Fix typo in softfloat code.
[qemu/mini2440.git] / exec.c
blob6384df270f5dbfe6c08e4e155d8a7c771c12808f
1 /*
2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "config.h"
21 #ifdef _WIN32
22 #include <windows.h>
23 #else
24 #include <sys/types.h>
25 #include <sys/mman.h>
26 #endif
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdarg.h>
30 #include <string.h>
31 #include <errno.h>
32 #include <unistd.h>
33 #include <inttypes.h>
35 #include "cpu.h"
36 #include "exec-all.h"
37 #if defined(CONFIG_USER_ONLY)
38 #include <qemu.h>
39 #endif
41 //#define DEBUG_TB_INVALIDATE
42 //#define DEBUG_FLUSH
43 //#define DEBUG_TLB
44 //#define DEBUG_UNASSIGNED
46 /* make various TB consistency checks */
47 //#define DEBUG_TB_CHECK
48 //#define DEBUG_TLB_CHECK
50 //#define DEBUG_IOPORT
51 //#define DEBUG_SUBPAGE
53 #if !defined(CONFIG_USER_ONLY)
54 /* TB consistency checks only implemented for usermode emulation. */
55 #undef DEBUG_TB_CHECK
56 #endif
58 /* threshold to flush the translated code buffer */
59 #define CODE_GEN_BUFFER_MAX_SIZE (CODE_GEN_BUFFER_SIZE - CODE_GEN_MAX_SIZE)
61 #define SMC_BITMAP_USE_THRESHOLD 10
63 #define MMAP_AREA_START 0x00000000
64 #define MMAP_AREA_END 0xa8000000
66 #if defined(TARGET_SPARC64)
67 #define TARGET_PHYS_ADDR_SPACE_BITS 41
68 #elif defined(TARGET_SPARC)
69 #define TARGET_PHYS_ADDR_SPACE_BITS 36
70 #elif defined(TARGET_ALPHA)
71 #define TARGET_PHYS_ADDR_SPACE_BITS 42
72 #define TARGET_VIRT_ADDR_SPACE_BITS 42
73 #elif defined(TARGET_PPC64)
74 #define TARGET_PHYS_ADDR_SPACE_BITS 42
75 #else
76 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
77 #define TARGET_PHYS_ADDR_SPACE_BITS 32
78 #endif
80 TranslationBlock tbs[CODE_GEN_MAX_BLOCKS];
81 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
82 int nb_tbs;
83 /* any access to the tbs or the page table must use this lock */
84 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
86 uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE] __attribute__((aligned (32)));
87 uint8_t *code_gen_ptr;
89 int phys_ram_size;
90 int phys_ram_fd;
91 uint8_t *phys_ram_base;
92 uint8_t *phys_ram_dirty;
93 static ram_addr_t phys_ram_alloc_offset = 0;
95 CPUState *first_cpu;
96 /* current CPU in the current thread. It is only valid inside
97 cpu_exec() */
98 CPUState *cpu_single_env;
100 typedef struct PageDesc {
101 /* list of TBs intersecting this ram page */
102 TranslationBlock *first_tb;
103 /* in order to optimize self modifying code, we count the number
104 of lookups we do to a given page to use a bitmap */
105 unsigned int code_write_count;
106 uint8_t *code_bitmap;
107 #if defined(CONFIG_USER_ONLY)
108 unsigned long flags;
109 #endif
110 } PageDesc;
112 typedef struct PhysPageDesc {
113 /* offset in host memory of the page + io_index in the low 12 bits */
114 uint32_t phys_offset;
115 } PhysPageDesc;
117 #define L2_BITS 10
118 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
119 /* XXX: this is a temporary hack for alpha target.
120 * In the future, this is to be replaced by a multi-level table
121 * to actually be able to handle the complete 64 bits address space.
123 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
124 #else
125 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
126 #endif
128 #define L1_SIZE (1 << L1_BITS)
129 #define L2_SIZE (1 << L2_BITS)
131 static void io_mem_init(void);
133 unsigned long qemu_real_host_page_size;
134 unsigned long qemu_host_page_bits;
135 unsigned long qemu_host_page_size;
136 unsigned long qemu_host_page_mask;
138 /* XXX: for system emulation, it could just be an array */
139 static PageDesc *l1_map[L1_SIZE];
140 PhysPageDesc **l1_phys_map;
142 /* io memory support */
143 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
144 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
145 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
146 static int io_mem_nb;
147 #if defined(CONFIG_SOFTMMU)
148 static int io_mem_watch;
149 #endif
151 /* log support */
152 char *logfilename = "/tmp/qemu.log";
153 FILE *logfile;
154 int loglevel;
155 static int log_append = 0;
157 /* statistics */
158 static int tlb_flush_count;
159 static int tb_flush_count;
160 static int tb_phys_invalidate_count;
162 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
163 typedef struct subpage_t {
164 target_phys_addr_t base;
165 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE];
166 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE];
167 void *opaque[TARGET_PAGE_SIZE];
168 } subpage_t;
170 static void page_init(void)
172 /* NOTE: we can always suppose that qemu_host_page_size >=
173 TARGET_PAGE_SIZE */
174 #ifdef _WIN32
176 SYSTEM_INFO system_info;
177 DWORD old_protect;
179 GetSystemInfo(&system_info);
180 qemu_real_host_page_size = system_info.dwPageSize;
182 VirtualProtect(code_gen_buffer, sizeof(code_gen_buffer),
183 PAGE_EXECUTE_READWRITE, &old_protect);
185 #else
186 qemu_real_host_page_size = getpagesize();
188 unsigned long start, end;
190 start = (unsigned long)code_gen_buffer;
191 start &= ~(qemu_real_host_page_size - 1);
193 end = (unsigned long)code_gen_buffer + sizeof(code_gen_buffer);
194 end += qemu_real_host_page_size - 1;
195 end &= ~(qemu_real_host_page_size - 1);
197 mprotect((void *)start, end - start,
198 PROT_READ | PROT_WRITE | PROT_EXEC);
200 #endif
202 if (qemu_host_page_size == 0)
203 qemu_host_page_size = qemu_real_host_page_size;
204 if (qemu_host_page_size < TARGET_PAGE_SIZE)
205 qemu_host_page_size = TARGET_PAGE_SIZE;
206 qemu_host_page_bits = 0;
207 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
208 qemu_host_page_bits++;
209 qemu_host_page_mask = ~(qemu_host_page_size - 1);
210 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
211 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
214 static inline PageDesc *page_find_alloc(unsigned int index)
216 PageDesc **lp, *p;
218 lp = &l1_map[index >> L2_BITS];
219 p = *lp;
220 if (!p) {
221 /* allocate if not found */
222 p = qemu_malloc(sizeof(PageDesc) * L2_SIZE);
223 memset(p, 0, sizeof(PageDesc) * L2_SIZE);
224 *lp = p;
226 return p + (index & (L2_SIZE - 1));
229 static inline PageDesc *page_find(unsigned int index)
231 PageDesc *p;
233 p = l1_map[index >> L2_BITS];
234 if (!p)
235 return 0;
236 return p + (index & (L2_SIZE - 1));
239 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
241 void **lp, **p;
242 PhysPageDesc *pd;
244 p = (void **)l1_phys_map;
245 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
247 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
248 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
249 #endif
250 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
251 p = *lp;
252 if (!p) {
253 /* allocate if not found */
254 if (!alloc)
255 return NULL;
256 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
257 memset(p, 0, sizeof(void *) * L1_SIZE);
258 *lp = p;
260 #endif
261 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
262 pd = *lp;
263 if (!pd) {
264 int i;
265 /* allocate if not found */
266 if (!alloc)
267 return NULL;
268 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
269 *lp = pd;
270 for (i = 0; i < L2_SIZE; i++)
271 pd[i].phys_offset = IO_MEM_UNASSIGNED;
273 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
276 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
278 return phys_page_find_alloc(index, 0);
281 #if !defined(CONFIG_USER_ONLY)
282 static void tlb_protect_code(ram_addr_t ram_addr);
283 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
284 target_ulong vaddr);
285 #endif
287 void cpu_exec_init(CPUState *env)
289 CPUState **penv;
290 int cpu_index;
292 if (!code_gen_ptr) {
293 code_gen_ptr = code_gen_buffer;
294 page_init();
295 io_mem_init();
297 env->next_cpu = NULL;
298 penv = &first_cpu;
299 cpu_index = 0;
300 while (*penv != NULL) {
301 penv = (CPUState **)&(*penv)->next_cpu;
302 cpu_index++;
304 env->cpu_index = cpu_index;
305 env->nb_watchpoints = 0;
306 *penv = env;
309 static inline void invalidate_page_bitmap(PageDesc *p)
311 if (p->code_bitmap) {
312 qemu_free(p->code_bitmap);
313 p->code_bitmap = NULL;
315 p->code_write_count = 0;
318 /* set to NULL all the 'first_tb' fields in all PageDescs */
319 static void page_flush_tb(void)
321 int i, j;
322 PageDesc *p;
324 for(i = 0; i < L1_SIZE; i++) {
325 p = l1_map[i];
326 if (p) {
327 for(j = 0; j < L2_SIZE; j++) {
328 p->first_tb = NULL;
329 invalidate_page_bitmap(p);
330 p++;
336 /* flush all the translation blocks */
337 /* XXX: tb_flush is currently not thread safe */
338 void tb_flush(CPUState *env1)
340 CPUState *env;
341 #if defined(DEBUG_FLUSH)
342 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
343 (unsigned long)(code_gen_ptr - code_gen_buffer),
344 nb_tbs, nb_tbs > 0 ?
