Fix typo in softfloat code.
[qemu/mini2440.git] / vl.c
blob6f8374028c32f5d40e86cafcf9584170db0e87b2
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2007 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw/hw.h"
25 #include "hw/boards.h"
26 #include "hw/usb.h"
27 #include "hw/pcmcia.h"
28 #include "hw/pc.h"
29 #include "hw/fdc.h"
30 #include "hw/audiodev.h"
31 #include "hw/isa.h"
32 #include "net.h"
33 #include "console.h"
34 #include "sysemu.h"
35 #include "gdbstub.h"
36 #include "qemu-timer.h"
37 #include "qemu-char.h"
38 #include "block.h"
39 #include "audio/audio.h"
41 #include <unistd.h>
42 #include <fcntl.h>
43 #include <signal.h>
44 #include <time.h>
45 #include <errno.h>
46 #include <sys/time.h>
47 #include <zlib.h>
49 #ifndef _WIN32
50 #include <sys/times.h>
51 #include <sys/wait.h>
52 #include <termios.h>
53 #include <sys/poll.h>
54 #include <sys/mman.h>
55 #include <sys/ioctl.h>
56 #include <sys/socket.h>
57 #include <netinet/in.h>
58 #include <dirent.h>
59 #include <netdb.h>
60 #include <sys/select.h>
61 #include <arpa/inet.h>
62 #ifdef _BSD
63 #include <sys/stat.h>
64 #ifndef __APPLE__
65 #include <libutil.h>
66 #endif
67 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
68 #include <freebsd/stdlib.h>
69 #else
70 #ifndef __sun__
71 #include <linux/if.h>
72 #include <linux/if_tun.h>
73 #include <pty.h>
74 #include <malloc.h>
75 #include <linux/rtc.h>
77 /* For the benefit of older linux systems which don't supply it,
78 we use a local copy of hpet.h. */
79 /* #include <linux/hpet.h> */
80 #include "hpet.h"
82 #include <linux/ppdev.h>
83 #include <linux/parport.h>
84 #else
85 #include <sys/stat.h>
86 #include <sys/ethernet.h>
87 #include <sys/sockio.h>
88 #include <netinet/arp.h>
89 #include <netinet/in.h>
90 #include <netinet/in_systm.h>
91 #include <netinet/ip.h>
92 #include <netinet/ip_icmp.h> // must come after ip.h
93 #include <netinet/udp.h>
94 #include <netinet/tcp.h>
95 #include <net/if.h>
96 #include <syslog.h>
97 #include <stropts.h>
98 #endif
99 #endif
100 #else
101 #include <winsock2.h>
102 int inet_aton(const char *cp, struct in_addr *ia);
103 #endif
105 #if defined(CONFIG_SLIRP)
106 #include "libslirp.h"
107 #endif
109 #ifdef _WIN32
110 #include <malloc.h>
111 #include <sys/timeb.h>
112 #include <windows.h>
113 #define getopt_long_only getopt_long
114 #define memalign(align, size) malloc(size)
115 #endif
117 #include "qemu_socket.h"
119 #ifdef CONFIG_SDL
120 #ifdef __APPLE__
121 #include <SDL/SDL.h>
122 #endif
123 #endif /* CONFIG_SDL */
125 #ifdef CONFIG_COCOA
126 #undef main
127 #define main qemu_main
128 #endif /* CONFIG_COCOA */
130 #include "disas.h"
132 #include "exec-all.h"
134 #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
135 #define DEFAULT_NETWORK_DOWN_SCRIPT "/etc/qemu-ifdown"
136 #ifdef __sun__
137 #define SMBD_COMMAND "/usr/sfw/sbin/smbd"
138 #else
139 #define SMBD_COMMAND "/usr/sbin/smbd"
140 #endif
142 //#define DEBUG_UNUSED_IOPORT
143 //#define DEBUG_IOPORT
145 #define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
147 #ifdef TARGET_PPC
148 #define DEFAULT_RAM_SIZE 144
149 #else
150 #define DEFAULT_RAM_SIZE 128
151 #endif
152 /* in ms */
153 #define GUI_REFRESH_INTERVAL 30
155 /* Max number of USB devices that can be specified on the commandline. */
156 #define MAX_USB_CMDLINE 8
158 /* XXX: use a two level table to limit memory usage */
159 #define MAX_IOPORTS 65536
161 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
162 const char *bios_name = NULL;
163 char phys_ram_file[1024];
164 void *ioport_opaque[MAX_IOPORTS];
165 IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
166 IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
167 /* Note: bs_table[MAX_DISKS] is a dummy block driver if none available
168 to store the VM snapshots */
169 BlockDriverState *bs_table[MAX_DISKS + 1], *fd_table[MAX_FD];
170 BlockDriverState *pflash_table[MAX_PFLASH];
171 BlockDriverState *sd_bdrv;
172 BlockDriverState *mtd_bdrv;
173 /* point to the block driver where the snapshots are managed */
174 BlockDriverState *bs_snapshots;
175 int vga_ram_size;
176 static DisplayState display_state;
177 int nographic;
178 const char* keyboard_layout = NULL;
179 int64_t ticks_per_sec;
180 int ram_size;
181 int pit_min_timer_count = 0;
182 int nb_nics;
183 NICInfo nd_table[MAX_NICS];
184 int vm_running;
185 int rtc_utc = 1;
186 int rtc_start_date = -1; /* -1 means now */
187 int cirrus_vga_enabled = 1;
188 int vmsvga_enabled = 0;
189 #ifdef TARGET_SPARC
190 int graphic_width = 1024;
191 int graphic_height = 768;
192 int graphic_depth = 8;
193 #else
194 int graphic_width = 800;
195 int graphic_height = 600;
196 int graphic_depth = 15;
197 #endif
198 int full_screen = 0;
199 int no_frame = 0;
200 int no_quit = 0;
201 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
202 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
203 #ifdef TARGET_I386
204 int win2k_install_hack = 0;
205 #endif
206 int usb_enabled = 0;
207 static VLANState *first_vlan;
208 int smp_cpus = 1;
209 const char *vnc_display;
210 #if defined(TARGET_SPARC)
211 #define MAX_CPUS 16
212 #elif defined(TARGET_I386)
213 #define MAX_CPUS 255
214 #else
215 #define MAX_CPUS 1
216 #endif
217 int acpi_enabled = 1;
218 int fd_bootchk = 1;
219 int no_reboot = 0;
220 int cursor_hide = 1;
221 int graphic_rotate = 0;
222 int daemonize = 0;
223 const char *option_rom[MAX_OPTION_ROMS];
224 int nb_option_roms;
225 int semihosting_enabled = 0;
226 int autostart = 1;
227 #ifdef TARGET_ARM
228 int old_param = 0;
229 #endif
230 const char *qemu_name;
231 int alt_grab = 0;
232 #ifdef TARGET_SPARC
233 unsigned int nb_prom_envs = 0;
234 const char *prom_envs[MAX_PROM_ENVS];
235 #endif
237 #define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
239 /***********************************************************/
240 /* x86 ISA bus support */
242 target_phys_addr_t isa_mem_base = 0;
243 PicState2 *isa_pic;
245 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
247 #ifdef DEBUG_UNUSED_IOPORT
248 fprintf(stderr, "unused inb: port=0x%04x\n", address);
249 #endif
250 return 0xff;
253 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
255 #ifdef DEBUG_UNUSED_IOPORT
256 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
257 #endif
260 /* default is to make two byte accesses */
261 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
263 uint32_t data;
264 data = ioport_read_table[0][address](ioport_opaque[address], address);
265 address = (address + 1) & (MAX_IOPORTS - 1);
266 data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
267 return data;
270 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
272 ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
273 address = (address + 1) & (MAX_IOPORTS - 1);
274 ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
277 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
279 #ifdef DEBUG_UNUSED_IOPORT
280 fprintf(stderr, "unused inl: port=0x%04x\n", address);
281 #endif
282 return 0xffffffff;
285 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
287 #ifdef DEBUG_UNUSED_IOPORT
288 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
289 #endif
292 static void init_ioports(void)
294 int i;
296 for(i = 0; i < MAX_IOPORTS; i++) {
297 ioport_read_table[0][i] = default_ioport_readb;
298 ioport_write_table[0][i] = default_ioport_writeb;
299 ioport_read_table[1][i] = default_ioport_readw;
300 ioport_write_table[1][i] = default_ioport_writew;
301 ioport_read_table[2][i] = default_ioport_readl;
302 ioport_write_table[2][i] = default_ioport_writel;
306 /* size is the word size in byte */
307 int register_ioport_read(int start, int length, int size,
308 IOPortReadFunc *func, void *opaque)
310 int i, bsize;
312 if (size == 1) {
313 bsize = 0;
314 } else if (size == 2) {
315 bsize = 1;
316 } else if (size == 4) {
317 bsize = 2;
318 } else {
319 hw_error("register_ioport_read: invalid size");
320 return -1;
322 for(i = start; i < start + length; i += size) {
323 ioport_read_table[bsize][i] = func;
324 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
325 hw_error("register_ioport_read: invalid opaque");
326 ioport_opaque[i] = opaque;
328 return 0;
331 /* size is the word size in byte */
332 int register_ioport_write(int start, int length, int size,
333 IOPortWriteFunc *func, void *opaque)
335 int i, bsize;
337 if (size == 1) {
338 bsize = 0;
339 } else if (size == 2) {
340 bsize = 1;
341 } else if (size == 4) {
342 bsize = 2;
343 } else {
344 hw_error("register_ioport_write: invalid size");
345 return -1;
347 for(i = start; i < start + length; i += size) {
348 ioport_write_table[bsize][i] = func;
349 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
350 hw_error("register_ioport_write: invalid opaque");
351 ioport_opaque[i] = opaque;
353 return 0;
356 void isa_unassign_ioport(int start, int length)
358 int i;
360 for(i = start; i < start + length; i++) {
361 ioport_read_table[0][i] = default_ioport_readb;
362 ioport_read_table[1][i] = default_ioport_readw;
363 ioport_read_table[2][i] = default_ioport_readl;
365 ioport_write_table[0][i] = default_ioport_writeb;
366 ioport_write_table[1][i] = default_ioport_writew;
367 ioport_write_table[2][i] = default_ioport_writel;
371 /***********************************************************/
373 void cpu_outb(CPUState *env, int addr, int val)
375 #ifdef DEBUG_IOPORT
376 if (loglevel & CPU_LOG_IOPORT)
377 fprintf(logfile, "outb: %04x %02x\n", addr, val);
378 #endif
379 ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
380 #ifdef USE_KQEMU
381 if (env)
382 env->last_io_time = cpu_get_time_fast();
383 #endif
386 void cpu_outw(CPUState *env, int addr, int val)
388 #ifdef DEBUG_IOPORT
389 if (loglevel & CPU_LOG_IOPORT)
390 fprintf(logfile, "outw: %04x %04x\n", addr, val);
391 #endif
392 ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
393 #ifdef USE_KQEMU
394 if (env)
395 env->last_io_time = cpu_get_time_fast();
396 #endif
399 void cpu_outl(CPUState *env, int addr, int val)
401 #ifdef DEBUG_IOPORT
402 if (loglevel & CPU_LOG_IOPORT)
403 fprintf(logfile, "outl: %04x %08x\n", addr, val);
404 #endif
405 ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
406 #ifdef USE_KQEMU
407 if (env)
408 env->last_io_time = cpu_get_time_fast();
409 #endif
412 int cpu_inb(CPUState *env, int addr)
414 int val;
415 val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
416 #ifdef DEBUG_IOPORT
417 if (loglevel & CPU_LOG_IOPORT)
418 fprintf(logfile, "inb : %04x %02x\n", addr, val);
419 #endif
420 #ifdef USE_KQEMU
421 if (env)
422 env->last_io_time = cpu_get_time_fast();
423 #endif
424 return val;
427 int cpu_inw(CPUState *env, int addr)
429 int val;
430 val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
431 #ifdef DEBUG_IOPORT
432 if (loglevel & CPU_LOG_IOPORT)
433 fprintf(logfile, "inw : %04x %04x\n", addr, val);
434 #endif
435 #ifdef USE_KQEMU
436 if (env)
437 env->last_io_time = cpu_get_time_fast();
438 #endif
439 return val;
442 int cpu_inl(CPUState *env, int addr)
444 int val;
445 val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
446 #ifdef DEBUG_IOPORT
447 if (loglevel & CPU_LOG_IOPORT)
448 fprintf(logfile, "inl : %04x %08x\n", addr, val);
449 #endif
450 #ifdef USE_KQEMU
451 if (env)
452 env->last_io_time = cpu_get_time_fast();
453 #endif
454 return val;
457 /***********************************************************/
458 void hw_error(const char *fmt, ...)
460 va_list ap;
461 CPUState *env;
463 va_start(ap, fmt);
464 fprintf(stderr, "qemu: hardware error: ");
465 vfprintf(stderr, fmt, ap);
466 fprintf(stderr, "\n");
467 for(env = first_cpu; env != NULL; env = env->next_cpu) {
468 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
469 #ifdef TARGET_I386
470 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
471 #else
472 cpu_dump_state(env, stderr, fprintf, 0);
473 #endif
475 va_end(ap);
476 abort();
479 /***********************************************************/
480 /* keyboard/mouse */
482 static QEMUPutKBDEvent *qemu_put_kbd_event;
483 static void *qemu_put_kbd_event_opaque;
484 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
485 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
487 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
489 qemu_put_kbd_event_opaque = opaque;
490 qemu_put_kbd_event = func;
493 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
494 void *opaque, int absolute,
495 const char *name)
497 QEMUPutMouseEntry *s, *cursor;
499 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
500 if (!s)
501 return NULL;
503 s->qemu_put_mouse_event = func;
504 s->qemu_put_mouse_event_opaque = opaque;
505 s->qemu_put_mouse_event_absolute = absolute;
506 s->qemu_put_mouse_event_name = qemu_strdup(name);
507 s->next = NULL;
509 if (!qemu_put_mouse_event_head) {
510 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
511 return s;
514 cursor = qemu_put_mouse_event_head;
515 while (cursor->next != NULL)
516 cursor = cursor->next;
518 cursor->next = s;
519 qemu_put_mouse_event_current = s;
521 return s;
524 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
526 QEMUPutMouseEntry *prev = NULL, *cursor;
528 if (!qemu_put_mouse_event_head || entry == NULL)
529 return;
531 cursor = qemu_put_mouse_event_head;
532 while (cursor != NULL && cursor != entry) {
533 prev = cursor;
534 cursor = cursor->next;
537 if (cursor == NULL) // does not exist or list empty
538 return;
539 else if (prev == NULL) { // entry is head
540 qemu_put_mouse_event_head = cursor->next;
541 if (qemu_put_mouse_event_current == entry)
542 qemu_put_mouse_event_current = cursor->next;
543 qemu_free(entry->qemu_put_mouse_event_name);
544 qemu_free(entry);
545 return;
548 prev->next = entry->next;
550 if (qemu_put_mouse_event_current == entry)
551 qemu_put_mouse_event_current = prev;
553 qemu_free(entry->qemu_put_mouse_event_name);
554 qemu_free(entry);
557 void kbd_put_keycode(int keycode)
559 if (qemu_put_kbd_event) {
560 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
564 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
566 QEMUPutMouseEvent *mouse_event;
567 void *mouse_event_opaque;
568 int width;
570 if (!qemu_put_mouse_event_current) {
571 return;
574 mouse_event =
575 qemu_put_mouse_event_current->qemu_put_mouse_event;
576 mouse_event_opaque =
577 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
579 if (mouse_event) {
580 if (graphic_rotate) {
581 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
582 width = 0x7fff;
583 else
584 width = graphic_width;
585 mouse_event(mouse_event_opaque,
586 width - dy, dx, dz, buttons_state);
587 } else
588 mouse_event(mouse_event_opaque,
589 dx, dy, dz, buttons_state);
593 int kbd_mouse_is_absolute(void)
595 if (!qemu_put_mouse_event_current)
596 return 0;
598 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
601 void do_info_mice(void)
603 QEMUPutMouseEntry *cursor;
604 int index = 0;
606 if (!qemu_put_mouse_event_head) {
607 term_printf("No mouse devices connected\n");
608 return;
611 term_printf("Mouse devices available:\n");
612 cursor = qemu_put_mouse_event_head;
613 while (cursor != NULL) {
614 term_printf("%c Mouse #%d: %s\n",
615 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
616 index, cursor->qemu_put_mouse_event_name);
617 index++;
618 cursor = cursor->next;
622 void do_mouse_set(int index)
624 QEMUPutMouseEntry *cursor;
625 int i = 0;
627 if (!qemu_put_mouse_event_head) {
628 term_printf("No mouse devices connected\n");
629 return;
632 cursor = qemu_put_mouse_event_head;
633 while (cursor != NULL && index != i) {
634 i++;
635 cursor = cursor->next;
638 if (cursor != NULL)
639 qemu_put_mouse_event_current = cursor;
640 else
641 term_printf("Mouse at given index not found\n");
644 /* compute with 96 bit intermediate result: (a*b)/c */
645 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
647 union {
648 uint64_t ll;
649 struct {
650 #ifdef WORDS_BIGENDIAN
651 uint32_t high, low;
652 #else
653 uint32_t low, high;
654 #endif
655 } l;
656 } u, res;
657 uint64_t rl, rh;
659 u.ll = a;
660 rl = (uint64_t)u.l.low * (uint64_t)b;
661 rh = (uint64_t)u.l.high * (uint64_t)b;
662 rh += (rl >> 32);
663 res.l.high = rh / c;
664 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
665 return res.ll;
668 /***********************************************************/
669 /* real time host monotonic timer */
671 #define QEMU_TIMER_BASE 1000000000LL
673 #ifdef WIN32
675 static int64_t clock_freq;
677 static void init_get_clock(void)
679 LARGE_INTEGER freq;
680 int ret;
681 ret = QueryPerformanceFrequency(&freq);
682 if (ret == 0) {
683 fprintf(stderr, "Could not calibrate ticks\n");
684 exit(1);
686 clock_freq = freq.QuadPart;
689 static int64_t get_clock(void)
691 LARGE_INTEGER ti;
692 QueryPerformanceCounter(&ti);
693 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
696 #else
698 static int use_rt_clock;
700 static void init_get_clock(void)
702 use_rt_clock = 0;
703 #if defined(__linux__)
705 struct timespec ts;
706 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
707 use_rt_clock = 1;
710 #endif
713 static int64_t get_clock(void)
715 #if defined(__linux__)
716 if (use_rt_clock) {
717 struct timespec ts;
718 clock_gettime(CLOCK_MONOTONIC, &ts);
719 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
720 } else
721 #endif
723 /* XXX: using gettimeofday leads to problems if the date
724 changes, so it should be avoided. */
725 struct timeval tv;
726 gettimeofday(&tv, NULL);
727 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
731 #endif
733 /***********************************************************/
734 /* guest cycle counter */
736 static int64_t cpu_ticks_prev;
737 static int64_t cpu_ticks_offset;
738 static int64_t cpu_clock_offset;
739 static int cpu_ticks_enabled;
741 /* return the host CPU cycle counter and handle stop/restart */
742 int64_t cpu_get_ticks(void)
744 if (!cpu_ticks_enabled) {
745 return cpu_ticks_offset;
746 } else {
747 int64_t ticks;
748 ticks = cpu_get_real_ticks();
749 if (cpu_ticks_prev > ticks) {
750 /* Note: non increasing ticks may happen if the host uses
751 software suspend */
752 cpu_ticks_offset += cpu_ticks_prev - ticks;
754 cpu_ticks_prev = ticks;
755 return ticks + cpu_ticks_offset;
759 /* return the host CPU monotonic timer and handle stop/restart */
760 static int64_t cpu_get_clock(void)
762 int64_t ti;
763 if (!cpu_ticks_enabled) {
764 return cpu_clock_offset;
765 } else {
766 ti = get_clock();
767 return ti + cpu_clock_offset;
771 /* enable cpu_get_ticks() */
772 void cpu_enable_ticks(void)
774 if (!cpu_ticks_enabled) {
775 cpu_ticks_offset -= cpu_get_real_ticks();
776 cpu_clock_offset -= get_clock();
777 cpu_ticks_enabled = 1;
781 /* disable cpu_get_ticks() : the clock is stopped. You must not call
782 cpu_get_ticks() after that. */
783 void cpu_disable_ticks(void)
785 if (cpu_ticks_enabled) {
786 cpu_ticks_offset = cpu_get_ticks();
787 cpu_clock_offset = cpu_get_clock();
788 cpu_ticks_enabled = 0;
792 /***********************************************************/
793 /* timers */
795 #define QEMU_TIMER_REALTIME 0
796 #define QEMU_TIMER_VIRTUAL 1
798 struct QEMUClock {
799 int type;
800 /* XXX: add frequency */
803 struct QEMUTimer {
804 QEMUClock *clock;
805 int64_t expire_time;
806 QEMUTimerCB *cb;
807 void *opaque;
808 struct QEMUTimer *next;
811 struct qemu_alarm_timer {
812 char const *name;
813 unsigned int flags;
815 int (*start)(struct qemu_alarm_timer *t);
816 void (*stop)(struct qemu_alarm_timer *t);
817 void (*rearm)(struct qemu_alarm_timer *t);
818 void *priv;
821 #define ALARM_FLAG_DYNTICKS 0x1
823 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
825 return t->flags & ALARM_FLAG_DYNTICKS;
828 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
830 if (!alarm_has_dynticks(t))
831 return;
833 t->rearm(t);
836 /* TODO: MIN_TIMER_REARM_US should be optimized */
837 #define MIN_TIMER_REARM_US 250
839 static struct qemu_alarm_timer *alarm_timer;
841 #ifdef _WIN32
843 struct qemu_alarm_win32 {
844 MMRESULT timerId;
845 HANDLE host_alarm;
846 unsigned int period;
847 } alarm_win32_data = {0, NULL, -1};
849 static int win32_start_timer(struct qemu_alarm_timer *t);
850 static void win32_stop_timer(struct qemu_alarm_timer *t);
851 static void win32_rearm_timer(struct qemu_alarm_timer *t);
853 #else
855 static int unix_start_timer(struct qemu_alarm_timer *t);
856 static void unix_stop_timer(struct qemu_alarm_timer *t);
858 #ifdef __linux__
860 static int dynticks_start_timer(struct qemu_alarm_timer *t);
861 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
862 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
864 static int hpet_start_timer(struct qemu_alarm_timer *t);
865 static void hpet_stop_timer(struct qemu_alarm_timer *t);
867 static int rtc_start_timer(struct qemu_alarm_timer *t);
868 static void rtc_stop_timer(struct qemu_alarm_timer *t);
870 #endif /* __linux__ */
872 #endif /* _WIN32 */
874 static struct qemu_alarm_timer alarm_timers[] = {
875 #ifndef _WIN32
876 #ifdef __linux__
877 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
878 dynticks_stop_timer, dynticks_rearm_timer, NULL},
879 /* HPET - if available - is preferred */
880 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
881 /* ...otherwise try RTC */
882 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
883 #endif
884 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
885 #else
886 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
887 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
888 {"win32", 0, win32_start_timer,
889 win32_stop_timer, NULL, &alarm_win32_data},
890 #endif
891 {NULL, }
894 static void show_available_alarms()
896 int i;
898 printf("Available alarm timers, in order of precedence:\n");
899 for (i = 0; alarm_timers[i].name; i++)
900 printf("%s\n", alarm_timers[i].name);
903 static void configure_alarms(char const *opt)
905 int i;
906 int cur = 0;
907 int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
908 char *arg;
909 char *name;
911 if (!strcmp(opt, "help")) {
912 show_available_alarms();
913 exit(0);
916 arg = strdup(opt);
918 /* Reorder the array */
919 name = strtok(arg, ",");
920 while (name) {
921 struct qemu_alarm_timer tmp;
923 for (i = 0; i < count && alarm_timers[i].name; i++) {
924 if (!strcmp(alarm_timers[i].name, name))
925 break;
928 if (i == count) {
929 fprintf(stderr, "Unknown clock %s\n", name);
930 goto next;
933 if (i < cur)
934 /* Ignore */
935 goto next;
937 /* Swap */
938 tmp = alarm_timers[i];
939 alarm_timers[i] = alarm_timers[cur];
940 alarm_timers[cur] = tmp;
942 cur++;
943 next:
944 name = strtok(NULL, ",");
947 free(arg);
949 if (cur) {
950 /* Disable remaining timers */
951 for (i = cur; i < count; i++)
952 alarm_timers[i].name = NULL;
955 /* debug */
956 show_available_alarms();
959 QEMUClock *rt_clock;
960 QEMUClock *vm_clock;
962 static QEMUTimer *active_timers[2];
964 static QEMUClock *qemu_new_clock(int type)
966 QEMUClock *clock;
967 clock = qemu_mallocz(sizeof(QEMUClock));
968 if (!clock)
969 return NULL;
970 clock->type = type;
971 return clock;
974 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
976 QEMUTimer *ts;
978 ts = qemu_mallocz(sizeof(QEMUTimer));
979 ts->clock = clock;
980 ts->cb = cb;
981 ts->opaque = opaque;
982 return ts;
985 void qemu_free_timer(QEMUTimer *ts)
987 qemu_free(ts);
990 /* stop a timer, but do not dealloc it */
991 void qemu_del_timer(QEMUTimer *ts)
993 QEMUTimer **pt, *t;
995 /* NOTE: this code must be signal safe because
996 qemu_timer_expired() can be called from a signal. */
997 pt = &active_timers[ts->clock->type];
998 for(;;) {
999 t = *pt;
1000 if (!t)
1001 break;
1002 if (t == ts) {
1003 *pt = t->next;
1004 break;
1006 pt = &t->next;
1010 /* modify the current timer so that it will be fired when current_time
1011 >= expire_time. The corresponding callback will be called. */
1012 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1014 QEMUTimer **pt, *t;
1016 qemu_del_timer(ts);
1018 /* add the timer in the sorted list */
1019 /* NOTE: this code must be signal safe because
1020 qemu_timer_expired() can be called from a signal. */
1021 pt = &active_timers[ts->clock->type];
1022 for(;;) {
1023 t = *pt;
1024 if (!t)
1025 break;
1026 if (t->expire_time > expire_time)
1027 break;
1028 pt = &t->next;
1030 ts->expire_time = expire_time;
1031 ts->next = *pt;
1032 *pt = ts;
1035 int qemu_timer_pending(QEMUTimer *ts)
1037 QEMUTimer *t;
1038 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1039 if (t == ts)
1040 return 1;
1042 return 0;
1045 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1047 if (!timer_head)
1048 return 0;
1049 return (timer_head->expire_time <= current_time);
1052 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1054 QEMUTimer *ts;
1056 for(;;) {
1057 ts = *ptimer_head;
1058 if (!ts || ts->expire_time > current_time)
1059 break;
1060 /* remove timer from the list before calling the callback */
1061 *ptimer_head = ts->next;
1062 ts->next = NULL;
1064 /* run the callback (the timer list can be modified) */
1065 ts->cb(ts->opaque);
1067 qemu_rearm_alarm_timer(alarm_timer);
1070 int64_t qemu_get_clock(QEMUClock *clock)
1072 switch(clock->type) {
1073 case QEMU_TIMER_REALTIME:
1074 return get_clock() / 1000000;
1075 default:
1076 case QEMU_TIMER_VIRTUAL:
1077 return cpu_get_clock();
1081 static void init_timers(void)
1083 init_get_clock();
1084 ticks_per_sec = QEMU_TIMER_BASE;
1085 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1086 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1089 /* save a timer */
1090 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1092 uint64_t expire_time;
1094 if (qemu_timer_pending(ts)) {
1095 expire_time = ts->expire_time;
1096 } else {
1097 expire_time = -1;
1099 qemu_put_be64(f, expire_time);
1102 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1104 uint64_t expire_time;
1106 expire_time = qemu_get_be64(f);
1107 if (expire_time != -1) {
1108 qemu_mod_timer(ts, expire_time);
1109 } else {
1110 qemu_del_timer(ts);
1114 static void timer_save(QEMUFile *f, void *opaque)
1116 if (cpu_ticks_enabled) {
1117 hw_error("cannot save state if virtual timers are running");
1119 qemu_put_be64s(f, &cpu_ticks_offset);
1120 qemu_put_be64s(f, &ticks_per_sec);
1121 qemu_put_be64s(f, &cpu_clock_offset);
1124 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1126 if (version_id != 1 && version_id != 2)
1127 return -EINVAL;
1128 if (cpu_ticks_enabled) {
1129 return -EINVAL;
1131 qemu_get_be64s(f, &cpu_ticks_offset);
