Remove duplicate i2c.o.
[qemu/mini2440.git] / slirp / ip_input.c
blobb04684027dc379d0d54dfeb0fc7feefe1e176bb3
1 /*
2 * Copyright (c) 1982, 1986, 1988, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
33 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
34 * ip_input.c,v 1.11 1994/11/16 10:17:08 jkh Exp
38 * Changes and additions relating to SLiRP are
39 * Copyright (c) 1995 Danny Gasparovski.
41 * Please read the file COPYRIGHT for the
42 * terms and conditions of the copyright.
45 #include <slirp.h>
46 #include "ip_icmp.h"
48 #ifdef LOG_ENABLED
49 struct ipstat ipstat;
50 #endif
52 struct ipq ipq;
54 static struct ip *ip_reass(register struct ipasfrag *ip,
55 register struct ipq *fp);
56 static void ip_freef(struct ipq *fp);
57 static void ip_enq(register struct ipasfrag *p,
58 register struct ipasfrag *prev);
59 static void ip_deq(register struct ipasfrag *p);
62 * IP initialization: fill in IP protocol switch table.
63 * All protocols not implemented in kernel go to raw IP protocol handler.
65 void
66 ip_init()
68 ipq.next = ipq.prev = (ipqp_32)&ipq;
69 ip_id = tt.tv_sec & 0xffff;
70 udp_init();
71 tcp_init();
75 * Ip input routine. Checksum and byte swap header. If fragmented
76 * try to reassemble. Process options. Pass to next level.
78 void
79 ip_input(m)
80 struct mbuf *m;
82 register struct ip *ip;
83 int hlen;
85 DEBUG_CALL("ip_input");
86 DEBUG_ARG("m = %lx", (long)m);
87 DEBUG_ARG("m_len = %d", m->m_len);
89 STAT(ipstat.ips_total++);
91 if (m->m_len < sizeof (struct ip)) {
92 STAT(ipstat.ips_toosmall++);
93 return;
96 ip = mtod(m, struct ip *);
98 if (ip->ip_v != IPVERSION) {
99 STAT(ipstat.ips_badvers++);
100 goto bad;
103 hlen = ip->ip_hl << 2;
104 if (hlen<sizeof(struct ip ) || hlen>m->m_len) {/* min header length */
105 STAT(ipstat.ips_badhlen++); /* or packet too short */
106 goto bad;
109 /* keep ip header intact for ICMP reply
110 * ip->ip_sum = cksum(m, hlen);
111 * if (ip->ip_sum) {
113 if(cksum(m,hlen)) {
114 STAT(ipstat.ips_badsum++);
115 goto bad;
119 * Convert fields to host representation.
121 NTOHS(ip->ip_len);
122 if (ip->ip_len < hlen) {
123 STAT(ipstat.ips_badlen++);
124 goto bad;
126 NTOHS(ip->ip_id);
127 NTOHS(ip->ip_off);
130 * Check that the amount of data in the buffers
131 * is as at least much as the IP header would have us expect.
132 * Trim mbufs if longer than we expect.
133 * Drop packet if shorter than we expect.
135 if (m->m_len < ip->ip_len) {
136 STAT(ipstat.ips_tooshort++);
137 goto bad;
139 /* Should drop packet if mbuf too long? hmmm... */
140 if (m->m_len > ip->ip_len)
141 m_adj(m, ip->ip_len - m->m_len);
143 /* check ip_ttl for a correct ICMP reply */
144 if(ip->ip_ttl==0 || ip->ip_ttl==1) {
145 icmp_error(m, ICMP_TIMXCEED,ICMP_TIMXCEED_INTRANS, 0,"ttl");
146 goto bad;
150 * Process options and, if not destined for us,
151 * ship it on. ip_dooptions returns 1 when an
152 * error was detected (causing an icmp message
153 * to be sent and the original packet to be freed).
155 /* We do no IP options */
156 /* if (hlen > sizeof (struct ip) && ip_dooptions(m))
157 * goto next;
160 * If offset or IP_MF are set, must reassemble.
161 * Otherwise, nothing need be done.