345 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
346 #endif
347 nb_tbs = 0;
349 for(env = first_cpu; env != NULL; env = env->next_cpu) {
350 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
353 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
354 page_flush_tb();
356 code_gen_ptr = code_gen_buffer;
357 /* XXX: flush processor icache at this point if cache flush is
358 expensive */
359 tb_flush_count++;
362 #ifdef DEBUG_TB_CHECK
364 static void tb_invalidate_check(target_ulong address)
366 TranslationBlock *tb;
367 int i;
368 address &= TARGET_PAGE_MASK;
369 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
370 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
371 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
372 address >= tb->pc + tb->size)) {
373 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
374 address, (long)tb->pc, tb->size);
380 /* verify that all the pages have correct rights for code */
381 static void tb_page_check(void)
383 TranslationBlock *tb;
384 int i, flags1, flags2;
386 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
387 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
388 flags1 = page_get_flags(tb->pc);
389 flags2 = page_get_flags(tb->pc + tb->size - 1);
390 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
391 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
392 (long)tb->pc, tb->size, flags1, flags2);
398 void tb_jmp_check(TranslationBlock *tb)
400 TranslationBlock *tb1;
401 unsigned int n1;
403 /* suppress any remaining jumps to this TB */
404 tb1 = tb->jmp_first;
405 for(;;) {
406 n1 = (long)tb1 & 3;
407 tb1 = (TranslationBlock *)((long)tb1 & ~3);
408 if (n1 == 2)
409 break;
410 tb1 = tb1->jmp_next[n1];
412 /* check end of list */
413 if (tb1 != tb) {
414 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
418 #endif
420 /* invalidate one TB */
421 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
422 int next_offset)
424 TranslationBlock *tb1;
425 for(;;) {
426 tb1 = *ptb;
427 if (tb1 == tb) {
428 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
429 break;
431 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
435 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
437 TranslationBlock *tb1;
438 unsigned int n1;
440 for(;;) {
441 tb1 = *ptb;
442 n1 = (long)tb1 & 3;
443 tb1 = (TranslationBlock *)((long)tb1 & ~3);
444 if (tb1 == tb) {
445 *ptb = tb1->page_next[n1];
446 break;
448 ptb = &tb1->page_next[n1];
452 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
454 TranslationBlock *tb1, **ptb;
455 unsigned int n1;
457 ptb = &tb->jmp_next[n];
458 tb1 = *ptb;
459 if (tb1) {
460 /* find tb(n) in circular list */
461 for(;;) {
462 tb1 = *ptb;
463 n1 = (long)tb1 & 3;
464 tb1 = (TranslationBlock *)((long)tb1 & ~3);
465 if (n1 == n && tb1 == tb)
466 break;
467 if (n1 == 2) {
468 ptb = &tb1->jmp_first;
469 } else {
470 ptb = &tb1->jmp_next[n1];
473 /* now we can suppress tb(n) from the list */
474 *ptb = tb->jmp_next[n];
476 tb->jmp_next[n] = NULL;
480 /* reset the jump entry 'n' of a TB so that it is not chained to
481 another TB */
482 static inline void tb_reset_jump(TranslationBlock *tb, int n)
484 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
487 static inline void tb_phys_invalidate(TranslationBlock *tb, unsigned int page_addr)
489 CPUState *env;
490 PageDesc *p;
491 unsigned int h, n1;
492 target_ulong phys_pc;
493 TranslationBlock *tb1, *tb2;
495 /* remove the TB from the hash list */
496 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
497 h = tb_phys_hash_func(phys_pc);
498 tb_remove(&tb_phys_hash[h], tb,
499 offsetof(TranslationBlock, phys_hash_next));
501 /* remove the TB from the page list */
502 if (tb->page_addr[0] != page_addr) {
503 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
504 tb_page_remove(&p->first_tb, tb);
505 invalidate_page_bitmap(p);
507 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
508 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
509 tb_page_remove(&p->first_tb, tb);
510 invalidate_page_bitmap(p);
513 tb_invalidated_flag = 1;
515 /* remove the TB from the hash list */
516 h = tb_jmp_cache_hash_func(tb->pc);
517 for(env = first_cpu; env != NULL; env = env->next_cpu) {
518 if (env->tb_jmp_cache[h] == tb)
519 env->tb_jmp_cache[h] = NULL;
522 /* suppress this TB from the two jump lists */
523 tb_jmp_remove(tb, 0);
524 tb_jmp_remove(tb, 1);
526 /* suppress any remaining jumps to this TB */
527 tb1 = tb->jmp_first;
528 for(;;) {
529 n1 = (long)tb1 & 3;
530 if (n1 == 2)
531 break;
532 tb1 = (TranslationBlock *)((long)tb1 & ~3);
533 tb2 = tb1->jmp_next[n1];
534 tb_reset_jump(tb1, n1);
535 tb1->jmp_next[n1] = NULL;
536 tb1 = tb2;
538 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
540 tb_phys_invalidate_count++;
543 static inline void set_bits(uint8_t *tab, int start, int len)
545 int end, mask, end1;
547 end = start + len;
548 tab += start >> 3;
549 mask = 0xff << (start & 7);
550 if ((start & ~7) == (end & ~7)) {
551 if (start < end) {
552 mask &= ~(0xff << (end & 7));
553 *tab |= mask;
555 } else {
556 *tab++ |= mask;
557 start = (start + 8) & ~7;
558 end1 = end & ~7;
559 while (start < end1) {
560 *tab++ = 0xff;
561 start += 8;
563 if (start < end) {
564 mask = ~(0xff << (end & 7));
565 *tab |= mask;
570 static void build_page_bitmap(PageDesc *p)
572 int n, tb_start, tb_end;
573 TranslationBlock *tb;
575 p->code_bitmap = qemu_malloc(TARGET_PAGE_SIZE / 8);
576 if (!p->code_bitmap)
577 return;
578 memset(p->code_bitmap, 0, TARGET_PAGE_SIZE / 8);
580 tb = p->first_tb;
581 while (tb != NULL) {
582 n = (long)tb & 3;
583 tb = (TranslationBlock *)((long)tb & ~3);
584 /* NOTE: this is subtle as a TB may span two physical pages */
585 if (n == 0) {
586 /* NOTE: tb_end may be after the end of the page, but
587 it is not a problem */
588 tb_start = tb->pc & ~TARGET_PAGE_MASK;
589 tb_end = tb_start + tb->size;
590 if (tb_end > TARGET_PAGE_SIZE)
591 tb_end = TARGET_PAGE_SIZE;
592 } else {
593 tb_start = 0;
594 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
596 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
597 tb = tb->page_next[n];
601 #ifdef TARGET_HAS_PRECISE_SMC
603 static void tb_gen_code(CPUState *env,
604 target_ulong pc, target_ulong cs_base, int flags,
605 int cflags)
607 TranslationBlock *tb;
608 uint8_t *tc_ptr;
609 target_ulong phys_pc, phys_page2, virt_page2;
610 int code_gen_size;
612 phys_pc = get_phys_addr_code(env, pc);
613 tb = tb_alloc(pc);
614 if (!tb) {
615 /* flush must be done */
616 tb_flush(env);
617 /* cannot fail at this point */
618 tb = tb_alloc(pc);
620 tc_ptr = code_gen_ptr;
621 tb->tc_ptr = tc_ptr;
622 tb->cs_base = cs_base;
623 tb->flags = flags;
624 tb->cflags = cflags;
625 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
626 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
628 /* check next page if needed */
629 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
630 phys_page2 = -1;
631 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
632 phys_page2 = get_phys_addr_code(env, virt_page2);
634 tb_link_phys(tb, phys_pc, phys_page2);
636 #endif
638 /* invalidate all TBs which intersect with the target physical page
639 starting in range [start;end[. NOTE: start and end must refer to
640 the same physical page. 'is_cpu_write_access' should be true if called
641 from a real cpu write access: the virtual CPU will exit the current
642 TB if code is modified inside this TB. */
643 void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
644 int is_cpu_write_access)
646 int n, current_tb_modified, current_tb_not_found, current_flags;
647 CPUState *env = cpu_single_env;
648 PageDesc *p;
649 TranslationBlock *tb, *tb_next, *current_tb, *saved_tb;
650 target_ulong tb_start, tb_end;
651 target_ulong current_pc, current_cs_base;
653 p = page_find(start >> TARGET_PAGE_BITS);
654 if (!p)
655 return;
656 if (!p->code_bitmap &&
657 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
658 is_cpu_write_access) {
659 /* build code bitmap */
660 build_page_bitmap(p);
663 /* we remove all the TBs in the range [start, end[ */
664 /* XXX: see if in some cases it could be faster to invalidate all the code */
665 current_tb_not_found = is_cpu_write_access;