1132 qemu_get_be64s(f, &ticks_per_sec);
1133 if (version_id == 2) {
1134 qemu_get_be64s(f, &cpu_clock_offset);
1136 return 0;
1139 #ifdef _WIN32
1140 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1141 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1142 #else
1143 static void host_alarm_handler(int host_signum)
1144 #endif
1146 #if 0
1147 #define DISP_FREQ 1000
1149 static int64_t delta_min = INT64_MAX;
1150 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1151 static int count;
1152 ti = qemu_get_clock(vm_clock);
1153 if (last_clock != 0) {
1154 delta = ti - last_clock;
1155 if (delta < delta_min)
1156 delta_min = delta;
1157 if (delta > delta_max)
1158 delta_max = delta;
1159 delta_cum += delta;
1160 if (++count == DISP_FREQ) {
1161 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1162 muldiv64(delta_min, 1000000, ticks_per_sec),
1163 muldiv64(delta_max, 1000000, ticks_per_sec),
1164 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1165 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1166 count = 0;
1167 delta_min = INT64_MAX;
1168 delta_max = 0;
1169 delta_cum = 0;
1172 last_clock = ti;
1174 #endif
1175 if (alarm_has_dynticks(alarm_timer) ||
1176 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1177 qemu_get_clock(vm_clock)) ||
1178 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1179 qemu_get_clock(rt_clock))) {
1180 #ifdef _WIN32
1181 struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1182 SetEvent(data->host_alarm);
1183 #endif
1184 CPUState *env = cpu_single_env;
1185 if (env) {
1186 /* stop the currently executing cpu because a timer occured */
1187 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1188 #ifdef USE_KQEMU
1189 if (env->kqemu_enabled) {
1190 kqemu_cpu_interrupt(env);
1192 #endif
1197 static uint64_t qemu_next_deadline(void)
1199 int64_t nearest_delta_us = INT64_MAX;
1200 int64_t vmdelta_us;
1202 if (active_timers[QEMU_TIMER_REALTIME])
1203 nearest_delta_us = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1204 qemu_get_clock(rt_clock))*1000;
1206 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1207 /* round up */
1208 vmdelta_us = (active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1209 qemu_get_clock(vm_clock)+999)/1000;
1210 if (vmdelta_us < nearest_delta_us)
1211 nearest_delta_us = vmdelta_us;
1214 /* Avoid arming the timer to negative, zero, or too low values */
1215 if (nearest_delta_us <= MIN_TIMER_REARM_US)
1216 nearest_delta_us = MIN_TIMER_REARM_US;
1218 return nearest_delta_us;
1221 #ifndef _WIN32
1223 #if defined(__linux__)
1225 #define RTC_FREQ 1024
1227 static void enable_sigio_timer(int fd)
1229 struct sigaction act;
1231 /* timer signal */
1232 sigfillset(&act.sa_mask);
1233 act.sa_flags = 0;
1234 act.sa_handler = host_alarm_handler;
1236 sigaction(SIGIO, &act, NULL);
1237 fcntl(fd, F_SETFL, O_ASYNC);
1238 fcntl(fd, F_SETOWN, getpid());
1241 static int hpet_start_timer(struct qemu_alarm_timer *t)
1243 struct hpet_info info;
1244 int r, fd;
1246 fd = open("/dev/hpet", O_RDONLY);
1247 if (fd < 0)
1248 return -1;
1250 /* Set frequency */
1251 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1252 if (r < 0) {
1253 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1254 "error, but for better emulation accuracy type:\n"
1255 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1256 goto fail;
1259 /* Check capabilities */
1260 r = ioctl(fd, HPET_INFO, &info);
1261 if (r < 0)
1262 goto fail;
1264 /* Enable periodic mode */
1265 r = ioctl(fd, HPET_EPI, 0);
1266 if (info.hi_flags && (r < 0))
1267 goto fail;
1269 /* Enable interrupt */
1270 r = ioctl(fd, HPET_IE_ON, 0);
1271 if (r < 0)
1272 goto fail;
1274 enable_sigio_timer(fd);
1275 t->priv = (void *)(long)fd;
1277 return 0;
1278 fail:
1279 close(fd);
1280 return -1;
1283 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1285 int fd = (long)t->priv;
1287 close(fd);
1290 static int rtc_start_timer(struct qemu_alarm_timer *t)
1292 int rtc_fd;
1294 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1295 if (rtc_fd < 0)
1296 return -1;
1297 if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1298 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1299 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1300 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1301 goto fail;
1303 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1304 fail:
1305 close(rtc_fd);
1306 return -1;
1309 enable_sigio_timer(rtc_fd);
1311 t->priv = (void *)(long)rtc_fd;
1313 return 0;
1316 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1318 int rtc_fd = (long)t->priv;
1320 close(rtc_fd);
1323 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1325 struct sigevent ev;
1326 timer_t host_timer;
1327 struct sigaction act;
1329 sigfillset(&act.sa_mask);
1330 act.sa_flags = 0;
1331 act.sa_handler = host_alarm_handler;
1333 sigaction(SIGALRM, &act, NULL);
1335 ev.sigev_value.sival_int = 0;
1336 ev.sigev_notify = SIGEV_SIGNAL;
1337 ev.sigev_signo = SIGALRM;
1339 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1340 perror("timer_create");
1342 /* disable dynticks */
1343 fprintf(stderr, "Dynamic Ticks disabled\n");
1345 return -1;
1348 t->priv = (void *)host_timer;
1350 return 0;
1353 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1355 timer_t host_timer = (timer_t)t->priv;
1357 timer_delete(host_timer);
1360 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1362 timer_t host_timer = (timer_t)t->priv;
1363 struct itimerspec timeout;
1364 int64_t nearest_delta_us = INT64_MAX;
1365 int64_t current_us;
1367 if (!active_timers[QEMU_TIMER_REALTIME] &&
1368 !active_timers[QEMU_TIMER_VIRTUAL])
1369 return;
1371 nearest_delta_us = qemu_next_deadline();
1373 /* check whether a timer is already running */
1374 if (timer_gettime(host_timer, &timeout)) {
1375 perror("gettime");
1376 fprintf(stderr, "Internal timer error: aborting\n");
1377 exit(1);
1379 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1380 if (current_us && current_us <= nearest_delta_us)
1381 return;
1383 timeout.it_interval.tv_sec = 0;
1384 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1385 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1386 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1387 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1388 perror("settime");
1389 fprintf(stderr, "Internal timer error: aborting\n");
1390 exit(1);
1394 #endif /* defined(__linux__) */
1396 static int unix_start_timer(struct qemu_alarm_timer *t)
1398 struct sigaction act;
1399 struct itimerval itv;
1400 int err;
1402 /* timer signal */
1403 sigfillset(&act.sa_mask);
1404 act.sa_flags = 0;
1405 act.sa_handler = host_alarm_handler;
1407 sigaction(SIGALRM, &act, NULL);
1409 itv.it_interval.tv_sec = 0;
1410 /* for i386 kernel 2.6 to get 1 ms */
1411 itv.it_interval.tv_usec = 999;
1412 itv.it_value.tv_sec = 0;
1413 itv.it_value.tv_usec = 10 * 1000;
1415 err = setitimer(ITIMER_REAL, &itv, NULL);
1416 if (err)
1417 return -1;
1419 return 0;
1422 static void unix_stop_timer(struct qemu_alarm_timer *t)
1424 struct itimerval itv;
1426 memset(&itv, 0, sizeof(itv));
1427 setitimer(ITIMER_REAL, &itv, NULL);
1430 #endif /* !defined(_WIN32) */
1432 #ifdef _WIN32
1434 static int win32_start_timer(struct qemu_alarm_timer *t)
1436 TIMECAPS tc;
1437 struct qemu_alarm_win32 *data = t->priv;
1438 UINT flags;
1440 data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1441 if (!data->host_alarm) {
1442 perror("Failed CreateEvent");
1443 return -1;
1446 memset(&tc, 0, sizeof(tc));
1447 timeGetDevCaps(&tc, sizeof(tc));
1449 if (data->period < tc.wPeriodMin)
1450 data->period = tc.wPeriodMin;
1452 timeBeginPeriod(data->period);
1454 flags = TIME_CALLBACK_FUNCTION;
1455 if (alarm_has_dynticks(t))
1456 flags |= TIME_ONESHOT;
1457 else
1458 flags |= TIME_PERIODIC;
1460 data->timerId = timeSetEvent(1, // interval (ms)
1461 data->period, // resolution
1462 host_alarm_handler, // function
1463 (DWORD)t, // parameter
1464 flags);
1466 if (!data->timerId) {
1467 perror("Failed to initialize win32 alarm timer");
1469 timeEndPeriod(data->period);
1470 CloseHandle(data->host_alarm);
1471 return -1;
1474 qemu_add_wait_object(data->host_alarm, NULL, NULL);
1476 return 0;
1479 static void win32_stop_timer(struct qemu_alarm_timer *t)
1481 struct qemu_alarm_win32 *data = t->priv;
1483 timeKillEvent(data->timerId);
1484 timeEndPeriod(data->period);
1486 CloseHandle(data->host_alarm);
1489 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1491 struct qemu_alarm_win32 *data = t->priv;
1492 uint64_t nearest_delta_us;
1494 if (!active_timers[QEMU_TIMER_REALTIME] &&
1495 !active_timers[QEMU_TIMER_VIRTUAL])
1496 return;
1498 nearest_delta_us = qemu_next_deadline();
1499 nearest_delta_us /= 1000;
1501 timeKillEvent(data->timerId);
1503 data->timerId = timeSetEvent(1,
1504 data->period,
1505 host_alarm_handler,
1506 (DWORD)t,
1507 TIME_ONESHOT | TIME_PERIODIC);
1509 if (!data->timerId) {
1510 perror("Failed to re-arm win32 alarm timer");
1512 timeEndPeriod(data->period);
1513 CloseHandle(data->host_alarm);
1514 exit(1);
1518 #endif /* _WIN32 */
1520 static void init_timer_alarm(void)
1522 struct qemu_alarm_timer *t;
1523 int i, err = -1;
1525 for (i = 0; alarm_timers[i].name; i++) {
1526 t = &alarm_timers[i];
1528 err = t->start(t);
1529 if (!err)
1530 break;
1533 if (err) {
1534 fprintf(stderr, "Unable to find any suitable alarm timer.\n");
1535 fprintf(stderr, "Terminating\n");
1536 exit(1);
1539 alarm_timer = t;
1542 static void quit_timers(void)
1544 alarm_timer->stop(alarm_timer);
1545 alarm_timer = NULL;
1548 /***********************************************************/
1549 /* character device */
1551 static void qemu_chr_event(CharDriverState *s, int event)
1553 if (!s->chr_event)
1554 return;
1555 s->chr_event(s->handler_opaque, event);
1558 static void qemu_chr_reset_bh(void *opaque)
1560 CharDriverState *s = opaque;
1561 qemu_chr_event(s, CHR_EVENT_RESET);
1562 qemu_bh_delete(s->bh);
1563 s->bh = NULL;
1566 void qemu_chr_reset(CharDriverState *s)
1568 if (s->bh == NULL) {
1569 s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1570 qemu_bh_schedule(s->bh);
1574 int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1576 return s->chr_write(s, buf, len);
1579 int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1581 if (!s->chr_ioctl)
1582 return -ENOTSUP;
1583 return s->chr_ioctl(s, cmd, arg);
1586 int qemu_chr_can_read(CharDriverState *s)
1588 if (!s->chr_can_read)
1589 return 0;
1590 return s->chr_can_read(s->handler_opaque);
1593 void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1595 s->chr_read(s->handler_opaque, buf, len);
1599 void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1601 char buf[4096];
1602 va_list ap;
1603 va_start(ap, fmt);
1604 vsnprintf(buf, sizeof(buf), fmt, ap);
1605 qemu_chr_write(s, buf, strlen(buf));
1606 va_end(ap);
1609 void qemu_chr_send_event(CharDriverState *s, int event)
1611 if (s->chr_send_event)
1612 s->chr_send_event(s, event);
1615 void qemu_chr_add_handlers(CharDriverState *s,
1616 IOCanRWHandler *fd_can_read,
1617 IOReadHandler *fd_read,
1618 IOEventHandler *fd_event,
1619 void *opaque)
1621 s->chr_can_read = fd_can_read;
1622 s->chr_read = fd_read;
1623 s->chr_event = fd_event;
1624 s->handler_opaque = opaque;
1625 if (s->chr_update_read_handler)
1626 s->chr_update_read_handler(s);
1629 static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1631 return len;
1634 static CharDriverState *qemu_chr_open_null(void)
1636 CharDriverState *chr;
1638 chr = qemu_mallocz(sizeof(CharDriverState));
1639 if (!chr)
1640 return NULL;
1641 chr->chr_write = null_chr_write;
1642 return chr;
1645 /* MUX driver for serial I/O splitting */
1646 static int term_timestamps;
1647 static int64_t term_timestamps_start;
1648 #define MAX_MUX 4
1649 typedef struct {
1650 IOCanRWHandler *chr_can_read[MAX_MUX];
1651 IOReadHandler *chr_read[MAX_MUX];
1652 IOEventHandler *chr_event[MAX_MUX];
1653 void *ext_opaque[MAX_MUX];
1654 CharDriverState *drv;
1655 int mux_cnt;
1656 int term_got_escape;
1657 int max_size;
1658 } MuxDriver;
1661 static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1663 MuxDriver *d = chr->opaque;
1664 int ret;
1665 if (!term_timestamps) {
1666 ret = d->drv->chr_write(d->drv, buf, len);
1667 } else {
1668 int i;
1670 ret = 0;
1671 for(i = 0; i < len; i++) {
1672 ret += d->drv->chr_write(d->drv, buf+i, 1);
1673 if (buf[i] == '\n') {
1674 char buf1[64];
1675 int64_t ti;
1676 int secs;
1678 ti = get_clock();
1679 if (term_timestamps_start == -1)
1680 term_timestamps_start = ti;
1681 ti -= term_timestamps_start;
1682 secs = ti / 1000000000;
1683 snprintf(buf1, sizeof(buf1),
1684 "[%02d:%02d:%02d.%03d] ",
1685 secs / 3600,
1686 (secs / 60) % 60,
1687 secs % 60,
1688 (int)((ti / 1000000) % 1000));
1689 d->drv->chr_write(d->drv, buf1, strlen(buf1));
1693 return ret;
1696 static char *mux_help[] = {
1697 "% h print this help\n\r",
1698 "% x exit emulator\n\r",
1699 "% s save disk data back to file (if -snapshot)\n\r",
1700 "% t toggle console timestamps\n\r"
1701 "% b send break (magic sysrq)\n\r",
1702 "% c switch between console and monitor\n\r",
1703 "% % sends %\n\r",
1704 NULL
1707 static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1708 static void mux_print_help(CharDriverState *chr)
1710 int i, j;
1711 char ebuf[15] = "Escape-Char";
1712 char cbuf[50] = "\n\r";
1714 if (term_escape_char > 0 && term_escape_char < 26) {
1715 sprintf(cbuf,"\n\r");
1716 sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1717 } else {
1718 sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r", term_escape_char);
1720 chr->chr_write(chr, cbuf, strlen(cbuf));
1721 for (i = 0; mux_help[i] != NULL; i++) {
1722 for (j=0; mux_help[i][j] != '\0'; j++) {
1723 if (mux_help[i][j] == '%')
1724 chr->chr_write(chr, ebuf, strlen(ebuf));
1725 else
1726 chr->chr_write(chr, &mux_help[i][j], 1);
1731 static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1733 if (d->term_got_escape) {
1734 d->term_got_escape = 0;
1735 if (ch == term_escape_char)
1736 goto send_char;
1737 switch(ch) {
1738 case '?':
1739 case 'h':
1740 mux_print_help(chr);
1741 break;
1742 case 'x':
1744 char *term = "QEMU: Terminated\n\r";
1745 chr->chr_write(chr,term,strlen(term));
1746 exit(0);
1747 break;
1749 case 's':
1751 int i;
1752 for (i = 0; i < MAX_DISKS; i++) {
1753 if (bs_table[i])
1754 bdrv_commit(bs_table[i]);
1756 if (mtd_bdrv)
1757 bdrv_commit(mtd_bdrv);
1759 break;
1760 case 'b':
1761 qemu_chr_event(chr, CHR_EVENT_BREAK);
1762 break;
1763 case 'c':
1764 /* Switch to the next registered device */
1765 chr->focus++;
1766 if (chr->focus >= d->mux_cnt)
1767 chr->focus = 0;
1768 break;
1769 case 't':
1770 term_timestamps = !term_timestamps;
1771 term_timestamps_start = -1;
1772 break;
1774 } else if (ch == term_escape_char) {
1775 d->term_got_escape = 1;
1776 } else {
1777 send_char:
1778 return 1;
1780 return 0;
1783 static int mux_chr_can_read(void *opaque)
1785 CharDriverState *chr = opaque;
1786 MuxDriver *d = chr->opaque;
1787 if (d->chr_can_read[chr->focus])
1788 return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1789 return 0;
1792 static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1794 CharDriverState *chr = opaque;
1795 MuxDriver *d = chr->opaque;
1796 int i;
1797 for(i = 0; i < size; i++)
1798 if (mux_proc_byte(chr, d, buf[i]))
1799 d->chr_read[chr->focus](d->ext_opaque[chr->focus], &buf[i], 1);
1802 static void mux_chr_event(void *opaque, int event)
1804 CharDriverState *chr = opaque;
1805 MuxDriver *d = chr->opaque;
1806 int i;
1808 /* Send the event to all registered listeners */
1809 for (i = 0; i < d->mux_cnt; i++)
1810 if (d->chr_event[i])
1811 d->chr_event[i](d->ext_opaque[i], event);
1814 static void mux_chr_update_read_handler(CharDriverState *chr)
1816 MuxDriver *d = chr->opaque;
1818 if (d->mux_cnt >= MAX_MUX) {
1819 fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1820 return;
1822 d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1823 d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1824 d->chr_read[d->mux_cnt] = chr->chr_read;
1825 d->chr_event[d->mux_cnt] = chr->chr_event;
1826 /* Fix up the real driver with mux routines */
1827 if (d->mux_cnt == 0) {
1828 qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1829 mux_chr_event, chr);
1831 chr->focus = d->mux_cnt;
1832 d->mux_cnt++;
1835 static CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1837 CharDriverState *chr;
1838 MuxDriver *d;
1840 chr = qemu_mallocz(sizeof(CharDriverState));
1841 if (!chr)
1842 return NULL;
1843 d = qemu_mallocz(sizeof(MuxDriver));
1844 if (!d) {
1845 free(chr);
1846 return NULL;
1849 chr->opaque = d;
1850 d->drv = drv;
1851 chr->focus = -1;
1852 chr->chr_write = mux_chr_write;
1853 chr->chr_update_read_handler = mux_chr_update_read_handler;
1854 return chr;
1858 #ifdef _WIN32
1860 static void socket_cleanup(void)
1862 WSACleanup();
1865 static int socket_init(void)
1867 WSADATA Data;
1868 int ret, err;
1870 ret = WSAStartup(MAKEWORD(2,2), &Data);
1871 if (ret != 0) {
1872 err = WSAGetLastError();
1873 fprintf(stderr, "WSAStartup: %d\n", err);
1874 return -1;
1876 atexit(socket_cleanup);
1877 return 0;
1880 static int send_all(int fd, const uint8_t *buf, int len1)
1882 int ret, len;
1884 len = len1;
1885 while (len > 0) {
1886 ret = send(fd, buf, len, 0);
1887 if (ret < 0) {
1888 int errno;
1889 errno = WSAGetLastError();
1890 if (errno != WSAEWOULDBLOCK) {
1891 return -1;
1893 } else if (ret == 0) {
1894 break;
1895 } else {
1896 buf += ret;
1897 len -= ret;
1900 return len1 - len;
1903 void socket_set_nonblock(int fd)
1905 unsigned long opt = 1;
1906 ioctlsocket(fd, FIONBIO, &opt);
1909 #else
1911 static int unix_write(int fd, const uint8_t *buf, int len1)
1913 int ret, len;
1915 len = len1;
1916 while (len > 0) {
1917 ret = write(fd, buf, len);
1918 if (ret < 0) {
1919 if (errno != EINTR && errno != EAGAIN)
1920 return -1;
1921 } else if (ret == 0) {
1922 break;
1923 } else {
1924 buf += ret;
1925 len -= ret;
1928 return len1 - len;
1931 static inline int send_all(int fd, const uint8_t *buf, int len1)
1933 return unix_write(fd, buf, len1);
1936 void socket_set_nonblock(int fd)
1938 fcntl(fd, F_SETFL, O_NONBLOCK);
1940 #endif /* !_WIN32 */
1942 #ifndef _WIN32
1944 typedef struct {
1945 int fd_in, fd_out;
1946 int max_size;
1947 } FDCharDriver;
1949 #define STDIO_MAX_CLIENTS 1
1950 static int stdio_nb_clients = 0;
1952 static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1954 FDCharDriver *s = chr->opaque;
1955 return unix_write(s->fd_out, buf, len);
1958 static int fd_chr_read_poll(void *opaque)
1960 CharDriverState *chr = opaque;
1961 FDCharDriver *s = chr->opaque;
1963 s->max_size = qemu_chr_can_read(chr);
1964 return s->max_size;
1967 static void fd_chr_read(void *opaque)
1969 CharDriverState *chr = opaque;
1970 FDCharDriver *s = chr->opaque;
1971 int size, len;
1972 uint8_t buf[1024];
1974 len = sizeof(buf);
1975 if (len > s->max_size)
1976 len = s->max_size;
1977 if (len == 0)
1978 return;
1979 size = read(s->fd_in, buf, len);
1980 if (size == 0) {
1981 /* FD has been closed. Remove it from the active list. */
1982 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
1983 return;
1985 if (size > 0) {
1986 qemu_chr_read(chr, buf, size);
1990 static void fd_chr_update_read_handler(CharDriverState *chr)
1992 FDCharDriver *s = chr->opaque;
1994 if (s->fd_in >= 0) {
1995 if (nographic && s->fd_in == 0) {
1996 } else {
1997 qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
1998 fd_chr_read, NULL, chr);
2003 /* open a character device to a unix fd */
2004 static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
2006 CharDriverState *chr;
2007 FDCharDriver *s;
2009 chr = qemu_mallocz(sizeof(CharDriverState));
2010 if (!chr)
2011 return NULL;
2012 s = qemu_mallocz(sizeof(FDCharDriver));
2013 if (!s) {
2014 free(chr);
2015 return NULL;
2017 s->fd_in = fd_in;
2018 s->fd_out = fd_out;
2019 chr->opaque = s;
2020 chr->chr_write = fd_chr_write;
2021 chr->chr_update_read_handler = fd_chr_update_read_handler;
2023 qemu_chr_reset(chr);
2025 return chr;
2028 static CharDriverState *qemu_chr_open_file_out(const char *file_out)
2030 int fd_out;
2032 TFR(fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666));
2033 if (fd_out < 0)
2034 return NULL;
2035 return qemu_chr_open_fd(-1, fd_out);
2038 static CharDriverState *qemu_chr_open_pipe(const char *filename)
2040 int fd_in, fd_out;
2041 char filename_in[256], filename_out[256];
2043 snprintf(filename_in, 256, "%s.in", filename);
2044 snprintf(filename_out, 256, "%s.out", filename);
2045 TFR(fd_in = open(filename_in, O_RDWR | O_BINARY));
2046 TFR(fd_out = open(filename_out, O_RDWR | O_BINARY));
2047 if (fd_in < 0 || fd_out < 0) {
2048 if (fd_in >= 0)
2049 close(fd_in);
2050 if (fd_out >= 0)
2051 close(fd_out);
2052 TFR(fd_in = fd_out = open(filename, O_RDWR | O_BINARY));
2053 if (fd_in < 0)
2054 return NULL;
2056 return qemu_chr_open_fd(fd_in, fd_out);
2060 /* for STDIO, we handle the case where several clients use it
2061 (nographic mode) */
2063 #define TERM_FIFO_MAX_SIZE 1
2065 static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
2066 static int term_fifo_size;
2068 static int stdio_read_poll(void *opaque)
2070 CharDriverState *chr = opaque;
2072 /* try to flush the queue if needed */
2073 if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
2074 qemu_chr_read(chr, term_fifo, 1);
2075 term_fifo_size = 0;
2077 /* see if we can absorb more chars */
2078 if (term_fifo_size == 0)
2079 return 1;
2080 else
2081 return 0;
2084 static void stdio_read(void *opaque)
2086 int size;
2087 uint8_t buf[1];
2088 CharDriverState *chr = opaque;
2090 size = read(0, buf, 1);
2091 if (size == 0) {
2092 /* stdin has been closed. Remove it from the active list. */
2093 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2094 return;
2096 if (size > 0) {
2097 if (qemu_chr_can_read(chr) > 0) {
2098 qemu_chr_read(chr, buf, 1);
2099 } else if (term_fifo_size == 0) {
2100 term_fifo[term_fifo_size++] = buf[0];
2105 /* init terminal so that we can grab keys */
2106 static struct termios oldtty;
2107 static int old_fd0_flags;
2109 static void term_exit(void)
2111 tcsetattr (0, TCSANOW, &oldtty);
2112 fcntl(0, F_SETFL, old_fd0_flags);
2115 static void term_init(void)
2117 struct termios tty;
2119 tcgetattr (0, &tty);
2120 oldtty = tty;
2121 old_fd0_flags = fcntl(0, F_GETFL);
2123 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2124 |INLCR|IGNCR|ICRNL|IXON);
2125 tty.c_oflag |= OPOST;
2126 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2127 /* if graphical mode, we allow Ctrl-C handling */
2128 if (nographic)
2129 tty.c_lflag &= ~ISIG;
2130 tty.c_cflag &= ~(CSIZE|PARENB);
2131 tty.c_cflag |= CS8;
2132 tty.c_cc[VMIN] = 1;
2133 tty.c_cc[VTIME] = 0;
2135 tcsetattr (0, TCSANOW, &tty);
2137 atexit(term_exit);
2139 fcntl(0, F_SETFL, O_NONBLOCK);
2142 static CharDriverState *qemu_chr_open_stdio(void)
2144 CharDriverState *chr;
2146 if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
2147 return NULL;
2148 chr = qemu_chr_open_fd(0, 1);
2149 qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
2150 stdio_nb_clients++;
2151 term_init();
2153 return chr;
2156 #if defined(__linux__) || defined(__sun__)
2157 static CharDriverState *qemu_chr_open_pty(void)
2159 struct termios tty;
2160 char slave_name[1024];
2161 int master_fd, slave_fd;
2163 #if defined(__linux__)
2164 /* Not satisfying */
2165 if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
2166 return NULL;
2168 #endif
2170 /* Disabling local echo and line-buffered output */
2171 tcgetattr (master_fd, &tty);
2172 tty.c_lflag &= ~(ECHO|ICANON|ISIG);
2173 tty.c_cc[VMIN] = 1;
2174 tty.c_cc[VTIME] = 0;
2175 tcsetattr (master_fd, TCSAFLUSH, &tty);
2177 fprintf(stderr, "char device redirected to %s\n", slave_name);
2178 return qemu_chr_open_fd(master_fd, master_fd);
2181 static void tty_serial_init(int fd, int speed,
2182 int parity, int data_bits, int stop_bits)
2184 struct termios tty;
2185 speed_t spd;
2187 #if 0
2188 printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
2189 speed, parity, data_bits, stop_bits);
2190 #endif
2191 tcgetattr (fd, &tty);
2193 switch(speed) {
2194 case 50:
2195 spd = B50;
2196 break;
2197 case 75:
2198 spd = B75;
2199 break;
2200 case 300:
2201 spd = B300;
2202 break;
2203 case 600:
2204 spd = B600;
2205 break;
2206 case 1200:
2207 spd = B1200;
2208 break;
2209 case 2400:
2210 spd = B2400;
2211 break;
2212 case 4800:
2213 spd = B4800;
2214 break;
2215 case 9600:
2216 spd = B9600;
2217 break;
2218 case 19200:
2219 spd = B19200;
2220 break;
2221 case 38400:
2222 spd = B38400;
2223 break;
2224 case 57600:
2225 spd = B57600;
2226 break;
2227 default:
2228 case 115200:
2229 spd = B115200;
2230 break;
2233 cfsetispeed(&tty, spd);
2234 cfsetospeed(&tty, spd);
2236 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2237 |INLCR|IGNCR|ICRNL|IXON);
2238 tty.c_oflag |= OPOST;
2239 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
2240 tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
2241 switch(data_bits) {
2242 default:
2243 case 8:
2244 tty.c_cflag |= CS8;
2245 break;
2246 case 7:
2247 tty.c_cflag |= CS7;
2248 break;
2249 case 6:
2250 tty.c_cflag |= CS6;
2251 break;
2252 case 5:
2253 tty.c_cflag |= CS5;
2254 break;
2256 switch(parity) {
2257 default:
2258 case 'N':
2259 break;
2260 case 'E':
2261 tty.c_cflag |= PARENB;
2262 break;
2263 case 'O':
2264 tty.c_cflag |= PARENB | PARODD;
2265 break;
2267 if (stop_bits == 2)
2268 tty.c_cflag |= CSTOPB;
2270 tcsetattr (fd, TCSANOW, &tty);
2273 static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
2275 FDCharDriver *s = chr->opaque;
2277 switch(cmd) {
2278 case CHR_IOCTL_SERIAL_SET_PARAMS:
2280 QEMUSerialSetParams *ssp = arg;
2281 tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
2282 ssp->data_bits, ssp->stop_bits);
2284 break;
2285 case CHR_IOCTL_SERIAL_SET_BREAK:
2287 int enable = *(int *)arg;
2288 if (enable)
2289 tcsendbreak(s->fd_in, 1);
2291 break;
2292 default:
2293 return -ENOTSUP;
2295 return 0;
2298 static CharDriverState *qemu_chr_open_tty(const char *filename)
2300 CharDriverState *chr;
2301 int fd;
2303 TFR(fd = open(filename, O_RDWR | O_NONBLOCK));
2304 fcntl(fd, F_SETFL, O_NONBLOCK);
2305 tty_serial_init(fd, 115200, 'N', 8, 1);
2306 chr = qemu_chr_open_fd(fd, fd);
2307 if (!chr) {
2308 close(fd);
2309 return NULL;
2311 chr->chr_ioctl = tty_serial_ioctl;
2312 qemu_chr_reset(chr);
2313 return chr;
