Large kernel initrd fix (initial patch by Daniel Jacobowitz).
[qemu/mini2440.git] / cpu-exec.c
blobd168886620f9224ba2ae72ac65a8f9fd593dee49
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "config.h"
21 #include "exec.h"
22 #include "disas.h"
24 #if !defined(CONFIG_SOFTMMU)
25 #undef EAX
26 #undef ECX
27 #undef EDX
28 #undef EBX
29 #undef ESP
30 #undef EBP
31 #undef ESI
32 #undef EDI
33 #undef EIP
34 #include <signal.h>
35 #include <sys/ucontext.h>
36 #endif
38 int tb_invalidated_flag;
40 //#define DEBUG_EXEC
41 //#define DEBUG_SIGNAL
43 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_M68K)
44 /* XXX: unify with i386 target */
45 void cpu_loop_exit(void)
47 longjmp(env->jmp_env, 1);
49 #endif
50 #if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
51 #define reg_T2
52 #endif
54 /* exit the current TB from a signal handler. The host registers are
55 restored in a state compatible with the CPU emulator
57 void cpu_resume_from_signal(CPUState *env1, void *puc)
59 #if !defined(CONFIG_SOFTMMU)
60 struct ucontext *uc = puc;
61 #endif
63 env = env1;
65 /* XXX: restore cpu registers saved in host registers */
67 #if !defined(CONFIG_SOFTMMU)
68 if (puc) {
69 /* XXX: use siglongjmp ? */
70 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
72 #endif
73 longjmp(env->jmp_env, 1);
77 static TranslationBlock *tb_find_slow(target_ulong pc,
78 target_ulong cs_base,
79 unsigned int flags)
81 TranslationBlock *tb, **ptb1;
82 int code_gen_size;
83 unsigned int h;
84 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
85 uint8_t *tc_ptr;
87 spin_lock(&tb_lock);
89 tb_invalidated_flag = 0;
91 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
93 /* find translated block using physical mappings */
94 phys_pc = get_phys_addr_code(env, pc);
95 phys_page1 = phys_pc & TARGET_PAGE_MASK;
96 phys_page2 = -1;
97 h = tb_phys_hash_func(phys_pc);
98 ptb1 = &tb_phys_hash[h];
99 for(;;) {
100 tb = *ptb1;
101 if (!tb)
102 goto not_found;
103 if (tb->pc == pc &&
104 tb->page_addr[0] == phys_page1 &&
105 tb->cs_base == cs_base &&
106 tb->flags == flags) {
107 /* check next page if needed */
108 if (tb->page_addr[1] != -1) {
109 virt_page2 = (pc & TARGET_PAGE_MASK) +
110 TARGET_PAGE_SIZE;
111 phys_page2 = get_phys_addr_code(env, virt_page2);
112 if (tb->page_addr[1] == phys_page2)
113 goto found;
114 } else {
115 goto found;
118 ptb1 = &tb->phys_hash_next;
120 not_found:
121 /* if no translated code available, then translate it now */
122 tb = tb_alloc(pc);
123 if (!tb) {
124 /* flush must be done */
125 tb_flush(env);
126 /* cannot fail at this point */
127 tb = tb_alloc(pc);
128 /* don't forget to invalidate previous TB info */
129 tb_invalidated_flag = 1;
131 tc_ptr = code_gen_ptr;
132 tb->tc_ptr = tc_ptr;
133 tb->cs_base = cs_base;
134 tb->flags = flags;
135 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
136 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
138 /* check next page if needed */
139 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
140 phys_page2 = -1;
141 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
142 phys_page2 = get_phys_addr_code(env, virt_page2);
144 tb_link_phys(tb, phys_pc, phys_page2);
146 found:
147 /* we add the TB in the virtual pc hash table */
148 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
149 spin_unlock(&tb_lock);
150 return tb;
153 static inline TranslationBlock *tb_find_fast(void)
155 TranslationBlock *tb;
156 target_ulong cs_base, pc;
157 unsigned int flags;
159 /* we record a subset of the CPU state. It will
160 always be the same before a given translated block
161 is executed. */
162 #if defined(TARGET_I386)
163 flags = env->hflags;
164 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
165 cs_base = env->segs[R_CS].base;
166 pc = cs_base + env->eip;
167 #elif defined(TARGET_ARM)
168 flags = env->thumb | (env->vfp.vec_len << 1)
169 | (env->vfp.vec_stride << 4);
170 if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
171 flags |= (1 << 6);
172 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
173 flags |= (1 << 7);
174 cs_base = 0;
175 pc = env->regs[15];
176 #elif defined(TARGET_SPARC)
177 #ifdef TARGET_SPARC64
178 // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
179 flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
180 | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
181 #else
182 // FPU enable . MMU enabled . MMU no-fault . Supervisor
183 flags = (env->psref << 3) | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
184 | env->psrs;
185 #endif
186 cs_base = env->npc;
187 pc = env->pc;
188 #elif defined(TARGET_PPC)
189 flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
190 (msr_se << MSR_SE) | (msr_le << MSR_LE);
191 cs_base = 0;
192 pc = env->nip;
193 #elif defined(TARGET_MIPS)
194 flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
195 cs_base = 0;
196 pc = env->PC;
197 #elif defined(TARGET_M68K)
198 flags = env->fpcr & M68K_FPCR_PREC;