666 current_tb_modified = 0;
667 current_tb = NULL; /* avoid warning */
668 current_pc = 0; /* avoid warning */
669 current_cs_base = 0; /* avoid warning */
670 current_flags = 0; /* avoid warning */
671 tb = p->first_tb;
672 while (tb != NULL) {
673 n = (long)tb & 3;
674 tb = (TranslationBlock *)((long)tb & ~3);
675 tb_next = tb->page_next[n];
676 /* NOTE: this is subtle as a TB may span two physical pages */
677 if (n == 0) {
678 /* NOTE: tb_end may be after the end of the page, but
679 it is not a problem */
680 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
681 tb_end = tb_start + tb->size;
682 } else {
683 tb_start = tb->page_addr[1];
684 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
686 if (!(tb_end <= start || tb_start >= end)) {
687 #ifdef TARGET_HAS_PRECISE_SMC
688 if (current_tb_not_found) {
689 current_tb_not_found = 0;
690 current_tb = NULL;
691 if (env->mem_write_pc) {
692 /* now we have a real cpu fault */
693 current_tb = tb_find_pc(env->mem_write_pc);
696 if (current_tb == tb &&
697 !(current_tb->cflags & CF_SINGLE_INSN)) {
698 /* If we are modifying the current TB, we must stop
699 its execution. We could be more precise by checking
700 that the modification is after the current PC, but it
701 would require a specialized function to partially
702 restore the CPU state */
704 current_tb_modified = 1;
705 cpu_restore_state(current_tb, env,
706 env->mem_write_pc, NULL);
707 #if defined(TARGET_I386)
708 current_flags = env->hflags;
709 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
710 current_cs_base = (target_ulong)env->segs[R_CS].base;
711 current_pc = current_cs_base + env->eip;
712 #else
713 #error unsupported CPU
714 #endif
716 #endif /* TARGET_HAS_PRECISE_SMC */
717 /* we need to do that to handle the case where a signal
718 occurs while doing tb_phys_invalidate() */
719 saved_tb = NULL;
720 if (env) {
721 saved_tb = env->current_tb;
722 env->current_tb = NULL;
724 tb_phys_invalidate(tb, -1);
725 if (env) {
726 env->current_tb = saved_tb;
727 if (env->interrupt_request && env->current_tb)
728 cpu_interrupt(env, env->interrupt_request);
731 tb = tb_next;
733 #if !defined(CONFIG_USER_ONLY)
734 /* if no code remaining, no need to continue to use slow writes */
735 if (!p->first_tb) {
736 invalidate_page_bitmap(p);
737 if (is_cpu_write_access) {
738 tlb_unprotect_code_phys(env, start, env->mem_write_vaddr);
741 #endif
742 #ifdef TARGET_HAS_PRECISE_SMC
743 if (current_tb_modified) {
744 /* we generate a block containing just the instruction
745 modifying the memory. It will ensure that it cannot modify
746 itself */
747 env->current_tb = NULL;
748 tb_gen_code(env, current_pc, current_cs_base, current_flags,
749 CF_SINGLE_INSN);
750 cpu_resume_from_signal(env, NULL);
752 #endif
755 /* len must be <= 8 and start must be a multiple of len */
756 static inline void tb_invalidate_phys_page_fast(target_ulong start, int len)
758 PageDesc *p;
759 int offset, b;
760 #if 0
761 if (1) {
762 if (loglevel) {
763 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
764 cpu_single_env->mem_write_vaddr, len,
765 cpu_single_env->eip,
766 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
769 #endif
770 p = page_find(start >> TARGET_PAGE_BITS);
771 if (!p)
772 return;
773 if (p->code_bitmap) {
774 offset = start & ~TARGET_PAGE_MASK;
775 b = p->code_bitmap[offset >> 3] >> (offset & 7);
776 if (b & ((1 << len) - 1))
777 goto do_invalidate;
778 } else {
779 do_invalidate:
780 tb_invalidate_phys_page_range(start, start + len, 1);
784 #if !defined(CONFIG_SOFTMMU)
785 static void tb_invalidate_phys_page(target_ulong addr,
786 unsigned long pc, void *puc)
788 int n, current_flags, current_tb_modified;
789 target_ulong current_pc, current_cs_base;
790 PageDesc *p;
791 TranslationBlock *tb, *current_tb;
792 #ifdef TARGET_HAS_PRECISE_SMC
793 CPUState *env = cpu_single_env;
794 #endif
796 addr &= TARGET_PAGE_MASK;
797 p = page_find(addr >> TARGET_PAGE_BITS);
798 if (!p)
799 return;
800 tb = p->first_tb;
801 current_tb_modified = 0;
802 current_tb = NULL;
803 current_pc = 0; /* avoid warning */
804 current_cs_base = 0; /* avoid warning */
805 current_flags = 0; /* avoid warning */
806 #ifdef TARGET_HAS_PRECISE_SMC
807 if (tb && pc != 0) {
808 current_tb = tb_find_pc(pc);
810 #endif
811 while (tb != NULL) {
812 n = (long)tb & 3;
813 tb = (TranslationBlock *)((long)tb & ~3);
814 #ifdef TARGET_HAS_PRECISE_SMC
815 if (current_tb == tb &&
816 !(current_tb->cflags & CF_SINGLE_INSN)) {
817 /* If we are modifying the current TB, we must stop
818 its execution. We could be more precise by checking
819 that the modification is after the current PC, but it
820 would require a specialized function to partially
821 restore the CPU state */
823 current_tb_modified = 1;
824 cpu_restore_state(current_tb, env, pc, puc);
825 #if defined(TARGET_I386)
826 current_flags = env->hflags;
827 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
828 current_cs_base = (target_ulong)env->segs[R_CS].base;
829 current_pc = current_cs_base + env->eip;
830 #else
831 #error unsupported CPU
832 #endif
834 #endif /* TARGET_HAS_PRECISE_SMC */
835 tb_phys_invalidate(tb, addr);
836 tb = tb->page_next[n];
838 p->first_tb = NULL;
839 #ifdef TARGET_HAS_PRECISE_SMC
840 if (current_tb_modified) {
841 /* we generate a block containing just the instruction
842 modifying the memory. It will ensure that it cannot modify
843 itself */
844 env->current_tb = NULL;
845 tb_gen_code(env, current_pc, current_cs_base, current_flags,
846 CF_SINGLE_INSN);
847 cpu_resume_from_signal(env, puc);
849 #endif
851 #endif
853 /* add the tb in the target page and protect it if necessary */
854 static inline void tb_alloc_page(TranslationBlock *tb,
855 unsigned int n, target_ulong page_addr)
857 PageDesc *p;
858 TranslationBlock *last_first_tb;
860 tb->page_addr[n] = page_addr;
861 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
862 tb->page_next[n] = p->first_tb;
863 last_first_tb = p->first_tb;
864 p->first_tb = (TranslationBlock *)((long)tb | n);
865 invalidate_page_bitmap(p);
867 #if defined(TARGET_HAS_SMC) || 1
869 #if defined(CONFIG_USER_ONLY)
870 if (p->flags & PAGE_WRITE) {
871 target_ulong addr;
872 PageDesc *p2;
873 int prot;
875 /* force the host page as non writable (writes will have a
876 page fault + mprotect overhead) */
877 page_addr &= qemu_host_page_mask;
878 prot = 0;
879 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
880 addr += TARGET_PAGE_SIZE) {
882 p2 = page_find (addr >> TARGET_PAGE_BITS);
883 if (!p2)
884 continue;
885 prot |= p2->flags;
886 p2->flags &= ~PAGE_WRITE;
887 page_get_flags(addr);
889 mprotect(g2h(page_addr), qemu_host_page_size,
890 (prot & PAGE_BITS) & ~PAGE_WRITE);
891 #ifdef DEBUG_TB_INVALIDATE
892 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
893 page_addr);
894 #endif
896 #else
897 /* if some code is already present, then the pages are already
898 protected. So we handle the case where only the first TB is
899 allocated in a physical page */
900 if (!last_first_tb) {
901 tlb_protect_code(page_addr);
903 #endif
905 #endif /* TARGET_HAS_SMC */
908 /* Allocate a new translation block. Flush the translation buffer if
909 too many translation blocks or too much generated code. */
910 TranslationBlock *tb_alloc(target_ulong pc)
912 TranslationBlock *tb;
914 if (nb_tbs >= CODE_GEN_MAX_BLOCKS ||
915 (code_gen_ptr - code_gen_buffer) >= CODE_GEN_BUFFER_MAX_SIZE)
916 return NULL;
917 tb = &tbs[nb_tbs++];
918 tb->pc = pc;
919 tb->cflags = 0;
920 return tb;
923 /* add a new TB and link it to the physical page tables. phys_page2 is
924 (-1) to indicate that only one page contains the TB. */
925 void tb_link_phys(TranslationBlock *tb,
926 target_ulong phys_pc, target_ulong phys_page2)
928 unsigned int h;
929 TranslationBlock **ptb;
931 /* add in the physical hash table */
932 h = tb_phys_hash_func(phys_pc);
933 ptb = &tb_phys_hash[h];
934 tb->phys_hash_next = *ptb;
935 *ptb = tb;
937 /* add in the page list */
938 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
939 if (phys_page2 != -1)
940 tb_alloc_page(tb, 1, phys_page2);
941 else
942 tb->page_addr[1] = -1;
944 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