2315 #else /* ! __linux__ && ! __sun__ */
2316 static CharDriverState *qemu_chr_open_pty(void)
2318 return NULL;
2320 #endif /* __linux__ || __sun__ */
2322 #if defined(__linux__)
2323 typedef struct {
2324 int fd;
2325 int mode;
2326 } ParallelCharDriver;
2328 static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
2330 if (s->mode != mode) {
2331 int m = mode;
2332 if (ioctl(s->fd, PPSETMODE, &m) < 0)
2333 return 0;
2334 s->mode = mode;
2336 return 1;
2339 static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
2341 ParallelCharDriver *drv = chr->opaque;
2342 int fd = drv->fd;
2343 uint8_t b;
2345 switch(cmd) {
2346 case CHR_IOCTL_PP_READ_DATA:
2347 if (ioctl(fd, PPRDATA, &b) < 0)
2348 return -ENOTSUP;
2349 *(uint8_t *)arg = b;
2350 break;
2351 case CHR_IOCTL_PP_WRITE_DATA:
2352 b = *(uint8_t *)arg;
2353 if (ioctl(fd, PPWDATA, &b) < 0)
2354 return -ENOTSUP;
2355 break;
2356 case CHR_IOCTL_PP_READ_CONTROL:
2357 if (ioctl(fd, PPRCONTROL, &b) < 0)
2358 return -ENOTSUP;
2359 /* Linux gives only the lowest bits, and no way to know data
2360 direction! For better compatibility set the fixed upper
2361 bits. */
2362 *(uint8_t *)arg = b | 0xc0;
2363 break;
2364 case CHR_IOCTL_PP_WRITE_CONTROL:
2365 b = *(uint8_t *)arg;
2366 if (ioctl(fd, PPWCONTROL, &b) < 0)
2367 return -ENOTSUP;
2368 break;
2369 case CHR_IOCTL_PP_READ_STATUS:
2370 if (ioctl(fd, PPRSTATUS, &b) < 0)
2371 return -ENOTSUP;
2372 *(uint8_t *)arg = b;
2373 break;
2374 case CHR_IOCTL_PP_EPP_READ_ADDR:
2375 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2376 struct ParallelIOArg *parg = arg;
2377 int n = read(fd, parg->buffer, parg->count);
2378 if (n != parg->count) {
2379 return -EIO;
2382 break;
2383 case CHR_IOCTL_PP_EPP_READ:
2384 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2385 struct ParallelIOArg *parg = arg;
2386 int n = read(fd, parg->buffer, parg->count);
2387 if (n != parg->count) {
2388 return -EIO;
2391 break;
2392 case CHR_IOCTL_PP_EPP_WRITE_ADDR:
2393 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2394 struct ParallelIOArg *parg = arg;
2395 int n = write(fd, parg->buffer, parg->count);
2396 if (n != parg->count) {
2397 return -EIO;
2400 break;
2401 case CHR_IOCTL_PP_EPP_WRITE:
2402 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2403 struct ParallelIOArg *parg = arg;
2404 int n = write(fd, parg->buffer, parg->count);
2405 if (n != parg->count) {
2406 return -EIO;
2409 break;
2410 default:
2411 return -ENOTSUP;
2413 return 0;
2416 static void pp_close(CharDriverState *chr)
2418 ParallelCharDriver *drv = chr->opaque;
2419 int fd = drv->fd;
2421 pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2422 ioctl(fd, PPRELEASE);
2423 close(fd);
2424 qemu_free(drv);
2427 static CharDriverState *qemu_chr_open_pp(const char *filename)
2429 CharDriverState *chr;
2430 ParallelCharDriver *drv;
2431 int fd;
2433 TFR(fd = open(filename, O_RDWR));
2434 if (fd < 0)
2435 return NULL;
2437 if (ioctl(fd, PPCLAIM) < 0) {
2438 close(fd);
2439 return NULL;
2442 drv = qemu_mallocz(sizeof(ParallelCharDriver));
2443 if (!drv) {
2444 close(fd);
2445 return NULL;
2447 drv->fd = fd;
2448 drv->mode = IEEE1284_MODE_COMPAT;
2450 chr = qemu_mallocz(sizeof(CharDriverState));
2451 if (!chr) {
2452 qemu_free(drv);
2453 close(fd);
2454 return NULL;
2456 chr->chr_write = null_chr_write;
2457 chr->chr_ioctl = pp_ioctl;
2458 chr->chr_close = pp_close;
2459 chr->opaque = drv;
2461 qemu_chr_reset(chr);
2463 return chr;
2465 #endif /* __linux__ */
2467 #else /* _WIN32 */
2469 typedef struct {
2470 int max_size;
2471 HANDLE hcom, hrecv, hsend;
2472 OVERLAPPED orecv, osend;
2473 BOOL fpipe;
2474 DWORD len;
2475 } WinCharState;
2477 #define NSENDBUF 2048
2478 #define NRECVBUF 2048
2479 #define MAXCONNECT 1
2480 #define NTIMEOUT 5000
2482 static int win_chr_poll(void *opaque);
2483 static int win_chr_pipe_poll(void *opaque);
2485 static void win_chr_close(CharDriverState *chr)
2487 WinCharState *s = chr->opaque;
2489 if (s->hsend) {
2490 CloseHandle(s->hsend);
2491 s->hsend = NULL;
2493 if (s->hrecv) {
2494 CloseHandle(s->hrecv);
2495 s->hrecv = NULL;
2497 if (s->hcom) {
2498 CloseHandle(s->hcom);
2499 s->hcom = NULL;
2501 if (s->fpipe)
2502 qemu_del_polling_cb(win_chr_pipe_poll, chr);
2503 else
2504 qemu_del_polling_cb(win_chr_poll, chr);
2507 static int win_chr_init(CharDriverState *chr, const char *filename)
2509 WinCharState *s = chr->opaque;
2510 COMMCONFIG comcfg;
2511 COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2512 COMSTAT comstat;
2513 DWORD size;
2514 DWORD err;
2516 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2517 if (!s->hsend) {
2518 fprintf(stderr, "Failed CreateEvent\n");
2519 goto fail;
2521 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2522 if (!s->hrecv) {
2523 fprintf(stderr, "Failed CreateEvent\n");
2524 goto fail;
2527 s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2528 OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2529 if (s->hcom == INVALID_HANDLE_VALUE) {
2530 fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2531 s->hcom = NULL;
2532 goto fail;
2535 if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2536 fprintf(stderr, "Failed SetupComm\n");
2537 goto fail;
2540 ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2541 size = sizeof(COMMCONFIG);
2542 GetDefaultCommConfig(filename, &comcfg, &size);
2543 comcfg.dcb.DCBlength = sizeof(DCB);
2544 CommConfigDialog(filename, NULL, &comcfg);
2546 if (!SetCommState(s->hcom, &comcfg.dcb)) {
2547 fprintf(stderr, "Failed SetCommState\n");
2548 goto fail;
2551 if (!SetCommMask(s->hcom, EV_ERR)) {
2552 fprintf(stderr, "Failed SetCommMask\n");
2553 goto fail;
2556 cto.ReadIntervalTimeout = MAXDWORD;
2557 if (!SetCommTimeouts(s->hcom, &cto)) {
2558 fprintf(stderr, "Failed SetCommTimeouts\n");
2559 goto fail;
2562 if (!ClearCommError(s->hcom, &err, &comstat)) {
2563 fprintf(stderr, "Failed ClearCommError\n");
2564 goto fail;
2566 qemu_add_polling_cb(win_chr_poll, chr);
2567 return 0;
2569 fail:
2570 win_chr_close(chr);
2571 return -1;
2574 static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2576 WinCharState *s = chr->opaque;
2577 DWORD len, ret, size, err;
2579 len = len1;
2580 ZeroMemory(&s->osend, sizeof(s->osend));
2581 s->osend.hEvent = s->hsend;
2582 while (len > 0) {
2583 if (s->hsend)
2584 ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2585 else
2586 ret = WriteFile(s->hcom, buf, len, &size, NULL);
2587 if (!ret) {
2588 err = GetLastError();
2589 if (err == ERROR_IO_PENDING) {
2590 ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2591 if (ret) {
2592 buf += size;
2593 len -= size;
2594 } else {
2595 break;
2597 } else {
2598 break;
2600 } else {
2601 buf += size;
2602 len -= size;
2605 return len1 - len;
2608 static int win_chr_read_poll(CharDriverState *chr)
2610 WinCharState *s = chr->opaque;
2612 s->max_size = qemu_chr_can_read(chr);
2613 return s->max_size;
2616 static void win_chr_readfile(CharDriverState *chr)
2618 WinCharState *s = chr->opaque;
2619 int ret, err;
2620 uint8_t buf[1024];
2621 DWORD size;
2623 ZeroMemory(&s->orecv, sizeof(s->orecv));
2624 s->orecv.hEvent = s->hrecv;
2625 ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2626 if (!ret) {
2627 err = GetLastError();
2628 if (err == ERROR_IO_PENDING) {
2629 ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2633 if (size > 0) {
2634 qemu_chr_read(chr, buf, size);
2638 static void win_chr_read(CharDriverState *chr)
2640 WinCharState *s = chr->opaque;
2642 if (s->len > s->max_size)
2643 s->len = s->max_size;
2644 if (s->len == 0)
2645 return;
2647 win_chr_readfile(chr);
2650 static int win_chr_poll(void *opaque)
2652 CharDriverState *chr = opaque;
2653 WinCharState *s = chr->opaque;
2654 COMSTAT status;
2655 DWORD comerr;
2657 ClearCommError(s->hcom, &comerr, &status);
2658 if (status.cbInQue > 0) {
2659 s->len = status.cbInQue;
2660 win_chr_read_poll(chr);
2661 win_chr_read(chr);
2662 return 1;
2664 return 0;
2667 static CharDriverState *qemu_chr_open_win(const char *filename)
2669 CharDriverState *chr;
2670 WinCharState *s;
2672 chr = qemu_mallocz(sizeof(CharDriverState));
2673 if (!chr)
2674 return NULL;
2675 s = qemu_mallocz(sizeof(WinCharState));
2676 if (!s) {
2677 free(chr);
2678 return NULL;
2680 chr->opaque = s;
2681 chr->chr_write = win_chr_write;
2682 chr->chr_close = win_chr_close;
2684 if (win_chr_init(chr, filename) < 0) {
2685 free(s);
2686 free(chr);
2687 return NULL;
2689 qemu_chr_reset(chr);
2690 return chr;
2693 static int win_chr_pipe_poll(void *opaque)
2695 CharDriverState *chr = opaque;
2696 WinCharState *s = chr->opaque;
2697 DWORD size;
2699 PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2700 if (size > 0) {
2701 s->len = size;
2702 win_chr_read_poll(chr);
2703 win_chr_read(chr);
2704 return 1;
2706 return 0;
2709 static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2711 WinCharState *s = chr->opaque;
2712 OVERLAPPED ov;
2713 int ret;
2714 DWORD size;
2715 char openname[256];
2717 s->fpipe = TRUE;
2719 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2720 if (!s->hsend) {
2721 fprintf(stderr, "Failed CreateEvent\n");
2722 goto fail;
2724 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2725 if (!s->hrecv) {
2726 fprintf(stderr, "Failed CreateEvent\n");
2727 goto fail;
2730 snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2731 s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2732 PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2733 PIPE_WAIT,
2734 MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2735 if (s->hcom == INVALID_HANDLE_VALUE) {
2736 fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2737 s->hcom = NULL;
2738 goto fail;
2741 ZeroMemory(&ov, sizeof(ov));
2742 ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2743 ret = ConnectNamedPipe(s->hcom, &ov);
2744 if (ret) {
2745 fprintf(stderr, "Failed ConnectNamedPipe\n");
2746 goto fail;
2749 ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2750 if (!ret) {
2751 fprintf(stderr, "Failed GetOverlappedResult\n");
2752 if (ov.hEvent) {
2753 CloseHandle(ov.hEvent);
2754 ov.hEvent = NULL;
2756 goto fail;
2759 if (ov.hEvent) {
2760 CloseHandle(ov.hEvent);
2761 ov.hEvent = NULL;
2763 qemu_add_polling_cb(win_chr_pipe_poll, chr);
2764 return 0;
2766 fail:
2767 win_chr_close(chr);
2768 return -1;
2772 static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2774 CharDriverState *chr;
2775 WinCharState *s;
2777 chr = qemu_mallocz(sizeof(CharDriverState));
2778 if (!chr)
2779 return NULL;
2780 s = qemu_mallocz(sizeof(WinCharState));
2781 if (!s) {
2782 free(chr);
2783 return NULL;
2785 chr->opaque = s;
2786 chr->chr_write = win_chr_write;
2787 chr->chr_close = win_chr_close;
2789 if (win_chr_pipe_init(chr, filename) < 0) {
2790 free(s);
2791 free(chr);
2792 return NULL;
2794 qemu_chr_reset(chr);
2795 return chr;
2798 static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2800 CharDriverState *chr;
2801 WinCharState *s;
2803 chr = qemu_mallocz(sizeof(CharDriverState));
2804 if (!chr)
2805 return NULL;
2806 s = qemu_mallocz(sizeof(WinCharState));
2807 if (!s) {
2808 free(chr);
2809 return NULL;
2811 s->hcom = fd_out;
2812 chr->opaque = s;
2813 chr->chr_write = win_chr_write;
2814 qemu_chr_reset(chr);
2815 return chr;
2818 static CharDriverState *qemu_chr_open_win_con(const char *filename)
2820 return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
2823 static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2825 HANDLE fd_out;
2827 fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2828 OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2829 if (fd_out == INVALID_HANDLE_VALUE)
2830 return NULL;
2832 return qemu_chr_open_win_file(fd_out);
2834 #endif /* !_WIN32 */
2836 /***********************************************************/
2837 /* UDP Net console */
2839 typedef struct {
2840 int fd;
2841 struct sockaddr_in daddr;
2842 char buf[1024];
2843 int bufcnt;
2844 int bufptr;
2845 int max_size;
2846 } NetCharDriver;
2848 static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2850 NetCharDriver *s = chr->opaque;
2852 return sendto(s->fd, buf, len, 0,
2853 (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2856 static int udp_chr_read_poll(void *opaque)
2858 CharDriverState *chr = opaque;
2859 NetCharDriver *s = chr->opaque;
2861 s->max_size = qemu_chr_can_read(chr);
2863 /* If there were any stray characters in the queue process them
2864 * first
2866 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2867 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2868 s->bufptr++;
2869 s->max_size = qemu_chr_can_read(chr);
2871 return s->max_size;
2874 static void udp_chr_read(void *opaque)
2876 CharDriverState *chr = opaque;
2877 NetCharDriver *s = chr->opaque;
2879 if (s->max_size == 0)
2880 return;
2881 s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2882 s->bufptr = s->bufcnt;
2883 if (s->bufcnt <= 0)
2884 return;
2886 s->bufptr = 0;
2887 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2888 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2889 s->bufptr++;
2890 s->max_size = qemu_chr_can_read(chr);
2894 static void udp_chr_update_read_handler(CharDriverState *chr)
2896 NetCharDriver *s = chr->opaque;
2898 if (s->fd >= 0) {
2899 qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
2900 udp_chr_read, NULL, chr);
2904 int parse_host_port(struct sockaddr_in *saddr, const char *str);
2905 #ifndef _WIN32
2906 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
2907 #endif
2908 int parse_host_src_port(struct sockaddr_in *haddr,
2909 struct sockaddr_in *saddr,
2910 const char *str);
2912 static CharDriverState *qemu_chr_open_udp(const char *def)
2914 CharDriverState *chr = NULL;
2915 NetCharDriver *s = NULL;
2916 int fd = -1;
2917 struct sockaddr_in saddr;
2919 chr = qemu_mallocz(sizeof(CharDriverState));
2920 if (!chr)
2921 goto return_err;
2922 s = qemu_mallocz(sizeof(NetCharDriver));
2923 if (!s)
2924 goto return_err;
2926 fd = socket(PF_INET, SOCK_DGRAM, 0);
2927 if (fd < 0) {
2928 perror("socket(PF_INET, SOCK_DGRAM)");
2929 goto return_err;
2932 if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
2933 printf("Could not parse: %s\n", def);
2934 goto return_err;
2937 if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
2939 perror("bind");
2940 goto return_err;
2943 s->fd = fd;
2944 s->bufcnt = 0;
2945 s->bufptr = 0;
2946 chr->opaque = s;
2947 chr->chr_write = udp_chr_write;
2948 chr->chr_update_read_handler = udp_chr_update_read_handler;
2949 return chr;
2951 return_err:
2952 if (chr)
2953 free(chr);
2954 if (s)
2955 free(s);
2956 if (fd >= 0)
2957 closesocket(fd);
2958 return NULL;
2961 /***********************************************************/
2962 /* TCP Net console */
2964 typedef struct {
2965 int fd, listen_fd;
2966 int connected;
2967 int max_size;
2968 int do_telnetopt;
2969 int do_nodelay;
2970 int is_unix;
2971 } TCPCharDriver;
2973 static void tcp_chr_accept(void *opaque);
2975 static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2977 TCPCharDriver *s = chr->opaque;
2978 if (s->connected) {
2979 return send_all(s->fd, buf, len);
2980 } else {
2981 /* XXX: indicate an error ? */
2982 return len;
2986 static int tcp_chr_read_poll(void *opaque)
2988 CharDriverState *chr = opaque;
2989 TCPCharDriver *s = chr->opaque;
2990 if (!s->connected)
2991 return 0;
2992 s->max_size = qemu_chr_can_read(chr);
2993 return s->max_size;
2996 #define IAC 255
2997 #define IAC_BREAK 243
2998 static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
2999 TCPCharDriver *s,
3000 char *buf, int *size)
3002 /* Handle any telnet client's basic IAC options to satisfy char by
3003 * char mode with no echo. All IAC options will be removed from
3004 * the buf and the do_telnetopt variable will be used to track the
3005 * state of the width of the IAC information.
3007 * IAC commands come in sets of 3 bytes with the exception of the
3008 * "IAC BREAK" command and the double IAC.
3011 int i;
3012 int j = 0;
3014 for (i = 0; i < *size; i++) {
3015 if (s->do_telnetopt > 1) {
3016 if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
3017 /* Double IAC means send an IAC */
3018 if (j != i)
3019 buf[j] = buf[i];
3020 j++;
3021 s->do_telnetopt = 1;
3022 } else {
3023 if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
3024 /* Handle IAC break commands by sending a serial break */
3025 qemu_chr_event(chr, CHR_EVENT_BREAK);
3026 s->do_telnetopt++;
3028 s->do_telnetopt++;
3030 if (s->do_telnetopt >= 4) {
3031 s->do_telnetopt = 1;
3033 } else {
3034 if ((unsigned char)buf[i] == IAC) {
3035 s->do_telnetopt = 2;
3036 } else {
3037 if (j != i)
3038 buf[j] = buf[i];
3039 j++;
3043 *size = j;
3046 static void tcp_chr_read(void *opaque)
3048 CharDriverState *chr = opaque;
3049 TCPCharDriver *s = chr->opaque;
3050 uint8_t buf[1024];
3051 int len, size;
3053 if (!s->connected || s->max_size <= 0)
3054 return;
3055 len = sizeof(buf);
3056 if (len > s->max_size)
3057 len = s->max_size;
3058 size = recv(s->fd, buf, len, 0);
3059 if (size == 0) {
3060 /* connection closed */
3061 s->connected = 0;
3062 if (s->listen_fd >= 0) {
3063 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3065 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3066 closesocket(s->fd);
3067 s->fd = -1;
3068 } else if (size > 0) {
3069 if (s->do_telnetopt)
3070 tcp_chr_process_IAC_bytes(chr, s, buf, &size);
3071 if (size > 0)
3072 qemu_chr_read(chr, buf, size);
3076 static void tcp_chr_connect(void *opaque)
3078 CharDriverState *chr = opaque;
3079 TCPCharDriver *s = chr->opaque;
3081 s->connected = 1;
3082 qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
3083 tcp_chr_read, NULL, chr);
3084 qemu_chr_reset(chr);
3087 #define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
3088 static void tcp_chr_telnet_init(int fd)
3090 char buf[3];
3091 /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
3092 IACSET(buf, 0xff, 0xfb, 0x01); /* IAC WILL ECHO */
3093 send(fd, (char *)buf, 3, 0);
3094 IACSET(buf, 0xff, 0xfb, 0x03); /* IAC WILL Suppress go ahead */
3095 send(fd, (char *)buf, 3, 0);
3096 IACSET(buf, 0xff, 0xfb, 0x00); /* IAC WILL Binary */
3097 send(fd, (char *)buf, 3, 0);
3098 IACSET(buf, 0xff, 0xfd, 0x00); /* IAC DO Binary */
3099 send(fd, (char *)buf, 3, 0);
3102 static void socket_set_nodelay(int fd)
3104 int val = 1;
3105 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
3108 static void tcp_chr_accept(void *opaque)
3110 CharDriverState *chr = opaque;
3111 TCPCharDriver *s = chr->opaque;
3112 struct sockaddr_in saddr;
3113 #ifndef _WIN32
3114 struct sockaddr_un uaddr;
3115 #endif
3116 struct sockaddr *addr;
3117 socklen_t len;
3118 int fd;
3120 for(;;) {
3121 #ifndef _WIN32
3122 if (s->is_unix) {
3123 len = sizeof(uaddr);
3124 addr = (struct sockaddr *)&uaddr;
3125 } else
3126 #endif
3128 len = sizeof(saddr);
3129 addr = (struct sockaddr *)&saddr;
3131 fd = accept(s->listen_fd, addr, &len);
3132 if (fd < 0 && errno != EINTR) {
3133 return;
3134 } else if (fd >= 0) {
3135 if (s->do_telnetopt)
3136 tcp_chr_telnet_init(fd);
3137 break;
3140 socket_set_nonblock(fd);
3141 if (s->do_nodelay)
3142 socket_set_nodelay(fd);
3143 s->fd = fd;
3144 qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
3145 tcp_chr_connect(chr);
3148 static void tcp_chr_close(CharDriverState *chr)
3150 TCPCharDriver *s = chr->opaque;
3151 if (s->fd >= 0)
3152 closesocket(s->fd);
3153 if (s->listen_fd >= 0)
3154 closesocket(s->listen_fd);
3155 qemu_free(s);
3158 static CharDriverState *qemu_chr_open_tcp(const char *host_str,
3159 int is_telnet,
3160 int is_unix)
3162 CharDriverState *chr = NULL;
3163 TCPCharDriver *s = NULL;
3164 int fd = -1, ret, err, val;
3165 int is_listen = 0;
3166 int is_waitconnect = 1;
3167 int do_nodelay = 0;
3168 const char *ptr;
3169 struct sockaddr_in saddr;
3170 #ifndef _WIN32
3171 struct sockaddr_un uaddr;
3172 #endif
3173 struct sockaddr *addr;
3174 socklen_t addrlen;
3176 #ifndef _WIN32
3177 if (is_unix) {
3178 addr = (struct sockaddr *)&uaddr;
3179 addrlen = sizeof(uaddr);
3180 if (parse_unix_path(&uaddr, host_str) < 0)
3181 goto fail;
3182 } else
3183 #endif
3185 addr = (struct sockaddr *)&saddr;
3186 addrlen = sizeof(saddr);
3187 if (parse_host_port(&saddr, host_str) < 0)
3188 goto fail;
3191 ptr = host_str;
3192 while((ptr = strchr(ptr,','))) {
3193 ptr++;
3194 if (!strncmp(ptr,"server",6)) {
3195 is_listen = 1;
3196 } else if (!strncmp(ptr,"nowait",6)) {
3197 is_waitconnect = 0;
3198 } else if (!strncmp(ptr,"nodelay",6)) {
3199 do_nodelay = 1;
3200 } else {
3201 printf("Unknown option: %s\n", ptr);
3202 goto fail;
3205 if (!is_listen)
3206 is_waitconnect = 0;
3208 chr = qemu_mallocz(sizeof(CharDriverState));
3209 if (!chr)
3210 goto fail;
3211 s = qemu_mallocz(sizeof(TCPCharDriver));
3212 if (!s)
3213 goto fail;
3215 #ifndef _WIN32
3216 if (is_unix)
3217 fd = socket(PF_UNIX, SOCK_STREAM, 0);
3218 else
3219 #endif
3220 fd = socket(PF_INET, SOCK_STREAM, 0);
3222 if (fd < 0)
3223 goto fail;
3225 if (!is_waitconnect)
3226 socket_set_nonblock(fd);
3228 s->connected = 0;
3229 s->fd = -1;
3230 s->listen_fd = -1;
3231 s->is_unix = is_unix;
3232 s->do_nodelay = do_nodelay && !is_unix;
3234 chr->opaque = s;
3235 chr->chr_write = tcp_chr_write;
3236 chr->chr_close = tcp_chr_close;
3238 if (is_listen) {
3239 /* allow fast reuse */
3240 #ifndef _WIN32
3241 if (is_unix) {
3242 char path[109];
3243 strncpy(path, uaddr.sun_path, 108);
3244 path[108] = 0;
3245 unlink(path);
3246 } else
3247 #endif
3249 val = 1;
3250 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3253 ret = bind(fd, addr, addrlen);
3254 if (ret < 0)
3255 goto fail;
3257 ret = listen(fd, 0);
3258 if (ret < 0)
3259 goto fail;
3261 s->listen_fd = fd;
3262 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3263 if (is_telnet)
3264 s->do_telnetopt = 1;
3265 } else {
3266 for(;;) {
3267 ret = connect(fd, addr, addrlen);
3268 if (ret < 0) {
3269 err = socket_error();
3270 if (err == EINTR || err == EWOULDBLOCK) {
3271 } else if (err == EINPROGRESS) {
3272 break;
3273 #ifdef _WIN32
3274 } else if (err == WSAEALREADY) {
3275 break;
3276 #endif
3277 } else {
3278 goto fail;
3280 } else {
3281 s->connected = 1;
3282 break;
3285 s->fd = fd;
3286 socket_set_nodelay(fd);
3287 if (s->connected)
3288 tcp_chr_connect(chr);
3289 else
3290 qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
3293 if (is_listen && is_waitconnect) {
3294 printf("QEMU waiting for connection on: %s\n", host_str);
3295 tcp_chr_accept(chr);
3296 socket_set_nonblock(s->listen_fd);
3299 return chr;
3300 fail:
3301 if (fd >= 0)
3302 closesocket(fd);
3303 qemu_free(s);
3304 qemu_free(chr);
3305 return NULL;
3308 CharDriverState *qemu_chr_open(const char *filename)
3310 const char *p;
3312 if (!strcmp(filename, "vc")) {
3313 return text_console_init(&display_state, 0);
3314 } else if (strstart(filename, "vc:", &p)) {
3315 return text_console_init(&display_state, p);
3316 } else if (!strcmp(filename, "null")) {
3317 return qemu_chr_open_null();
3318 } else
3319 if (strstart(filename, "tcp:", &p)) {
3320 return qemu_chr_open_tcp(p, 0, 0);
3321 } else
3322 if (strstart(filename, "telnet:", &p)) {
3323 return qemu_chr_open_tcp(p, 1, 0);
3324 } else
3325 if (strstart(filename, "udp:", &p)) {
3326 return qemu_chr_open_udp(p);
3327 } else
3328 if (strstart(filename, "mon:", &p)) {
3329 CharDriverState *drv = qemu_chr_open(p);
3330 if (drv) {
3331 drv = qemu_chr_open_mux(drv);
3332 monitor_init(drv, !nographic);
3333 return drv;
3335 printf("Unable to open driver: %s\n", p);
3336 return 0;
3337 } else
3338 #ifndef _WIN32
3339 if (strstart(filename, "unix:", &p)) {
3340 return qemu_chr_open_tcp(p, 0, 1);
3341 } else if (strstart(filename, "file:", &p)) {
3342 return qemu_chr_open_file_out(p);
3343 } else if (strstart(filename, "pipe:", &p)) {
3344 return qemu_chr_open_pipe(p);
3345 } else if (!strcmp(filename, "pty")) {
3346 return qemu_chr_open_pty();
3347 } else if (!strcmp(filename, "stdio")) {
3348 return qemu_chr_open_stdio();
3349 } else
3350 #if defined(__linux__)
3351 if (strstart(filename, "/dev/parport", NULL)) {
3352 return qemu_chr_open_pp(filename);
3353 } else
3354 #endif
3355 #if defined(__linux__) || defined(__sun__)
3356 if (strstart(filename, "/dev/", NULL)) {
3357 return qemu_chr_open_tty(filename);
3358 } else
3359 #endif
3360 #else /* !_WIN32 */
3361 if (strstart(filename, "COM", NULL)) {
3362 return qemu_chr_open_win(filename);
3363 } else
3364 if (strstart(filename, "pipe:", &p)) {
3365 return qemu_chr_open_win_pipe(p);
3366 } else
3367 if (strstart(filename, "con:", NULL)) {
3368 return qemu_chr_open_win_con(filename);
3369 } else
3370 if (strstart(filename, "file:", &p)) {
3371 return qemu_chr_open_win_file_out(p);
3373 #endif
3375 return NULL;
3379 void qemu_chr_close(CharDriverState *chr)
3381 if (chr->chr_close)
3382 chr->chr_close(chr);
3385 /***********************************************************/
3386 /* network device redirectors */
3388 __attribute__ (( unused ))
3389 static void hex_dump(FILE *f, const uint8_t *buf, int size)
3391 int len, i, j, c;
3393 for(i=0;i<size;i+=16) {
3394 len = size - i;
3395 if (len > 16)
3396 len = 16;
3397 fprintf(f, "%08x ", i);
3398 for(j=0;j<16;j++) {
3399 if (j < len)
3400 fprintf(f, " %02x", buf[i+j]);
3401 else
3402 fprintf(f, " ");
3404 fprintf(f, " ");
3405 for(j=0;j<len;j++) {
3406 c = buf[i+j];
3407 if (c < ' ' || c > '~')
3408 c = '.';
3409 fprintf(f, "%c", c);
3411 fprintf(f, "\n");
3415 static int parse_macaddr(uint8_t *macaddr, const char *p)
3417 int i;
3418 for(i = 0; i < 6; i++) {
3419 macaddr[i] = strtol(p, (char **)&p, 16);
3420 if (i == 5) {
3421 if (*p != '\0')
3422 return -1;
3423 } else {
3424 if (*p != ':')
3425 return -1;
3426 p++;
3429 return 0;
3432 static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3434 const char *p, *p1;
3435 int len;
3436 p = *pp;
3437 p1 = strchr(p, sep);
3438 if (!p1)
3439 return -1;
3440 len = p1 - p;
3441 p1++;
3442 if (buf_size > 0) {
3443 if (len > buf_size - 1)
3444 len = buf_size - 1;
3445 memcpy(buf, p, len);
3446 buf[len] = '\0';
3448 *pp = p1;
3449 return 0;
3452 int parse_host_src_port(struct sockaddr_in *haddr,
3453 struct sockaddr_in *saddr,
3454 const char *input_str)
3456 char *str = strdup(input_str);
3457 char *host_str = str;
3458 char *src_str;
3459 char *ptr;
3462 * Chop off any extra arguments at the end of the string which
3463 * would start with a comma, then fill in the src port information
3464 * if it was provided else use the "any address" and "any port".