162 * (We could look in the reassembly queue to see
163 * if the packet was previously fragmented,
164 * but it's not worth the time; just let them time out.)
166 * XXX This should fail, don't fragment yet
168 if (ip->ip_off &~ IP_DF) {
169 register struct ipq *fp;
171 * Look for queue of fragments
172 * of this datagram.
174 for (fp = (struct ipq *) ipq.next; fp != &ipq;
175 fp = (struct ipq *) fp->next)
176 if (ip->ip_id == fp->ipq_id &&
177 ip->ip_src.s_addr == fp->ipq_src.s_addr &&
178 ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
179 ip->ip_p == fp->ipq_p)
180 goto found;
181 fp = 0;
182 found:
185 * Adjust ip_len to not reflect header,
186 * set ip_mff if more fragments are expected,
187 * convert offset of this to bytes.
189 ip->ip_len -= hlen;
190 if (ip->ip_off & IP_MF)
191 ((struct ipasfrag *)ip)->ipf_mff |= 1;
192 else
193 ((struct ipasfrag *)ip)->ipf_mff &= ~1;
195 ip->ip_off <<= 3;
198 * If datagram marked as having more fragments
199 * or if this is not the first fragment,
200 * attempt reassembly; if it succeeds, proceed.
202 if (((struct ipasfrag *)ip)->ipf_mff & 1 || ip->ip_off) {
203 STAT(ipstat.ips_fragments++);
204 ip = ip_reass((struct ipasfrag *)ip, fp);
205 if (ip == 0)
206 return;
207 STAT(ipstat.ips_reassembled++);
208 m = dtom(ip);
209 } else
210 if (fp)
211 ip_freef(fp);
213 } else
214 ip->ip_len -= hlen;
217 * Switch out to protocol's input routine.
219 STAT(ipstat.ips_delivered++);
220 switch (ip->ip_p) {
221 case IPPROTO_TCP:
222 tcp_input(m, hlen, (struct socket *)NULL);
223 break;
224 case IPPROTO_UDP:
225 udp_input(m, hlen);
226 break;
227 case IPPROTO_ICMP:
228 icmp_input(m, hlen);
229 break;
230 default:
231 STAT(ipstat.ips_noproto++);
232 m_free(m);
234 return;
235 bad:
236 m_freem(m);
237 return;
241 * Take incoming datagram fragment and try to
242 * reassemble it into whole datagram. If a chain for
243 * reassembly of this datagram already exists, then it
244 * is given as fp; otherwise have to make a chain.
246 static struct ip *
247 ip_reass(register struct ipasfrag *ip, register struct ipq *fp)
249 register struct mbuf *m = dtom(ip);
250 register struct ipasfrag *q;
251 int hlen = ip->ip_hl << 2;
252 int i, next;
254 DEBUG_CALL("ip_reass");
255 DEBUG_ARG("ip = %lx", (long)ip);
256 DEBUG_ARG("fp = %lx", (long)fp);
257 DEBUG_ARG("m = %lx", (long)m);
260 * Presence of header sizes in mbufs
261 * would confuse code below.
262 * Fragment m_data is concatenated.
264 m->m_data += hlen;
265 m->m_len -= hlen;
268 * If first fragment to arrive, create a reassembly queue.
270 if (fp == 0) {
271 struct mbuf *t;
272 if ((t = m_get()) == NULL) goto dropfrag;
273 fp = mtod(t, struct ipq *);
274 insque_32(fp, &ipq);
275 fp->ipq_ttl = IPFRAGTTL;
276 fp->ipq_p = ip->ip_p;
277 fp->ipq_id = ip->ip_id;
278 fp->ipq_next = fp->ipq_prev = (ipasfragp_32)fp;
279 fp->ipq_src = ((struct ip *)ip)->ip_src;
280 fp->ipq_dst = ((struct ip *)ip)->ip_dst;
281 q = (struct ipasfrag *)fp;
282 goto insert;
286 * Find a segment which begins after this one does.