945 tb->jmp_next[0] = NULL;
946 tb->jmp_next[1] = NULL;
948 /* init original jump addresses */
949 if (tb->tb_next_offset[0] != 0xffff)
950 tb_reset_jump(tb, 0);
951 if (tb->tb_next_offset[1] != 0xffff)
952 tb_reset_jump(tb, 1);
954 #ifdef DEBUG_TB_CHECK
955 tb_page_check();
956 #endif
959 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
960 tb[1].tc_ptr. Return NULL if not found */
961 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
963 int m_min, m_max, m;
964 unsigned long v;
965 TranslationBlock *tb;
967 if (nb_tbs <= 0)
968 return NULL;
969 if (tc_ptr < (unsigned long)code_gen_buffer ||
970 tc_ptr >= (unsigned long)code_gen_ptr)
971 return NULL;
972 /* binary search (cf Knuth) */
973 m_min = 0;
974 m_max = nb_tbs - 1;
975 while (m_min <= m_max) {
976 m = (m_min + m_max) >> 1;
977 tb = &tbs[m];
978 v = (unsigned long)tb->tc_ptr;
979 if (v == tc_ptr)
980 return tb;
981 else if (tc_ptr < v) {
982 m_max = m - 1;
983 } else {
984 m_min = m + 1;
987 return &tbs[m_max];
990 static void tb_reset_jump_recursive(TranslationBlock *tb);
992 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
994 TranslationBlock *tb1, *tb_next, **ptb;
995 unsigned int n1;
997 tb1 = tb->jmp_next[n];
998 if (tb1 != NULL) {
999 /* find head of list */
1000 for(;;) {
1001 n1 = (long)tb1 & 3;
1002 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1003 if (n1 == 2)
1004 break;
1005 tb1 = tb1->jmp_next[n1];
1007 /* we are now sure now that tb jumps to tb1 */
1008 tb_next = tb1;
1010 /* remove tb from the jmp_first list */
1011 ptb = &tb_next->jmp_first;
1012 for(;;) {
1013 tb1 = *ptb;
1014 n1 = (long)tb1 & 3;
1015 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1016 if (n1 == n && tb1 == tb)
1017 break;
1018 ptb = &tb1->jmp_next[n1];
1020 *ptb = tb->jmp_next[n];
1021 tb->jmp_next[n] = NULL;
1023 /* suppress the jump to next tb in generated code */
1024 tb_reset_jump(tb, n);
1026 /* suppress jumps in the tb on which we could have jumped */
1027 tb_reset_jump_recursive(tb_next);
1031 static void tb_reset_jump_recursive(TranslationBlock *tb)
1033 tb_reset_jump_recursive2(tb, 0);
1034 tb_reset_jump_recursive2(tb, 1);
1037 #if defined(TARGET_HAS_ICE)
1038 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1040 target_phys_addr_t addr;
1041 target_ulong pd;
1042 ram_addr_t ram_addr;
1043 PhysPageDesc *p;
1045 addr = cpu_get_phys_page_debug(env, pc);
1046 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1047 if (!p) {
1048 pd = IO_MEM_UNASSIGNED;
1049 } else {
1050 pd = p->phys_offset;
1052 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1053 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1055 #endif
1057 /* Add a watchpoint. */
1058 int cpu_watchpoint_insert(CPUState *env, target_ulong addr)
1060 int i;
1062 for (i = 0; i < env->nb_watchpoints; i++) {
1063 if (addr == env->watchpoint[i].vaddr)
1064 return 0;
1066 if (env->nb_watchpoints >= MAX_WATCHPOINTS)
1067 return -1;
1069 i = env->nb_watchpoints++;
1070 env->watchpoint[i].vaddr = addr;
1071 tlb_flush_page(env, addr);
1072 /* FIXME: This flush is needed because of the hack to make memory ops
1073 terminate the TB. It can be removed once the proper IO trap and
1074 re-execute bits are in. */
1075 tb_flush(env);
1076 return i;
1079 /* Remove a watchpoint. */
1080 int cpu_watchpoint_remove(CPUState *env, target_ulong addr)
1082 int i;
1084 for (i = 0; i < env->nb_watchpoints; i++) {
1085 if (addr == env->watchpoint[i].vaddr) {
1086 env->nb_watchpoints--;
1087 env->watchpoint[i] = env->watchpoint[env->nb_watchpoints];
1088 tlb_flush_page(env, addr);
1089 return 0;
1092 return -1;
1095 /* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
1096 breakpoint is reached */
1097 int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
1099 #if defined(TARGET_HAS_ICE)
1100 int i;
1102 for(i = 0; i < env->nb_breakpoints; i++) {
1103 if (env->breakpoints[i] == pc)
1104 return 0;
1107 if (env->nb_breakpoints >= MAX_BREAKPOINTS)
1108 return -1;
1109 env->breakpoints[env->nb_breakpoints++] = pc;
1111 breakpoint_invalidate(env, pc);
1112 return 0;
1113 #else
1114 return -1;
1115 #endif
1118 /* remove a breakpoint */
1119 int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
1121 #if defined(TARGET_HAS_ICE)
1122 int i;
1123 for(i = 0; i < env->nb_breakpoints; i++) {
1124 if (env->breakpoints[i] == pc)
1125 goto found;
1127 return -1;
1128 found:
1129 env->nb_breakpoints--;
1130 if (i < env->nb_breakpoints)
1131 env->breakpoints[i] = env->breakpoints[env->nb_breakpoints];
1133 breakpoint_invalidate(env, pc);
1134 return 0;
1135 #else
1136 return -1;
1137 #endif
1140 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1141 CPU loop after each instruction */
1142 void cpu_single_step(CPUState *env, int enabled)
1144 #if defined(TARGET_HAS_ICE)
1145 if (env->singlestep_enabled != enabled) {
1146 env->singlestep_enabled = enabled;
1147 /* must flush all the translated code to avoid inconsistancies */
1148 /* XXX: only flush what is necessary */
1149 tb_flush(env);
1151 #endif
1154 /* enable or disable low levels log */
1155 void cpu_set_log(int log_flags)
1157 loglevel = log_flags;
1158 if (loglevel && !logfile) {
1159 logfile = fopen(logfilename, log_append ? "a" : "w");
1160 if (!logfile) {
1161 perror(logfilename);
1162 _exit(1);
1164 #if !defined(CONFIG_SOFTMMU)
1165 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1167 static uint8_t logfile_buf[4096];
1168 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1170 #else
1171 setvbuf(logfile, NULL, _IOLBF, 0);
1172 #endif
1173 log_append = 1;
1175 if (!loglevel && logfile) {
1176 fclose(logfile);
1177 logfile = NULL;
1181 void cpu_set_log_filename(const char *filename)
1183 logfilename = strdup(filename);
1184 if (logfile) {
1185 fclose(logfile);
1186 logfile = NULL;
1188 cpu_set_log(loglevel);
1191 /* mask must never be zero, except for A20 change call */
1192 void cpu_interrupt(CPUState *env, int mask)
1194 TranslationBlock *tb;
1195 static int interrupt_lock;
1197 env->interrupt_request |= mask;
1198 /* if the cpu is currently executing code, we must unlink it and
1199 all the potentially executing TB */
1200 tb = env->current_tb;
1201 if (tb && !testandset(&interrupt_lock)) {
1202 env->current_tb = NULL;
1203 tb_reset_jump_recursive(tb);
1204 interrupt_lock = 0;
1208 void cpu_reset_interrupt(CPUState *env, int mask)
1210 env->interrupt_request &= ~mask;
1213 CPULogItem cpu_log_items[] = {
1214 { CPU_LOG_TB_OUT_ASM, "out_asm",
1215 "show generated host assembly code for each compiled TB" },
1216 { CPU_LOG_TB_IN_ASM, "in_asm",
1217 "show target assembly code for each compiled TB" },
1218 { CPU_LOG_TB_OP, "op",
1219 "show micro ops for each compiled TB (only usable if 'in_asm' used)" },
1220 #ifdef TARGET_I386
1221 { CPU_LOG_TB_OP_OPT, "op_opt",
1222 "show micro ops after optimization for each compiled TB" },
1223 #endif
1224 { CPU_LOG_INT, "int",
1225 "show interrupts/exceptions in short format" },
1226 { CPU_LOG_EXEC, "exec",
1227 "show trace before each executed TB (lots of logs)" },
1228 { CPU_LOG_TB_CPU, "cpu",
1229 "show CPU state before block translation" },
1230 #ifdef TARGET_I386
1231 { CPU_LOG_PCALL, "pcall",
1232 "show protected mode far calls/returns/exceptions" },
1233 #endif
1234 #ifdef DEBUG_IOPORT
1235 { CPU_LOG_IOPORT, "ioport",
1236 "show all i/o ports accesses" },
1237 #endif
1238 { 0, NULL, NULL },
1241 static int cmp1(const char *s1, int n, const char *s2)
1243 if (strlen(s2) != n)
1244 return 0;
1245 return memcmp(s1, s2, n) == 0;
1248 /* takes a comma separated list of log masks. Return 0 if error. */
1249 int cpu_str_to_log_mask(const char *str)
1251 CPULogItem *item;
1252 int mask;
1253 const char *p, *p1;
1255 p = str;
1256 mask = 0;
1257 for(;;) {
1258 p1 = strchr(p, ',');
1259 if (!p1)
1260 p1 = p + strlen(p);
1261 if(cmp1(p,p1-p,"all")) {
1262 for(item = cpu_log_items; item->mask != 0; item++) {
1263 mask |= item->mask;
1265 } else {
1266 for(item = cpu_log_items; item->mask != 0; item++) {
1267 if (cmp1(p, p1 - p, item->name))
1268 goto found;
1270 return 0;
1272 found:
1273 mask |= item->mask;
1274 if (*p1 != ',')
1275 break;
1276 p = p1 + 1;
1278 return mask;
1281 void cpu_abort(CPUState *env, const char *fmt, ...)