199 cs_base = 0;
200 pc = env->pc;
201 #elif defined(TARGET_SH4)
202 flags = env->sr & (SR_MD | SR_RB);
203 cs_base = 0; /* XXXXX */
204 pc = env->pc;
205 #else
206 #error unsupported CPU
207 #endif
208 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
209 if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
210 tb->flags != flags, 0)) {
211 tb = tb_find_slow(pc, cs_base, flags);
212 /* Note: we do it here to avoid a gcc bug on Mac OS X when
213 doing it in tb_find_slow */
214 if (tb_invalidated_flag) {
215 /* as some TB could have been invalidated because
216 of memory exceptions while generating the code, we
217 must recompute the hash index here */
218 T0 = 0;
221 return tb;
225 /* main execution loop */
227 int cpu_exec(CPUState *env1)
229 #define DECLARE_HOST_REGS 1
230 #include "hostregs_helper.h"
231 #if defined(TARGET_SPARC)
232 #if defined(reg_REGWPTR)
233 uint32_t *saved_regwptr;
234 #endif
235 #endif
236 #if defined(__sparc__) && !defined(HOST_SOLARIS)
237 int saved_i7;
238 target_ulong tmp_T0;
239 #endif
240 int ret, interrupt_request;
241 void (*gen_func)(void);
242 TranslationBlock *tb;
243 uint8_t *tc_ptr;
245 #if defined(TARGET_I386)
246 /* handle exit of HALTED state */
247 if (env1->hflags & HF_HALTED_MASK) {
248 /* disable halt condition */
249 if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
250 (env1->eflags & IF_MASK)) {
251 env1->hflags &= ~HF_HALTED_MASK;
252 } else {
253 return EXCP_HALTED;
256 #elif defined(TARGET_PPC)
257 if (env1->halted) {
258 if (env1->msr[MSR_EE] &&
259 (env1->interrupt_request & CPU_INTERRUPT_HARD)) {
260 env1->halted = 0;
261 } else {
262 return EXCP_HALTED;
265 #elif defined(TARGET_SPARC)
266 if (env1->halted) {
267 if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
268 (env1->psret != 0)) {
269 env1->halted = 0;
270 } else {
271 return EXCP_HALTED;
274 #elif defined(TARGET_ARM)
275 if (env1->halted) {
276 /* An interrupt wakes the CPU even if the I and F CPSR bits are
277 set. */
278 if (env1->interrupt_request
279 & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD)) {
280 env1->halted = 0;
281 } else {
282 return EXCP_HALTED;
285 #elif defined(TARGET_MIPS)
286 if (env1->halted) {
287 if (env1->interrupt_request &
288 (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
289 env1->halted = 0;
290 } else {
291 return EXCP_HALTED;
294 #endif
296 cpu_single_env = env1;
298 /* first we save global registers */
299 #define SAVE_HOST_REGS 1
300 #include "hostregs_helper.h"
301 env = env1;
302 #if defined(__sparc__) && !defined(HOST_SOLARIS)
303 /* we also save i7 because longjmp may not restore it */
304 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
305 #endif
307 #if defined(TARGET_I386)
308 env_to_regs();
309 /* put eflags in CPU temporary format */
310 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
311 DF = 1 - (2 * ((env->eflags >> 10) & 1));
312 CC_OP = CC_OP_EFLAGS;
313 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
314 #elif defined(TARGET_ARM)
315 #elif defined(TARGET_SPARC)
316 #if defined(reg_REGWPTR)
317 saved_regwptr = REGWPTR;
318 #endif
319 #elif defined(TARGET_PPC)
320 #elif defined(TARGET_M68K)
321 env->cc_op = CC_OP_FLAGS;
322 env->cc_dest = env->sr & 0xf;
323 env->cc_x = (env->sr >> 4) & 1;
324 #elif defined(TARGET_MIPS)
325 #elif defined(TARGET_SH4)
326 /* XXXXX */
327 #else
328 #error unsupported target CPU
329 #endif
330 env->exception_index = -1;
332 /* prepare setjmp context for exception handling */
333 for(;;) {
334 if (setjmp(env->jmp_env) == 0) {
335 env->current_tb = NULL;
336 /* if an exception is pending, we execute it here */
337 if (env->exception_index >= 0) {
338 if (env->exception_index >= EXCP_INTERRUPT) {
339 /* exit request from the cpu execution loop */
340 ret = env->exception_index;
341 break;
342 } else if (env->user_mode_only) {
343 /* if user mode only, we simulate a fake exception
344 which will be handled outside the cpu execution
345 loop */
346 #if defined(TARGET_I386)
347 do_interrupt_user(env->exception_index,
348 env->exception_is_int,
349 env->error_code,
350 env->exception_next_eip);
351 #endif
352 ret = env->exception_index;
353 break;
354 } else {
355 #if defined(TARGET_I386)
356 /* simulate a real cpu exception. On i386, it can
357 trigger new exceptions, but we do not handle
358 double or triple faults yet. */
359 do_interrupt(env->exception_index,
360 env->exception_is_int,
361 env->error_code,
362 env->exception_next_eip, 0);
363 #elif defined(TARGET_PPC)
364 do_interrupt(env);
365 #elif defined(TARGET_MIPS)
366 do_interrupt(env);
367 #elif defined(TARGET_SPARC)
368 do_interrupt(env->exception_index);
369 #elif defined(TARGET_ARM)
370 do_interrupt(env);
371 #elif defined(TARGET_SH4)
372 do_interrupt(env);
373 #endif
375 env->exception_index = -1;
377 #ifdef USE_KQEMU
378 if (kqemu_is_ok(env) && env->interrupt_request == 0) {
379 int ret;
380 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