3466 if ((ptr = strchr(str,',')))
3467 *ptr = '\0';
3469 if ((src_str = strchr(input_str,'@'))) {
3470 *src_str = '\0';
3471 src_str++;
3474 if (parse_host_port(haddr, host_str) < 0)
3475 goto fail;
3477 if (!src_str || *src_str == '\0')
3478 src_str = ":0";
3480 if (parse_host_port(saddr, src_str) < 0)
3481 goto fail;
3483 free(str);
3484 return(0);
3486 fail:
3487 free(str);
3488 return -1;
3491 int parse_host_port(struct sockaddr_in *saddr, const char *str)
3493 char buf[512];
3494 struct hostent *he;
3495 const char *p, *r;
3496 int port;
3498 p = str;
3499 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3500 return -1;
3501 saddr->sin_family = AF_INET;
3502 if (buf[0] == '\0') {
3503 saddr->sin_addr.s_addr = 0;
3504 } else {
3505 if (isdigit(buf[0])) {
3506 if (!inet_aton(buf, &saddr->sin_addr))
3507 return -1;
3508 } else {
3509 if ((he = gethostbyname(buf)) == NULL)
3510 return - 1;
3511 saddr->sin_addr = *(struct in_addr *)he->h_addr;
3514 port = strtol(p, (char **)&r, 0);
3515 if (r == p)
3516 return -1;
3517 saddr->sin_port = htons(port);
3518 return 0;
3521 #ifndef _WIN32
3522 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3524 const char *p;
3525 int len;
3527 len = MIN(108, strlen(str));
3528 p = strchr(str, ',');
3529 if (p)
3530 len = MIN(len, p - str);
3532 memset(uaddr, 0, sizeof(*uaddr));
3534 uaddr->sun_family = AF_UNIX;
3535 memcpy(uaddr->sun_path, str, len);
3537 return 0;
3539 #endif
3541 /* find or alloc a new VLAN */
3542 VLANState *qemu_find_vlan(int id)
3544 VLANState **pvlan, *vlan;
3545 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3546 if (vlan->id == id)
3547 return vlan;
3549 vlan = qemu_mallocz(sizeof(VLANState));
3550 if (!vlan)
3551 return NULL;
3552 vlan->id = id;
3553 vlan->next = NULL;
3554 pvlan = &first_vlan;
3555 while (*pvlan != NULL)
3556 pvlan = &(*pvlan)->next;
3557 *pvlan = vlan;
3558 return vlan;
3561 VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3562 IOReadHandler *fd_read,
3563 IOCanRWHandler *fd_can_read,
3564 void *opaque)
3566 VLANClientState *vc, **pvc;
3567 vc = qemu_mallocz(sizeof(VLANClientState));
3568 if (!vc)
3569 return NULL;
3570 vc->fd_read = fd_read;
3571 vc->fd_can_read = fd_can_read;
3572 vc->opaque = opaque;
3573 vc->vlan = vlan;
3575 vc->next = NULL;
3576 pvc = &vlan->first_client;
3577 while (*pvc != NULL)
3578 pvc = &(*pvc)->next;
3579 *pvc = vc;
3580 return vc;
3583 int qemu_can_send_packet(VLANClientState *vc1)
3585 VLANState *vlan = vc1->vlan;
3586 VLANClientState *vc;
3588 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3589 if (vc != vc1) {
3590 if (vc->fd_can_read && vc->fd_can_read(vc->opaque))
3591 return 1;
3594 return 0;
3597 void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3599 VLANState *vlan = vc1->vlan;
3600 VLANClientState *vc;
3602 #if 0
3603 printf("vlan %d send:\n", vlan->id);
3604 hex_dump(stdout, buf, size);
3605 #endif
3606 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3607 if (vc != vc1) {
3608 vc->fd_read(vc->opaque, buf, size);
3613 #if defined(CONFIG_SLIRP)
3615 /* slirp network adapter */
3617 static int slirp_inited;
3618 static VLANClientState *slirp_vc;
3620 int slirp_can_output(void)
3622 return !slirp_vc || qemu_can_send_packet(slirp_vc);
3625 void slirp_output(const uint8_t *pkt, int pkt_len)
3627 #if 0
3628 printf("slirp output:\n");
3629 hex_dump(stdout, pkt, pkt_len);
3630 #endif
3631 if (!slirp_vc)
3632 return;
3633 qemu_send_packet(slirp_vc, pkt, pkt_len);
3636 static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3638 #if 0
3639 printf("slirp input:\n");
3640 hex_dump(stdout, buf, size);
3641 #endif
3642 slirp_input(buf, size);
3645 static int net_slirp_init(VLANState *vlan)
3647 if (!slirp_inited) {
3648 slirp_inited = 1;
3649 slirp_init();
3651 slirp_vc = qemu_new_vlan_client(vlan,
3652 slirp_receive, NULL, NULL);
3653 snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3654 return 0;
3657 static void net_slirp_redir(const char *redir_str)
3659 int is_udp;
3660 char buf[256], *r;
3661 const char *p;
3662 struct in_addr guest_addr;
3663 int host_port, guest_port;
3665 if (!slirp_inited) {
3666 slirp_inited = 1;
3667 slirp_init();
3670 p = redir_str;
3671 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3672 goto fail;
3673 if (!strcmp(buf, "tcp")) {
3674 is_udp = 0;
3675 } else if (!strcmp(buf, "udp")) {
3676 is_udp = 1;
3677 } else {
3678 goto fail;
3681 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3682 goto fail;
3683 host_port = strtol(buf, &r, 0);
3684 if (r == buf)
3685 goto fail;
3687 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3688 goto fail;
3689 if (buf[0] == '\0') {
3690 pstrcpy(buf, sizeof(buf), "10.0.2.15");
3692 if (!inet_aton(buf, &guest_addr))
3693 goto fail;
3695 guest_port = strtol(p, &r, 0);
3696 if (r == p)
3697 goto fail;
3699 if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3700 fprintf(stderr, "qemu: could not set up redirection\n");
3701 exit(1);
3703 return;
3704 fail:
3705 fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3706 exit(1);
3709 #ifndef _WIN32
3711 char smb_dir[1024];
3713 static void smb_exit(void)
3715 DIR *d;
3716 struct dirent *de;
3717 char filename[1024];
3719 /* erase all the files in the directory */
3720 d = opendir(smb_dir);
3721 for(;;) {
3722 de = readdir(d);
3723 if (!de)
3724 break;
3725 if (strcmp(de->d_name, ".") != 0 &&
3726 strcmp(de->d_name, "..") != 0) {
3727 snprintf(filename, sizeof(filename), "%s/%s",
3728 smb_dir, de->d_name);
3729 unlink(filename);
3732 closedir(d);
3733 rmdir(smb_dir);
3736 /* automatic user mode samba server configuration */
3737 static void net_slirp_smb(const char *exported_dir)
3739 char smb_conf[1024];
3740 char smb_cmdline[1024];
3741 FILE *f;
3743 if (!slirp_inited) {
3744 slirp_inited = 1;
3745 slirp_init();
3748 /* XXX: better tmp dir construction */
3749 snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3750 if (mkdir(smb_dir, 0700) < 0) {
3751 fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3752 exit(1);
3754 snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3756 f = fopen(smb_conf, "w");
3757 if (!f) {
3758 fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3759 exit(1);
3761 fprintf(f,
3762 "[global]\n"
3763 "private dir=%s\n"
3764 "smb ports=0\n"
3765 "socket address=127.0.0.1\n"
3766 "pid directory=%s\n"
3767 "lock directory=%s\n"
3768 "log file=%s/log.smbd\n"
3769 "smb passwd file=%s/smbpasswd\n"
3770 "security = share\n"
3771 "[qemu]\n"
3772 "path=%s\n"
3773 "read only=no\n"
3774 "guest ok=yes\n",
3775 smb_dir,
3776 smb_dir,
3777 smb_dir,
3778 smb_dir,
3779 smb_dir,
3780 exported_dir
3782 fclose(f);
3783 atexit(smb_exit);
3785 snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3786 SMBD_COMMAND, smb_conf);
3788 slirp_add_exec(0, smb_cmdline, 4, 139);
3791 #endif /* !defined(_WIN32) */
3792 void do_info_slirp(void)
3794 slirp_stats();
3797 #endif /* CONFIG_SLIRP */
3799 #if !defined(_WIN32)
3801 typedef struct TAPState {
3802 VLANClientState *vc;
3803 int fd;
3804 char down_script[1024];
3805 } TAPState;
3807 static void tap_receive(void *opaque, const uint8_t *buf, int size)
3809 TAPState *s = opaque;
3810 int ret;
3811 for(;;) {
3812 ret = write(s->fd, buf, size);
3813 if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3814 } else {
3815 break;
3820 static void tap_send(void *opaque)
3822 TAPState *s = opaque;
3823 uint8_t buf[4096];
3824 int size;
3826 #ifdef __sun__
3827 struct strbuf sbuf;
3828 int f = 0;
3829 sbuf.maxlen = sizeof(buf);
3830 sbuf.buf = buf;
3831 size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
3832 #else
3833 size = read(s->fd, buf, sizeof(buf));
3834 #endif
3835 if (size > 0) {
3836 qemu_send_packet(s->vc, buf, size);
3840 /* fd support */
3842 static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3844 TAPState *s;
3846 s = qemu_mallocz(sizeof(TAPState));
3847 if (!s)
3848 return NULL;
3849 s->fd = fd;
3850 s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3851 qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3852 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3853 return s;
3856 #if defined (_BSD) || defined (__FreeBSD_kernel__)
3857 static int tap_open(char *ifname, int ifname_size)
3859 int fd;
3860 char *dev;
3861 struct stat s;
3863 TFR(fd = open("/dev/tap", O_RDWR));
3864 if (fd < 0) {
3865 fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
3866 return -1;
3869 fstat(fd, &s);
3870 dev = devname(s.st_rdev, S_IFCHR);
3871 pstrcpy(ifname, ifname_size, dev);
3873 fcntl(fd, F_SETFL, O_NONBLOCK);
3874 return fd;
3876 #elif defined(__sun__)
3877 #define TUNNEWPPA (('T'<<16) | 0x0001)
3879 * Allocate TAP device, returns opened fd.
3880 * Stores dev name in the first arg(must be large enough).
3882 int tap_alloc(char *dev)
3884 int tap_fd, if_fd, ppa = -1;
3885 static int ip_fd = 0;
3886 char *ptr;
3888 static int arp_fd = 0;
3889 int ip_muxid, arp_muxid;
3890 struct strioctl strioc_if, strioc_ppa;
3891 int link_type = I_PLINK;;
3892 struct lifreq ifr;
3893 char actual_name[32] = "";
3895 memset(&ifr, 0x0, sizeof(ifr));
3897 if( *dev ){
3898 ptr = dev;
3899 while( *ptr && !isdigit((int)*ptr) ) ptr++;
3900 ppa = atoi(ptr);
3903 /* Check if IP device was opened */
3904 if( ip_fd )
3905 close(ip_fd);
3907 TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
3908 if (ip_fd < 0) {
3909 syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
3910 return -1;
3913 TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
3914 if (tap_fd < 0) {
3915 syslog(LOG_ERR, "Can't open /dev/tap");
3916 return -1;
3919 /* Assign a new PPA and get its unit number. */
3920 strioc_ppa.ic_cmd = TUNNEWPPA;
3921 strioc_ppa.ic_timout = 0;
3922 strioc_ppa.ic_len = sizeof(ppa);
3923 strioc_ppa.ic_dp = (char *)&ppa;
3924 if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
3925 syslog (LOG_ERR, "Can't assign new interface");
3927 TFR(if_fd = open("/dev/tap", O_RDWR, 0));
3928 if (if_fd < 0) {
3929 syslog(LOG_ERR, "Can't open /dev/tap (2)");
3930 return -1;
3932 if(ioctl(if_fd, I_PUSH, "ip") < 0){
3933 syslog(LOG_ERR, "Can't push IP module");
3934 return -1;
3937 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
3938 syslog(LOG_ERR, "Can't get flags\n");
3940 snprintf (actual_name, 32, "tap%d", ppa);
3941 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3943 ifr.lifr_ppa = ppa;
3944 /* Assign ppa according to the unit number returned by tun device */
3946 if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
3947 syslog (LOG_ERR, "Can't set PPA %d", ppa);
3948 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
3949 syslog (LOG_ERR, "Can't get flags\n");
3950 /* Push arp module to if_fd */
3951 if (ioctl (if_fd, I_PUSH, "arp") < 0)
3952 syslog (LOG_ERR, "Can't push ARP module (2)");
3954 /* Push arp module to ip_fd */
3955 if (ioctl (ip_fd, I_POP, NULL) < 0)
3956 syslog (LOG_ERR, "I_POP failed\n");
3957 if (ioctl (ip_fd, I_PUSH, "arp") < 0)
3958 syslog (LOG_ERR, "Can't push ARP module (3)\n");
3959 /* Open arp_fd */
3960 TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
3961 if (arp_fd < 0)
3962 syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
3964 /* Set ifname to arp */
3965 strioc_if.ic_cmd = SIOCSLIFNAME;
3966 strioc_if.ic_timout = 0;
3967 strioc_if.ic_len = sizeof(ifr);
3968 strioc_if.ic_dp = (char *)&ifr;
3969 if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
3970 syslog (LOG_ERR, "Can't set ifname to arp\n");
3973 if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
3974 syslog(LOG_ERR, "Can't link TAP device to IP");
3975 return -1;
3978 if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
3979 syslog (LOG_ERR, "Can't link TAP device to ARP");
3981 close (if_fd);
3983 memset(&ifr, 0x0, sizeof(ifr));
3984 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3985 ifr.lifr_ip_muxid = ip_muxid;
3986 ifr.lifr_arp_muxid = arp_muxid;
3988 if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
3990 ioctl (ip_fd, I_PUNLINK , arp_muxid);
3991 ioctl (ip_fd, I_PUNLINK, ip_muxid);
3992 syslog (LOG_ERR, "Can't set multiplexor id");
3995 sprintf(dev, "tap%d", ppa);
3996 return tap_fd;
3999 static int tap_open(char *ifname, int ifname_size)
4001 char dev[10]="";
4002 int fd;
4003 if( (fd = tap_alloc(dev)) < 0 ){
4004 fprintf(stderr, "Cannot allocate TAP device\n");
4005 return -1;
4007 pstrcpy(ifname, ifname_size, dev);
4008 fcntl(fd, F_SETFL, O_NONBLOCK);
4009 return fd;
4011 #else
4012 static int tap_open(char *ifname, int ifname_size)
4014 struct ifreq ifr;
4015 int fd, ret;
4017 TFR(fd = open("/dev/net/tun", O_RDWR));
4018 if (fd < 0) {
4019 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
4020 return -1;
4022 memset(&ifr, 0, sizeof(ifr));
4023 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
4024 if (ifname[0] != '\0')
4025 pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
4026 else
4027 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
4028 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
4029 if (ret != 0) {
4030 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
4031 close(fd);
4032 return -1;
4034 pstrcpy(ifname, ifname_size, ifr.ifr_name);
4035 fcntl(fd, F_SETFL, O_NONBLOCK);
4036 return fd;
4038 #endif
4040 static int launch_script(const char *setup_script, const char *ifname, int fd)
4042 int pid, status;
4043 char *args[3];
4044 char **parg;
4046 /* try to launch network script */
4047 pid = fork();
4048 if (pid >= 0) {
4049 if (pid == 0) {
4050 int open_max = sysconf (_SC_OPEN_MAX), i;
4051 for (i = 0; i < open_max; i++)
4052 if (i != STDIN_FILENO &&
4053 i != STDOUT_FILENO &&
4054 i != STDERR_FILENO &&
4055 i != fd)
4056 close(i);
4058 parg = args;
4059 *parg++ = (char *)setup_script;
4060 *parg++ = (char *)ifname;
4061 *parg++ = NULL;
4062 execv(setup_script, args);
4063 _exit(1);
4065 while (waitpid(pid, &status, 0) != pid);
4066 if (!WIFEXITED(status) ||
4067 WEXITSTATUS(status) != 0) {
4068 fprintf(stderr, "%s: could not launch network script\n",
4069 setup_script);
4070 return -1;
4073 return 0;
4076 static int net_tap_init(VLANState *vlan, const char *ifname1,
4077 const char *setup_script, const char *down_script)
4079 TAPState *s;
4080 int fd;
4081 char ifname[128];
4083 if (ifname1 != NULL)
4084 pstrcpy(ifname, sizeof(ifname), ifname1);
4085 else
4086 ifname[0] = '\0';
4087 TFR(fd = tap_open(ifname, sizeof(ifname)));
4088 if (fd < 0)
4089 return -1;
4091 if (!setup_script || !strcmp(setup_script, "no"))
4092 setup_script = "";
4093 if (setup_script[0] != '\0') {
4094 if (launch_script(setup_script, ifname, fd))
4095 return -1;
4097 s = net_tap_fd_init(vlan, fd);
4098 if (!s)
4099 return -1;
4100 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4101 "tap: ifname=%s setup_script=%s", ifname, setup_script);
4102 if (down_script && strcmp(down_script, "no"))
4103 snprintf(s->down_script, sizeof(s->down_script), "%s", down_script);
4104 return 0;
4107 #endif /* !_WIN32 */
4109 /* network connection */
4110 typedef struct NetSocketState {
4111 VLANClientState *vc;
4112 int fd;
4113 int state; /* 0 = getting length, 1 = getting data */
4114 int index;
4115 int packet_len;
4116 uint8_t buf[4096];
4117 struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
4118 } NetSocketState;
4120 typedef struct NetSocketListenState {
4121 VLANState *vlan;
4122 int fd;
4123 } NetSocketListenState;
4125 /* XXX: we consider we can send the whole packet without blocking */
4126 static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
4128 NetSocketState *s = opaque;
4129 uint32_t len;
4130 len = htonl(size);
4132 send_all(s->fd, (const uint8_t *)&len, sizeof(len));
4133 send_all(s->fd, buf, size);
4136 static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
4138 NetSocketState *s = opaque;
4139 sendto(s->fd, buf, size, 0,
4140 (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
4143 static void net_socket_send(void *opaque)
4145 NetSocketState *s = opaque;
4146 int l, size, err;
4147 uint8_t buf1[4096];
4148 const uint8_t *buf;
4150 size = recv(s->fd, buf1, sizeof(buf1), 0);
4151 if (size < 0) {
4152 err = socket_error();
4153 if (err != EWOULDBLOCK)
4154 goto eoc;
4155 } else if (size == 0) {
4156 /* end of connection */
4157 eoc:
4158 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4159 closesocket(s->fd);
4160 return;
4162 buf = buf1;
4163 while (size > 0) {
4164 /* reassemble a packet from the network */
4165 switch(s->state) {
4166 case 0:
4167 l = 4 - s->index;
4168 if (l > size)
4169 l = size;
4170 memcpy(s->buf + s->index, buf, l);
4171 buf += l;
4172 size -= l;
4173 s->index += l;
4174 if (s->index == 4) {
4175 /* got length */
4176 s->packet_len = ntohl(*(uint32_t *)s->buf);
4177 s->index = 0;
4178 s->state = 1;
4180 break;
4181 case 1:
4182 l = s->packet_len - s->index;
4183 if (l > size)
4184 l = size;
4185 memcpy(s->buf + s->index, buf, l);
4186 s->index += l;
4187 buf += l;
4188 size -= l;
4189 if (s->index >= s->packet_len) {
4190 qemu_send_packet(s->vc, s->buf, s->packet_len);
4191 s->index = 0;
4192 s->state = 0;
4194 break;
4199 static void net_socket_send_dgram(void *opaque)
4201 NetSocketState *s = opaque;
4202 int size;
4204 size = recv(s->fd, s->buf, sizeof(s->buf), 0);
4205 if (size < 0)
4206 return;
4207 if (size == 0) {
4208 /* end of connection */
4209 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4210 return;
4212 qemu_send_packet(s->vc, s->buf, size);
4215 static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
4217 struct ip_mreq imr;
4218 int fd;
4219 int val, ret;
4220 if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
4221 fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
4222 inet_ntoa(mcastaddr->sin_addr),
4223 (int)ntohl(mcastaddr->sin_addr.s_addr));
4224 return -1;
4227 fd = socket(PF_INET, SOCK_DGRAM, 0);
4228 if (fd < 0) {
4229 perror("socket(PF_INET, SOCK_DGRAM)");
4230 return -1;
4233 val = 1;
4234 ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
4235 (const char *)&val, sizeof(val));
4236 if (ret < 0) {
4237 perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
4238 goto fail;
4241 ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
4242 if (ret < 0) {
4243 perror("bind");
4244 goto fail;
4247 /* Add host to multicast group */
4248 imr.imr_multiaddr = mcastaddr->sin_addr;
4249 imr.imr_interface.s_addr = htonl(INADDR_ANY);
4251 ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
4252 (const char *)&imr, sizeof(struct ip_mreq));
4253 if (ret < 0) {
4254 perror("setsockopt(IP_ADD_MEMBERSHIP)");
4255 goto fail;
4258 /* Force mcast msgs to loopback (eg. several QEMUs in same host */
4259 val = 1;
4260 ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
4261 (const char *)&val, sizeof(val));
4262 if (ret < 0) {
4263 perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
4264 goto fail;
4267 socket_set_nonblock(fd);
4268 return fd;
4269 fail:
4270 if (fd >= 0)
4271 closesocket(fd);
4272 return -1;
4275 static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
4276 int is_connected)
4278 struct sockaddr_in saddr;
4279 int newfd;
4280 socklen_t saddr_len;
4281 NetSocketState *s;
4283 /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
4284 * Because this may be "shared" socket from a "master" process, datagrams would be recv()
4285 * by ONLY ONE process: we must "clone" this dgram socket --jjo
4288 if (is_connected) {
4289 if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
4290 /* must be bound */
4291 if (saddr.sin_addr.s_addr==0) {
4292 fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
4293 fd);
4294 return NULL;
4296 /* clone dgram socket */
4297 newfd = net_socket_mcast_create(&saddr);
4298 if (newfd < 0) {
4299 /* error already reported by net_socket_mcast_create() */
4300 close(fd);
4301 return NULL;
4303 /* clone newfd to fd, close newfd */
4304 dup2(newfd, fd);
4305 close(newfd);
4307 } else {
4308 fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
4309 fd, strerror(errno));
4310 return NULL;
4314 s = qemu_mallocz(sizeof(NetSocketState));
4315 if (!s)
4316 return NULL;
4317 s->fd = fd;
4319 s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
4320 qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
4322 /* mcast: save bound address as dst */
4323 if (is_connected) s->dgram_dst=saddr;
4325 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4326 "socket: fd=%d (%s mcast=%s:%d)",
4327 fd, is_connected? "cloned" : "",
4328 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4329 return s;
4332 static void net_socket_connect(void *opaque)
4334 NetSocketState *s = opaque;
4335 qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
4338 static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
4339 int is_connected)
4341 NetSocketState *s;
4342 s = qemu_mallocz(sizeof(NetSocketState));
4343 if (!s)
4344 return NULL;
4345 s->fd = fd;
4346 s->vc = qemu_new_vlan_client(vlan,
4347 net_socket_receive, NULL, s);
4348 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4349 "socket: fd=%d", fd);
4350 if (is_connected) {
4351 net_socket_connect(s);
4352 } else {
4353 qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
4355 return s;
4358 static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
4359 int is_connected)
4361 int so_type=-1, optlen=sizeof(so_type);
4363 if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type, &optlen)< 0) {
4364 fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
4365 return NULL;
4367 switch(so_type) {
4368 case SOCK_DGRAM:
4369 return net_socket_fd_init_dgram(vlan, fd, is_connected);
4370 case SOCK_STREAM:
4371 return net_socket_fd_init_stream(vlan, fd, is_connected);
4372 default:
4373 /* who knows ... this could be a eg. a pty, do warn and continue as stream */
4374 fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
4375 return net_socket_fd_init_stream(vlan, fd, is_connected);
4377 return NULL;
4380 static void net_socket_accept(void *opaque)
4382 NetSocketListenState *s = opaque;
4383 NetSocketState *s1;
4384 struct sockaddr_in saddr;
4385 socklen_t len;
4386 int fd;
4388 for(;;) {
4389 len = sizeof(saddr);
4390 fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
4391 if (fd < 0 && errno != EINTR) {
4392 return;
4393 } else if (fd >= 0) {
4394 break;
4397 s1 = net_socket_fd_init(s->vlan, fd, 1);
4398 if (!s1) {
4399 closesocket(fd);
4400 } else {
4401 snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
4402 "socket: connection from %s:%d",
4403 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4407 static int net_socket_listen_init(VLANState *vlan, const char *host_str)
4409 NetSocketListenState *s;
4410 int fd, val, ret;
4411 struct sockaddr_in saddr;
4413 if (parse_host_port(&saddr, host_str) < 0)
4414 return -1;
4416 s = qemu_mallocz(sizeof(NetSocketListenState));
4417 if (!s)
4418 return -1;
4420 fd = socket(PF_INET, SOCK_STREAM, 0);
4421 if (fd < 0) {
4422 perror("socket");
4423 return -1;
4425 socket_set_nonblock(fd);
4427 /* allow fast reuse */
4428 val = 1;
4429 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4431 ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4432 if (ret < 0) {
4433 perror("bind");
4434 return -1;
4436 ret = listen(fd, 0);
4437 if (ret < 0) {
4438 perror("listen");
4439 return -1;
4441 s->vlan = vlan;
4442 s->fd = fd;
4443 qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
4444 return 0;
4447 static int net_socket_connect_init(VLANState *vlan, const char *host_str)
4449 NetSocketState *s;
4450 int fd, connected, ret, err;
4451 struct sockaddr_in saddr;
4453 if (parse_host_port(&saddr, host_str) < 0)
4454 return -1;
4456 fd = socket(PF_INET, SOCK_STREAM, 0);
4457 if (fd < 0) {
4458 perror("socket");
4459 return -1;
4461 socket_set_nonblock(fd);
4463 connected = 0;
4464 for(;;) {
4465 ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4466 if (ret < 0) {
4467 err = socket_error();
4468 if (err == EINTR || err == EWOULDBLOCK) {
4469 } else if (err == EINPROGRESS) {
4470 break;
4471 #ifdef _WIN32
4472 } else if (err == WSAEALREADY) {
4473 break;
4474 #endif
4475 } else {
4476 perror("connect");
4477 closesocket(fd);
4478 return -1;
4480 } else {
4481 connected = 1;
4482 break;
4485 s = net_socket_fd_init(vlan, fd, connected);
4486 if (!s)
4487 return -1;
4488 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4489 "socket: connect to %s:%d",
4490 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4491 return 0;
4494 static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4496 NetSocketState *s;
4497 int fd;
4498 struct sockaddr_in saddr;
4500 if (parse_host_port(&saddr, host_str) < 0)
4501 return -1;
4504 fd = net_socket_mcast_create(&saddr);
4505 if (fd < 0)
4506 return -1;
4508 s = net_socket_fd_init(vlan, fd, 0);
4509 if (!s)
4510 return -1;
4512 s->dgram_dst = saddr;
4514 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4515 "socket: mcast=%s:%d",
4516 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4517 return 0;
4521 static int get_param_value(char *buf, int buf_size,
4522 const char *tag, const char *str)
4524 const char *p;
4525 char *q;
4526 char option[128];
4528 p = str;
4529 for(;;) {
4530 q = option;
4531 while (*p != '\0' && *p != '=') {
4532 if ((q - option) < sizeof(option) - 1)
4533 *q++ = *p;
4534 p++;
4536 *q = '\0';
4537 if (*p != '=')
4538 break;
4539 p++;
4540 if (!strcmp(tag, option)) {
4541 q = buf;
4542 while (*p != '\0' && *p != ',') {
4543 if ((q - buf) < buf_size - 1)
4544 *q++ = *p;
4545 p++;
4547 *q = '\0';
4548 return q - buf;
4549 } else {
4550 while (*p != '\0' && *p != ',') {
4551 p++;
4554 if (*p != ',')
4555 break;
4556 p++;
4558 return 0;
4561 static int net_client_init(const char *str)
4563 const char *p;
4564 char *q;
4565 char device[64];
4566 char buf[1024];
4567 int vlan_id, ret;
4568 VLANState *vlan;
4570 p = str;
4571 q = device;
4572 while (*p != '\0' && *p != ',') {
4573 if ((q - device) < sizeof(device) - 1)
4574 *q++ = *p;
4575 p++;
4577 *q = '\0';
4578 if (*p == ',')
4579 p++;
4580 vlan_id = 0;
4581 if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4582 vlan_id = strtol(buf, NULL, 0);
4584 vlan = qemu_find_vlan(vlan_id);
4585 if (!vlan) {
4586 fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4587 return -1;
4589 if (!strcmp(device, "nic")) {
4590 NICInfo *nd;
4591 uint8_t *macaddr;
4593 if (nb_nics >= MAX_NICS) {
4594 fprintf(stderr, "Too Many NICs\n");
4595 return -1;
4597 nd = &nd_table[nb_nics];
4598 macaddr = nd->macaddr;
4599 macaddr[0] = 0x52;
4600 macaddr[1] = 0x54;
4601 macaddr[2] = 0x00;
4602 macaddr[3] = 0x12;
4603 macaddr[4] = 0x34;
4604 macaddr[5] = 0x56 + nb_nics;
4606 if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4607 if (parse_macaddr(macaddr, buf) < 0) {
4608 fprintf(stderr, "invalid syntax for ethernet address\n");
4609 return -1;
4612 if (get_param_value(buf, sizeof(buf), "model", p)) {
4613 nd->model = strdup(buf);
4615 nd->vlan = vlan;
4616 nb_nics++;
4617 vlan->nb_guest_devs++;
4618 ret = 0;
4619 } else
4620 if (!strcmp(device, "none")) {
4621 /* does nothing. It is needed to signal that no network cards
4622 are wanted */
4623 ret = 0;
4624 } else
4625 #ifdef CONFIG_SLIRP
4626 if (!strcmp(device, "user")) {