1283 va_list ap;
1285 va_start(ap, fmt);
1286 fprintf(stderr, "qemu: fatal: ");
1287 vfprintf(stderr, fmt, ap);
1288 fprintf(stderr, "\n");
1289 #ifdef TARGET_I386
1290 if(env->intercept & INTERCEPT_SVM_MASK) {
1291 /* most probably the virtual machine should not
1292 be shut down but rather caught by the VMM */
1293 vmexit(SVM_EXIT_SHUTDOWN, 0);
1295 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1296 #else
1297 cpu_dump_state(env, stderr, fprintf, 0);
1298 #endif
1299 if (logfile) {
1300 fprintf(logfile, "qemu: fatal: ");
1301 vfprintf(logfile, fmt, ap);
1302 fprintf(logfile, "\n");
1303 #ifdef TARGET_I386
1304 cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1305 #else
1306 cpu_dump_state(env, logfile, fprintf, 0);
1307 #endif
1308 fflush(logfile);
1309 fclose(logfile);
1311 va_end(ap);
1312 abort();
1315 CPUState *cpu_copy(CPUState *env)
1317 #if 0
1318 /* XXX: broken, must be handled by each CPU */
1319 CPUState *new_env = cpu_init();
1320 /* preserve chaining and index */
1321 CPUState *next_cpu = new_env->next_cpu;
1322 int cpu_index = new_env->cpu_index;
1323 memcpy(new_env, env, sizeof(CPUState));
1324 new_env->next_cpu = next_cpu;
1325 new_env->cpu_index = cpu_index;
1326 return new_env;
1327 #else
1328 return NULL;
1329 #endif
1332 #if !defined(CONFIG_USER_ONLY)
1334 /* NOTE: if flush_global is true, also flush global entries (not
1335 implemented yet) */
1336 void tlb_flush(CPUState *env, int flush_global)
1338 int i;
1340 #if defined(DEBUG_TLB)
1341 printf("tlb_flush:\n");
1342 #endif
1343 /* must reset current TB so that interrupts cannot modify the
1344 links while we are modifying them */
1345 env->current_tb = NULL;
1347 for(i = 0; i < CPU_TLB_SIZE; i++) {
1348 env->tlb_table[0][i].addr_read = -1;
1349 env->tlb_table[0][i].addr_write = -1;
1350 env->tlb_table[0][i].addr_code = -1;
1351 env->tlb_table[1][i].addr_read = -1;
1352 env->tlb_table[1][i].addr_write = -1;
1353 env->tlb_table[1][i].addr_code = -1;
1354 #if (NB_MMU_MODES >= 3)
1355 env->tlb_table[2][i].addr_read = -1;
1356 env->tlb_table[2][i].addr_write = -1;
1357 env->tlb_table[2][i].addr_code = -1;
1358 #if (NB_MMU_MODES == 4)
1359 env->tlb_table[3][i].addr_read = -1;
1360 env->tlb_table[3][i].addr_write = -1;
1361 env->tlb_table[3][i].addr_code = -1;
1362 #endif
1363 #endif
1366 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1368 #if !defined(CONFIG_SOFTMMU)
1369 munmap((void *)MMAP_AREA_START, MMAP_AREA_END - MMAP_AREA_START);
1370 #endif
1371 #ifdef USE_KQEMU
1372 if (env->kqemu_enabled) {
1373 kqemu_flush(env, flush_global);
1375 #endif
1376 tlb_flush_count++;
1379 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1381 if (addr == (tlb_entry->addr_read &
1382 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1383 addr == (tlb_entry->addr_write &
1384 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1385 addr == (tlb_entry->addr_code &
1386 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1387 tlb_entry->addr_read = -1;
1388 tlb_entry->addr_write = -1;
1389 tlb_entry->addr_code = -1;
1393 void tlb_flush_page(CPUState *env, target_ulong addr)
1395 int i;
1396 TranslationBlock *tb;
1398 #if defined(DEBUG_TLB)
1399 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1400 #endif
1401 /* must reset current TB so that interrupts cannot modify the
1402 links while we are modifying them */
1403 env->current_tb = NULL;
1405 addr &= TARGET_PAGE_MASK;
1406 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1407 tlb_flush_entry(&env->tlb_table[0][i], addr);
1408 tlb_flush_entry(&env->tlb_table[1][i], addr);
1409 #if (NB_MMU_MODES >= 3)
1410 tlb_flush_entry(&env->tlb_table[2][i], addr);
1411 #if (NB_MMU_MODES == 4)
1412 tlb_flush_entry(&env->tlb_table[3][i], addr);
1413 #endif
1414 #endif
1416 /* Discard jump cache entries for any tb which might potentially
1417 overlap the flushed page. */
1418 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1419 memset (&env->tb_jmp_cache[i], 0, TB_JMP_PAGE_SIZE * sizeof(tb));
1421 i = tb_jmp_cache_hash_page(addr);
1422 memset (&env->tb_jmp_cache[i], 0, TB_JMP_PAGE_SIZE * sizeof(tb));
1424 #if !defined(CONFIG_SOFTMMU)
1425 if (addr < MMAP_AREA_END)
1426 munmap((void *)addr, TARGET_PAGE_SIZE);
1427 #endif
1428 #ifdef USE_KQEMU
1429 if (env->kqemu_enabled) {
1430 kqemu_flush_page(env, addr);
1432 #endif
1435 /* update the TLBs so that writes to code in the virtual page 'addr'
1436 can be detected */
1437 static void tlb_protect_code(ram_addr_t ram_addr)
1439 cpu_physical_memory_reset_dirty(ram_addr,
1440 ram_addr + TARGET_PAGE_SIZE,
1441 CODE_DIRTY_FLAG);
1444 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1445 tested for self modifying code */
1446 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1447 target_ulong vaddr)
1449 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1452 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1453 unsigned long start, unsigned long length)
1455 unsigned long addr;
1456 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1457 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1458 if ((addr - start) < length) {
1459 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
1464 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1465 int dirty_flags)
1467 CPUState *env;
1468 unsigned long length, start1;
1469 int i, mask, len;
1470 uint8_t *p;
1472 start &= TARGET_PAGE_MASK;
1473 end = TARGET_PAGE_ALIGN(end);
1475 length = end - start;
1476 if (length == 0)
1477 return;
1478 len = length >> TARGET_PAGE_BITS;
1479 #ifdef USE_KQEMU
1480 /* XXX: should not depend on cpu context */
1481 env = first_cpu;
1482 if (env->kqemu_enabled) {
1483 ram_addr_t addr;
1484 addr = start;
1485 for(i = 0; i < len; i++) {
1486 kqemu_set_notdirty(env, addr);
1487 addr += TARGET_PAGE_SIZE;
1490 #endif
1491 mask = ~dirty_flags;
1492 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1493 for(i = 0; i < len; i++)
1494 p[i] &= mask;
1496 /* we modify the TLB cache so that the dirty bit will be set again
1497 when accessing the range */
1498 start1 = start + (unsigned long)phys_ram_base;
1499 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1500 for(i = 0; i < CPU_TLB_SIZE; i++)
1501 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
1502 for(i = 0; i < CPU_TLB_SIZE; i++)
1503 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
1504 #if (NB_MMU_MODES >= 3)
1505 for(i = 0; i < CPU_TLB_SIZE; i++)
1506 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1507 #if (NB_MMU_MODES == 4)
1508 for(i = 0; i < CPU_TLB_SIZE; i++)
1509 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1510 #endif
1511 #endif
1514 #if !defined(CONFIG_SOFTMMU)
1515 /* XXX: this is expensive */
1517 VirtPageDesc *p;
1518 int j;
1519 target_ulong addr;
1521 for(i = 0; i < L1_SIZE; i++) {
1522 p = l1_virt_map[i];
1523 if (p) {
1524 addr = i << (TARGET_PAGE_BITS + L2_BITS);
1525 for(j = 0; j < L2_SIZE; j++) {
1526 if (p->valid_tag == virt_valid_tag &&
1527 p->phys_addr >= start && p->phys_addr < end &&
1528 (p->prot & PROT_WRITE)) {
1529 if (addr < MMAP_AREA_END) {
1530 mprotect((void *)addr, TARGET_PAGE_SIZE,
1531 p->prot & ~PROT_WRITE);
1534 addr += TARGET_PAGE_SIZE;
1535 p++;
1540 #endif
1543 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1545 ram_addr_t ram_addr;
1547 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1548 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
1549 tlb_entry->addend - (unsigned long)phys_ram_base;
1550 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1551 tlb_entry->addr_write |= IO_MEM_NOTDIRTY;
1556 /* update the TLB according to the current state of the dirty bits */
1557 void cpu_tlb_update_dirty(CPUState *env)
1559 int i;
1560 for(i = 0; i < CPU_TLB_SIZE; i++)
1561 tlb_update_dirty(&env->tlb_table[0][i]);
1562 for(i = 0; i < CPU_TLB_SIZE; i++)
1563 tlb_update_dirty(&env->tlb_table[1][i]);
1564 #if (NB_MMU_MODES >= 3)
1565 for(i = 0; i < CPU_TLB_SIZE; i++)
1566 tlb_update_dirty(&env->tlb_table[2][i]);
1567 #if (NB_MMU_MODES == 4)
1568 for(i = 0; i < CPU_TLB_SIZE; i++)
1569 tlb_update_dirty(&env->tlb_table[3][i]);
1570 #endif
1571 #endif
1574 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry,
1575 unsigned long start)
1577 unsigned long addr;
1578 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_NOTDIRTY) {
1579 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1580 if (addr == start) {
1581 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_RAM;
1586 /* update the TLB corresponding to virtual page vaddr and phys addr
1587 addr so that it is no longer dirty */
1588 static inline void tlb_set_dirty(CPUState *env,
1589 unsigned long addr, target_ulong vaddr)
1591 int i;
1593 addr &= TARGET_PAGE_MASK;
1594 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1595 tlb_set_dirty1(&env->tlb_table[0][i], addr);
1596 tlb_set_dirty1(&env->tlb_table[1][i], addr);
1597 #if (NB_MMU_MODES >= 3)
1598 tlb_set_dirty1(&env->tlb_table[2][i], addr);
1599 #if (NB_MMU_MODES == 4)