381 ret = kqemu_cpu_exec(env);
382 /* put eflags in CPU temporary format */
383 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
384 DF = 1 - (2 * ((env->eflags >> 10) & 1));
385 CC_OP = CC_OP_EFLAGS;
386 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
387 if (ret == 1) {
388 /* exception */
389 longjmp(env->jmp_env, 1);
390 } else if (ret == 2) {
391 /* softmmu execution needed */
392 } else {
393 if (env->interrupt_request != 0) {
394 /* hardware interrupt will be executed just after */
395 } else {
396 /* otherwise, we restart */
397 longjmp(env->jmp_env, 1);
401 #endif
403 T0 = 0; /* force lookup of first TB */
404 for(;;) {
405 #if defined(__sparc__) && !defined(HOST_SOLARIS)
406 /* g1 can be modified by some libc? functions */
407 tmp_T0 = T0;
408 #endif
409 interrupt_request = env->interrupt_request;
410 if (__builtin_expect(interrupt_request, 0)) {
411 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
412 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
413 env->exception_index = EXCP_DEBUG;
414 cpu_loop_exit();
416 #if defined(TARGET_I386)
417 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
418 !(env->hflags & HF_SMM_MASK)) {
419 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
420 do_smm_enter();
421 #if defined(__sparc__) && !defined(HOST_SOLARIS)
422 tmp_T0 = 0;
423 #else
424 T0 = 0;
425 #endif
426 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
427 (env->eflags & IF_MASK) &&
428 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
429 int intno;
430 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
431 intno = cpu_get_pic_interrupt(env);
432 if (loglevel & CPU_LOG_TB_IN_ASM) {
433 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
435 do_interrupt(intno, 0, 0, 0, 1);
436 /* ensure that no TB jump will be modified as
437 the program flow was changed */
438 #if defined(__sparc__) && !defined(HOST_SOLARIS)
439 tmp_T0 = 0;
440 #else
441 T0 = 0;
442 #endif
444 #elif defined(TARGET_PPC)
445 #if 0
446 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
447 cpu_ppc_reset(env);
449 #endif
450 if (interrupt_request & CPU_INTERRUPT_HARD) {
451 if (ppc_hw_interrupt(env) == 1) {
452 /* Some exception was raised */
453 if (env->pending_interrupts == 0)
454 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
455 #if defined(__sparc__) && !defined(HOST_SOLARIS)
456 tmp_T0 = 0;
457 #else
458 T0 = 0;
459 #endif
462 #elif defined(TARGET_MIPS)
463 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
464 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
465 (env->CP0_Status & (1 << CP0St_IE)) &&
466 !(env->CP0_Status & (1 << CP0St_EXL)) &&
467 !(env->CP0_Status & (1 << CP0St_ERL)) &&
468 !(env->hflags & MIPS_HFLAG_DM)) {
469 /* Raise it */
470 env->exception_index = EXCP_EXT_INTERRUPT;
471 env->error_code = 0;
472 do_interrupt(env);
473 #if defined(__sparc__) && !defined(HOST_SOLARIS)
474 tmp_T0 = 0;
475 #else
476 T0 = 0;
477 #endif
479 #elif defined(TARGET_SPARC)
480 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
481 (env->psret != 0)) {
482 int pil = env->interrupt_index & 15;
483 int type = env->interrupt_index & 0xf0;
485 if (((type == TT_EXTINT) &&
486 (pil == 15 || pil > env->psrpil)) ||
487 type != TT_EXTINT) {
488 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
489 do_interrupt(env->interrupt_index);
490 env->interrupt_index = 0;
491 #if defined(__sparc__) && !defined(HOST_SOLARIS)
492 tmp_T0 = 0;
493 #else
494 T0 = 0;
495 #endif
497 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
498 //do_interrupt(0, 0, 0, 0, 0);
499 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
500 } else if (interrupt_request & CPU_INTERRUPT_HALT) {
501 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
502 env->halted = 1;
503 env->exception_index = EXCP_HLT;
504 cpu_loop_exit();
506 #elif defined(TARGET_ARM)
507 if (interrupt_request & CPU_INTERRUPT_FIQ
508 && !(env->uncached_cpsr & CPSR_F)) {
509 env->exception_index = EXCP_FIQ;
510 do_interrupt(env);
512 if (interrupt_request & CPU_INTERRUPT_HARD
513 && !(env->uncached_cpsr & CPSR_I)) {
514 env->exception_index = EXCP_IRQ;
515 do_interrupt(env);
517 #elif defined(TARGET_SH4)
518 /* XXXXX */
519 #endif
520 /* Don't use the cached interupt_request value,
521 do_interrupt may have updated the EXITTB flag. */
522 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
523 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
524 /* ensure that no TB jump will be modified as
525 the program flow was changed */
526 #if defined(__sparc__) && !defined(HOST_SOLARIS)
527 tmp_T0 = 0;
528 #else
529 T0 = 0;
530 #endif
532 if (interrupt_request & CPU_INTERRUPT_EXIT) {
533 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
534 env->exception_index = EXCP_INTERRUPT;
535 cpu_loop_exit();
538 #ifdef DEBUG_EXEC
539 if ((loglevel & CPU_LOG_TB_CPU)) {
540 #if defined(TARGET_I386)
541 /* restore flags in standard format */
542 #ifdef reg_EAX