4627 if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4628 pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4630 vlan->nb_host_devs++;
4631 ret = net_slirp_init(vlan);
4632 } else
4633 #endif
4634 #ifdef _WIN32
4635 if (!strcmp(device, "tap")) {
4636 char ifname[64];
4637 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4638 fprintf(stderr, "tap: no interface name\n");
4639 return -1;
4641 vlan->nb_host_devs++;
4642 ret = tap_win32_init(vlan, ifname);
4643 } else
4644 #else
4645 if (!strcmp(device, "tap")) {
4646 char ifname[64];
4647 char setup_script[1024], down_script[1024];
4648 int fd;
4649 vlan->nb_host_devs++;
4650 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4651 fd = strtol(buf, NULL, 0);
4652 ret = -1;
4653 if (net_tap_fd_init(vlan, fd))
4654 ret = 0;
4655 } else {
4656 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4657 ifname[0] = '\0';
4659 if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4660 pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4662 if (get_param_value(down_script, sizeof(down_script), "downscript", p) == 0) {
4663 pstrcpy(down_script, sizeof(down_script), DEFAULT_NETWORK_DOWN_SCRIPT);
4665 ret = net_tap_init(vlan, ifname, setup_script, down_script);
4667 } else
4668 #endif
4669 if (!strcmp(device, "socket")) {
4670 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4671 int fd;
4672 fd = strtol(buf, NULL, 0);
4673 ret = -1;
4674 if (net_socket_fd_init(vlan, fd, 1))
4675 ret = 0;
4676 } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4677 ret = net_socket_listen_init(vlan, buf);
4678 } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4679 ret = net_socket_connect_init(vlan, buf);
4680 } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4681 ret = net_socket_mcast_init(vlan, buf);
4682 } else {
4683 fprintf(stderr, "Unknown socket options: %s\n", p);
4684 return -1;
4686 vlan->nb_host_devs++;
4687 } else
4689 fprintf(stderr, "Unknown network device: %s\n", device);
4690 return -1;
4692 if (ret < 0) {
4693 fprintf(stderr, "Could not initialize device '%s'\n", device);
4696 return ret;
4699 void do_info_network(void)
4701 VLANState *vlan;
4702 VLANClientState *vc;
4704 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4705 term_printf("VLAN %d devices:\n", vlan->id);
4706 for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4707 term_printf(" %s\n", vc->info_str);
4711 /***********************************************************/
4712 /* USB devices */
4714 static USBPort *used_usb_ports;
4715 static USBPort *free_usb_ports;
4717 /* ??? Maybe change this to register a hub to keep track of the topology. */
4718 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
4719 usb_attachfn attach)
4721 port->opaque = opaque;
4722 port->index = index;
4723 port->attach = attach;
4724 port->next = free_usb_ports;
4725 free_usb_ports = port;
4728 static int usb_device_add(const char *devname)
4730 const char *p;
4731 USBDevice *dev;
4732 USBPort *port;
4734 if (!free_usb_ports)
4735 return -1;
4737 if (strstart(devname, "host:", &p)) {
4738 dev = usb_host_device_open(p);
4739 } else if (!strcmp(devname, "mouse")) {
4740 dev = usb_mouse_init();
4741 } else if (!strcmp(devname, "tablet")) {
4742 dev = usb_tablet_init();
4743 } else if (!strcmp(devname, "keyboard")) {
4744 dev = usb_keyboard_init();
4745 } else if (strstart(devname, "disk:", &p)) {
4746 dev = usb_msd_init(p);
4747 } else if (!strcmp(devname, "wacom-tablet")) {
4748 dev = usb_wacom_init();
4749 } else {
4750 return -1;
4752 if (!dev)
4753 return -1;
4755 /* Find a USB port to add the device to. */
4756 port = free_usb_ports;
4757 if (!port->next) {
4758 USBDevice *hub;
4760 /* Create a new hub and chain it on. */
4761 free_usb_ports = NULL;
4762 port->next = used_usb_ports;
4763 used_usb_ports = port;
4765 hub = usb_hub_init(VM_USB_HUB_SIZE);
4766 usb_attach(port, hub);
4767 port = free_usb_ports;
4770 free_usb_ports = port->next;
4771 port->next = used_usb_ports;
4772 used_usb_ports = port;
4773 usb_attach(port, dev);
4774 return 0;
4777 static int usb_device_del(const char *devname)
4779 USBPort *port;
4780 USBPort **lastp;
4781 USBDevice *dev;
4782 int bus_num, addr;
4783 const char *p;
4785 if (!used_usb_ports)
4786 return -1;
4788 p = strchr(devname, '.');
4789 if (!p)
4790 return -1;
4791 bus_num = strtoul(devname, NULL, 0);
4792 addr = strtoul(p + 1, NULL, 0);
4793 if (bus_num != 0)
4794 return -1;
4796 lastp = &used_usb_ports;
4797 port = used_usb_ports;
4798 while (port && port->dev->addr != addr) {
4799 lastp = &port->next;
4800 port = port->next;
4803 if (!port)
4804 return -1;
4806 dev = port->dev;
4807 *lastp = port->next;
4808 usb_attach(port, NULL);
4809 dev->handle_destroy(dev);
4810 port->next = free_usb_ports;
4811 free_usb_ports = port;
4812 return 0;
4815 void do_usb_add(const char *devname)
4817 int ret;
4818 ret = usb_device_add(devname);
4819 if (ret < 0)
4820 term_printf("Could not add USB device '%s'\n", devname);
4823 void do_usb_del(const char *devname)
4825 int ret;
4826 ret = usb_device_del(devname);
4827 if (ret < 0)
4828 term_printf("Could not remove USB device '%s'\n", devname);
4831 void usb_info(void)
4833 USBDevice *dev;
4834 USBPort *port;
4835 const char *speed_str;
4837 if (!usb_enabled) {
4838 term_printf("USB support not enabled\n");
4839 return;
4842 for (port = used_usb_ports; port; port = port->next) {
4843 dev = port->dev;
4844 if (!dev)
4845 continue;
4846 switch(dev->speed) {
4847 case USB_SPEED_LOW:
4848 speed_str = "1.5";
4849 break;
4850 case USB_SPEED_FULL:
4851 speed_str = "12";
4852 break;
4853 case USB_SPEED_HIGH:
4854 speed_str = "480";
4855 break;
4856 default:
4857 speed_str = "?";
4858 break;
4860 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
4861 0, dev->addr, speed_str, dev->devname);
4865 /***********************************************************/
4866 /* PCMCIA/Cardbus */
4868 static struct pcmcia_socket_entry_s {
4869 struct pcmcia_socket_s *socket;
4870 struct pcmcia_socket_entry_s *next;
4871 } *pcmcia_sockets = 0;
4873 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
4875 struct pcmcia_socket_entry_s *entry;
4877 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
4878 entry->socket = socket;
4879 entry->next = pcmcia_sockets;
4880 pcmcia_sockets = entry;
4883 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
4885 struct pcmcia_socket_entry_s *entry, **ptr;
4887 ptr = &pcmcia_sockets;
4888 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
4889 if (entry->socket == socket) {
4890 *ptr = entry->next;
4891 qemu_free(entry);
4895 void pcmcia_info(void)
4897 struct pcmcia_socket_entry_s *iter;
4898 if (!pcmcia_sockets)
4899 term_printf("No PCMCIA sockets\n");
4901 for (iter = pcmcia_sockets; iter; iter = iter->next)
4902 term_printf("%s: %s\n", iter->socket->slot_string,
4903 iter->socket->attached ? iter->socket->card_string :
4904 "Empty");
4907 /***********************************************************/
4908 /* dumb display */
4910 static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
4914 static void dumb_resize(DisplayState *ds, int w, int h)
4918 static void dumb_refresh(DisplayState *ds)
4920 #if defined(CONFIG_SDL)
4921 vga_hw_update();
4922 #endif
4925 static void dumb_display_init(DisplayState *ds)
4927 ds->data = NULL;
4928 ds->linesize = 0;
4929 ds->depth = 0;
4930 ds->dpy_update = dumb_update;
4931 ds->dpy_resize = dumb_resize;
4932 ds->dpy_refresh = dumb_refresh;
4935 /***********************************************************/
4936 /* I/O handling */
4938 #define MAX_IO_HANDLERS 64
4940 typedef struct IOHandlerRecord {
4941 int fd;
4942 IOCanRWHandler *fd_read_poll;
4943 IOHandler *fd_read;
4944 IOHandler *fd_write;
4945 int deleted;
4946 void *opaque;
4947 /* temporary data */
4948 struct pollfd *ufd;
4949 struct IOHandlerRecord *next;
4950 } IOHandlerRecord;
4952 static IOHandlerRecord *first_io_handler;
4954 /* XXX: fd_read_poll should be suppressed, but an API change is
4955 necessary in the character devices to suppress fd_can_read(). */
4956 int qemu_set_fd_handler2(int fd,
4957 IOCanRWHandler *fd_read_poll,
4958 IOHandler *fd_read,
4959 IOHandler *fd_write,
4960 void *opaque)
4962 IOHandlerRecord **pioh, *ioh;
4964 if (!fd_read && !fd_write) {
4965 pioh = &first_io_handler;
4966 for(;;) {
4967 ioh = *pioh;
4968 if (ioh == NULL)
4969 break;
4970 if (ioh->fd == fd) {
4971 ioh->deleted = 1;
4972 break;
4974 pioh = &ioh->next;
4976 } else {
4977 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4978 if (ioh->fd == fd)
4979 goto found;
4981 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
4982 if (!ioh)
4983 return -1;
4984 ioh->next = first_io_handler;
4985 first_io_handler = ioh;
4986 found:
4987 ioh->fd = fd;
4988 ioh->fd_read_poll = fd_read_poll;
4989 ioh->fd_read = fd_read;
4990 ioh->fd_write = fd_write;
4991 ioh->opaque = opaque;
4992 ioh->deleted = 0;
4994 return 0;
4997 int qemu_set_fd_handler(int fd,
4998 IOHandler *fd_read,
4999 IOHandler *fd_write,
5000 void *opaque)
5002 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
5005 /***********************************************************/
5006 /* Polling handling */
5008 typedef struct PollingEntry {
5009 PollingFunc *func;
5010 void *opaque;
5011 struct PollingEntry *next;
5012 } PollingEntry;
5014 static PollingEntry *first_polling_entry;
5016 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
5018 PollingEntry **ppe, *pe;
5019 pe = qemu_mallocz(sizeof(PollingEntry));
5020 if (!pe)
5021 return -1;
5022 pe->func = func;
5023 pe->opaque = opaque;
5024 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
5025 *ppe = pe;
5026 return 0;
5029 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
5031 PollingEntry **ppe, *pe;
5032 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
5033 pe = *ppe;
5034 if (pe->func == func && pe->opaque == opaque) {
5035 *ppe = pe->next;
5036 qemu_free(pe);
5037 break;
5042 #ifdef _WIN32
5043 /***********************************************************/
5044 /* Wait objects support */
5045 typedef struct WaitObjects {
5046 int num;
5047 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
5048 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
5049 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
5050 } WaitObjects;
5052 static WaitObjects wait_objects = {0};
5054 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5056 WaitObjects *w = &wait_objects;
5058 if (w->num >= MAXIMUM_WAIT_OBJECTS)
5059 return -1;
5060 w->events[w->num] = handle;
5061 w->func[w->num] = func;
5062 w->opaque[w->num] = opaque;
5063 w->num++;
5064 return 0;
5067 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5069 int i, found;
5070 WaitObjects *w = &wait_objects;
5072 found = 0;
5073 for (i = 0; i < w->num; i++) {
5074 if (w->events[i] == handle)
5075 found = 1;
5076 if (found) {
5077 w->events[i] = w->events[i + 1];
5078 w->func[i] = w->func[i + 1];
5079 w->opaque[i] = w->opaque[i + 1];
5082 if (found)
5083 w->num--;
5085 #endif
5087 /***********************************************************/
5088 /* savevm/loadvm support */
5090 #define IO_BUF_SIZE 32768
5092 struct QEMUFile {
5093 FILE *outfile;
5094 BlockDriverState *bs;
5095 int is_file;
5096 int is_writable;
5097 int64_t base_offset;
5098 int64_t buf_offset; /* start of buffer when writing, end of buffer
5099 when reading */
5100 int buf_index;
5101 int buf_size; /* 0 when writing */
5102 uint8_t buf[IO_BUF_SIZE];
5105 QEMUFile *qemu_fopen(const char *filename, const char *mode)
5107 QEMUFile *f;
5109 f = qemu_mallocz(sizeof(QEMUFile));
5110 if (!f)
5111 return NULL;
5112 if (!strcmp(mode, "wb")) {
5113 f->is_writable = 1;
5114 } else if (!strcmp(mode, "rb")) {
5115 f->is_writable = 0;
5116 } else {
5117 goto fail;
5119 f->outfile = fopen(filename, mode);
5120 if (!f->outfile)
5121 goto fail;
5122 f->is_file = 1;
5123 return f;
5124 fail:
5125 if (f->outfile)
5126 fclose(f->outfile);
5127 qemu_free(f);
5128 return NULL;
5131 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
5133 QEMUFile *f;
5135 f = qemu_mallocz(sizeof(QEMUFile));
5136 if (!f)
5137 return NULL;
5138 f->is_file = 0;
5139 f->bs = bs;
5140 f->is_writable = is_writable;
5141 f->base_offset = offset;
5142 return f;
5145 void qemu_fflush(QEMUFile *f)
5147 if (!f->is_writable)
5148 return;
5149 if (f->buf_index > 0) {
5150 if (f->is_file) {
5151 fseek(f->outfile, f->buf_offset, SEEK_SET);
5152 fwrite(f->buf, 1, f->buf_index, f->outfile);
5153 } else {
5154 bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
5155 f->buf, f->buf_index);
5157 f->buf_offset += f->buf_index;
5158 f->buf_index = 0;
5162 static void qemu_fill_buffer(QEMUFile *f)
5164 int len;
5166 if (f->is_writable)
5167 return;
5168 if (f->is_file) {
5169 fseek(f->outfile, f->buf_offset, SEEK_SET);
5170 len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
5171 if (len < 0)
5172 len = 0;
5173 } else {
5174 len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
5175 f->buf, IO_BUF_SIZE);
5176 if (len < 0)
5177 len = 0;
5179 f->buf_index = 0;
5180 f->buf_size = len;
5181 f->buf_offset += len;
5184 void qemu_fclose(QEMUFile *f)
5186 if (f->is_writable)
5187 qemu_fflush(f);
5188 if (f->is_file) {
5189 fclose(f->outfile);
5191 qemu_free(f);
5194 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
5196 int l;
5197 while (size > 0) {
5198 l = IO_BUF_SIZE - f->buf_index;
5199 if (l > size)
5200 l = size;
5201 memcpy(f->buf + f->buf_index, buf, l);
5202 f->buf_index += l;
5203 buf += l;
5204 size -= l;
5205 if (f->buf_index >= IO_BUF_SIZE)
5206 qemu_fflush(f);
5210 void qemu_put_byte(QEMUFile *f, int v)
5212 f->buf[f->buf_index++] = v;
5213 if (f->buf_index >= IO_BUF_SIZE)
5214 qemu_fflush(f);
5217 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
5219 int size, l;
5221 size = size1;
5222 while (size > 0) {
5223 l = f->buf_size - f->buf_index;
5224 if (l == 0) {
5225 qemu_fill_buffer(f);
5226 l = f->buf_size - f->buf_index;
5227 if (l == 0)
5228 break;
5230 if (l > size)
5231 l = size;
5232 memcpy(buf, f->buf + f->buf_index, l);
5233 f->buf_index += l;
5234 buf += l;
5235 size -= l;
5237 return size1 - size;
5240 int qemu_get_byte(QEMUFile *f)
5242 if (f->buf_index >= f->buf_size) {
5243 qemu_fill_buffer(f);
5244 if (f->buf_index >= f->buf_size)
5245 return 0;
5247 return f->buf[f->buf_index++];
5250 int64_t qemu_ftell(QEMUFile *f)
5252 return f->buf_offset - f->buf_size + f->buf_index;
5255 int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
5257 if (whence == SEEK_SET) {
5258 /* nothing to do */
5259 } else if (whence == SEEK_CUR) {
5260 pos += qemu_ftell(f);
5261 } else {
5262 /* SEEK_END not supported */
5263 return -1;
5265 if (f->is_writable) {
5266 qemu_fflush(f);
5267 f->buf_offset = pos;
5268 } else {
5269 f->buf_offset = pos;
5270 f->buf_index = 0;
5271 f->buf_size = 0;
5273 return pos;
5276 void qemu_put_be16(QEMUFile *f, unsigned int v)
5278 qemu_put_byte(f, v >> 8);
5279 qemu_put_byte(f, v);
5282 void qemu_put_be32(QEMUFile *f, unsigned int v)
5284 qemu_put_byte(f, v >> 24);
5285 qemu_put_byte(f, v >> 16);
5286 qemu_put_byte(f, v >> 8);
5287 qemu_put_byte(f, v);
5290 void qemu_put_be64(QEMUFile *f, uint64_t v)
5292 qemu_put_be32(f, v >> 32);
5293 qemu_put_be32(f, v);
5296 unsigned int qemu_get_be16(QEMUFile *f)
5298 unsigned int v;
5299 v = qemu_get_byte(f) << 8;
5300 v |= qemu_get_byte(f);
5301 return v;
5304 unsigned int qemu_get_be32(QEMUFile *f)
5306 unsigned int v;
5307 v = qemu_get_byte(f) << 24;
5308 v |= qemu_get_byte(f) << 16;
5309 v |= qemu_get_byte(f) << 8;
5310 v |= qemu_get_byte(f);
5311 return v;
5314 uint64_t qemu_get_be64(QEMUFile *f)
5316 uint64_t v;
5317 v = (uint64_t)qemu_get_be32(f) << 32;
5318 v |= qemu_get_be32(f);
5319 return v;
5322 typedef struct SaveStateEntry {
5323 char idstr[256];
5324 int instance_id;
5325 int version_id;
5326 SaveStateHandler *save_state;
5327 LoadStateHandler *load_state;
5328 void *opaque;
5329 struct SaveStateEntry *next;
5330 } SaveStateEntry;
5332 static SaveStateEntry *first_se;
5334 int register_savevm(const char *idstr,
5335 int instance_id,
5336 int version_id,
5337 SaveStateHandler *save_state,
5338 LoadStateHandler *load_state,
5339 void *opaque)
5341 SaveStateEntry *se, **pse;
5343 se = qemu_malloc(sizeof(SaveStateEntry));
5344 if (!se)
5345 return -1;
5346 pstrcpy(se->idstr, sizeof(se->idstr), idstr);
5347 se->instance_id = instance_id;
5348 se->version_id = version_id;
5349 se->save_state = save_state;
5350 se->load_state = load_state;
5351 se->opaque = opaque;
5352 se->next = NULL;
5354 /* add at the end of list */
5355 pse = &first_se;
5356 while (*pse != NULL)
5357 pse = &(*pse)->next;
5358 *pse = se;
5359 return 0;
5362 #define QEMU_VM_FILE_MAGIC 0x5145564d
5363 #define QEMU_VM_FILE_VERSION 0x00000002
5365 static int qemu_savevm_state(QEMUFile *f)
5367 SaveStateEntry *se;
5368 int len, ret;
5369 int64_t cur_pos, len_pos, total_len_pos;
5371 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
5372 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
5373 total_len_pos = qemu_ftell(f);
5374 qemu_put_be64(f, 0); /* total size */
5376 for(se = first_se; se != NULL; se = se->next) {
5377 /* ID string */
5378 len = strlen(se->idstr);
5379 qemu_put_byte(f, len);
5380 qemu_put_buffer(f, se->idstr, len);
5382 qemu_put_be32(f, se->instance_id);
5383 qemu_put_be32(f, se->version_id);
5385 /* record size: filled later */
5386 len_pos = qemu_ftell(f);
5387 qemu_put_be32(f, 0);
5388 se->save_state(f, se->opaque);
5390 /* fill record size */
5391 cur_pos = qemu_ftell(f);
5392 len = cur_pos - len_pos - 4;
5393 qemu_fseek(f, len_pos, SEEK_SET);
5394 qemu_put_be32(f, len);
5395 qemu_fseek(f, cur_pos, SEEK_SET);
5397 cur_pos = qemu_ftell(f);
5398 qemu_fseek(f, total_len_pos, SEEK_SET);
5399 qemu_put_be64(f, cur_pos - total_len_pos - 8);
5400 qemu_fseek(f, cur_pos, SEEK_SET);
5402 ret = 0;
5403 return ret;
5406 static SaveStateEntry *find_se(const char *idstr, int instance_id)
5408 SaveStateEntry *se;
5410 for(se = first_se; se != NULL; se = se->next) {
5411 if (!strcmp(se->idstr, idstr) &&
5412 instance_id == se->instance_id)
5413 return se;
5415 return NULL;
5418 static int qemu_loadvm_state(QEMUFile *f)
5420 SaveStateEntry *se;
5421 int len, ret, instance_id, record_len, version_id;
5422 int64_t total_len, end_pos, cur_pos;
5423 unsigned int v;
5424 char idstr[256];
5426 v = qemu_get_be32(f);
5427 if (v != QEMU_VM_FILE_MAGIC)
5428 goto fail;
5429 v = qemu_get_be32(f);
5430 if (v != QEMU_VM_FILE_VERSION) {
5431 fail:
5432 ret = -1;
5433 goto the_end;
5435 total_len = qemu_get_be64(f);
5436 end_pos = total_len + qemu_ftell(f);
5437 for(;;) {
5438 if (qemu_ftell(f) >= end_pos)
5439 break;
5440 len = qemu_get_byte(f);
5441 qemu_get_buffer(f, idstr, len);
5442 idstr[len] = '\0';
5443 instance_id = qemu_get_be32(f);
5444 version_id = qemu_get_be32(f);
5445 record_len = qemu_get_be32(f);
5446 #if 0
5447 printf("idstr=%s instance=0x%x version=%d len=%d\n",
5448 idstr, instance_id, version_id, record_len);
5449 #endif
5450 cur_pos = qemu_ftell(f);
5451 se = find_se(idstr, instance_id);
5452 if (!se) {
5453 fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
5454 instance_id, idstr);
5455 } else {
5456 ret = se->load_state(f, se->opaque, version_id);
5457 if (ret < 0) {
5458 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
5459 instance_id, idstr);
5462 /* always seek to exact end of record */
5463 qemu_fseek(f, cur_pos + record_len, SEEK_SET);
5465 ret = 0;
5466 the_end:
5467 return ret;
5470 /* device can contain snapshots */
5471 static int bdrv_can_snapshot(BlockDriverState *bs)
5473 return (bs &&
5474 !bdrv_is_removable(bs) &&
5475 !bdrv_is_read_only(bs));
5478 /* device must be snapshots in order to have a reliable snapshot */
5479 static int bdrv_has_snapshot(BlockDriverState *bs)
5481 return (bs &&
5482 !bdrv_is_removable(bs) &&
5483 !bdrv_is_read_only(bs));
5486 static BlockDriverState *get_bs_snapshots(void)
5488 BlockDriverState *bs;
5489 int i;
5491 if (bs_snapshots)
5492 return bs_snapshots;
5493 for(i = 0; i <= MAX_DISKS; i++) {
5494 bs = bs_table[i];
5495 if (bdrv_can_snapshot(bs))
5496 goto ok;
5498 return NULL;
5500 bs_snapshots = bs;
5501 return bs;
5504 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
5505 const char *name)
5507 QEMUSnapshotInfo *sn_tab, *sn;
5508 int nb_sns, i, ret;
5510 ret = -ENOENT;
5511 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5512 if (nb_sns < 0)
5513 return ret;
5514 for(i = 0; i < nb_sns; i++) {
5515 sn = &sn_tab[i];
5516 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
5517 *sn_info = *sn;
5518 ret = 0;
5519 break;
5522 qemu_free(sn_tab);
5523 return ret;
5526 void do_savevm(const char *name)
5528 BlockDriverState *bs, *bs1;
5529 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
5530 int must_delete, ret, i;
5531 BlockDriverInfo bdi1, *bdi = &bdi1;
5532 QEMUFile *f;
5533 int saved_vm_running;
5534 #ifdef _WIN32
5535 struct _timeb tb;
5536 #else
5537 struct timeval tv;
5538 #endif
5540 bs = get_bs_snapshots();
5541 if (!bs) {
5542 term_printf("No block device can accept snapshots\n");
5543 return;
5546 /* ??? Should this occur after vm_stop? */
5547 qemu_aio_flush();
5549 saved_vm_running = vm_running;
5550 vm_stop(0);
5552 must_delete = 0;
5553 if (name) {
5554 ret = bdrv_snapshot_find(bs, old_sn, name);
5555 if (ret >= 0) {
5556 must_delete = 1;
5559 memset(sn, 0, sizeof(*sn));
5560 if (must_delete) {
5561 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
5562 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
5563 } else {
5564 if (name)
5565 pstrcpy(sn->name, sizeof(sn->name), name);
5568 /* fill auxiliary fields */
5569 #ifdef _WIN32
5570 _ftime(&tb);
5571 sn->date_sec = tb.time;
5572 sn->date_nsec = tb.millitm * 1000000;
5573 #else
5574 gettimeofday(&tv, NULL);
5575 sn->date_sec = tv.tv_sec;
5576 sn->date_nsec = tv.tv_usec * 1000;
5577 #endif
5578 sn->vm_clock_nsec = qemu_get_clock(vm_clock);
5580 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5581 term_printf("Device %s does not support VM state snapshots\n",
5582 bdrv_get_device_name(bs));
5583 goto the_end;
5586 /* save the VM state */
5587 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
5588 if (!f) {
5589 term_printf("Could not open VM state file\n");
5590 goto the_end;
5592 ret = qemu_savevm_state(f);
5593 sn->vm_state_size = qemu_ftell(f);
5594 qemu_fclose(f);
5595 if (ret < 0) {
5596 term_printf("Error %d while writing VM\n", ret);
5597 goto the_end;
5600 /* create the snapshots */
5602 for(i = 0; i < MAX_DISKS; i++) {
5603 bs1 = bs_table[i];
5604 if (bdrv_has_snapshot(bs1)) {
5605 if (must_delete) {
5606 ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
5607 if (ret < 0) {
5608 term_printf("Error while deleting snapshot on '%s'\n",
5609 bdrv_get_device_name(bs1));
5612 ret = bdrv_snapshot_create(bs1, sn);
5613 if (ret < 0) {
5614 term_printf("Error while creating snapshot on '%s'\n",
5615 bdrv_get_device_name(bs1));
5620 the_end:
5621 if (saved_vm_running)
5622 vm_start();
5625 void do_loadvm(const char *name)
5627 BlockDriverState *bs, *bs1;
5628 BlockDriverInfo bdi1, *bdi = &bdi1;
5629 QEMUFile *f;
5630 int i, ret;
5631 int saved_vm_running;
5633 bs = get_bs_snapshots();
5634 if (!bs) {
5635 term_printf("No block device supports snapshots\n");
5636 return;
5639 /* Flush all IO requests so they don't interfere with the new state. */
5640 qemu_aio_flush();
5642 saved_vm_running = vm_running;
5643 vm_stop(0);
5645 for(i = 0; i <= MAX_DISKS; i++) {
5646 bs1 = bs_table[i];
5647 if (bdrv_has_snapshot(bs1)) {
5648 ret = bdrv_snapshot_goto(bs1, name);
5649 if (ret < 0) {
5650 if (bs != bs1)
5651 term_printf("Warning: ");
5652 switch(ret) {
5653 case -ENOTSUP:
5654 term_printf("Snapshots not supported on device '%s'\n",
5655 bdrv_get_device_name(bs1));
5656 break;
5657 case -ENOENT:
5658 term_printf("Could not find snapshot '%s' on device '%s'\n",
5659 name, bdrv_get_device_name(bs1));
5660 break;
5661 default:
5662 term_printf("Error %d while activating snapshot on '%s'\n",
5663 ret, bdrv_get_device_name(bs1));
5664 break;
5666 /* fatal on snapshot block device */
5667 if (bs == bs1)
5668 goto the_end;
5673 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5674 term_printf("Device %s does not support VM state snapshots\n",
5675 bdrv_get_device_name(bs));
5676 return;
5679 /* restore the VM state */
5680 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
5681 if (!f) {
5682 term_printf("Could not open VM state file\n");
5683 goto the_end;
5685 ret = qemu_loadvm_state(f);
5686 qemu_fclose(f);
5687 if (ret < 0) {
5688 term_printf("Error %d while loading VM state\n", ret);
5690 the_end:
5691 if (saved_vm_running)
5692 vm_start();
5695 void do_delvm(const char *name)
5697 BlockDriverState *bs, *bs1;
5698 int i, ret;
5700 bs = get_bs_snapshots();
5701 if (!bs) {
5702 term_printf("No block device supports snapshots\n");
5703 return;
5706 for(i = 0; i <= MAX_DISKS; i++) {
5707 bs1 = bs_table[i];
5708 if (bdrv_has_snapshot(bs1)) {
5709 ret = bdrv_snapshot_delete(bs1, name);
5710 if (ret < 0) {
5711 if (ret == -ENOTSUP)
5712 term_printf("Snapshots not supported on device '%s'\n",
5713 bdrv_get_device_name(bs1));
5714 else
5715 term_printf("Error %d while deleting snapshot on '%s'\n",
5716 ret, bdrv_get_device_name(bs1));
5722 void do_info_snapshots(void)
5724 BlockDriverState *bs, *bs1;
5725 QEMUSnapshotInfo *sn_tab, *sn;
5726 int nb_sns, i;
5727 char buf[256];
5729 bs = get_bs_snapshots();
5730 if (!bs) {
5731 term_printf("No available block device supports snapshots\n");
5732 return;
5734 term_printf("Snapshot devices:");
5735 for(i = 0; i <= MAX_DISKS; i++) {
5736 bs1 = bs_table[i];
5737 if (bdrv_has_snapshot(bs1)) {
5738 if (bs == bs1)
5739 term_printf(" %s", bdrv_get_device_name(bs1));
5742 term_printf("\n");
5744 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5745 if (nb_sns < 0) {
5746 term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
5747 return;
5749 term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
5750 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
5751 for(i = 0; i < nb_sns; i++) {
5752 sn = &sn_tab[i];
5753 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
5755 qemu_free(sn_tab);
5758 /***********************************************************/
5759 /* cpu save/restore */
5761 #if defined(TARGET_I386)
5763 static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
5765 qemu_put_be32(f, dt->selector);
5766 qemu_put_betl(f, dt->base);
5767 qemu_put_be32(f, dt->limit);
5768 qemu_put_be32(f, dt->flags);
5771 static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
5773 dt->selector = qemu_get_be32(f);
5774 dt->base = qemu_get_betl(f);
5775 dt->limit = qemu_get_be32(f);
5776 dt->flags = qemu_get_be32(f);
5779 void cpu_save(QEMUFile *f, void *opaque)
5781 CPUState *env = opaque;
5782 uint16_t fptag, fpus, fpuc, fpregs_format;
5783 uint32_t hflags;
5784 int i;
5786 for(i = 0; i < CPU_NB_REGS; i++)
5787 qemu_put_betls(f, &env->regs[i]);
5788 qemu_put_betls(f, &env->eip);
5789 qemu_put_betls(f, &env->eflags);
5790 hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
5791 qemu_put_be32s(f, &hflags);