1600 tlb_set_dirty1(&env->tlb_table[3][i], addr);
1601 #endif
1602 #endif
1605 /* add a new TLB entry. At most one entry for a given virtual address
1606 is permitted. Return 0 if OK or 2 if the page could not be mapped
1607 (can only happen in non SOFTMMU mode for I/O pages or pages
1608 conflicting with the host address space). */
1609 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1610 target_phys_addr_t paddr, int prot,
1611 int mmu_idx, int is_softmmu)
1613 PhysPageDesc *p;
1614 unsigned long pd;
1615 unsigned int index;
1616 target_ulong address;
1617 target_phys_addr_t addend;
1618 int ret;
1619 CPUTLBEntry *te;
1620 int i;
1622 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1623 if (!p) {
1624 pd = IO_MEM_UNASSIGNED;
1625 } else {
1626 pd = p->phys_offset;
1628 #if defined(DEBUG_TLB)
1629 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1630 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
1631 #endif
1633 ret = 0;
1634 #if !defined(CONFIG_SOFTMMU)
1635 if (is_softmmu)
1636 #endif
1638 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1639 /* IO memory case */
1640 address = vaddr | pd;
1641 addend = paddr;
1642 } else {
1643 /* standard memory */
1644 address = vaddr;
1645 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1648 /* Make accesses to pages with watchpoints go via the
1649 watchpoint trap routines. */
1650 for (i = 0; i < env->nb_watchpoints; i++) {
1651 if (vaddr == (env->watchpoint[i].vaddr & TARGET_PAGE_MASK)) {
1652 if (address & ~TARGET_PAGE_MASK) {
1653 env->watchpoint[i].addend = 0;
1654 address = vaddr | io_mem_watch;
1655 } else {
1656 env->watchpoint[i].addend = pd - paddr +
1657 (unsigned long) phys_ram_base;
1658 /* TODO: Figure out how to make read watchpoints coexist
1659 with code. */
1660 pd = (pd & TARGET_PAGE_MASK) | io_mem_watch | IO_MEM_ROMD;
1665 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1666 addend -= vaddr;
1667 te = &env->tlb_table[mmu_idx][index];
1668 te->addend = addend;
1669 if (prot & PAGE_READ) {
1670 te->addr_read = address;
1671 } else {
1672 te->addr_read = -1;
1674 if (prot & PAGE_EXEC) {
1675 te->addr_code = address;
1676 } else {
1677 te->addr_code = -1;
1679 if (prot & PAGE_WRITE) {
1680 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1681 (pd & IO_MEM_ROMD)) {
1682 /* write access calls the I/O callback */
1683 te->addr_write = vaddr |
1684 (pd & ~(TARGET_PAGE_MASK | IO_MEM_ROMD));
1685 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1686 !cpu_physical_memory_is_dirty(pd)) {
1687 te->addr_write = vaddr | IO_MEM_NOTDIRTY;
1688 } else {
1689 te->addr_write = address;
1691 } else {
1692 te->addr_write = -1;
1695 #if !defined(CONFIG_SOFTMMU)
1696 else {
1697 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM) {
1698 /* IO access: no mapping is done as it will be handled by the
1699 soft MMU */
1700 if (!(env->hflags & HF_SOFTMMU_MASK))
1701 ret = 2;
1702 } else {
1703 void *map_addr;
1705 if (vaddr >= MMAP_AREA_END) {
1706 ret = 2;
1707 } else {
1708 if (prot & PROT_WRITE) {
1709 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1710 #if defined(TARGET_HAS_SMC) || 1
1711 first_tb ||
1712 #endif
1713 ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1714 !cpu_physical_memory_is_dirty(pd))) {
1715 /* ROM: we do as if code was inside */
1716 /* if code is present, we only map as read only and save the
1717 original mapping */
1718 VirtPageDesc *vp;
1720 vp = virt_page_find_alloc(vaddr >> TARGET_PAGE_BITS, 1);
1721 vp->phys_addr = pd;
1722 vp->prot = prot;
1723 vp->valid_tag = virt_valid_tag;
1724 prot &= ~PAGE_WRITE;
1727 map_addr = mmap((void *)vaddr, TARGET_PAGE_SIZE, prot,
1728 MAP_SHARED | MAP_FIXED, phys_ram_fd, (pd & TARGET_PAGE_MASK));
1729 if (map_addr == MAP_FAILED) {
1730 cpu_abort(env, "mmap failed when mapped physical address 0x%08x to virtual address 0x%08x\n",
1731 paddr, vaddr);
1736 #endif
1737 return ret;
1740 /* called from signal handler: invalidate the code and unprotect the
1741 page. Return TRUE if the fault was succesfully handled. */
1742 int page_unprotect(target_ulong addr, unsigned long pc, void *puc)
1744 #if !defined(CONFIG_SOFTMMU)
1745 VirtPageDesc *vp;
1747 #if defined(DEBUG_TLB)
1748 printf("page_unprotect: addr=0x%08x\n", addr);
1749 #endif
1750 addr &= TARGET_PAGE_MASK;
1752 /* if it is not mapped, no need to worry here */
1753 if (addr >= MMAP_AREA_END)
1754 return 0;
1755 vp = virt_page_find(addr >> TARGET_PAGE_BITS);
1756 if (!vp)
1757 return 0;
1758 /* NOTE: in this case, validate_tag is _not_ tested as it
1759 validates only the code TLB */
1760 if (vp->valid_tag != virt_valid_tag)
1761 return 0;
1762 if (!(vp->prot & PAGE_WRITE))
1763 return 0;
1764 #if defined(DEBUG_TLB)
1765 printf("page_unprotect: addr=0x%08x phys_addr=0x%08x prot=%x\n",
1766 addr, vp->phys_addr, vp->prot);
1767 #endif
1768 if (mprotect((void *)addr, TARGET_PAGE_SIZE, vp->prot) < 0)
1769 cpu_abort(cpu_single_env, "error mprotect addr=0x%lx prot=%d\n",
1770 (unsigned long)addr, vp->prot);
1771 /* set the dirty bit */
1772 phys_ram_dirty[vp->phys_addr >> TARGET_PAGE_BITS] = 0xff;
1773 /* flush the code inside */
1774 tb_invalidate_phys_page(vp->phys_addr, pc, puc);
1775 return 1;
1776 #else
1777 return 0;
1778 #endif
1781 #else
1783 void tlb_flush(CPUState *env, int flush_global)
1787 void tlb_flush_page(CPUState *env, target_ulong addr)
1791 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1792 target_phys_addr_t paddr, int prot,
1793 int mmu_idx, int is_softmmu)
1795 return 0;
1798 /* dump memory mappings */
1799 void page_dump(FILE *f)
1801 unsigned long start, end;
1802 int i, j, prot, prot1;
1803 PageDesc *p;
1805 fprintf(f, "%-8s %-8s %-8s %s\n",
1806 "start", "end", "size", "prot");
1807 start = -1;
1808 end = -1;
1809 prot = 0;
1810 for(i = 0; i <= L1_SIZE; i++) {
1811 if (i < L1_SIZE)
1812 p = l1_map[i];
1813 else
1814 p = NULL;
1815 for(j = 0;j < L2_SIZE; j++) {
1816 if (!p)
1817 prot1 = 0;
1818 else
1819 prot1 = p[j].flags;
1820 if (prot1 != prot) {
1821 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
1822 if (start != -1) {
1823 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
1824 start, end, end - start,
1825 prot & PAGE_READ ? 'r' : '-',
1826 prot & PAGE_WRITE ? 'w' : '-',
1827 prot & PAGE_EXEC ? 'x' : '-');
1829 if (prot1 != 0)
1830 start = end;
1831 else
1832 start = -1;
1833 prot = prot1;
1835 if (!p)
1836 break;
1841 int page_get_flags(target_ulong address)
1843 PageDesc *p;
1845 p = page_find(address >> TARGET_PAGE_BITS);
1846 if (!p)
1847 return 0;
1848 return p->flags;
1851 /* modify the flags of a page and invalidate the code if
1852 necessary. The flag PAGE_WRITE_ORG is positionned automatically
1853 depending on PAGE_WRITE */
1854 void page_set_flags(target_ulong start, target_ulong end, int flags)
1856 PageDesc *p;
1857 target_ulong addr;
1859 start = start & TARGET_PAGE_MASK;
1860 end = TARGET_PAGE_ALIGN(end);
1861 if (flags & PAGE_WRITE)
1862 flags |= PAGE_WRITE_ORG;
1863 spin_lock(&tb_lock);
1864 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
1865 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
1866 /* if the write protection is set, then we invalidate the code
1867 inside */
1868 if (!(p->flags & PAGE_WRITE) &&
1869 (flags & PAGE_WRITE) &&
1870 p->first_tb) {
1871 tb_invalidate_phys_page(addr, 0, NULL);
1873 p->flags = flags;
1875 spin_unlock(&tb_lock);
1878 int page_check_range(target_ulong start, target_ulong len, int flags)
1880 PageDesc *p;
1881 target_ulong end;
1882 target_ulong addr;
1884 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
1885 start = start & TARGET_PAGE_MASK;
1887 if( end < start )
1888 /* we've wrapped around */
1889 return -1;
1890 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
1891 p = page_find(addr >> TARGET_PAGE_BITS);
1892 if( !p )
1893 return -1;
1894 if( !(p->flags & PAGE_VALID) )
1895 return -1;
1897 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
1898 return -1;
1899 if (flags & PAGE_WRITE) {
1900 if (!(p->flags & PAGE_WRITE_ORG))
1901 return -1;
1902 /* unprotect the page if it was put read-only because it
1903 contains translated code */
1904 if (!(p->flags & PAGE_WRITE)) {
1905 if (!page_unprotect(addr, 0, NULL))
1906 return -1;
1908 return 0;
1911 return 0;
1914 /* called from signal handler: invalidate the code and unprotect the
1915 page. Return TRUE if the fault was succesfully handled. */
1916 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
1918 unsigned int page_index, prot, pindex;
1919 PageDesc *p, *p1;
1920 target_ulong host_start, host_end, addr;
1922 host_start = address & qemu_host_page_mask;
1923 page_index = host_start >> TARGET_PAGE_BITS;
1924 p1 = page_find(page_index);
1925 if (!p1)
1926 return 0;
1927 host_end = host_start + qemu_host_page_size;
1928 p = p1;
1929 prot = 0;
1930 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
1931 prot |= p->flags;
1932 p++;
1934 /* if the page was really writable, then we change its