543 env->regs[R_EAX] = EAX;
544 #endif
545 #ifdef reg_EBX
546 env->regs[R_EBX] = EBX;
547 #endif
548 #ifdef reg_ECX
549 env->regs[R_ECX] = ECX;
550 #endif
551 #ifdef reg_EDX
552 env->regs[R_EDX] = EDX;
553 #endif
554 #ifdef reg_ESI
555 env->regs[R_ESI] = ESI;
556 #endif
557 #ifdef reg_EDI
558 env->regs[R_EDI] = EDI;
559 #endif
560 #ifdef reg_EBP
561 env->regs[R_EBP] = EBP;
562 #endif
563 #ifdef reg_ESP
564 env->regs[R_ESP] = ESP;
565 #endif
566 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
567 cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
568 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
569 #elif defined(TARGET_ARM)
570 cpu_dump_state(env, logfile, fprintf, 0);
571 #elif defined(TARGET_SPARC)
572 REGWPTR = env->regbase + (env->cwp * 16);
573 env->regwptr = REGWPTR;
574 cpu_dump_state(env, logfile, fprintf, 0);
575 #elif defined(TARGET_PPC)
576 cpu_dump_state(env, logfile, fprintf, 0);
577 #elif defined(TARGET_M68K)
578 cpu_m68k_flush_flags(env, env->cc_op);
579 env->cc_op = CC_OP_FLAGS;
580 env->sr = (env->sr & 0xffe0)
581 | env->cc_dest | (env->cc_x << 4);
582 cpu_dump_state(env, logfile, fprintf, 0);
583 #elif defined(TARGET_MIPS)
584 cpu_dump_state(env, logfile, fprintf, 0);
585 #elif defined(TARGET_SH4)
586 cpu_dump_state(env, logfile, fprintf, 0);
587 #else
588 #error unsupported target CPU
589 #endif
591 #endif
592 tb = tb_find_fast();
593 #ifdef DEBUG_EXEC
594 if ((loglevel & CPU_LOG_EXEC)) {
595 fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
596 (long)tb->tc_ptr, tb->pc,
597 lookup_symbol(tb->pc));
599 #endif
600 #if defined(__sparc__) && !defined(HOST_SOLARIS)
601 T0 = tmp_T0;
602 #endif
603 /* see if we can patch the calling TB. When the TB
604 spans two pages, we cannot safely do a direct
605 jump. */
607 if (T0 != 0 &&
608 #if USE_KQEMU
609 (env->kqemu_enabled != 2) &&
610 #endif
611 tb->page_addr[1] == -1
612 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
613 && (tb->cflags & CF_CODE_COPY) ==
614 (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
615 #endif
617 spin_lock(&tb_lock);
618 tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
619 #if defined(USE_CODE_COPY)
620 /* propagates the FP use info */
621 ((TranslationBlock *)(T0 & ~3))->cflags |=
622 (tb->cflags & CF_FP_USED);
623 #endif
624 spin_unlock(&tb_lock);
627 tc_ptr = tb->tc_ptr;
628 env->current_tb = tb;
629 /* execute the generated code */
630 gen_func = (void *)tc_ptr;
631 #if defined(__sparc__)
632 __asm__ __volatile__("call %0\n\t"
633 "mov %%o7,%%i0"
634 : /* no outputs */
635 : "r" (gen_func)
636 : "i0", "i1", "i2", "i3", "i4", "i5",
637 "o0", "o1", "o2", "o3", "o4", "o5",
638 "l0", "l1", "l2", "l3", "l4", "l5",
639 "l6", "l7");
640 #elif defined(__arm__)
641 asm volatile ("mov pc, %0\n\t"
642 ".global exec_loop\n\t"
643 "exec_loop:\n\t"
644 : /* no outputs */
645 : "r" (gen_func)
646 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
647 #elif defined(TARGET_I386) && defined(USE_CODE_COPY)
649 if (!(tb->cflags & CF_CODE_COPY)) {
650 if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
651 save_native_fp_state(env);
653 gen_func();
654 } else {
655 if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
656 restore_native_fp_state(env);
658 /* we work with native eflags */
659 CC_SRC = cc_table[CC_OP].compute_all();
660 CC_OP = CC_OP_EFLAGS;
661 asm(".globl exec_loop\n"
662 "\n"
663 "debug1:\n"
664 " pushl %%ebp\n"
665 " fs movl %10, %9\n"
666 " fs movl %11, %%eax\n"
667 " andl $0x400, %%eax\n"
668 " fs orl %8, %%eax\n"
669 " pushl %%eax\n"
670 " popf\n"
671 " fs movl %%esp, %12\n"
672 " fs movl %0, %%eax\n"
673 " fs movl %1, %%ecx\n"
674 " fs movl %2, %%edx\n"
675 " fs movl %3, %%ebx\n"
676 " fs movl %4, %%esp\n"
677 " fs movl %5, %%ebp\n"
678 " fs movl %6, %%esi\n"
679 " fs movl %7, %%edi\n"
680 " fs jmp *%9\n"
681 "exec_loop:\n"
682 " fs movl %%esp, %4\n"
683 " fs movl %12, %%esp\n"
684 " fs movl %%eax, %0\n"
685 " fs movl %%ecx, %1\n"
686 " fs movl %%edx, %2\n"
687 " fs movl %%ebx, %3\n"
688 " fs movl %%ebp, %5\n"
689 " fs movl %%esi, %6\n"
690 " fs movl %%edi, %7\n"
691 " pushf\n"
692 " popl %%eax\n"
693 " movl %%eax, %%ecx\n"
694 " andl $0x400, %%ecx\n"
695 " shrl $9, %%ecx\n"
696 " andl $0x8d5, %%eax\n"
697 " fs movl %%eax, %8\n"
698 " movl $1, %%eax\n"
699 " subl %%ecx, %%eax\n"
700 " fs movl %%eax, %11\n"
701 " fs movl %9, %%ebx\n" /* get T0 value */
702 " popl %%ebp\n"
704 : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
705 "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
706 "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
707 "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
708 "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
709 "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
710 "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
711 "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
712 "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