288 for (q = (struct ipasfrag *)fp->ipq_next; q != (struct ipasfrag *)fp;
289 q = (struct ipasfrag *)q->ipf_next)
290 if (q->ip_off > ip->ip_off)
291 break;
294 * If there is a preceding segment, it may provide some of
295 * our data already. If so, drop the data from the incoming
296 * segment. If it provides all of our data, drop us.
298 if (q->ipf_prev != (ipasfragp_32)fp) {
299 i = ((struct ipasfrag *)(q->ipf_prev))->ip_off +
300 ((struct ipasfrag *)(q->ipf_prev))->ip_len - ip->ip_off;
301 if (i > 0) {
302 if (i >= ip->ip_len)
303 goto dropfrag;
304 m_adj(dtom(ip), i);
305 ip->ip_off += i;
306 ip->ip_len -= i;
311 * While we overlap succeeding segments trim them or,
312 * if they are completely covered, dequeue them.
314 while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) {
315 i = (ip->ip_off + ip->ip_len) - q->ip_off;
316 if (i < q->ip_len) {
317 q->ip_len -= i;
318 q->ip_off += i;
319 m_adj(dtom(q), i);
320 break;
322 q = (struct ipasfrag *) q->ipf_next;
323 m_freem(dtom((struct ipasfrag *) q->ipf_prev));
324 ip_deq((struct ipasfrag *) q->ipf_prev);
327 insert:
329 * Stick new segment in its place;
330 * check for complete reassembly.
332 ip_enq(ip, (struct ipasfrag *) q->ipf_prev);
333 next = 0;
334 for (q = (struct ipasfrag *) fp->ipq_next; q != (struct ipasfrag *)fp;
335 q = (struct ipasfrag *) q->ipf_next) {
336 if (q->ip_off != next)
337 return (0);
338 next += q->ip_len;
340 if (((struct ipasfrag *)(q->ipf_prev))->ipf_mff & 1)
341 return (0);
344 * Reassembly is complete; concatenate fragments.
346 q = (struct ipasfrag *) fp->ipq_next;
347 m = dtom(q);
349 q = (struct ipasfrag *) q->ipf_next;
350 while (q != (struct ipasfrag *)fp) {
351 struct mbuf *t;
352 t = dtom(q);
353 q = (struct ipasfrag *) q->ipf_next;
354 m_cat(m, t);
358 * Create header for new ip packet by
359 * modifying header of first packet;
360 * dequeue and discard fragment reassembly header.
361 * Make header visible.
363 ip = (struct ipasfrag *) fp->ipq_next;
366 * If the fragments concatenated to an mbuf that's
367 * bigger than the total size of the fragment, then and
368 * m_ext buffer was alloced. But fp->ipq_next points to
369 * the old buffer (in the mbuf), so we must point ip
370 * into the new buffer.
372 if (m->m_flags & M_EXT) {
373 int delta;
374 delta = (char *)ip - m->m_dat;
375 ip = (struct ipasfrag *)(m->m_ext + delta);
378 /* DEBUG_ARG("ip = %lx", (long)ip);
379 * ip=(struct ipasfrag *)m->m_data; */
381 ip->ip_len = next;
382 ip->ipf_mff &= ~1;
383 ((struct ip *)ip)->ip_src = fp->ipq_src;
384 ((struct ip *)ip)->ip_dst = fp->ipq_dst;
385 remque_32(fp);
386 (void) m_free(dtom(fp));
387 m = dtom(ip);
388 m->m_len += (ip->ip_hl << 2);
389 m->m_data -= (ip->ip_hl << 2);
391 return ((struct ip *)ip);
393 dropfrag:
394 STAT(ipstat.ips_fragdropped++);
395 m_freem(m);
396 return (0);
400 * Free a fragment reassembly header and all
401 * associated datagrams.
403 static void
404 ip_freef(struct ipq *fp)
406 register struct ipasfrag *q, *p;
408 for (q = (struct ipasfrag *) fp->ipq_next; q != (struct ipasfrag *)fp;
409 q = p) {
410 p = (struct ipasfrag *) q->ipf_next;
411 ip_deq(q);
412 m_freem(dtom(q));
414 remque_32(fp);
415 (void) m_free(dtom(fp));
419 * Put an ip fragment on a reassembly chain.