1935 protection back to writable */
1936 if (prot & PAGE_WRITE_ORG) {
1937 pindex = (address - host_start) >> TARGET_PAGE_BITS;
1938 if (!(p1[pindex].flags & PAGE_WRITE)) {
1939 mprotect((void *)g2h(host_start), qemu_host_page_size,
1940 (prot & PAGE_BITS) | PAGE_WRITE);
1941 p1[pindex].flags |= PAGE_WRITE;
1942 /* and since the content will be modified, we must invalidate
1943 the corresponding translated code. */
1944 tb_invalidate_phys_page(address, pc, puc);
1945 #ifdef DEBUG_TB_CHECK
1946 tb_invalidate_check(address);
1947 #endif
1948 return 1;
1951 return 0;
1954 static inline void tlb_set_dirty(CPUState *env,
1955 unsigned long addr, target_ulong vaddr)
1958 #endif /* defined(CONFIG_USER_ONLY) */
1960 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1961 int memory);
1962 static void *subpage_init (target_phys_addr_t base, uint32_t *phys,
1963 int orig_memory);
1964 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
1965 need_subpage) \
1966 do { \
1967 if (addr > start_addr) \
1968 start_addr2 = 0; \
1969 else { \
1970 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
1971 if (start_addr2 > 0) \
1972 need_subpage = 1; \
1975 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
1976 end_addr2 = TARGET_PAGE_SIZE - 1; \
1977 else { \
1978 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
1979 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
1980 need_subpage = 1; \
1982 } while (0)
1984 /* register physical memory. 'size' must be a multiple of the target
1985 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
1986 io memory page */
1987 void cpu_register_physical_memory(target_phys_addr_t start_addr,
1988 unsigned long size,
1989 unsigned long phys_offset)
1991 target_phys_addr_t addr, end_addr;
1992 PhysPageDesc *p;
1993 CPUState *env;
1994 unsigned long orig_size = size;
1995 void *subpage;
1997 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
1998 end_addr = start_addr + (target_phys_addr_t)size;
1999 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2000 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2001 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2002 unsigned long orig_memory = p->phys_offset;
2003 target_phys_addr_t start_addr2, end_addr2;
2004 int need_subpage = 0;
2006 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2007 need_subpage);
2008 if (need_subpage) {
2009 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2010 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2011 &p->phys_offset, orig_memory);
2012 } else {
2013 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2014 >> IO_MEM_SHIFT];
2016 subpage_register(subpage, start_addr2, end_addr2, phys_offset);
2017 } else {
2018 p->phys_offset = phys_offset;
2019 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2020 (phys_offset & IO_MEM_ROMD))
2021 phys_offset += TARGET_PAGE_SIZE;
2023 } else {
2024 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2025 p->phys_offset = phys_offset;
2026 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2027 (phys_offset & IO_MEM_ROMD))
2028 phys_offset += TARGET_PAGE_SIZE;
2029 else {
2030 target_phys_addr_t start_addr2, end_addr2;
2031 int need_subpage = 0;
2033 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2034 end_addr2, need_subpage);
2036 if (need_subpage) {
2037 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2038 &p->phys_offset, IO_MEM_UNASSIGNED);
2039 subpage_register(subpage, start_addr2, end_addr2,
2040 phys_offset);
2046 /* since each CPU stores ram addresses in its TLB cache, we must
2047 reset the modified entries */
2048 /* XXX: slow ! */
2049 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2050 tlb_flush(env, 1);
2054 /* XXX: temporary until new memory mapping API */
2055 uint32_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2057 PhysPageDesc *p;
2059 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2060 if (!p)
2061 return IO_MEM_UNASSIGNED;
2062 return p->phys_offset;
2065 /* XXX: better than nothing */
2066 ram_addr_t qemu_ram_alloc(unsigned int size)
2068 ram_addr_t addr;
2069 if ((phys_ram_alloc_offset + size) >= phys_ram_size) {
2070 fprintf(stderr, "Not enough memory (requested_size = %u, max memory = %d)\n",
2071 size, phys_ram_size);
2072 abort();
2074 addr = phys_ram_alloc_offset;
2075 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2076 return addr;
2079 void qemu_ram_free(ram_addr_t addr)
2083 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2085 #ifdef DEBUG_UNASSIGNED
2086 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2087 #endif
2088 #ifdef TARGET_SPARC
2089 do_unassigned_access(addr, 0, 0, 0);
2090 #elif TARGET_CRIS
2091 do_unassigned_access(addr, 0, 0, 0);
2092 #endif
2093 return 0;
2096 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2098 #ifdef DEBUG_UNASSIGNED
2099 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2100 #endif
2101 #ifdef TARGET_SPARC
2102 do_unassigned_access(addr, 1, 0, 0);
2103 #elif TARGET_CRIS
2104 do_unassigned_access(addr, 1, 0, 0);
2105 #endif
2108 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2109 unassigned_mem_readb,
2110 unassigned_mem_readb,
2111 unassigned_mem_readb,
2114 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2115 unassigned_mem_writeb,
2116 unassigned_mem_writeb,
2117 unassigned_mem_writeb,
2120 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2122 unsigned long ram_addr;
2123 int dirty_flags;
2124 ram_addr = addr - (unsigned long)phys_ram_base;
2125 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2126 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2127 #if !defined(CONFIG_USER_ONLY)
2128 tb_invalidate_phys_page_fast(ram_addr, 1);
2129 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2130 #endif
2132 stb_p((uint8_t *)(long)addr, val);
2133 #ifdef USE_KQEMU
2134 if (cpu_single_env->kqemu_enabled &&
2135 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2136 kqemu_modify_page(cpu_single_env, ram_addr);
2137 #endif
2138 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2139 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2140 /* we remove the notdirty callback only if the code has been
2141 flushed */
2142 if (dirty_flags == 0xff)
2143 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
2146 static void notdirty_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2148 unsigned long ram_addr;
2149 int dirty_flags;
2150 ram_addr = addr - (unsigned long)phys_ram_base;
2151 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2152 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2153 #if !defined(CONFIG_USER_ONLY)
2154 tb_invalidate_phys_page_fast(ram_addr, 2);
2155 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2156 #endif
2158 stw_p((uint8_t *)(long)addr, val);
2159 #ifdef USE_KQEMU
2160 if (cpu_single_env->kqemu_enabled &&
2161 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2162 kqemu_modify_page(cpu_single_env, ram_addr);
2163 #endif
2164 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2165 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2166 /* we remove the notdirty callback only if the code has been
2167 flushed */
2168 if (dirty_flags == 0xff)
2169 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
2172 static void notdirty_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2174 unsigned long ram_addr;
2175 int dirty_flags;
2176 ram_addr = addr - (unsigned long)phys_ram_base;
2177 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2178 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2179 #if !defined(CONFIG_USER_ONLY)
2180 tb_invalidate_phys_page_fast(ram_addr, 4);
2181 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2182 #endif
2184 stl_p((uint8_t *)(long)addr, val);
2185 #ifdef USE_KQEMU
2186 if (cpu_single_env->kqemu_enabled &&
2187 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2188 kqemu_modify_page(cpu_single_env, ram_addr);
2189 #endif
2190 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2191 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2192 /* we remove the notdirty callback only if the code has been
2193 flushed */
2194 if (dirty_flags == 0xff)
2195 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
2198 static CPUReadMemoryFunc *error_mem_read[3] = {
2199 NULL, /* never used */
2200 NULL, /* never used */
2201 NULL, /* never used */
2204 static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2205 notdirty_mem_writeb,
2206 notdirty_mem_writew,
2207 notdirty_mem_writel,
2210 #if defined(CONFIG_SOFTMMU)
2211 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2212 so these check for a hit then pass through to the normal out-of-line
2213 phys routines. */
2214 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2216 return ldub_phys(addr);
2219 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2221 return lduw_phys(addr);
2224 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2226 return ldl_phys(addr);
2229 /* Generate a debug exception if a watchpoint has been hit.