5793 /* FPU */
5794 fpuc = env->fpuc;
5795 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
5796 fptag = 0;
5797 for(i = 0; i < 8; i++) {
5798 fptag |= ((!env->fptags[i]) << i);
5801 qemu_put_be16s(f, &fpuc);
5802 qemu_put_be16s(f, &fpus);
5803 qemu_put_be16s(f, &fptag);
5805 #ifdef USE_X86LDOUBLE
5806 fpregs_format = 0;
5807 #else
5808 fpregs_format = 1;
5809 #endif
5810 qemu_put_be16s(f, &fpregs_format);
5812 for(i = 0; i < 8; i++) {
5813 #ifdef USE_X86LDOUBLE
5815 uint64_t mant;
5816 uint16_t exp;
5817 /* we save the real CPU data (in case of MMX usage only 'mant'
5818 contains the MMX register */
5819 cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
5820 qemu_put_be64(f, mant);
5821 qemu_put_be16(f, exp);
5823 #else
5824 /* if we use doubles for float emulation, we save the doubles to
5825 avoid losing information in case of MMX usage. It can give
5826 problems if the image is restored on a CPU where long
5827 doubles are used instead. */
5828 qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
5829 #endif
5832 for(i = 0; i < 6; i++)
5833 cpu_put_seg(f, &env->segs[i]);
5834 cpu_put_seg(f, &env->ldt);
5835 cpu_put_seg(f, &env->tr);
5836 cpu_put_seg(f, &env->gdt);
5837 cpu_put_seg(f, &env->idt);
5839 qemu_put_be32s(f, &env->sysenter_cs);
5840 qemu_put_be32s(f, &env->sysenter_esp);
5841 qemu_put_be32s(f, &env->sysenter_eip);
5843 qemu_put_betls(f, &env->cr[0]);
5844 qemu_put_betls(f, &env->cr[2]);
5845 qemu_put_betls(f, &env->cr[3]);
5846 qemu_put_betls(f, &env->cr[4]);
5848 for(i = 0; i < 8; i++)
5849 qemu_put_betls(f, &env->dr[i]);
5851 /* MMU */
5852 qemu_put_be32s(f, &env->a20_mask);
5854 /* XMM */
5855 qemu_put_be32s(f, &env->mxcsr);
5856 for(i = 0; i < CPU_NB_REGS; i++) {
5857 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5858 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5861 #ifdef TARGET_X86_64
5862 qemu_put_be64s(f, &env->efer);
5863 qemu_put_be64s(f, &env->star);
5864 qemu_put_be64s(f, &env->lstar);
5865 qemu_put_be64s(f, &env->cstar);
5866 qemu_put_be64s(f, &env->fmask);
5867 qemu_put_be64s(f, &env->kernelgsbase);
5868 #endif
5869 qemu_put_be32s(f, &env->smbase);
5872 #ifdef USE_X86LDOUBLE
5873 /* XXX: add that in a FPU generic layer */
5874 union x86_longdouble {
5875 uint64_t mant;
5876 uint16_t exp;
5879 #define MANTD1(fp) (fp & ((1LL << 52) - 1))
5880 #define EXPBIAS1 1023
5881 #define EXPD1(fp) ((fp >> 52) & 0x7FF)
5882 #define SIGND1(fp) ((fp >> 32) & 0x80000000)
5884 static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
5886 int e;
5887 /* mantissa */
5888 p->mant = (MANTD1(temp) << 11) | (1LL << 63);
5889 /* exponent + sign */
5890 e = EXPD1(temp) - EXPBIAS1 + 16383;
5891 e |= SIGND1(temp) >> 16;
5892 p->exp = e;
5894 #endif
5896 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5898 CPUState *env = opaque;
5899 int i, guess_mmx;
5900 uint32_t hflags;
5901 uint16_t fpus, fpuc, fptag, fpregs_format;
5903 if (version_id != 3 && version_id != 4)
5904 return -EINVAL;
5905 for(i = 0; i < CPU_NB_REGS; i++)
5906 qemu_get_betls(f, &env->regs[i]);
5907 qemu_get_betls(f, &env->eip);
5908 qemu_get_betls(f, &env->eflags);
5909 qemu_get_be32s(f, &hflags);
5911 qemu_get_be16s(f, &fpuc);
5912 qemu_get_be16s(f, &fpus);
5913 qemu_get_be16s(f, &fptag);
5914 qemu_get_be16s(f, &fpregs_format);
5916 /* NOTE: we cannot always restore the FPU state if the image come
5917 from a host with a different 'USE_X86LDOUBLE' define. We guess
5918 if we are in an MMX state to restore correctly in that case. */
5919 guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
5920 for(i = 0; i < 8; i++) {
5921 uint64_t mant;
5922 uint16_t exp;
5924 switch(fpregs_format) {
5925 case 0:
5926 mant = qemu_get_be64(f);
5927 exp = qemu_get_be16(f);
5928 #ifdef USE_X86LDOUBLE
5929 env->fpregs[i].d = cpu_set_fp80(mant, exp);
5930 #else
5931 /* difficult case */
5932 if (guess_mmx)
5933 env->fpregs[i].mmx.MMX_Q(0) = mant;
5934 else
5935 env->fpregs[i].d = cpu_set_fp80(mant, exp);
5936 #endif
5937 break;
5938 case 1:
5939 mant = qemu_get_be64(f);
5940 #ifdef USE_X86LDOUBLE
5942 union x86_longdouble *p;
5943 /* difficult case */
5944 p = (void *)&env->fpregs[i];
5945 if (guess_mmx) {
5946 p->mant = mant;
5947 p->exp = 0xffff;
5948 } else {
5949 fp64_to_fp80(p, mant);
5952 #else
5953 env->fpregs[i].mmx.MMX_Q(0) = mant;
5954 #endif
5955 break;
5956 default:
5957 return -EINVAL;
5961 env->fpuc = fpuc;
5962 /* XXX: restore FPU round state */
5963 env->fpstt = (fpus >> 11) & 7;
5964 env->fpus = fpus & ~0x3800;
5965 fptag ^= 0xff;
5966 for(i = 0; i < 8; i++) {
5967 env->fptags[i] = (fptag >> i) & 1;
5970 for(i = 0; i < 6; i++)
5971 cpu_get_seg(f, &env->segs[i]);
5972 cpu_get_seg(f, &env->ldt);
5973 cpu_get_seg(f, &env->tr);
5974 cpu_get_seg(f, &env->gdt);
5975 cpu_get_seg(f, &env->idt);
5977 qemu_get_be32s(f, &env->sysenter_cs);
5978 qemu_get_be32s(f, &env->sysenter_esp);
5979 qemu_get_be32s(f, &env->sysenter_eip);
5981 qemu_get_betls(f, &env->cr[0]);
5982 qemu_get_betls(f, &env->cr[2]);
5983 qemu_get_betls(f, &env->cr[3]);
5984 qemu_get_betls(f, &env->cr[4]);
5986 for(i = 0; i < 8; i++)
5987 qemu_get_betls(f, &env->dr[i]);
5989 /* MMU */
5990 qemu_get_be32s(f, &env->a20_mask);
5992 qemu_get_be32s(f, &env->mxcsr);
5993 for(i = 0; i < CPU_NB_REGS; i++) {
5994 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5995 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5998 #ifdef TARGET_X86_64
5999 qemu_get_be64s(f, &env->efer);
6000 qemu_get_be64s(f, &env->star);
6001 qemu_get_be64s(f, &env->lstar);
6002 qemu_get_be64s(f, &env->cstar);
6003 qemu_get_be64s(f, &env->fmask);
6004 qemu_get_be64s(f, &env->kernelgsbase);
6005 #endif
6006 if (version_id >= 4)
6007 qemu_get_be32s(f, &env->smbase);
6009 /* XXX: compute hflags from scratch, except for CPL and IIF */
6010 env->hflags = hflags;
6011 tlb_flush(env, 1);
6012 return 0;
6015 #elif defined(TARGET_PPC)
6016 void cpu_save(QEMUFile *f, void *opaque)
6020 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6022 return 0;
6025 #elif defined(TARGET_MIPS)
6026 void cpu_save(QEMUFile *f, void *opaque)
6030 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6032 return 0;
6035 #elif defined(TARGET_SPARC)
6036 void cpu_save(QEMUFile *f, void *opaque)
6038 CPUState *env = opaque;
6039 int i;
6040 uint32_t tmp;
6042 for(i = 0; i < 8; i++)
6043 qemu_put_betls(f, &env->gregs[i]);
6044 for(i = 0; i < NWINDOWS * 16; i++)
6045 qemu_put_betls(f, &env->regbase[i]);
6047 /* FPU */
6048 for(i = 0; i < TARGET_FPREGS; i++) {
6049 union {
6050 float32 f;
6051 uint32_t i;
6052 } u;
6053 u.f = env->fpr[i];
6054 qemu_put_be32(f, u.i);
6057 qemu_put_betls(f, &env->pc);
6058 qemu_put_betls(f, &env->npc);
6059 qemu_put_betls(f, &env->y);
6060 tmp = GET_PSR(env);
6061 qemu_put_be32(f, tmp);
6062 qemu_put_betls(f, &env->fsr);
6063 qemu_put_betls(f, &env->tbr);
6064 #ifndef TARGET_SPARC64
6065 qemu_put_be32s(f, &env->wim);
6066 /* MMU */
6067 for(i = 0; i < 16; i++)
6068 qemu_put_be32s(f, &env->mmuregs[i]);
6069 #endif
6072 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6074 CPUState *env = opaque;
6075 int i;
6076 uint32_t tmp;
6078 for(i = 0; i < 8; i++)
6079 qemu_get_betls(f, &env->gregs[i]);
6080 for(i = 0; i < NWINDOWS * 16; i++)
6081 qemu_get_betls(f, &env->regbase[i]);
6083 /* FPU */
6084 for(i = 0; i < TARGET_FPREGS; i++) {
6085 union {
6086 float32 f;
6087 uint32_t i;
6088 } u;
6089 u.i = qemu_get_be32(f);
6090 env->fpr[i] = u.f;
6093 qemu_get_betls(f, &env->pc);
6094 qemu_get_betls(f, &env->npc);
6095 qemu_get_betls(f, &env->y);
6096 tmp = qemu_get_be32(f);
6097 env->cwp = 0; /* needed to ensure that the wrapping registers are
6098 correctly updated */
6099 PUT_PSR(env, tmp);
6100 qemu_get_betls(f, &env->fsr);
6101 qemu_get_betls(f, &env->tbr);
6102 #ifndef TARGET_SPARC64
6103 qemu_get_be32s(f, &env->wim);
6104 /* MMU */
6105 for(i = 0; i < 16; i++)
6106 qemu_get_be32s(f, &env->mmuregs[i]);
6107 #endif
6108 tlb_flush(env, 1);
6109 return 0;
6112 #elif defined(TARGET_ARM)
6114 void cpu_save(QEMUFile *f, void *opaque)
6116 int i;
6117 CPUARMState *env = (CPUARMState *)opaque;
6119 for (i = 0; i < 16; i++) {
6120 qemu_put_be32(f, env->regs[i]);
6122 qemu_put_be32(f, cpsr_read(env));
6123 qemu_put_be32(f, env->spsr);
6124 for (i = 0; i < 6; i++) {
6125 qemu_put_be32(f, env->banked_spsr[i]);
6126 qemu_put_be32(f, env->banked_r13[i]);
6127 qemu_put_be32(f, env->banked_r14[i]);
6129 for (i = 0; i < 5; i++) {
6130 qemu_put_be32(f, env->usr_regs[i]);
6131 qemu_put_be32(f, env->fiq_regs[i]);
6133 qemu_put_be32(f, env->cp15.c0_cpuid);
6134 qemu_put_be32(f, env->cp15.c0_cachetype);
6135 qemu_put_be32(f, env->cp15.c1_sys);
6136 qemu_put_be32(f, env->cp15.c1_coproc);
6137 qemu_put_be32(f, env->cp15.c1_xscaleauxcr);
6138 qemu_put_be32(f, env->cp15.c2_base0);
6139 qemu_put_be32(f, env->cp15.c2_base1);
6140 qemu_put_be32(f, env->cp15.c2_mask);
6141 qemu_put_be32(f, env->cp15.c2_data);
6142 qemu_put_be32(f, env->cp15.c2_insn);
6143 qemu_put_be32(f, env->cp15.c3);
6144 qemu_put_be32(f, env->cp15.c5_insn);
6145 qemu_put_be32(f, env->cp15.c5_data);
6146 for (i = 0; i < 8; i++) {
6147 qemu_put_be32(f, env->cp15.c6_region[i]);
6149 qemu_put_be32(f, env->cp15.c6_insn);
6150 qemu_put_be32(f, env->cp15.c6_data);
6151 qemu_put_be32(f, env->cp15.c9_insn);
6152 qemu_put_be32(f, env->cp15.c9_data);
6153 qemu_put_be32(f, env->cp15.c13_fcse);
6154 qemu_put_be32(f, env->cp15.c13_context);
6155 qemu_put_be32(f, env->cp15.c13_tls1);
6156 qemu_put_be32(f, env->cp15.c13_tls2);
6157 qemu_put_be32(f, env->cp15.c13_tls3);
6158 qemu_put_be32(f, env->cp15.c15_cpar);
6160 qemu_put_be32(f, env->features);
6162 if (arm_feature(env, ARM_FEATURE_VFP)) {
6163 for (i = 0; i < 16; i++) {
6164 CPU_DoubleU u;
6165 u.d = env->vfp.regs[i];
6166 qemu_put_be32(f, u.l.upper);
6167 qemu_put_be32(f, u.l.lower);
6169 for (i = 0; i < 16; i++) {
6170 qemu_put_be32(f, env->vfp.xregs[i]);
6173 /* TODO: Should use proper FPSCR access functions. */
6174 qemu_put_be32(f, env->vfp.vec_len);
6175 qemu_put_be32(f, env->vfp.vec_stride);
6177 if (arm_feature(env, ARM_FEATURE_VFP3)) {
6178 for (i = 16; i < 32; i++) {
6179 CPU_DoubleU u;
6180 u.d = env->vfp.regs[i];
6181 qemu_put_be32(f, u.l.upper);
6182 qemu_put_be32(f, u.l.lower);
6187 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6188 for (i = 0; i < 16; i++) {
6189 qemu_put_be64(f, env->iwmmxt.regs[i]);
6191 for (i = 0; i < 16; i++) {
6192 qemu_put_be32(f, env->iwmmxt.cregs[i]);
6196 if (arm_feature(env, ARM_FEATURE_M)) {
6197 qemu_put_be32(f, env->v7m.other_sp);
6198 qemu_put_be32(f, env->v7m.vecbase);
6199 qemu_put_be32(f, env->v7m.basepri);
6200 qemu_put_be32(f, env->v7m.control);
6201 qemu_put_be32(f, env->v7m.current_sp);
6202 qemu_put_be32(f, env->v7m.exception);
6206 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6208 CPUARMState *env = (CPUARMState *)opaque;
6209 int i;
6211 if (version_id != ARM_CPU_SAVE_VERSION)
6212 return -EINVAL;
6214 for (i = 0; i < 16; i++) {
6215 env->regs[i] = qemu_get_be32(f);
6217 cpsr_write(env, qemu_get_be32(f), 0xffffffff);
6218 env->spsr = qemu_get_be32(f);
6219 for (i = 0; i < 6; i++) {
6220 env->banked_spsr[i] = qemu_get_be32(f);
6221 env->banked_r13[i] = qemu_get_be32(f);
6222 env->banked_r14[i] = qemu_get_be32(f);
6224 for (i = 0; i < 5; i++) {
6225 env->usr_regs[i] = qemu_get_be32(f);
6226 env->fiq_regs[i] = qemu_get_be32(f);
6228 env->cp15.c0_cpuid = qemu_get_be32(f);
6229 env->cp15.c0_cachetype = qemu_get_be32(f);
6230 env->cp15.c1_sys = qemu_get_be32(f);
6231 env->cp15.c1_coproc = qemu_get_be32(f);
6232 env->cp15.c1_xscaleauxcr = qemu_get_be32(f);
6233 env->cp15.c2_base0 = qemu_get_be32(f);
6234 env->cp15.c2_base1 = qemu_get_be32(f);
6235 env->cp15.c2_mask = qemu_get_be32(f);
6236 env->cp15.c2_data = qemu_get_be32(f);
6237 env->cp15.c2_insn = qemu_get_be32(f);
6238 env->cp15.c3 = qemu_get_be32(f);
6239 env->cp15.c5_insn = qemu_get_be32(f);
6240 env->cp15.c5_data = qemu_get_be32(f);
6241 for (i = 0; i < 8; i++) {
6242 env->cp15.c6_region[i] = qemu_get_be32(f);
6244 env->cp15.c6_insn = qemu_get_be32(f);
6245 env->cp15.c6_data = qemu_get_be32(f);
6246 env->cp15.c9_insn = qemu_get_be32(f);
6247 env->cp15.c9_data = qemu_get_be32(f);
6248 env->cp15.c13_fcse = qemu_get_be32(f);
6249 env->cp15.c13_context = qemu_get_be32(f);
6250 env->cp15.c13_tls1 = qemu_get_be32(f);
6251 env->cp15.c13_tls2 = qemu_get_be32(f);
6252 env->cp15.c13_tls3 = qemu_get_be32(f);
6253 env->cp15.c15_cpar = qemu_get_be32(f);
6255 env->features = qemu_get_be32(f);
6257 if (arm_feature(env, ARM_FEATURE_VFP)) {
6258 for (i = 0; i < 16; i++) {
6259 CPU_DoubleU u;
6260 u.l.upper = qemu_get_be32(f);
6261 u.l.lower = qemu_get_be32(f);
6262 env->vfp.regs[i] = u.d;
6264 for (i = 0; i < 16; i++) {
6265 env->vfp.xregs[i] = qemu_get_be32(f);
6268 /* TODO: Should use proper FPSCR access functions. */
6269 env->vfp.vec_len = qemu_get_be32(f);
6270 env->vfp.vec_stride = qemu_get_be32(f);
6272 if (arm_feature(env, ARM_FEATURE_VFP3)) {
6273 for (i = 0; i < 16; i++) {
6274 CPU_DoubleU u;
6275 u.l.upper = qemu_get_be32(f);
6276 u.l.lower = qemu_get_be32(f);
6277 env->vfp.regs[i] = u.d;
6282 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6283 for (i = 0; i < 16; i++) {
6284 env->iwmmxt.regs[i] = qemu_get_be64(f);
6286 for (i = 0; i < 16; i++) {
6287 env->iwmmxt.cregs[i] = qemu_get_be32(f);
6291 if (arm_feature(env, ARM_FEATURE_M)) {
6292 env->v7m.other_sp = qemu_get_be32(f);
6293 env->v7m.vecbase = qemu_get_be32(f);
6294 env->v7m.basepri = qemu_get_be32(f);
6295 env->v7m.control = qemu_get_be32(f);
6296 env->v7m.current_sp = qemu_get_be32(f);
6297 env->v7m.exception = qemu_get_be32(f);
6300 return 0;
6303 #else
6305 //#warning No CPU save/restore functions
6307 #endif
6309 /***********************************************************/
6310 /* ram save/restore */
6312 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
6314 int v;
6316 v = qemu_get_byte(f);
6317 switch(v) {
6318 case 0:
6319 if (qemu_get_buffer(f, buf, len) != len)
6320 return -EIO;
6321 break;
6322 case 1:
6323 v = qemu_get_byte(f);
6324 memset(buf, v, len);
6325 break;
6326 default:
6327 return -EINVAL;
6329 return 0;
6332 static int ram_load_v1(QEMUFile *f, void *opaque)
6334 int i, ret;
6336 if (qemu_get_be32(f) != phys_ram_size)
6337 return -EINVAL;
6338 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
6339 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
6340 if (ret)
6341 return ret;
6343 return 0;
6346 #define BDRV_HASH_BLOCK_SIZE 1024
6347 #define IOBUF_SIZE 4096
6348 #define RAM_CBLOCK_MAGIC 0xfabe
6350 typedef struct RamCompressState {
6351 z_stream zstream;
6352 QEMUFile *f;
6353 uint8_t buf[IOBUF_SIZE];
6354 } RamCompressState;
6356 static int ram_compress_open(RamCompressState *s, QEMUFile *f)
6358 int ret;
6359 memset(s, 0, sizeof(*s));
6360 s->f = f;
6361 ret = deflateInit2(&s->zstream, 1,
6362 Z_DEFLATED, 15,
6363 9, Z_DEFAULT_STRATEGY);
6364 if (ret != Z_OK)
6365 return -1;
6366 s->zstream.avail_out = IOBUF_SIZE;
6367 s->zstream.next_out = s->buf;
6368 return 0;
6371 static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
6373 qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
6374 qemu_put_be16(s->f, len);
6375 qemu_put_buffer(s->f, buf, len);
6378 static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
6380 int ret;
6382 s->zstream.avail_in = len;
6383 s->zstream.next_in = (uint8_t *)buf;
6384 while (s->zstream.avail_in > 0) {
6385 ret = deflate(&s->zstream, Z_NO_FLUSH);
6386 if (ret != Z_OK)
6387 return -1;
6388 if (s->zstream.avail_out == 0) {
6389 ram_put_cblock(s, s->buf, IOBUF_SIZE);
6390 s->zstream.avail_out = IOBUF_SIZE;
6391 s->zstream.next_out = s->buf;
6394 return 0;
6397 static void ram_compress_close(RamCompressState *s)
6399 int len, ret;
6401 /* compress last bytes */
6402 for(;;) {
6403 ret = deflate(&s->zstream, Z_FINISH);
6404 if (ret == Z_OK || ret == Z_STREAM_END) {
6405 len = IOBUF_SIZE - s->zstream.avail_out;
6406 if (len > 0) {
6407 ram_put_cblock(s, s->buf, len);
6409 s->zstream.avail_out = IOBUF_SIZE;
6410 s->zstream.next_out = s->buf;
6411 if (ret == Z_STREAM_END)
6412 break;
6413 } else {
6414 goto fail;
6417 fail:
6418 deflateEnd(&s->zstream);
6421 typedef struct RamDecompressState {
6422 z_stream zstream;
6423 QEMUFile *f;
6424 uint8_t buf[IOBUF_SIZE];
6425 } RamDecompressState;
6427 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
6429 int ret;
6430 memset(s, 0, sizeof(*s));
6431 s->f = f;
6432 ret = inflateInit(&s->zstream);
6433 if (ret != Z_OK)
6434 return -1;
6435 return 0;
6438 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
6440 int ret, clen;
6442 s->zstream.avail_out = len;
6443 s->zstream.next_out = buf;
6444 while (s->zstream.avail_out > 0) {
6445 if (s->zstream.avail_in == 0) {
6446 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
6447 return -1;
6448 clen = qemu_get_be16(s->f);
6449 if (clen > IOBUF_SIZE)
6450 return -1;
6451 qemu_get_buffer(s->f, s->buf, clen);
6452 s->zstream.avail_in = clen;
6453 s->zstream.next_in = s->buf;
6455 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
6456 if (ret != Z_OK && ret != Z_STREAM_END) {
6457 return -1;
6460 return 0;
6463 static void ram_decompress_close(RamDecompressState *s)
6465 inflateEnd(&s->zstream);
6468 static void ram_save(QEMUFile *f, void *opaque)
6470 int i;
6471 RamCompressState s1, *s = &s1;
6472 uint8_t buf[10];
6474 qemu_put_be32(f, phys_ram_size);
6475 if (ram_compress_open(s, f) < 0)
6476 return;
6477 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6478 #if 0
6479 if (tight_savevm_enabled) {
6480 int64_t sector_num;
6481 int j;
6483 /* find if the memory block is available on a virtual
6484 block device */
6485 sector_num = -1;
6486 for(j = 0; j < MAX_DISKS; j++) {
6487 if (bs_table[j]) {
6488 sector_num = bdrv_hash_find(bs_table[j],
6489 phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6490 if (sector_num >= 0)
6491 break;
6494 if (j == MAX_DISKS)
6495 goto normal_compress;
6496 buf[0] = 1;
6497 buf[1] = j;
6498 cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
6499 ram_compress_buf(s, buf, 10);
6500 } else
6501 #endif
6503 // normal_compress:
6504 buf[0] = 0;
6505 ram_compress_buf(s, buf, 1);
6506 ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6509 ram_compress_close(s);
6512 static int ram_load(QEMUFile *f, void *opaque, int version_id)
6514 RamDecompressState s1, *s = &s1;
6515 uint8_t buf[10];
6516 int i;
6518 if (version_id == 1)
6519 return ram_load_v1(f, opaque);
6520 if (version_id != 2)
6521 return -EINVAL;
6522 if (qemu_get_be32(f) != phys_ram_size)
6523 return -EINVAL;
6524 if (ram_decompress_open(s, f) < 0)
6525 return -EINVAL;
6526 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6527 if (ram_decompress_buf(s, buf, 1) < 0) {
6528 fprintf(stderr, "Error while reading ram block header\n");
6529 goto error;
6531 if (buf[0] == 0) {
6532 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
6533 fprintf(stderr, "Error while reading ram block address=0x%08x", i);
6534 goto error;
6536 } else
6537 #if 0
6538 if (buf[0] == 1) {
6539 int bs_index;
6540 int64_t sector_num;
6542 ram_decompress_buf(s, buf + 1, 9);
6543 bs_index = buf[1];
6544 sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
6545 if (bs_index >= MAX_DISKS || bs_table[bs_index] == NULL) {
6546 fprintf(stderr, "Invalid block device index %d\n", bs_index);
6547 goto error;
6549 if (bdrv_read(bs_table[bs_index], sector_num, phys_ram_base + i,
6550 BDRV_HASH_BLOCK_SIZE / 512) < 0) {
6551 fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
6552 bs_index, sector_num);
6553 goto error;
6555 } else
6556 #endif
6558 error:
6559 printf("Error block header\n");
6560 return -EINVAL;
6563 ram_decompress_close(s);
6564 return 0;
6567 /***********************************************************/
6568 /* bottom halves (can be seen as timers which expire ASAP) */
6570 struct QEMUBH {
6571 QEMUBHFunc *cb;
6572 void *opaque;
6573 int scheduled;
6574 QEMUBH *next;
6577 static QEMUBH *first_bh = NULL;
6579 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
6581 QEMUBH *bh;
6582 bh = qemu_mallocz(sizeof(QEMUBH));
6583 if (!bh)
6584 return NULL;
6585 bh->cb = cb;
6586 bh->opaque = opaque;
6587 return bh;
6590 int qemu_bh_poll(void)
6592 QEMUBH *bh, **pbh;
6593 int ret;
6595 ret = 0;
6596 for(;;) {
6597 pbh = &first_bh;
6598 bh = *pbh;
6599 if (!bh)
6600 break;
6601 ret = 1;
6602 *pbh = bh->next;
6603 bh->scheduled = 0;
6604 bh->cb(bh->opaque);
6606 return ret;
6609 void qemu_bh_schedule(QEMUBH *bh)
6611 CPUState *env = cpu_single_env;
6612 if (bh->scheduled)
6613 return;
6614 bh->scheduled = 1;
6615 bh->next = first_bh;
6616 first_bh = bh;
6618 /* stop the currently executing CPU to execute the BH ASAP */
6619 if (env) {
6620 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
6624 void qemu_bh_cancel(QEMUBH *bh)
6626 QEMUBH **pbh;
6627 if (bh->scheduled) {
6628 pbh = &first_bh;
6629 while (*pbh != bh)
6630 pbh = &(*pbh)->next;
6631 *pbh = bh->next;
6632 bh->scheduled = 0;
6636 void qemu_bh_delete(QEMUBH *bh)
6638 qemu_bh_cancel(bh);
6639 qemu_free(bh);
6642 /***********************************************************/
6643 /* machine registration */
6645 QEMUMachine *first_machine = NULL;
6647 int qemu_register_machine(QEMUMachine *m)
6649 QEMUMachine **pm;
6650 pm = &first_machine;
6651 while (*pm != NULL)
6652 pm = &(*pm)->next;
6653 m->next = NULL;
6654 *pm = m;
6655 return 0;
6658 static QEMUMachine *find_machine(const char *name)
6660 QEMUMachine *m;
6662 for(m = first_machine; m != NULL; m = m->next) {
6663 if (!strcmp(m->name, name))
6664 return m;
6666 return NULL;
6669 /***********************************************************/
6670 /* main execution loop */
6672 static void gui_update(void *opaque)
6674 DisplayState *ds = opaque;
6675 ds->dpy_refresh(ds);
6676 qemu_mod_timer(ds->gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
6679 struct vm_change_state_entry {
6680 VMChangeStateHandler *cb;
6681 void *opaque;
6682 LIST_ENTRY (vm_change_state_entry) entries;
6685 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
6687 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
6688 void *opaque)
6690 VMChangeStateEntry *e;
6692 e = qemu_mallocz(sizeof (*e));
6693 if (!e)
6694 return NULL;
6696 e->cb = cb;
6697 e->opaque = opaque;
6698 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
6699 return e;
6702 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
6704 LIST_REMOVE (e, entries);
6705 qemu_free (e);
6708 static void vm_state_notify(int running)
6710 VMChangeStateEntry *e;
6712 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
6713 e->cb(e->opaque, running);
6717 /* XXX: support several handlers */
6718 static VMStopHandler *vm_stop_cb;
6719 static void *vm_stop_opaque;
6721 int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
6723 vm_stop_cb = cb;
6724 vm_stop_opaque = opaque;
6725 return 0;
6728 void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
6730 vm_stop_cb = NULL;
6733 void vm_start(void)
6735 if (!vm_running) {
6736 cpu_enable_ticks();
6737 vm_running = 1;
6738 vm_state_notify(1);
6739 qemu_rearm_alarm_timer(alarm_timer);
6743 void vm_stop(int reason)
6745 if (vm_running) {
6746 cpu_disable_ticks();
6747 vm_running = 0;
6748 if (reason != 0) {
6749 if (vm_stop_cb) {
6750 vm_stop_cb(vm_stop_opaque, reason);
6753 vm_state_notify(0);
6757 /* reset/shutdown handler */
6759 typedef struct QEMUResetEntry {
6760 QEMUResetHandler *func;
6761 void *opaque;
6762 struct QEMUResetEntry *next;
6763 } QEMUResetEntry;
6765 static QEMUResetEntry *first_reset_entry;
6766 static int reset_requested;
6767 static int shutdown_requested;
6768 static int powerdown_requested;
6770 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
6772 QEMUResetEntry **pre, *re;
6774 pre = &first_reset_entry;
6775 while (*pre != NULL)
6776 pre = &(*pre)->next;
6777 re = qemu_mallocz(sizeof(QEMUResetEntry));
6778 re->func = func;
6779 re->opaque = opaque;
6780 re->next = NULL;
6781 *pre = re;
6784 static void qemu_system_reset(void)
6786 QEMUResetEntry *re;
6788 /* reset all devices */
6789 for(re = first_reset_entry; re != NULL; re = re->next) {
6790 re->func(re->opaque);
6794 void qemu_system_reset_request(void)
6796 if (no_reboot) {
6797 shutdown_requested = 1;
6798 } else {
6799 reset_requested = 1;
6801 if (cpu_single_env)
6802 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6805 void qemu_system_shutdown_request(void)
6807 shutdown_requested = 1;
6808 if (cpu_single_env)
6809 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6812 void qemu_system_powerdown_request(void)
6814 powerdown_requested = 1;
6815 if (cpu_single_env)
6816 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6819 void main_loop_wait(int timeout)
6821 IOHandlerRecord *ioh;
6822 fd_set rfds, wfds, xfds;
6823 int ret, nfds;
6824 #ifdef _WIN32
6825 int ret2, i;
6826 #endif
6827 struct timeval tv;
6828 PollingEntry *pe;
6831 /* XXX: need to suppress polling by better using win32 events */
6832 ret = 0;
6833 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
6834 ret |= pe->func(pe->opaque);
6836 #ifdef _WIN32
6837 if (ret == 0) {
6838 int err;
6839 WaitObjects *w = &wait_objects;
6841 ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
6842 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
6843 if (w->func[ret - WAIT_OBJECT_0])
6844 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
6846 /* Check for additional signaled events */
6847 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
6849 /* Check if event is signaled */
6850 ret2 = WaitForSingleObject(w->events[i], 0);
6851 if(ret2 == WAIT_OBJECT_0) {
6852 if (w->func[i])
6853 w->func[i](w->opaque[i]);
6854 } else if (ret2 == WAIT_TIMEOUT) {
6855 } else {
6856 err = GetLastError();
6857 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
6860 } else if (ret == WAIT_TIMEOUT) {
6861 } else {
6862 err = GetLastError();
6863 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
6866 #endif
6867 /* poll any events */
6868 /* XXX: separate device handlers from system ones */
6869 nfds = -1;
6870 FD_ZERO(&rfds);
6871 FD_ZERO(&wfds);
6872 FD_ZERO(&xfds);
6873 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6874 if (ioh->deleted)
6875 continue;
6876 if (ioh->fd_read &&
6877 (!ioh->fd_read_poll ||
6878 ioh->fd_read_poll(ioh->opaque) != 0)) {
6879 FD_SET(ioh->fd, &rfds);
6880 if (ioh->fd > nfds)
6881 nfds = ioh->fd;
6883 if (ioh->fd_write) {
6884 FD_SET(ioh->fd, &wfds);
6885 if (ioh->fd > nfds)
6886 nfds = ioh->fd;
6890 tv.tv_sec = 0;
6891 #ifdef _WIN32
6892 tv.tv_usec = 0;
6893 #else
6894 tv.tv_usec = timeout * 1000;
6895 #endif
6896 #if defined(CONFIG_SLIRP)
6897 if (slirp_inited) {
6898 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
6900 #endif
6901 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
6902 if (ret > 0) {
6903 IOHandlerRecord **pioh;
6905 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6906 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
6907 ioh->fd_read(ioh->opaque);
6909 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
6910 ioh->fd_write(ioh->opaque);
6914 /* remove deleted IO handlers */
6915 pioh = &first_io_handler;
