));
1424 sram_off = qemu_ram_alloc(MP_SRAM_SIZE);
1425 cpu_register_physical_memory(MP_SRAM_BASE, MP_SRAM_SIZE, sram_off);
1427 /* Catch various stuff not handled by separate subsystems */
1428 iomemtype = cpu_register_io_memory(0, musicpal_readfn,
1429 musicpal_writefn, env);
1430 cpu_register_physical_memory(0x80000000, 0x10000, iomemtype);
1432 pic = mv88w8618_pic_init(MP_PIC_BASE, pic[ARM_PIC_CPU_IRQ]);
1433 mv88w8618_pit_init(MP_PIT_BASE, pic, MP_TIMER1_IRQ);
1435 if (serial_hds[0])
1436 serial_mm_init(MP_UART1_BASE, 2, pic[MP_UART1_IRQ], /*1825000,*/
1437 serial_hds[0], 1);
1438 if (serial_hds[1])
1439 serial_mm_init(MP_UART2_BASE, 2, pic[MP_UART2_IRQ], /*1825000,*/
1440 serial_hds[1], 1);
1442 /* Register flash */
1443 index = drive_get_index(IF_PFLASH, 0, 0);
1444 if (index != -1) {
1445 flash_size = bdrv_getlength(drives_table[index].bdrv);
1446 if (flash_size != 8*1024*1024 && flash_size != 16*1024*1024 &&
1447 flash_size != 32*1024*1024) {
1448 fprintf(stderr, "Invalid flash image size\n");
1449 exit(1);
1453 * The original U-Boot accesses the flash at 0xFE000000 instead of
1454 * 0xFF800000 (if there is 8 MB flash). So remap flash access if the
1455 * image is smaller than 32 MB.
1457 pflash_cfi02_register(0-MP_FLASH_SIZE_MAX, qemu_ram_alloc(flash_size),
1458 drives_table[index].bdrv, 0x10000,
1459 (flash_size + 0xffff) >> 16,
1460 MP_FLASH_SIZE_MAX / flash_size,
1461 2, 0x00BF, 0x236D, 0x0000, 0x0000,
1462 0x5555, 0x2AAA);
1464 mv88w8618_flashcfg_init(MP_FLASHCFG_BASE);
1466 musicpal_lcd_init(ds, MP_LCD_BASE);
1468 qemu_add_kbd_event_handler(musicpal_key_event, pic[MP_GPIO_IRQ]);
1471 * Wait a bit to catch menu button during U-Boot start-up
1472 * (to trigger emergency update).
1474 sleep(1);
1476 mv88w8618_eth_init(&nd_table[0], MP_ETH_BASE, pic[MP_ETH_IRQ]);
1478 mixer_i2c = musicpal_audio_init(MP_AUDIO_BASE, pic[MP_AUDIO_IRQ]);
1480 musicpal_binfo.ram_size = MP_RAM_DEFAULT_SIZE;
1481 musicpal_binfo.kernel_filename = kernel_filename;
1482 musicpal_binfo.kernel_cmdline = kernel_cmdline;
1483 musicpal_binfo.initrd_filename = initrd_filename;
1484 arm_load_kernel(env, &musicpal_binfo);
1487 QEMUMachine musicpal_machine = {
1488 "musicpal",
1489 "Marvell 88w8618 / MusicPal (ARM926EJ-S)",
1490 musicpal_init,
1491 MP_RAM_DEFAULT_SIZE + MP_SRAM_SIZE + MP_FLASH_SIZE_MAX + RAMSIZE_FIXED