713 "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
714 "a" (gen_func),
715 "m" (*(uint8_t *)offsetof(CPUState, df)),
716 "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
717 : "%ecx", "%edx"
721 #elif defined(__ia64)
722 struct fptr {
723 void *ip;
724 void *gp;
725 } fp;
727 fp.ip = tc_ptr;
728 fp.gp = code_gen_buffer + 2 * (1 << 20);
729 (*(void (*)(void)) &fp)();
730 #else
731 gen_func();
732 #endif
733 env->current_tb = NULL;
734 /* reset soft MMU for next block (it can currently
735 only be set by a memory fault) */
736 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
737 if (env->hflags & HF_SOFTMMU_MASK) {
738 env->hflags &= ~HF_SOFTMMU_MASK;
739 /* do not allow linking to another block */
740 T0 = 0;
742 #endif
743 #if defined(USE_KQEMU)
744 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
745 if (kqemu_is_ok(env) &&
746 (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
747 cpu_loop_exit();
749 #endif
751 } else {
752 env_to_regs();
754 } /* for(;;) */
757 #if defined(TARGET_I386)
758 #if defined(USE_CODE_COPY)
759 if (env->native_fp_regs) {
760 save_native_fp_state(env);
762 #endif
763 /* restore flags in standard format */
764 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
765 #elif defined(TARGET_ARM)
766 /* XXX: Save/restore host fpu exception state?. */
767 #elif defined(TARGET_SPARC)
768 #if defined(reg_REGWPTR)
769 REGWPTR = saved_regwptr;
770 #endif
771 #elif defined(TARGET_PPC)
772 #elif defined(TARGET_M68K)
773 cpu_m68k_flush_flags(env, env->cc_op);
774 env->cc_op = CC_OP_FLAGS;
775 env->sr = (env->sr & 0xffe0)
776 | env->cc_dest | (env->cc_x << 4);
777 #elif defined(TARGET_MIPS)
778 #elif defined(TARGET_SH4)
779 /* XXXXX */
780 #else
781 #error unsupported target CPU
782 #endif
784 /* restore global registers */
785 #if defined(__sparc__) && !defined(HOST_SOLARIS)
786 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
787 #endif
788 #include "hostregs_helper.h"
790 /* fail safe : never use cpu_single_env outside cpu_exec() */
791 cpu_single_env = NULL;
792 return ret;
795 /* must only be called from the generated code as an exception can be
796 generated */
797 void tb_invalidate_page_range(target_ulong start, target_ulong end)
799 /* XXX: cannot enable it yet because it yields to MMU exception
800 where NIP != read address on PowerPC */
801 #if 0
802 target_ulong phys_addr;
803 phys_addr = get_phys_addr_code(env, start);
804 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
805 #endif
808 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
810 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
812 CPUX86State *saved_env;
814 saved_env = env;
815 env = s;
816 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
817 selector &= 0xffff;
818 cpu_x86_load_seg_cache(env, seg_reg, selector,
819 (selector << 4), 0xffff, 0);
820 } else {
821 load_seg(seg_reg, selector);
823 env = saved_env;
826 void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
828 CPUX86State *saved_env;
830 saved_env = env;
831 env = s;
833 helper_fsave((target_ulong)ptr, data32);
835 env = saved_env;
838 void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
840 CPUX86State *saved_env;
842 saved_env = env;
843 env = s;
845 helper_frstor((target_ulong)ptr, data32);
847 env = saved_env;
850 #endif /* TARGET_I386 */
852 #if !defined(CONFIG_SOFTMMU)
854 #if defined(TARGET_I386)
856 /* 'pc' is the host PC at which the exception was raised. 'address' is
857 the effective address of the memory exception. 'is_write' is 1 if a
858 write caused the exception and otherwise 0'. 'old_set' is the
859 signal set which should be restored */
860 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
861 int is_write, sigset_t *old_set,
862 void *puc)
864 TranslationBlock *tb;
865 int ret;
867 if (cpu_single_env)
868 env = cpu_single_env; /* XXX: find a correct solution for multithread */
869 #if defined(DEBUG_SIGNAL)
870 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
871 pc, address, is_write, *(unsigned long *)old_set);
872 #endif
873 /* XXX: locking issue */
874 if (is_write && page_unprotect(h2g(address), pc, puc)) {
875 return 1;
878 /* see if it is an MMU fault */
879 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
880 ((env->hflags & HF_CPL_MASK) == 3), 0);
881 if (ret < 0)
882 return 0; /* not an MMU fault */
883 if (ret == 0)
884 return 1; /* the MMU fault was handled without causing real CPU fault */
885 /* now we have a real cpu fault */
886 tb = tb_find_pc(pc);
887 if (tb) {
888 /* the PC is inside the translated code. It means that we have
889 a virtual CPU fault */
890 cpu_restore_state(tb, env, pc, puc);
892 if (ret == 1) {
893 #if 0
894 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
895 env->eip, env->cr[2], env->error_code);
896 #endif
897 /* we restore the process signal mask as the sigreturn should
898 do it (XXX: use sigsetjmp) */
899 sigprocmask(SIG_SETMASK, old_set, NULL);