420 * Like insque, but pointers in middle of structure.
422 static void
423 ip_enq(register struct ipasfrag *p, register struct ipasfrag *prev)
425 DEBUG_CALL("ip_enq");
426 DEBUG_ARG("prev = %lx", (long)prev);
427 p->ipf_prev = (ipasfragp_32) prev;
428 p->ipf_next = prev->ipf_next;
429 ((struct ipasfrag *)(prev->ipf_next))->ipf_prev = (ipasfragp_32) p;
430 prev->ipf_next = (ipasfragp_32) p;
434 * To ip_enq as remque is to insque.
436 static void
437 ip_deq(register struct ipasfrag *p)
439 ((struct ipasfrag *)(p->ipf_prev))->ipf_next = p->ipf_next;
440 ((struct ipasfrag *)(p->ipf_next))->ipf_prev = p->ipf_prev;
444 * IP timer processing;
445 * if a timer expires on a reassembly
446 * queue, discard it.
448 void
449 ip_slowtimo()
451 register struct ipq *fp;
453 DEBUG_CALL("ip_slowtimo");
455 fp = (struct ipq *) ipq.next;
456 if (fp == 0)
457 return;
459 while (fp != &ipq) {
460 --fp->ipq_ttl;
461 fp = (struct ipq *) fp->next;
462 if (((struct ipq *)(fp->prev))->ipq_ttl == 0) {
463 STAT(ipstat.ips_fragtimeout++);
464 ip_freef((struct ipq *) fp->prev);
470 * Do option processing on a datagram,
471 * possibly discarding it if bad options are encountered,
472 * or forwarding it if source-routed.
473 * Returns 1 if packet has been forwarded/freed,
474 * 0 if the packet should be processed further.
477 #ifdef notdef
480 ip_dooptions(m)
481 struct mbuf *m;
483 register struct ip *ip = mtod(m, struct ip *);
484 register u_char *cp;
485 register struct ip_timestamp *ipt;
486 register struct in_ifaddr *ia;
487 /* int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0; */
488 int opt, optlen, cnt, off, code, type, forward = 0;
489 struct in_addr *sin, dst;
490 typedef u_int32_t n_time;
491 n_time ntime;
493 dst = ip->ip_dst;
494 cp = (u_char *)(ip + 1);
495 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
496 for (; cnt > 0; cnt -= optlen, cp += optlen) {
497 opt = cp[IPOPT_OPTVAL];
498 if (opt == IPOPT_EOL)
499 break;
500 if (opt == IPOPT_NOP)
501 optlen = 1;
502 else {
503 optlen = cp[IPOPT_OLEN];
504 if (optlen <= 0 || optlen > cnt) {
505 code = &cp[IPOPT_OLEN] - (u_char *)ip;
506 goto bad;
509 switch (opt) {
511 default:
512 break;
515 * Source routing with record.
516 * Find interface with current destination address.
517 * If none on this machine then drop if strictly routed,
518 * or do nothing if loosely routed.
519 * Record interface address and bring up next address
520 * component. If strictly routed make sure next
521 * address is on directly accessible net.
523 case IPOPT_LSRR:
524 case IPOPT_SSRR:
525 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
526 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
527 goto bad;
529 ipaddr.sin_addr = ip->ip_dst;
530 ia = (struct in_ifaddr *)
531 ifa_ifwithaddr((struct sockaddr *)&ipaddr);
532 if (ia == 0) {
533 if (opt == IPOPT_SSRR) {
534 type = ICMP_UNREACH;
535 code = ICMP_UNREACH_SRCFAIL;
536 goto bad;
539 * Loose routing, and not at next destination
540 * yet; nothing to do except forward.
542 break;
544 off--; / * 0 origin * /
545 if (off > optlen - sizeof(struct in_addr)) {
547 * End of source route. Should be for us.