6916 while (*pioh) {
6917 ioh = *pioh;
6918 if (ioh->deleted) {
6919 *pioh = ioh->next;
6920 qemu_free(ioh);
6921 } else
6922 pioh = &ioh->next;
6925 #if defined(CONFIG_SLIRP)
6926 if (slirp_inited) {
6927 if (ret < 0) {
6928 FD_ZERO(&rfds);
6929 FD_ZERO(&wfds);
6930 FD_ZERO(&xfds);
6932 slirp_select_poll(&rfds, &wfds, &xfds);
6934 #endif
6935 qemu_aio_poll();
6937 if (vm_running) {
6938 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
6939 qemu_get_clock(vm_clock));
6940 /* run dma transfers, if any */
6941 DMA_run();
6944 /* real time timers */
6945 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
6946 qemu_get_clock(rt_clock));
6948 /* Check bottom-halves last in case any of the earlier events triggered
6949 them. */
6950 qemu_bh_poll();
6954 static CPUState *cur_cpu;
6956 static int main_loop(void)
6958 int ret, timeout;
6959 #ifdef CONFIG_PROFILER
6960 int64_t ti;
6961 #endif
6962 CPUState *env;
6964 cur_cpu = first_cpu;
6965 for(;;) {
6966 if (vm_running) {
6968 env = cur_cpu;
6969 for(;;) {
6970 /* get next cpu */
6971 env = env->next_cpu;
6972 if (!env)
6973 env = first_cpu;
6974 #ifdef CONFIG_PROFILER
6975 ti = profile_getclock();
6976 #endif
6977 ret = cpu_exec(env);
6978 #ifdef CONFIG_PROFILER
6979 qemu_time += profile_getclock() - ti;
6980 #endif
6981 if (ret == EXCP_HLT) {
6982 /* Give the next CPU a chance to run. */
6983 cur_cpu = env;
6984 continue;
6986 if (ret != EXCP_HALTED)
6987 break;
6988 /* all CPUs are halted ? */
6989 if (env == cur_cpu)
6990 break;
6992 cur_cpu = env;
6994 if (shutdown_requested) {
6995 ret = EXCP_INTERRUPT;
6996 break;
6998 if (reset_requested) {
6999 reset_requested = 0;
7000 qemu_system_reset();
7001 ret = EXCP_INTERRUPT;
7003 if (powerdown_requested) {
7004 powerdown_requested = 0;
7005 qemu_system_powerdown();
7006 ret = EXCP_INTERRUPT;
7008 if (ret == EXCP_DEBUG) {
7009 vm_stop(EXCP_DEBUG);
7011 /* If all cpus are halted then wait until the next IRQ */
7012 /* XXX: use timeout computed from timers */
7013 if (ret == EXCP_HALTED)
7014 timeout = 10;
7015 else
7016 timeout = 0;
7017 } else {
7018 timeout = 10;
7020 #ifdef CONFIG_PROFILER
7021 ti = profile_getclock();
7022 #endif
7023 main_loop_wait(timeout);
7024 #ifdef CONFIG_PROFILER
7025 dev_time += profile_getclock() - ti;
7026 #endif
7028 cpu_disable_ticks();
7029 return ret;
7032 static void help(int exitcode)
7034 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2007 Fabrice Bellard\n"
7035 "usage: %s [options] [disk_image]\n"
7036 "\n"
7037 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
7038 "\n"
7039 "Standard options:\n"
7040 "-M machine select emulated machine (-M ? for list)\n"
7041 "-cpu cpu select CPU (-cpu ? for list)\n"
7042 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
7043 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
7044 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
7045 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
7046 "-mtdblock file use 'file' as on-board Flash memory image\n"
7047 "-sd file use 'file' as SecureDigital card image\n"
7048 "-pflash file use 'file' as a parallel flash image\n"
7049 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
7050 "-snapshot write to temporary files instead of disk image files\n"
7051 #ifdef CONFIG_SDL
7052 "-no-frame open SDL window without a frame and window decorations\n"
7053 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
7054 "-no-quit disable SDL window close capability\n"
7055 #endif
7056 #ifdef TARGET_I386
7057 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
7058 #endif
7059 "-m megs set virtual RAM size to megs MB [default=%d]\n"
7060 "-smp n set the number of CPUs to 'n' [default=1]\n"
7061 "-nographic disable graphical output and redirect serial I/Os to console\n"
7062 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n"
7063 #ifndef _WIN32
7064 "-k language use keyboard layout (for example \"fr\" for French)\n"
7065 #endif
7066 #ifdef HAS_AUDIO
7067 "-audio-help print list of audio drivers and their options\n"
7068 "-soundhw c1,... enable audio support\n"
7069 " and only specified sound cards (comma separated list)\n"
7070 " use -soundhw ? to get the list of supported cards\n"
7071 " use -soundhw all to enable all of them\n"
7072 #endif
7073 "-localtime set the real time clock to local time [default=utc]\n"
7074 "-full-screen start in full screen\n"
7075 #ifdef TARGET_I386
7076 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
7077 #endif
7078 "-usb enable the USB driver (will be the default soon)\n"
7079 "-usbdevice name add the host or guest USB device 'name'\n"
7080 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
7081 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
7082 #endif
7083 "-name string set the name of the guest\n"
7084 "\n"
7085 "Network options:\n"
7086 "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
7087 " create a new Network Interface Card and connect it to VLAN 'n'\n"
7088 #ifdef CONFIG_SLIRP
7089 "-net user[,vlan=n][,hostname=host]\n"
7090 " connect the user mode network stack to VLAN 'n' and send\n"
7091 " hostname 'host' to DHCP clients\n"
7092 #endif
7093 #ifdef _WIN32
7094 "-net tap[,vlan=n],ifname=name\n"
7095 " connect the host TAP network interface to VLAN 'n'\n"
7096 #else
7097 "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
7098 " connect the host TAP network interface to VLAN 'n' and use the\n"
7099 " network scripts 'file' (default=%s)\n"
7100 " and 'dfile' (default=%s);\n"
7101 " use '[down]script=no' to disable script execution;\n"
7102 " use 'fd=h' to connect to an already opened TAP interface\n"
7103 #endif
7104 "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
7105 " connect the vlan 'n' to another VLAN using a socket connection\n"
7106 "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
7107 " connect the vlan 'n' to multicast maddr and port\n"
7108 "-net none use it alone to have zero network devices; if no -net option\n"
7109 " is provided, the default is '-net nic -net user'\n"
7110 "\n"
7111 #ifdef CONFIG_SLIRP
7112 "-tftp dir allow tftp access to files in dir [-net user]\n"
7113 "-bootp file advertise file in BOOTP replies\n"
7114 #ifndef _WIN32
7115 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
7116 #endif
7117 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
7118 " redirect TCP or UDP connections from host to guest [-net user]\n"
7119 #endif
7120 "\n"
7121 "Linux boot specific:\n"
7122 "-kernel bzImage use 'bzImage' as kernel image\n"
7123 "-append cmdline use 'cmdline' as kernel command line\n"
7124 "-initrd file use 'file' as initial ram disk\n"
7125 "\n"
7126 "Debug/Expert options:\n"
7127 "-monitor dev redirect the monitor to char device 'dev'\n"
7128 "-serial dev redirect the serial port to char device 'dev'\n"
7129 "-parallel dev redirect the parallel port to char device 'dev'\n"
7130 "-pidfile file Write PID to 'file'\n"
7131 "-S freeze CPU at startup (use 'c' to start execution)\n"
7132 "-s wait gdb connection to port\n"
7133 "-p port set gdb connection port [default=%s]\n"
7134 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
7135 "-hdachs c,h,s[,t] force hard disk 0 physical geometry and the optional BIOS\n"
7136 " translation (t=none or lba) (usually qemu can guess them)\n"
7137 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
7138 #ifdef USE_KQEMU
7139 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
7140 "-no-kqemu disable KQEMU kernel module usage\n"
7141 #endif
7142 #ifdef TARGET_I386
7143 "-std-vga simulate a standard VGA card with VESA Bochs Extensions\n"
7144 " (default is CL-GD5446 PCI VGA)\n"
7145 "-no-acpi disable ACPI\n"
7146 #endif
7147 "-no-reboot exit instead of rebooting\n"
7148 "-loadvm file start right away with a saved state (loadvm in monitor)\n"
7149 "-vnc display start a VNC server on display\n"
7150 #ifndef _WIN32
7151 "-daemonize daemonize QEMU after initializing\n"
7152 #endif
7153 "-option-rom rom load a file, rom, into the option ROM space\n"
7154 #ifdef TARGET_SPARC
7155 "-prom-env variable=value set OpenBIOS nvram variables\n"
7156 #endif
7157 "-clock force the use of the given methods for timer alarm.\n"
7158 " To see what timers are available use -clock help\n"
7159 "\n"
7160 "During emulation, the following keys are useful:\n"
7161 "ctrl-alt-f toggle full screen\n"
7162 "ctrl-alt-n switch to virtual console 'n'\n"
7163 "ctrl-alt toggle mouse and keyboard grab\n"
7164 "\n"
7165 "When using -nographic, press 'ctrl-a h' to get some help.\n"
7167 "qemu",
7168 DEFAULT_RAM_SIZE,
7169 #ifndef _WIN32
7170 DEFAULT_NETWORK_SCRIPT,
7171 DEFAULT_NETWORK_DOWN_SCRIPT,
7172 #endif
7173 DEFAULT_GDBSTUB_PORT,
7174 "/tmp/qemu.log");
7175 exit(exitcode);
7178 #define HAS_ARG 0x0001
7180 enum {
7181 QEMU_OPTION_h,
7183 QEMU_OPTION_M,
7184 QEMU_OPTION_cpu,
7185 QEMU_OPTION_fda,
7186 QEMU_OPTION_fdb,
7187 QEMU_OPTION_hda,
7188 QEMU_OPTION_hdb,
7189 QEMU_OPTION_hdc,
7190 QEMU_OPTION_hdd,
7191 QEMU_OPTION_cdrom,
7192 QEMU_OPTION_mtdblock,
7193 QEMU_OPTION_sd,
7194 QEMU_OPTION_pflash,
7195 QEMU_OPTION_boot,
7196 QEMU_OPTION_snapshot,
7197 #ifdef TARGET_I386
7198 QEMU_OPTION_no_fd_bootchk,
7199 #endif
7200 QEMU_OPTION_m,
7201 QEMU_OPTION_nographic,
7202 QEMU_OPTION_portrait,
7203 #ifdef HAS_AUDIO
7204 QEMU_OPTION_audio_help,
7205 QEMU_OPTION_soundhw,
7206 #endif
7208 QEMU_OPTION_net,
7209 QEMU_OPTION_tftp,
7210 QEMU_OPTION_bootp,
7211 QEMU_OPTION_smb,
7212 QEMU_OPTION_redir,
7214 QEMU_OPTION_kernel,
7215 QEMU_OPTION_append,
7216 QEMU_OPTION_initrd,
7218 QEMU_OPTION_S,
7219 QEMU_OPTION_s,
7220 QEMU_OPTION_p,
7221 QEMU_OPTION_d,
7222 QEMU_OPTION_hdachs,
7223 QEMU_OPTION_L,
7224 QEMU_OPTION_bios,
7225 QEMU_OPTION_no_code_copy,
7226 QEMU_OPTION_k,
7227 QEMU_OPTION_localtime,
7228 QEMU_OPTION_cirrusvga,
7229 QEMU_OPTION_vmsvga,
7230 QEMU_OPTION_g,
7231 QEMU_OPTION_std_vga,
7232 QEMU_OPTION_echr,
7233 QEMU_OPTION_monitor,
7234 QEMU_OPTION_serial,
7235 QEMU_OPTION_parallel,
7236 QEMU_OPTION_loadvm,
7237 QEMU_OPTION_full_screen,
7238 QEMU_OPTION_no_frame,
7239 QEMU_OPTION_alt_grab,
7240 QEMU_OPTION_no_quit,
7241 QEMU_OPTION_pidfile,
7242 QEMU_OPTION_no_kqemu,
7243 QEMU_OPTION_kernel_kqemu,
7244 QEMU_OPTION_win2k_hack,
7245 QEMU_OPTION_usb,
7246 QEMU_OPTION_usbdevice,
7247 QEMU_OPTION_smp,
7248 QEMU_OPTION_vnc,
7249 QEMU_OPTION_no_acpi,
7250 QEMU_OPTION_no_reboot,
7251 QEMU_OPTION_show_cursor,
7252 QEMU_OPTION_daemonize,
7253 QEMU_OPTION_option_rom,
7254 QEMU_OPTION_semihosting,
7255 QEMU_OPTION_name,
7256 QEMU_OPTION_prom_env,
7257 QEMU_OPTION_old_param,
7258 QEMU_OPTION_clock,
7259 QEMU_OPTION_startdate,
7262 typedef struct QEMUOption {
7263 const char *name;
7264 int flags;
7265 int index;
7266 } QEMUOption;
7268 const QEMUOption qemu_options[] = {
7269 { "h", 0, QEMU_OPTION_h },
7270 { "help", 0, QEMU_OPTION_h },
7272 { "M", HAS_ARG, QEMU_OPTION_M },
7273 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
7274 { "fda", HAS_ARG, QEMU_OPTION_fda },
7275 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
7276 { "hda", HAS_ARG, QEMU_OPTION_hda },
7277 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
7278 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
7279 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
7280 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
7281 { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
7282 { "sd", HAS_ARG, QEMU_OPTION_sd },
7283 { "pflash", HAS_ARG, QEMU_OPTION_pflash },
7284 { "boot", HAS_ARG, QEMU_OPTION_boot },
7285 { "snapshot", 0, QEMU_OPTION_snapshot },
7286 #ifdef TARGET_I386
7287 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
7288 #endif
7289 { "m", HAS_ARG, QEMU_OPTION_m },
7290 { "nographic", 0, QEMU_OPTION_nographic },
7291 { "portrait", 0, QEMU_OPTION_portrait },
7292 { "k", HAS_ARG, QEMU_OPTION_k },
7293 #ifdef HAS_AUDIO
7294 { "audio-help", 0, QEMU_OPTION_audio_help },
7295 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
7296 #endif
7298 { "net", HAS_ARG, QEMU_OPTION_net},
7299 #ifdef CONFIG_SLIRP
7300 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
7301 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
7302 #ifndef _WIN32
7303 { "smb", HAS_ARG, QEMU_OPTION_smb },
7304 #endif
7305 { "redir", HAS_ARG, QEMU_OPTION_redir },
7306 #endif
7308 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
7309 { "append", HAS_ARG, QEMU_OPTION_append },
7310 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
7312 { "S", 0, QEMU_OPTION_S },
7313 { "s", 0, QEMU_OPTION_s },
7314 { "p", HAS_ARG, QEMU_OPTION_p },
7315 { "d", HAS_ARG, QEMU_OPTION_d },
7316 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
7317 { "L", HAS_ARG, QEMU_OPTION_L },
7318 { "bios", HAS_ARG, QEMU_OPTION_bios },
7319 { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
7320 #ifdef USE_KQEMU
7321 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
7322 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
7323 #endif
7324 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
7325 { "g", 1, QEMU_OPTION_g },
7326 #endif
7327 { "localtime", 0, QEMU_OPTION_localtime },
7328 { "std-vga", 0, QEMU_OPTION_std_vga },
7329 { "echr", HAS_ARG, QEMU_OPTION_echr },
7330 { "monitor", HAS_ARG, QEMU_OPTION_monitor },
7331 { "serial", HAS_ARG, QEMU_OPTION_serial },
7332 { "parallel", HAS_ARG, QEMU_OPTION_parallel },
7333 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
7334 { "full-screen", 0, QEMU_OPTION_full_screen },
7335 #ifdef CONFIG_SDL
7336 { "no-frame", 0, QEMU_OPTION_no_frame },
7337 { "alt-grab", 0, QEMU_OPTION_alt_grab },
7338 { "no-quit", 0, QEMU_OPTION_no_quit },
7339 #endif
7340 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
7341 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
7342 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
7343 { "smp", HAS_ARG, QEMU_OPTION_smp },
7344 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
7346 /* temporary options */
7347 { "usb", 0, QEMU_OPTION_usb },
7348 { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
7349 { "vmwarevga", 0, QEMU_OPTION_vmsvga },
7350 { "no-acpi", 0, QEMU_OPTION_no_acpi },
7351 { "no-reboot", 0, QEMU_OPTION_no_reboot },
7352 { "show-cursor", 0, QEMU_OPTION_show_cursor },
7353 { "daemonize", 0, QEMU_OPTION_daemonize },
7354 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
7355 #if defined(TARGET_ARM) || defined(TARGET_M68K)
7356 { "semihosting", 0, QEMU_OPTION_semihosting },
7357 #endif
7358 { "name", HAS_ARG, QEMU_OPTION_name },
7359 #if defined(TARGET_SPARC)
7360 { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
7361 #endif
7362 #if defined(TARGET_ARM)
7363 { "old-param", 0, QEMU_OPTION_old_param },
7364 #endif
7365 { "clock", HAS_ARG, QEMU_OPTION_clock },
7366 { "startdate", HAS_ARG, QEMU_OPTION_startdate },
7367 { NULL },
7370 /* password input */
7372 int qemu_key_check(BlockDriverState *bs, const char *name)
7374 char password[256];
7375 int i;
7377 if (!bdrv_is_encrypted(bs))
7378 return 0;
7380 term_printf("%s is encrypted.\n", name);
7381 for(i = 0; i < 3; i++) {
7382 monitor_readline("Password: ", 1, password, sizeof(password));
7383 if (bdrv_set_key(bs, password) == 0)
7384 return 0;
7385 term_printf("invalid password\n");
7387 return -EPERM;
7390 static BlockDriverState *get_bdrv(int index)
7392 BlockDriverState *bs;
7394 if (index < 4) {
7395 bs = bs_table[index];
7396 } else if (index < 6) {
7397 bs = fd_table[index - 4];
7398 } else {
7399 bs = NULL;
7401 return bs;
7404 static void read_passwords(void)
7406 BlockDriverState *bs;
7407 int i;
7409 for(i = 0; i < 6; i++) {
7410 bs = get_bdrv(i);
7411 if (bs)
7412 qemu_key_check(bs, bdrv_get_device_name(bs));
7416 /* XXX: currently we cannot use simultaneously different CPUs */
7417 static void register_machines(void)
7419 #if defined(TARGET_I386)
7420 qemu_register_machine(&pc_machine);
7421 qemu_register_machine(&isapc_machine);
7422 #elif defined(TARGET_PPC)
7423 qemu_register_machine(&heathrow_machine);
7424 qemu_register_machine(&core99_machine);
7425 qemu_register_machine(&prep_machine);
7426 qemu_register_machine(&ref405ep_machine);
7427 qemu_register_machine(&taihu_machine);
7428 #elif defined(TARGET_MIPS)
7429 qemu_register_machine(&mips_machine);
7430 qemu_register_machine(&mips_malta_machine);
7431 qemu_register_machine(&mips_pica61_machine);
7432 qemu_register_machine(&mips_mipssim_machine);
7433 #elif defined(TARGET_SPARC)
7434 #ifdef TARGET_SPARC64
7435 qemu_register_machine(&sun4u_machine);
7436 #else
7437 qemu_register_machine(&ss5_machine);
7438 qemu_register_machine(&ss10_machine);
7439 qemu_register_machine(&ss600mp_machine);
7440 #endif
7441 #elif defined(TARGET_ARM)
7442 qemu_register_machine(&integratorcp_machine);
7443 qemu_register_machine(&versatilepb_machine);
7444 qemu_register_machine(&versatileab_machine);
7445 qemu_register_machine(&realview_machine);
7446 qemu_register_machine(&akitapda_machine);
7447 qemu_register_machine(&spitzpda_machine);
7448 qemu_register_machine(&borzoipda_machine);
7449 qemu_register_machine(&terrierpda_machine);
7450 qemu_register_machine(&palmte_machine);
7451 qemu_register_machine(&lm3s811evb_machine);
7452 qemu_register_machine(&lm3s6965evb_machine);
7453 qemu_register_machine(&connex_machine);
7454 #elif defined(TARGET_SH4)
7455 qemu_register_machine(&shix_machine);
7456 qemu_register_machine(&r2d_machine);
7457 #elif defined(TARGET_ALPHA)
7458 /* XXX: TODO */
7459 #elif defined(TARGET_M68K)
7460 qemu_register_machine(&mcf5208evb_machine);
7461 qemu_register_machine(&an5206_machine);
7462 qemu_register_machine(&dummy_m68k_machine);
7463 #elif defined(TARGET_CRIS)
7464 qemu_register_machine(&bareetraxfs_machine);
7465 #else
7466 #error unsupported CPU
7467 #endif
7470 #ifdef HAS_AUDIO
7471 struct soundhw soundhw[] = {
7472 #ifdef HAS_AUDIO_CHOICE
7473 #ifdef TARGET_I386
7475 "pcspk",
7476 "PC speaker",
7479 { .init_isa = pcspk_audio_init }
7481 #endif
7483 "sb16",
7484 "Creative Sound Blaster 16",
7487 { .init_isa = SB16_init }
7490 #ifdef CONFIG_ADLIB
7492 "adlib",
7493 #ifdef HAS_YMF262
7494 "Yamaha YMF262 (OPL3)",
7495 #else
7496 "Yamaha YM3812 (OPL2)",
7497 #endif
7500 { .init_isa = Adlib_init }
7502 #endif
7504 #ifdef CONFIG_GUS
7506 "gus",
7507 "Gravis Ultrasound GF1",
7510 { .init_isa = GUS_init }
7512 #endif
7515 "es1370",
7516 "ENSONIQ AudioPCI ES1370",
7519 { .init_pci = es1370_init }
7521 #endif
7523 { NULL, NULL, 0, 0, { NULL } }
7526 static void select_soundhw (const char *optarg)
7528 struct soundhw *c;
7530 if (*optarg == '?') {
7531 show_valid_cards:
7533 printf ("Valid sound card names (comma separated):\n");
7534 for (c = soundhw; c->name; ++c) {
7535 printf ("%-11s %s\n", c->name, c->descr);
7537 printf ("\n-soundhw all will enable all of the above\n");
7538 exit (*optarg != '?');
7540 else {
7541 size_t l;
7542 const char *p;
7543 char *e;
7544 int bad_card = 0;
7546 if (!strcmp (optarg, "all")) {
7547 for (c = soundhw; c->name; ++c) {
7548 c->enabled = 1;
7550 return;
7553 p = optarg;
7554 while (*p) {
7555 e = strchr (p, ',');
7556 l = !e ? strlen (p) : (size_t) (e - p);
7558 for (c = soundhw; c->name; ++c) {
7559 if (!strncmp (c->name, p, l)) {
7560 c->enabled = 1;
7561 break;
7565 if (!c->name) {
7566 if (l > 80) {
7567 fprintf (stderr,
7568 "Unknown sound card name (too big to show)\n");
7570 else {
7571 fprintf (stderr, "Unknown sound card name `%.*s'\n",
7572 (int) l, p);
7574 bad_card = 1;
7576 p += l + (e != NULL);
7579 if (bad_card)
7580 goto show_valid_cards;
7583 #endif
7585 #ifdef _WIN32
7586 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
7588 exit(STATUS_CONTROL_C_EXIT);
7589 return TRUE;
7591 #endif
7593 #define MAX_NET_CLIENTS 32
7595 int main(int argc, char **argv)
7597 #ifdef CONFIG_GDBSTUB
7598 int use_gdbstub;
7599 const char *gdbstub_port;
7600 #endif
7601 uint32_t boot_devices_bitmap = 0;
7602 int i, cdrom_index, pflash_index;
7603 int snapshot, linux_boot, net_boot;
7604 const char *initrd_filename;
7605 const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
7606 const char *pflash_filename[MAX_PFLASH];
7607 const char *sd_filename;
7608 const char *mtd_filename;
7609 const char *kernel_filename, *kernel_cmdline;
7610 const char *boot_devices = "";
7611 DisplayState *ds = &display_state;
7612 int cyls, heads, secs, translation;
7613 char net_clients[MAX_NET_CLIENTS][256];
7614 int nb_net_clients;
7615 int optind;
7616 const char *r, *optarg;
7617 CharDriverState *monitor_hd;
7618 char monitor_device[128];
7619 char serial_devices[MAX_SERIAL_PORTS][128];
7620 int serial_device_index;
7621 char parallel_devices[MAX_PARALLEL_PORTS][128];
7622 int parallel_device_index;
7623 const char *loadvm = NULL;
7624 QEMUMachine *machine;
7625 const char *cpu_model;
7626 char usb_devices[MAX_USB_CMDLINE][128];
7627 int usb_devices_index;
7628 int fds[2];
7629 const char *pid_file = NULL;
7630 VLANState *vlan;
7632 LIST_INIT (&vm_change_state_head);
7633 #ifndef _WIN32
7635 struct sigaction act;
7636 sigfillset(&act.sa_mask);
7637 act.sa_flags = 0;
7638 act.sa_handler = SIG_IGN;
7639 sigaction(SIGPIPE, &act, NULL);
7641 #else
7642 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
7643 /* Note: cpu_interrupt() is currently not SMP safe, so we force
7644 QEMU to run on a single CPU */
7646 HANDLE h;
7647 DWORD mask, smask;
7648 int i;
7649 h = GetCurrentProcess();
7650 if (GetProcessAffinityMask(h, &mask, &smask)) {
7651 for(i = 0; i < 32; i++) {
7652 if (mask & (1 << i))
7653 break;
7655 if (i != 32) {
7656 mask = 1 << i;
7657 SetProcessAffinityMask(h, mask);
7661 #endif
7663 register_machines();
7664 machine = first_machine;
7665 cpu_model = NULL;
7666 initrd_filename = NULL;
7667 for(i = 0; i < MAX_FD; i++)
7668 fd_filename[i] = NULL;
7669 for(i = 0; i < MAX_DISKS; i++)
7670 hd_filename[i] = NULL;
7671 for(i = 0; i < MAX_PFLASH; i++)
7672 pflash_filename[i] = NULL;
7673 pflash_index = 0;
7674 sd_filename = NULL;
7675 mtd_filename = NULL;
7676 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
7677 vga_ram_size = VGA_RAM_SIZE;
7678 #ifdef CONFIG_GDBSTUB
7679 use_gdbstub = 0;
7680 gdbstub_port = DEFAULT_GDBSTUB_PORT;
7681 #endif
7682 snapshot = 0;
7683 nographic = 0;
7684 kernel_filename = NULL;
7685 kernel_cmdline = "";
7686 #ifdef TARGET_PPC
7687 cdrom_index = 1;
7688 #else
7689 cdrom_index = 2;
7690 #endif
7691 cyls = heads = secs = 0;
7692 translation = BIOS_ATA_TRANSLATION_AUTO;
7693 pstrcpy(monitor_device, sizeof(monitor_device), "vc");
7695 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "vc");
7696 for(i = 1; i < MAX_SERIAL_PORTS; i++)
7697 serial_devices[i][0] = '\0';
7698 serial_device_index = 0;
7700 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "vc");
7701 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
7702 parallel_devices[i][0] = '\0';
7703 parallel_device_index = 0;
7705 usb_devices_index = 0;
7707 nb_net_clients = 0;
7709 nb_nics = 0;
7710 /* default mac address of the first network interface */
7712 optind = 1;
7713 for(;;) {
7714 if (optind >= argc)
7715 break;
7716 r = argv[optind];
7717 if (r[0] != '-') {
7718 hd_filename[0] = argv[optind++];
7719 } else {
7720 const QEMUOption *popt;
7722 optind++;
7723 /* Treat --foo the same as -foo. */
7724 if (r[1] == '-')
7725 r++;
7726 popt = qemu_options;
7727 for(;;) {
7728 if (!popt->name) {
7729 fprintf(stderr, "%s: invalid option -- '%s'\n",
7730 argv[0], r);
7731 exit(1);
7733 if (!strcmp(popt->name, r + 1))
7734 break;
7735 popt++;
7737 if (popt->flags & HAS_ARG) {
7738 if (optind >= argc) {
7739 fprintf(stderr, "%s: option '%s' requires an argument\n",
7740 argv[0], r);
7741 exit(1);
7743 optarg = argv[optind++];
7744 } else {
7745 optarg = NULL;
7748 switch(popt->index) {
7749 case QEMU_OPTION_M:
7750 machine = find_machine(optarg);
7751 if (!machine) {
7752 QEMUMachine *m;
7753 printf("Supported machines are:\n");
7754 for(m = first_machine; m != NULL; m = m->next) {
7755 printf("%-10s %s%s\n",
7756 m->name, m->desc,
7757 m == first_machine ? " (default)" : "");
7759 exit(*optarg != '?');
7761 break;
7762 case QEMU_OPTION_cpu:
7763 /* hw initialization will check this */
7764 if (*optarg == '?') {
7765 /* XXX: implement xxx_cpu_list for targets that still miss it */
7766 #if defined(cpu_list)
7767 cpu_list(stdout, &fprintf);
7768 #endif
7769 exit(0);
7770 } else {
7771 cpu_model = optarg;
7773 break;
7774 case QEMU_OPTION_initrd:
7775 initrd_filename = optarg;
7776 break;
7777 case QEMU_OPTION_hda:
7778 case QEMU_OPTION_hdb:
7779 case QEMU_OPTION_hdc:
7780 case QEMU_OPTION_hdd:
7782 int hd_index;
7783 hd_index = popt->index - QEMU_OPTION_hda;
7784 hd_filename[hd_index] = optarg;
7785 if (hd_index == cdrom_index)
7786 cdrom_index = -1;
7788 break;
7789 case QEMU_OPTION_mtdblock:
7790 mtd_filename = optarg;
7791 break;
7792 case QEMU_OPTION_sd:
7793 sd_filename = optarg;
7794 break;
7795 case QEMU_OPTION_pflash:
7796 if (pflash_index >= MAX_PFLASH) {
7797 fprintf(stderr, "qemu: too many parallel flash images\n");
7798 exit(1);
7800 pflash_filename[pflash_index++] = optarg;
7801 break;
7802 case QEMU_OPTION_snapshot:
7803 snapshot = 1;
7804 break;
7805 case QEMU_OPTION_hdachs:
7807 const char *p;
7808 p = optarg;
7809 cyls = strtol(p, (char **)&p, 0);
7810 if (cyls < 1 || cyls > 16383)
7811 goto chs_fail;
7812 if (*p != ',')
7813 goto chs_fail;
7814 p++;
7815 heads = strtol(p, (char **)&p, 0);
7816 if (heads < 1 || heads > 16)
7817 goto chs_fail;
7818 if (*p != ',')
7819 goto chs_fail;
7820 p++;
7821 secs = strtol(p, (char **)&p, 0);
7822 if (secs < 1 || secs > 63)
7823 goto chs_fail;
7824 if (*p == ',') {
7825 p++;
7826 if (!strcmp(p, "none"))
7827 translation = BIOS_ATA_TRANSLATION_NONE;
7828 else if (!strcmp(p, "lba"))
7829 translation = BIOS_ATA_TRANSLATION_LBA;
7830 else if (!strcmp(p, "auto"))
7831 translation = BIOS_ATA_TRANSLATION_AUTO;
7832 else
7833 goto chs_fail;
7834 } else if (*p != '\0') {
7835 chs_fail:
7836 fprintf(stderr, "qemu: invalid physical CHS format\n");
7837 exit(1);
7840 break;
7841 case QEMU_OPTION_nographic:
7842 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "stdio");
7843 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "null");
7844 pstrcpy(monitor_device, sizeof(monitor_device), "stdio");
7845 nographic = 1;
7846 break;
7847 case QEMU_OPTION_portrait:
7848 graphic_rotate = 1;
7849 break;
7850 case QEMU_OPTION_kernel:
7851 kernel_filename = optarg;
7852 break;
7853 case QEMU_OPTION_append:
7854 kernel_cmdline = optarg;
7855 break;
7856 case QEMU_OPTION_cdrom:
7857 if (cdrom_index >= 0) {
7858 hd_filename[cdrom_index] = optarg;
7860 break;
7861 case QEMU_OPTION_boot:
7862 boot_devices = optarg;
7863 /* We just do some generic consistency checks */
7865 /* Could easily be extended to 64 devices if needed */
7866 const unsigned char *p;
7868 boot_devices_bitmap = 0;
7869 for (p = boot_devices; *p != '\0'; p++) {
7870 /* Allowed boot devices are:
7871 * a b : floppy disk drives
7872 * c ... f : IDE disk drives
7873 * g ... m : machine implementation dependant drives
7874 * n ... p : network devices
7875 * It's up to each machine implementation to check
7876 * if the given boot devices match the actual hardware
7877 * implementation and firmware features.