900 raise_exception_err(env->exception_index, env->error_code);
901 } else {
902 /* activate soft MMU for this block */
903 env->hflags |= HF_SOFTMMU_MASK;
904 cpu_resume_from_signal(env, puc);
906 /* never comes here */
907 return 1;
910 #elif defined(TARGET_ARM)
911 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
912 int is_write, sigset_t *old_set,
913 void *puc)
915 TranslationBlock *tb;
916 int ret;
918 if (cpu_single_env)
919 env = cpu_single_env; /* XXX: find a correct solution for multithread */
920 #if defined(DEBUG_SIGNAL)
921 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
922 pc, address, is_write, *(unsigned long *)old_set);
923 #endif
924 /* XXX: locking issue */
925 if (is_write && page_unprotect(h2g(address), pc, puc)) {
926 return 1;
928 /* see if it is an MMU fault */
929 ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
930 if (ret < 0)
931 return 0; /* not an MMU fault */
932 if (ret == 0)
933 return 1; /* the MMU fault was handled without causing real CPU fault */
934 /* now we have a real cpu fault */
935 tb = tb_find_pc(pc);
936 if (tb) {
937 /* the PC is inside the translated code. It means that we have
938 a virtual CPU fault */
939 cpu_restore_state(tb, env, pc, puc);
941 /* we restore the process signal mask as the sigreturn should
942 do it (XXX: use sigsetjmp) */
943 sigprocmask(SIG_SETMASK, old_set, NULL);
944 cpu_loop_exit();
946 #elif defined(TARGET_SPARC)
947 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
948 int is_write, sigset_t *old_set,
949 void *puc)
951 TranslationBlock *tb;
952 int ret;
954 if (cpu_single_env)
955 env = cpu_single_env; /* XXX: find a correct solution for multithread */
956 #if defined(DEBUG_SIGNAL)
957 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
958 pc, address, is_write, *(unsigned long *)old_set);
959 #endif
960 /* XXX: locking issue */
961 if (is_write && page_unprotect(h2g(address), pc, puc)) {
962 return 1;
964 /* see if it is an MMU fault */
965 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
966 if (ret < 0)
967 return 0; /* not an MMU fault */
968 if (ret == 0)
969 return 1; /* the MMU fault was handled without causing real CPU fault */
970 /* now we have a real cpu fault */
971 tb = tb_find_pc(pc);
972 if (tb) {
973 /* the PC is inside the translated code. It means that we have
974 a virtual CPU fault */
975 cpu_restore_state(tb, env, pc, puc);
977 /* we restore the process signal mask as the sigreturn should
978 do it (XXX: use sigsetjmp) */
979 sigprocmask(SIG_SETMASK, old_set, NULL);
980 cpu_loop_exit();
982 #elif defined (TARGET_PPC)
983 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
984 int is_write, sigset_t *old_set,
985 void *puc)
987 TranslationBlock *tb;
988 int ret;
990 if (cpu_single_env)
991 env = cpu_single_env; /* XXX: find a correct solution for multithread */
992 #if defined(DEBUG_SIGNAL)
993 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
994 pc, address, is_write, *(unsigned long *)old_set);
995 #endif
996 /* XXX: locking issue */
997 if (is_write && page_unprotect(h2g(address), pc, puc)) {
998 return 1;
1001 /* see if it is an MMU fault */
1002 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
1003 if (ret < 0)
1004 return 0; /* not an MMU fault */
1005 if (ret == 0)
1006 return 1; /* the MMU fault was handled without causing real CPU fault */
1008 /* now we have a real cpu fault */
1009 tb = tb_find_pc(pc);
1010 if (tb) {
1011 /* the PC is inside the translated code. It means that we have
1012 a virtual CPU fault */
1013 cpu_restore_state(tb, env, pc, puc);
1015 if (ret == 1) {
1016 #if 0
1017 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1018 env->nip, env->error_code, tb);
1019 #endif
1020 /* we restore the process signal mask as the sigreturn should
1021 do it (XXX: use sigsetjmp) */
1022 sigprocmask(SIG_SETMASK, old_set, NULL);
1023 do_raise_exception_err(env->exception_index, env->error_code);
1024 } else {
1025 /* activate soft MMU for this block */
1026 cpu_resume_from_signal(env, puc);
1028 /* never comes here */
1029 return 1;
1032 #elif defined(TARGET_M68K)
1033 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1034 int is_write, sigset_t *old_set,
1035 void *puc)
1037 TranslationBlock *tb;
1038 int ret;
1040 if (cpu_single_env)
1041 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1042 #if defined(DEBUG_SIGNAL)
1043 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1044 pc, address, is_write, *(unsigned long *)old_set);
1045 #endif
1046 /* XXX: locking issue */
1047 if (is_write && page_unprotect(address, pc, puc)) {
1048 return 1;
1050 /* see if it is an MMU fault */
1051 ret = cpu_m68k_handle_mmu_fault(env, address, is_write, 1, 0);
1052 if (ret < 0)
1053 return 0; /* not an MMU fault */
1054 if (ret == 0)
1055 return 1; /* the MMU fault was handled without causing real CPU fault */
1056 /* now we have a real cpu fault */
1057 tb = tb_find_pc(pc);
1058 if (tb) {