549 save_rte(cp, ip->ip_src);
550 break;
553 * locate outgoing interface
555 bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
556 sizeof(ipaddr.sin_addr));
557 if (opt == IPOPT_SSRR) {
558 #define INA struct in_ifaddr *
559 #define SA struct sockaddr *
560 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
561 ia = (INA)ifa_ifwithnet((SA)&ipaddr);
562 } else
563 ia = ip_rtaddr(ipaddr.sin_addr);
564 if (ia == 0) {
565 type = ICMP_UNREACH;
566 code = ICMP_UNREACH_SRCFAIL;
567 goto bad;
569 ip->ip_dst = ipaddr.sin_addr;
570 bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
571 (caddr_t)(cp + off), sizeof(struct in_addr));
572 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
574 * Let ip_intr's mcast routing check handle mcast pkts
576 forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
577 break;
579 case IPOPT_RR:
580 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
581 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
582 goto bad;
585 * If no space remains, ignore.
587 off--; * 0 origin *
588 if (off > optlen - sizeof(struct in_addr))
589 break;
590 bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
591 sizeof(ipaddr.sin_addr));
593 * locate outgoing interface; if we're the destination,
594 * use the incoming interface (should be same).
596 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
597 (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
598 type = ICMP_UNREACH;
599 code = ICMP_UNREACH_HOST;
600 goto bad;
602 bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
603 (caddr_t)(cp + off), sizeof(struct in_addr));
604 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
605 break;
607 case IPOPT_TS:
608 code = cp - (u_char *)ip;
609 ipt = (struct ip_timestamp *)cp;
610 if (ipt->ipt_len < 5)
611 goto bad;
612 if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
613 if (++ipt->ipt_oflw == 0)
614 goto bad;
615 break;
617 sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
618 switch (ipt->ipt_flg) {
620 case IPOPT_TS_TSONLY:
621 break;
623 case IPOPT_TS_TSANDADDR:
624 if (ipt->ipt_ptr + sizeof(n_time) +
625 sizeof(struct in_addr) > ipt->ipt_len)
626 goto bad;
627 ipaddr.sin_addr = dst;
628 ia = (INA)ifaof_ i f p foraddr((SA)&ipaddr,
629 m->m_pkthdr.rcvif);
630 if (ia == 0)
631 continue;
632 bcopy((caddr_t)&IA_SIN(ia)->sin_addr,
633 (caddr_t)sin, sizeof(struct in_addr));
634 ipt->ipt_ptr += sizeof(struct in_addr);
635 break;
637 case IPOPT_TS_PRESPEC:
638 if (ipt->ipt_ptr + sizeof(n_time) +
639 sizeof(struct in_addr) > ipt->ipt_len)
640 goto bad;
641 bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
642 sizeof(struct in_addr));
643 if (ifa_ifwithaddr((SA)&ipaddr) == 0)
644 continue;
645 ipt->ipt_ptr += sizeof(struct in_addr);
646 break;
648 default:
649 goto bad;
651 ntime = iptime();
652 bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
653 sizeof(n_time));
654 ipt->ipt_ptr += sizeof(n_time);
657 if (forward) {
658 ip_forward(m, 1);
659 return (1);
663 return (0);
664 bad:
665 /* ip->ip_len -= ip->ip_hl << 2; XXX icmp_error adds in hdr length */
667 /* Not yet */
668 icmp_error(m, type, code, 0, 0);
670 STAT(ipstat.ips_badoptions++);
671 return (1);
674 #endif /* notdef */
677 * Strip out IP options, at higher
678 * level protocol in the kernel.
679 * Second argument is buffer to which options
680 * will be moved, and return value is their length.
681 * (XXX) should be deleted; last arg currently ignored.
683 void
684 ip_stripoptions(m, mopt)
685 register struct mbuf *m;
686 struct mbuf *mopt;
688 register int i;
689 struct ip *ip = mtod(m, struct ip *);
690 register caddr_t opts;
691 int olen;
693 olen = (ip->ip_hl<<2) - sizeof (struct ip);
694 opts = (caddr_t)(ip + 1);
695 i = m->m_len - (sizeof (struct ip) + olen);
696 memcpy(opts, opts + olen, (unsigned)i);
697 m->m_len -= olen;
699 ip->ip_hl = sizeof(struct ip) >> 2;