7879 if (*p < 'a' || *p > 'q') {
7880 fprintf(stderr, "Invalid boot device '%c'\n", *p);
7881 exit(1);
7883 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
7884 fprintf(stderr,
7885 "Boot device '%c' was given twice\n",*p);
7886 exit(1);
7888 boot_devices_bitmap |= 1 << (*p - 'a');
7891 break;
7892 case QEMU_OPTION_fda:
7893 fd_filename[0] = optarg;
7894 break;
7895 case QEMU_OPTION_fdb:
7896 fd_filename[1] = optarg;
7897 break;
7898 #ifdef TARGET_I386
7899 case QEMU_OPTION_no_fd_bootchk:
7900 fd_bootchk = 0;
7901 break;
7902 #endif
7903 case QEMU_OPTION_no_code_copy:
7904 code_copy_enabled = 0;
7905 break;
7906 case QEMU_OPTION_net:
7907 if (nb_net_clients >= MAX_NET_CLIENTS) {
7908 fprintf(stderr, "qemu: too many network clients\n");
7909 exit(1);
7911 pstrcpy(net_clients[nb_net_clients],
7912 sizeof(net_clients[0]),
7913 optarg);
7914 nb_net_clients++;
7915 break;
7916 #ifdef CONFIG_SLIRP
7917 case QEMU_OPTION_tftp:
7918 tftp_prefix = optarg;
7919 break;
7920 case QEMU_OPTION_bootp:
7921 bootp_filename = optarg;
7922 break;
7923 #ifndef _WIN32
7924 case QEMU_OPTION_smb:
7925 net_slirp_smb(optarg);
7926 break;
7927 #endif
7928 case QEMU_OPTION_redir:
7929 net_slirp_redir(optarg);
7930 break;
7931 #endif
7932 #ifdef HAS_AUDIO
7933 case QEMU_OPTION_audio_help:
7934 AUD_help ();
7935 exit (0);
7936 break;
7937 case QEMU_OPTION_soundhw:
7938 select_soundhw (optarg);
7939 break;
7940 #endif
7941 case QEMU_OPTION_h:
7942 help(0);
7943 break;
7944 case QEMU_OPTION_m:
7945 ram_size = atoi(optarg) * 1024 * 1024;
7946 if (ram_size <= 0)
7947 help(1);
7948 if (ram_size > PHYS_RAM_MAX_SIZE) {
7949 fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
7950 PHYS_RAM_MAX_SIZE / (1024 * 1024));
7951 exit(1);
7953 break;
7954 case QEMU_OPTION_d:
7956 int mask;
7957 CPULogItem *item;
7959 mask = cpu_str_to_log_mask(optarg);
7960 if (!mask) {
7961 printf("Log items (comma separated):\n");
7962 for(item = cpu_log_items; item->mask != 0; item++) {
7963 printf("%-10s %s\n", item->name, item->help);
7965 exit(1);
7967 cpu_set_log(mask);
7969 break;
7970 #ifdef CONFIG_GDBSTUB
7971 case QEMU_OPTION_s:
7972 use_gdbstub = 1;
7973 break;
7974 case QEMU_OPTION_p:
7975 gdbstub_port = optarg;
7976 break;
7977 #endif
7978 case QEMU_OPTION_L:
7979 bios_dir = optarg;
7980 break;
7981 case QEMU_OPTION_bios:
7982 bios_name = optarg;
7983 break;
7984 case QEMU_OPTION_S:
7985 autostart = 0;
7986 break;
7987 case QEMU_OPTION_k:
7988 keyboard_layout = optarg;
7989 break;
7990 case QEMU_OPTION_localtime:
7991 rtc_utc = 0;
7992 break;
7993 case QEMU_OPTION_cirrusvga:
7994 cirrus_vga_enabled = 1;
7995 vmsvga_enabled = 0;
7996 break;
7997 case QEMU_OPTION_vmsvga:
7998 cirrus_vga_enabled = 0;
7999 vmsvga_enabled = 1;
8000 break;
8001 case QEMU_OPTION_std_vga:
8002 cirrus_vga_enabled = 0;
8003 vmsvga_enabled = 0;
8004 break;
8005 case QEMU_OPTION_g:
8007 const char *p;
8008 int w, h, depth;
8009 p = optarg;
8010 w = strtol(p, (char **)&p, 10);
8011 if (w <= 0) {
8012 graphic_error:
8013 fprintf(stderr, "qemu: invalid resolution or depth\n");
8014 exit(1);
8016 if (*p != 'x')
8017 goto graphic_error;
8018 p++;
8019 h = strtol(p, (char **)&p, 10);
8020 if (h <= 0)
8021 goto graphic_error;
8022 if (*p == 'x') {
8023 p++;
8024 depth = strtol(p, (char **)&p, 10);
8025 if (depth != 8 && depth != 15 && depth != 16 &&
8026 depth != 24 && depth != 32)
8027 goto graphic_error;
8028 } else if (*p == '\0') {
8029 depth = graphic_depth;
8030 } else {
8031 goto graphic_error;
8034 graphic_width = w;
8035 graphic_height = h;
8036 graphic_depth = depth;
8038 break;
8039 case QEMU_OPTION_echr:
8041 char *r;
8042 term_escape_char = strtol(optarg, &r, 0);
8043 if (r == optarg)
8044 printf("Bad argument to echr\n");
8045 break;
8047 case QEMU_OPTION_monitor:
8048 pstrcpy(monitor_device, sizeof(monitor_device), optarg);
8049 break;
8050 case QEMU_OPTION_serial:
8051 if (serial_device_index >= MAX_SERIAL_PORTS) {
8052 fprintf(stderr, "qemu: too many serial ports\n");
8053 exit(1);
8055 pstrcpy(serial_devices[serial_device_index],
8056 sizeof(serial_devices[0]), optarg);
8057 serial_device_index++;
8058 break;
8059 case QEMU_OPTION_parallel:
8060 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
8061 fprintf(stderr, "qemu: too many parallel ports\n");
8062 exit(1);
8064 pstrcpy(parallel_devices[parallel_device_index],
8065 sizeof(parallel_devices[0]), optarg);
8066 parallel_device_index++;
8067 break;
8068 case QEMU_OPTION_loadvm:
8069 loadvm = optarg;
8070 break;
8071 case QEMU_OPTION_full_screen:
8072 full_screen = 1;
8073 break;
8074 #ifdef CONFIG_SDL
8075 case QEMU_OPTION_no_frame:
8076 no_frame = 1;
8077 break;
8078 case QEMU_OPTION_alt_grab:
8079 alt_grab = 1;
8080 break;
8081 case QEMU_OPTION_no_quit:
8082 no_quit = 1;
8083 break;
8084 #endif
8085 case QEMU_OPTION_pidfile:
8086 pid_file = optarg;
8087 break;
8088 #ifdef TARGET_I386
8089 case QEMU_OPTION_win2k_hack:
8090 win2k_install_hack = 1;
8091 break;
8092 #endif
8093 #ifdef USE_KQEMU
8094 case QEMU_OPTION_no_kqemu:
8095 kqemu_allowed = 0;
8096 break;
8097 case QEMU_OPTION_kernel_kqemu:
8098 kqemu_allowed = 2;
8099 break;
8100 #endif
8101 case QEMU_OPTION_usb:
8102 usb_enabled = 1;
8103 break;
8104 case QEMU_OPTION_usbdevice:
8105 usb_enabled = 1;
8106 if (usb_devices_index >= MAX_USB_CMDLINE) {
8107 fprintf(stderr, "Too many USB devices\n");
8108 exit(1);
8110 pstrcpy(usb_devices[usb_devices_index],
8111 sizeof(usb_devices[usb_devices_index]),
8112 optarg);
8113 usb_devices_index++;
8114 break;
8115 case QEMU_OPTION_smp:
8116 smp_cpus = atoi(optarg);
8117 if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
8118 fprintf(stderr, "Invalid number of CPUs\n");
8119 exit(1);
8121 break;
8122 case QEMU_OPTION_vnc:
8123 vnc_display = optarg;
8124 break;
8125 case QEMU_OPTION_no_acpi:
8126 acpi_enabled = 0;
8127 break;
8128 case QEMU_OPTION_no_reboot:
8129 no_reboot = 1;
8130 break;
8131 case QEMU_OPTION_show_cursor:
8132 cursor_hide = 0;
8133 break;
8134 case QEMU_OPTION_daemonize:
8135 daemonize = 1;
8136 break;
8137 case QEMU_OPTION_option_rom:
8138 if (nb_option_roms >= MAX_OPTION_ROMS) {
8139 fprintf(stderr, "Too many option ROMs\n");
8140 exit(1);
8142 option_rom[nb_option_roms] = optarg;
8143 nb_option_roms++;
8144 break;
8145 case QEMU_OPTION_semihosting:
8146 semihosting_enabled = 1;
8147 break;
8148 case QEMU_OPTION_name:
8149 qemu_name = optarg;
8150 break;
8151 #ifdef TARGET_SPARC
8152 case QEMU_OPTION_prom_env:
8153 if (nb_prom_envs >= MAX_PROM_ENVS) {
8154 fprintf(stderr, "Too many prom variables\n");
8155 exit(1);
8157 prom_envs[nb_prom_envs] = optarg;
8158 nb_prom_envs++;
8159 break;
8160 #endif
8161 #ifdef TARGET_ARM
8162 case QEMU_OPTION_old_param:
8163 old_param = 1;
8164 #endif
8165 case QEMU_OPTION_clock:
8166 configure_alarms(optarg);
8167 break;
8168 case QEMU_OPTION_startdate:
8170 struct tm tm;
8171 if (!strcmp(optarg, "now")) {
8172 rtc_start_date = -1;
8173 } else {
8174 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
8175 &tm.tm_year,
8176 &tm.tm_mon,
8177 &tm.tm_mday,
8178 &tm.tm_hour,
8179 &tm.tm_min,
8180 &tm.tm_sec) == 6) {
8181 /* OK */
8182 } else if (sscanf(optarg, "%d-%d-%d",
8183 &tm.tm_year,
8184 &tm.tm_mon,
8185 &tm.tm_mday) == 3) {
8186 tm.tm_hour = 0;
8187 tm.tm_min = 0;
8188 tm.tm_sec = 0;
8189 } else {
8190 goto date_fail;
8192 tm.tm_year -= 1900;
8193 tm.tm_mon--;
8194 rtc_start_date = mktimegm(&tm);
8195 if (rtc_start_date == -1) {
8196 date_fail:
8197 fprintf(stderr, "Invalid date format. Valid format are:\n"
8198 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
8199 exit(1);
8203 break;
8208 #ifndef _WIN32
8209 if (daemonize && !nographic && vnc_display == NULL) {
8210 fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
8211 daemonize = 0;
8214 if (daemonize) {
8215 pid_t pid;
8217 if (pipe(fds) == -1)
8218 exit(1);
8220 pid = fork();
8221 if (pid > 0) {
8222 uint8_t status;
8223 ssize_t len;
8225 close(fds[1]);
8227 again:
8228 len = read(fds[0], &status, 1);
8229 if (len == -1 && (errno == EINTR))
8230 goto again;
8232 if (len != 1)
8233 exit(1);
8234 else if (status == 1) {
8235 fprintf(stderr, "Could not acquire pidfile\n");
8236 exit(1);
8237 } else
8238 exit(0);
8239 } else if (pid < 0)
8240 exit(1);
8242 setsid();
8244 pid = fork();
8245 if (pid > 0)
8246 exit(0);
8247 else if (pid < 0)
8248 exit(1);
8250 umask(027);
8251 chdir("/");
8253 signal(SIGTSTP, SIG_IGN);
8254 signal(SIGTTOU, SIG_IGN);
8255 signal(SIGTTIN, SIG_IGN);
8257 #endif
8259 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
8260 if (daemonize) {
8261 uint8_t status = 1;
8262 write(fds[1], &status, 1);
8263 } else
8264 fprintf(stderr, "Could not acquire pid file\n");
8265 exit(1);
8268 #ifdef USE_KQEMU
8269 if (smp_cpus > 1)
8270 kqemu_allowed = 0;
8271 #endif
8272 linux_boot = (kernel_filename != NULL);
8273 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
8275 /* XXX: this should not be: some embedded targets just have flash */
8276 if (!linux_boot && net_boot == 0 &&
8277 hd_filename[0] == NULL &&
8278 (cdrom_index >= 0 && hd_filename[cdrom_index] == NULL) &&
8279 fd_filename[0] == NULL &&
8280 pflash_filename[0] == NULL)
8281 help(1);
8283 /* boot to floppy or the default cd if no hard disk defined yet */
8284 if (!boot_devices[0]) {
8285 if (hd_filename[0] != NULL)
8286 boot_devices = "c";
8287 else if (fd_filename[0] != NULL)
8288 boot_devices = "a";
8289 else
8290 boot_devices = "d";
8292 setvbuf(stdout, NULL, _IOLBF, 0);
8294 init_timers();
8295 init_timer_alarm();
8296 qemu_aio_init();
8298 #ifdef _WIN32
8299 socket_init();
8300 #endif
8302 /* init network clients */
8303 if (nb_net_clients == 0) {
8304 /* if no clients, we use a default config */
8305 pstrcpy(net_clients[0], sizeof(net_clients[0]),
8306 "nic");
8307 pstrcpy(net_clients[1], sizeof(net_clients[0]),
8308 "user");
8309 nb_net_clients = 2;
8312 for(i = 0;i < nb_net_clients; i++) {
8313 if (net_client_init(net_clients[i]) < 0)
8314 exit(1);
8316 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8317 if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
8318 continue;
8319 if (vlan->nb_guest_devs == 0) {
8320 fprintf(stderr, "Invalid vlan (%d) with no nics\n", vlan->id);
8321 exit(1);
8323 if (vlan->nb_host_devs == 0)
8324 fprintf(stderr,
8325 "Warning: vlan %d is not connected to host network\n",
8326 vlan->id);
8329 #ifdef TARGET_I386
8330 /* XXX: this should be moved in the PC machine instanciation code */
8331 if (net_boot != 0) {
8332 int netroms = 0;
8333 for (i = 0; i < nb_nics && i < 4; i++) {
8334 const char *model = nd_table[i].model;
8335 char buf[1024];
8336 if (net_boot & (1 << i)) {
8337 if (model == NULL)
8338 model = "ne2k_pci";
8339 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
8340 if (get_image_size(buf) > 0) {
8341 if (nb_option_roms >= MAX_OPTION_ROMS) {
8342 fprintf(stderr, "Too many option ROMs\n");
8343 exit(1);
8345 option_rom[nb_option_roms] = strdup(buf);
8346 nb_option_roms++;
8347 netroms++;
8351 if (netroms == 0) {
8352 fprintf(stderr, "No valid PXE rom found for network device\n");
8353 exit(1);
8356 #endif
8358 /* init the memory */
8359 phys_ram_size = ram_size + vga_ram_size + MAX_BIOS_SIZE;
8361 phys_ram_base = qemu_vmalloc(phys_ram_size);
8362 if (!phys_ram_base) {
8363 fprintf(stderr, "Could not allocate physical memory\n");
8364 exit(1);
8367 /* we always create the cdrom drive, even if no disk is there */
8368 bdrv_init();
8369 if (cdrom_index >= 0) {
8370 bs_table[cdrom_index] = bdrv_new("cdrom");
8371 bdrv_set_type_hint(bs_table[cdrom_index], BDRV_TYPE_CDROM);
8374 /* open the virtual block devices */
8375 for(i = 0; i < MAX_DISKS; i++) {
8376 if (hd_filename[i]) {
8377 if (!bs_table[i]) {
8378 char buf[64];
8379 snprintf(buf, sizeof(buf), "hd%c", i + 'a');
8380 bs_table[i] = bdrv_new(buf);
8382 if (bdrv_open(bs_table[i], hd_filename[i], snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8383 fprintf(stderr, "qemu: could not open hard disk image '%s'\n",
8384 hd_filename[i]);
8385 exit(1);
8387 if (i == 0 && cyls != 0) {
8388 bdrv_set_geometry_hint(bs_table[i], cyls, heads, secs);
8389 bdrv_set_translation_hint(bs_table[i], translation);
8394 /* we always create at least one floppy disk */
8395 fd_table[0] = bdrv_new("fda");
8396 bdrv_set_type_hint(fd_table[0], BDRV_TYPE_FLOPPY);
8398 for(i = 0; i < MAX_FD; i++) {
8399 if (fd_filename[i]) {
8400 if (!fd_table[i]) {
8401 char buf[64];
8402 snprintf(buf, sizeof(buf), "fd%c", i + 'a');
8403 fd_table[i] = bdrv_new(buf);
8404 bdrv_set_type_hint(fd_table[i], BDRV_TYPE_FLOPPY);
8406 if (fd_filename[i][0] != '\0') {
8407 if (bdrv_open(fd_table[i], fd_filename[i],
8408 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8409 fprintf(stderr, "qemu: could not open floppy disk image '%s'\n",
8410 fd_filename[i]);
8411 exit(1);
8417 /* Open the virtual parallel flash block devices */
8418 for(i = 0; i < MAX_PFLASH; i++) {
8419 if (pflash_filename[i]) {
8420 if (!pflash_table[i]) {
8421 char buf[64];
8422 snprintf(buf, sizeof(buf), "fl%c", i + 'a');
8423 pflash_table[i] = bdrv_new(buf);
8425 if (bdrv_open(pflash_table[i], pflash_filename[i],
8426 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8427 fprintf(stderr, "qemu: could not open flash image '%s'\n",
8428 pflash_filename[i]);
8429 exit(1);
8434 sd_bdrv = bdrv_new ("sd");
8435 /* FIXME: This isn't really a floppy, but it's a reasonable
8436 approximation. */
8437 bdrv_set_type_hint(sd_bdrv, BDRV_TYPE_FLOPPY);
8438 if (sd_filename) {
8439 if (bdrv_open(sd_bdrv, sd_filename,
8440 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8441 fprintf(stderr, "qemu: could not open SD card image %s\n",
8442 sd_filename);
8443 } else
8444 qemu_key_check(sd_bdrv, sd_filename);
8447 if (mtd_filename) {
8448 mtd_bdrv = bdrv_new ("mtd");
8449 if (bdrv_open(mtd_bdrv, mtd_filename,
8450 snapshot ? BDRV_O_SNAPSHOT : 0) < 0 ||
8451 qemu_key_check(mtd_bdrv, mtd_filename)) {
8452 fprintf(stderr, "qemu: could not open Flash image %s\n",
8453 mtd_filename);
8454 bdrv_delete(mtd_bdrv);
8455 mtd_bdrv = 0;
8459 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
8460 register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
8462 init_ioports();
8464 /* terminal init */
8465 memset(&display_state, 0, sizeof(display_state));
8466 if (nographic) {
8467 /* nearly nothing to do */
8468 dumb_display_init(ds);
8469 } else if (vnc_display != NULL) {
8470 vnc_display_init(ds);
8471 if (vnc_display_open(ds, vnc_display) < 0)
8472 exit(1);
8473 } else {
8474 #if defined(CONFIG_SDL)
8475 sdl_display_init(ds, full_screen, no_frame);
8476 #elif defined(CONFIG_COCOA)
8477 cocoa_display_init(ds, full_screen);
8478 #else
8479 dumb_display_init(ds);
8480 #endif
8483 /* Maintain compatibility with multiple stdio monitors */
8484 if (!strcmp(monitor_device,"stdio")) {
8485 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
8486 if (!strcmp(serial_devices[i],"mon:stdio")) {
8487 monitor_device[0] = '\0';
8488 break;
8489 } else if (!strcmp(serial_devices[i],"stdio")) {
8490 monitor_device[0] = '\0';
8491 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "mon:stdio");
8492 break;
8496 if (monitor_device[0] != '\0') {
8497 monitor_hd = qemu_chr_open(monitor_device);
8498 if (!monitor_hd) {
8499 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
8500 exit(1);
8502 monitor_init(monitor_hd, !nographic);
8505 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
8506 const char *devname = serial_devices[i];
8507 if (devname[0] != '\0' && strcmp(devname, "none")) {
8508 serial_hds[i] = qemu_chr_open(devname);
8509 if (!serial_hds[i]) {
8510 fprintf(stderr, "qemu: could not open serial device '%s'\n",
8511 devname);
8512 exit(1);
8514 if (strstart(devname, "vc", 0))
8515 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
8519 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
8520 const char *devname = parallel_devices[i];
8521 if (devname[0] != '\0' && strcmp(devname, "none")) {
8522 parallel_hds[i] = qemu_chr_open(devname);
8523 if (!parallel_hds[i]) {
8524 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
8525 devname);
8526 exit(1);
8528 if (strstart(devname, "vc", 0))
8529 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
8533 machine->init(ram_size, vga_ram_size, boot_devices, ds,
8534 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
8536 /* init USB devices */
8537 if (usb_enabled) {
8538 for(i = 0; i < usb_devices_index; i++) {
8539 if (usb_device_add(usb_devices[i]) < 0) {
8540 fprintf(stderr, "Warning: could not add USB device %s\n",
8541 usb_devices[i]);
8546 if (display_state.dpy_refresh) {
8547 display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
8548 qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
8551 #ifdef CONFIG_GDBSTUB
8552 if (use_gdbstub) {
8553 /* XXX: use standard host:port notation and modify options
8554 accordingly. */
8555 if (gdbserver_start(gdbstub_port) < 0) {
8556 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
8557 gdbstub_port);
8558 exit(1);
8561 #endif
8563 if (loadvm)
8564 do_loadvm(loadvm);
8567 /* XXX: simplify init */
8568 read_passwords();
8569 if (autostart) {
8570 vm_start();
8574 if (daemonize) {
8575 uint8_t status = 0;
8576 ssize_t len;
8577 int fd;
8579 again1:
8580 len = write(fds[1], &status, 1);
8581 if (len == -1 && (errno == EINTR))
8582 goto again1;
8584 if (len != 1)
8585 exit(1);
8587 TFR(fd = open("/dev/null", O_RDWR));
8588 if (fd == -1)
8589 exit(1);
8591 dup2(fd, 0);
8592 dup2(fd, 1);
8593 dup2(fd, 2);
8595 close(fd);
8598 main_loop();
8599 quit_timers();
8601 #if !defined(_WIN32)
8602 /* close network clients */
8603 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8604 VLANClientState *vc;
8606 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
8607 if (vc->fd_read == tap_receive) {
8608 char ifname[64];
8609 TAPState *s = vc->opaque;
8611 if (sscanf(vc->info_str, "tap: ifname=%63s ", ifname) == 1 &&
8612 s->down_script[0])
8613 launch_script(s->down_script, ifname, s->fd);
8617 #endif
8618 return 0;