1059 /* the PC is inside the translated code. It means that we have
1060 a virtual CPU fault */
1061 cpu_restore_state(tb, env, pc, puc);
1063 /* we restore the process signal mask as the sigreturn should
1064 do it (XXX: use sigsetjmp) */
1065 sigprocmask(SIG_SETMASK, old_set, NULL);
1066 cpu_loop_exit();
1067 /* never comes here */
1068 return 1;
1071 #elif defined (TARGET_MIPS)
1072 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1073 int is_write, sigset_t *old_set,
1074 void *puc)
1076 TranslationBlock *tb;
1077 int ret;
1079 if (cpu_single_env)
1080 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1081 #if defined(DEBUG_SIGNAL)
1082 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1083 pc, address, is_write, *(unsigned long *)old_set);
1084 #endif
1085 /* XXX: locking issue */
1086 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1087 return 1;
1090 /* see if it is an MMU fault */
1091 ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1092 if (ret < 0)
1093 return 0; /* not an MMU fault */
1094 if (ret == 0)
1095 return 1; /* the MMU fault was handled without causing real CPU fault */
1097 /* now we have a real cpu fault */
1098 tb = tb_find_pc(pc);
1099 if (tb) {
1100 /* the PC is inside the translated code. It means that we have
1101 a virtual CPU fault */
1102 cpu_restore_state(tb, env, pc, puc);
1104 if (ret == 1) {
1105 #if 0
1106 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1107 env->nip, env->error_code, tb);
1108 #endif
1109 /* we restore the process signal mask as the sigreturn should
1110 do it (XXX: use sigsetjmp) */
1111 sigprocmask(SIG_SETMASK, old_set, NULL);
1112 do_raise_exception_err(env->exception_index, env->error_code);
1113 } else {
1114 /* activate soft MMU for this block */
1115 cpu_resume_from_signal(env, puc);
1117 /* never comes here */
1118 return 1;
1121 #elif defined (TARGET_SH4)
1122 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1123 int is_write, sigset_t *old_set,
1124 void *puc)
1126 TranslationBlock *tb;
1127 int ret;
1129 if (cpu_single_env)
1130 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1131 #if defined(DEBUG_SIGNAL)
1132 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1133 pc, address, is_write, *(unsigned long *)old_set);
1134 #endif
1135 /* XXX: locking issue */
1136 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1137 return 1;
1140 /* see if it is an MMU fault */
1141 ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
1142 if (ret < 0)
1143 return 0; /* not an MMU fault */
1144 if (ret == 0)
1145 return 1; /* the MMU fault was handled without causing real CPU fault */
1147 /* now we have a real cpu fault */
1148 tb = tb_find_pc(pc);
1149 if (tb) {
1150 /* the PC is inside the translated code. It means that we have
1151 a virtual CPU fault */
1152 cpu_restore_state(tb, env, pc, puc);
1154 #if 0
1155 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1156 env->nip, env->error_code, tb);
1157 #endif
1158 /* we restore the process signal mask as the sigreturn should
1159 do it (XXX: use sigsetjmp) */
1160 sigprocmask(SIG_SETMASK, old_set, NULL);
1161 cpu_loop_exit();
1162 /* never comes here */
1163 return 1;
1165 #else
1166 #error unsupported target CPU
1167 #endif
1169 #if defined(__i386__)
1171 #if defined(__APPLE__)
1172 # include <sys/ucontext.h>
1174 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1175 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1176 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1177 #else
1178 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1179 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1180 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1181 #endif
1183 #if defined(USE_CODE_COPY)
1184 static void cpu_send_trap(unsigned long pc, int trap,
1185 struct ucontext *uc)
1187 TranslationBlock *tb;
1189 if (cpu_single_env)
1190 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1191 /* now we have a real cpu fault */
1192 tb = tb_find_pc(pc);
1193 if (tb) {
1194 /* the PC is inside the translated code. It means that we have
1195 a virtual CPU fault */
1196 cpu_restore_state(tb, env, pc, uc);
1198 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1199 raise_exception_err(trap, env->error_code);
1201 #endif
1203 int cpu_signal_handler(int host_signum, void *pinfo,
1204 void *puc)
1206 siginfo_t *info = pinfo;
1207 struct ucontext *uc = puc;
1208 unsigned long pc;
1209 int trapno;
1211 #ifndef REG_EIP
1212 /* for glibc 2.1 */
1213 #define REG_EIP EIP
1214 #define REG_ERR ERR
1215 #define REG_TRAPNO TRAPNO
1216 #endif
1217 pc = EIP_sig(uc);
1218 trapno = TRAP_sig(uc);
1219 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
1220 if (trapno == 0x00 || trapno == 0x05) {
1221 /* send division by zero or bound exception */
1222 cpu_send_trap(pc, trapno, uc);
1223 return 1;
1224 } else
1225 #endif
1226 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1227 trapno == 0xe ?
1228 (ERROR_sig(uc) >> 1) & 1 : 0,
1229 &uc->uc_sigmask, puc);
1232 #elif defined(__x86_64__)
1234 int cpu_signal_handler(int host_signum, void *pinfo,
1235 void *puc)
1237 siginfo_t *info = pinfo;
1238 struct ucontext *uc = puc;
1239 unsigned long pc;
1241 pc = uc->uc_mcontext.gregs[REG_RIP];
1242 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1243 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
1244 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1245 &uc->uc_sigmask, puc);
1248 #elif defined(__powerpc__)
1250 /***********************************************************************
1251 * signal context platform-specific definitions
1252 * From Wine
1254 #ifdef linux
1255 /* All Registers access - only for local access */
1256 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1257 /* Gpr Registers access */
1258 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1259 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1260 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1261 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1262 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1263 # define LR_sig(context) REG_sig(link, context) /* Link register */
1264 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1265 /* Float Registers access */
1266 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1267 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1268 /* Exception Registers access */
1269 # define DAR_sig(context) REG_sig(dar, context)
1270 # define DSISR_sig(context) REG_sig(dsisr, context)
1271 # define TRAP_sig(context) REG_sig(trap, context)
1272 #endif /* linux */
1274 #ifdef __APPLE__
1275 # include <sys/ucontext.h>
1276 typedef struct ucontext SIGCONTEXT;
1277 /* All Registers access - only for local access */
1278 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1279 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1280 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1281 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1282 /* Gpr Registers access */
1283 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1284 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1285 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1286 # define CTR_sig(context) REG_sig(ctr, context)
1287 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1288 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1289 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1290 /* Float Registers access */
1291 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1292 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1293 /* Exception Registers access */
1294 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1295 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1296 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1297 #endif /* __APPLE__ */
1299 int cpu_signal_handler(int host_signum, void *pinfo,
1300 void *puc)
1302 siginfo_t *info = pinfo;
1303 struct ucontext *uc = puc;
1304 unsigned long pc;
1305 int is_write;
1307 pc = IAR_sig(uc);
1308 is_write = 0;
1309 #if 0
1310 /* ppc 4xx case */
1311 if (DSISR_sig(uc) & 0x00800000)
1312 is_write = 1;
1313 #else
1314 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1315 is_write = 1;
1316 #endif
1317 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1318 is_write, &uc->uc_sigmask, puc);
1321 #elif defined(__alpha__)
1323 int cpu_signal_handler(int host_signum, void *pinfo,
1324 void *puc)
1326 siginfo_t *info = pinfo;
1327 struct ucontext *uc = puc;
1328 uint32_t *pc = uc->uc_mcontext.sc_pc;
1329 uint32_t insn = *pc;
1330 int is_write = 0;
1332 /* XXX: need kernel patch to get write flag faster */
1333 switch (insn >> 26) {
1334 case 0x0d: // stw
1335 case 0x0e: // stb
1336 case 0x0f: // stq_u
1337 case 0x24: // stf
1338 case 0x25: // stg
1339 case 0x26: // sts
1340 case 0x27: // stt
1341 case 0x2c: // stl
1342 case 0x2d: // stq
1343 case 0x2e: // stl_c
1344 case 0x2f: // stq_c
1345 is_write = 1;
1348 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1349 is_write, &uc->uc_sigmask, puc);
1351 #elif defined(__sparc__)
1353 int cpu_signal_handler(int host_signum, void *pinfo,
1354 void *puc)
1356 siginfo_t *info = pinfo;
1357 uint32_t *regs = (uint32_t *)(info + 1);
1358 void *sigmask = (regs + 20);
1359 unsigned long pc;
1360 int is_write;
1361 uint32_t insn;
1363 /* XXX: is there a standard glibc define ? */
1364 pc = regs[1];
1365 /* XXX: need kernel patch to get write flag faster */
1366 is_write = 0;
1367 insn = *(uint32_t *)pc;
1368 if ((insn >> 30) == 3) {
1369 switch((insn >> 19) & 0x3f) {
1370 case 0x05: // stb
1371 case 0x06: // sth
1372 case 0x04: // st
1373 case 0x07: // std
1374 case 0x24: // stf
1375 case 0x27: // stdf
1376 case 0x25: // stfsr
1377 is_write = 1;
1378 break;
1381 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1382 is_write, sigmask, NULL);
1385 #elif defined(__arm__)
1387 int cpu_signal_handler(int host_signum, void *pinfo,
1388 void *puc)
1390 siginfo_t *info = pinfo;
1391 struct ucontext *uc = puc;
1392 unsigned long pc;
1393 int is_write;
1395 pc = uc->uc_mcontext.gregs[R15];
1396 /* XXX: compute is_write */
1397 is_write = 0;
1398 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1399 is_write,
1400 &uc->uc_sigmask, puc);
1403 #elif defined(__mc68000)
1405 int cpu_signal_handler(int host_signum, void *pinfo,
1406 void *puc)
1408 siginfo_t *info = pinfo;
1409 struct ucontext *uc = puc;
1410 unsigned long pc;
1411 int is_write;
1413 pc = uc->uc_mcontext.gregs[16];
1414 /* XXX: compute is_write */
1415 is_write = 0;
1416 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1417 is_write,
1418 &uc->uc_sigmask, puc);
1421 #elif defined(__ia64)
1423 #ifndef __ISR_VALID
1424 /* This ought to be in <bits/siginfo.h>... */
1425 # define __ISR_VALID 1
1426 #endif
1428 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1430 siginfo_t *info = pinfo;
1431 struct ucontext *uc = puc;
1432 unsigned long ip;
1433 int is_write = 0;
1435 ip = uc->uc_mcontext.sc_ip;
1436 switch (host_signum) {
1437 case SIGILL:
1438 case SIGFPE:
1439 case SIGSEGV:
1440 case SIGBUS:
1441 case SIGTRAP:
1442 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1443 /* ISR.W (write-access) is bit 33: */
1444 is_write = (info->si_isr >> 33) & 1;
1445 break;
1447 default:
1448 break;
1450 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1451 is_write,
1452 &uc->uc_sigmask, puc);
1455 #elif defined(__s390__)
1457 int cpu_signal_handler(int host_signum, void *pinfo,
1458 void *puc)
1460 siginfo_t *info = pinfo;
1461 struct ucontext *uc = puc;
1462 unsigned long pc;
1463 int is_write;
1465 pc = uc->uc_mcontext.psw.addr;
1466 /* XXX: compute is_write */
1467 is_write = 0;
1468 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1469 is_write,
1470 &uc->uc_sigmask, puc);
1473 #else
1475 #error host CPU specific signal handler needed
1477 #endif
1479 #endif /* !defined(CONFIG_SOFTMMU) */