2230 Returns the real physical address of the access. addr will be a host
2231 address in case of a RAM location. */
2232 static target_ulong check_watchpoint(target_phys_addr_t addr)
2234 CPUState *env = cpu_single_env;
2235 target_ulong watch;
2236 target_ulong retaddr;
2237 int i;
2239 retaddr = addr;
2240 for (i = 0; i < env->nb_watchpoints; i++) {
2241 watch = env->watchpoint[i].vaddr;
2242 if (((env->mem_write_vaddr ^ watch) & TARGET_PAGE_MASK) == 0) {
2243 retaddr = addr - env->watchpoint[i].addend;
2244 if (((addr ^ watch) & ~TARGET_PAGE_MASK) == 0) {
2245 cpu_single_env->watchpoint_hit = i + 1;
2246 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_DEBUG);
2247 break;
2251 return retaddr;
2254 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2255 uint32_t val)
2257 addr = check_watchpoint(addr);
2258 stb_phys(addr, val);
2261 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2262 uint32_t val)
2264 addr = check_watchpoint(addr);
2265 stw_phys(addr, val);
2268 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2269 uint32_t val)
2271 addr = check_watchpoint(addr);
2272 stl_phys(addr, val);
2275 static CPUReadMemoryFunc *watch_mem_read[3] = {
2276 watch_mem_readb,
2277 watch_mem_readw,
2278 watch_mem_readl,
2281 static CPUWriteMemoryFunc *watch_mem_write[3] = {
2282 watch_mem_writeb,
2283 watch_mem_writew,
2284 watch_mem_writel,
2286 #endif
2288 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2289 unsigned int len)
2291 CPUReadMemoryFunc **mem_read;
2292 uint32_t ret;
2293 unsigned int idx;
2295 idx = SUBPAGE_IDX(addr - mmio->base);
2296 #if defined(DEBUG_SUBPAGE)
2297 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2298 mmio, len, addr, idx);
2299 #endif
2300 mem_read = mmio->mem_read[idx];
2301 ret = (*mem_read[len])(mmio->opaque[idx], addr);
2303 return ret;
2306 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2307 uint32_t value, unsigned int len)
2309 CPUWriteMemoryFunc **mem_write;
2310 unsigned int idx;
2312 idx = SUBPAGE_IDX(addr - mmio->base);
2313 #if defined(DEBUG_SUBPAGE)
2314 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2315 mmio, len, addr, idx, value);
2316 #endif
2317 mem_write = mmio->mem_write[idx];
2318 (*mem_write[len])(mmio->opaque[idx], addr, value);
2321 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2323 #if defined(DEBUG_SUBPAGE)
2324 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2325 #endif
2327 return subpage_readlen(opaque, addr, 0);
2330 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2331 uint32_t value)
2333 #if defined(DEBUG_SUBPAGE)
2334 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2335 #endif
2336 subpage_writelen(opaque, addr, value, 0);
2339 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2341 #if defined(DEBUG_SUBPAGE)
2342 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2343 #endif
2345 return subpage_readlen(opaque, addr, 1);
2348 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2349 uint32_t value)
2351 #if defined(DEBUG_SUBPAGE)
2352 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2353 #endif
2354 subpage_writelen(opaque, addr, value, 1);
2357 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2359 #if defined(DEBUG_SUBPAGE)
2360 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2361 #endif
2363 return subpage_readlen(opaque, addr, 2);
2366 static void subpage_writel (void *opaque,
2367 target_phys_addr_t addr, uint32_t value)
2369 #if defined(DEBUG_SUBPAGE)
2370 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2371 #endif
2372 subpage_writelen(opaque, addr, value, 2);
2375 static CPUReadMemoryFunc *subpage_read[] = {
2376 &subpage_readb,
2377 &subpage_readw,
2378 &subpage_readl,
2381 static CPUWriteMemoryFunc *subpage_write[] = {
2382 &subpage_writeb,
2383 &subpage_writew,
2384 &subpage_writel,
2387 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2388 int memory)
2390 int idx, eidx;
2392 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2393 return -1;
2394 idx = SUBPAGE_IDX(start);
2395 eidx = SUBPAGE_IDX(end);
2396 #if defined(DEBUG_SUBPAGE)
2397 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2398 mmio, start, end, idx, eidx, memory);
2399 #endif
2400 memory >>= IO_MEM_SHIFT;
2401 for (; idx <= eidx; idx++) {
2402 mmio->mem_read[idx] = io_mem_read[memory];
2403 mmio->mem_write[idx] = io_mem_write[memory];
2404 mmio->opaque[idx] = io_mem_opaque[memory];
2407 return 0;
2410 static void *subpage_init (target_phys_addr_t base, uint32_t *phys,
2411 int orig_memory)
2413 subpage_t *mmio;
2414 int subpage_memory;
2416 mmio = qemu_mallocz(sizeof(subpage_t));
2417 if (mmio != NULL) {
2418 mmio->base = base;
2419 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2420 #if defined(DEBUG_SUBPAGE)
2421 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2422 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2423 #endif
2424 *phys = subpage_memory | IO_MEM_SUBPAGE;
2425 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory);
2428 return mmio;
2431 static void io_mem_init(void)
2433 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
2434 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
2435 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
2436 io_mem_nb = 5;
2438 #if defined(CONFIG_SOFTMMU)
2439 io_mem_watch = cpu_register_io_memory(-1, watch_mem_read,
2440 watch_mem_write, NULL);
2441 #endif
2442 /* alloc dirty bits array */
2443 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
2444 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
2447 /* mem_read and mem_write are arrays of functions containing the
2448 function to access byte (index 0), word (index 1) and dword (index
2449 2). All functions must be supplied. If io_index is non zero, the
2450 corresponding io zone is modified. If it is zero, a new io zone is
2451 allocated. The return value can be used with
2452 cpu_register_physical_memory(). (-1) is returned if error. */
2453 int cpu_register_io_memory(int io_index,
2454 CPUReadMemoryFunc **mem_read,
2455 CPUWriteMemoryFunc **mem_write,
2456 void *opaque)
2458 int i;
2460 if (io_index <= 0) {
2461 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
2462 return -1;
2463 io_index = io_mem_nb++;
2464 } else {
2465 if (io_index >= IO_MEM_NB_ENTRIES)
2466 return -1;
2469 for(i = 0;i < 3; i++) {
2470 io_mem_read[io_index][i] = mem_read[i];
2471 io_mem_write[io_index][i] = mem_write[i];
2473 io_mem_opaque[io_index] = opaque;
2474 return io_index << IO_MEM_SHIFT;
2477 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2479 return io_mem_write[io_index >> IO_MEM_SHIFT];
2482 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2484 return io_mem_read[io_index >> IO_MEM_SHIFT];
2487 /* physical memory access (slow version, mainly for debug) */
2488 #if defined(CONFIG_USER_ONLY)
2489 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2490 int len, int is_write)
2492 int l, flags;
2493 target_ulong page;
2494 void * p;
2496 while (len > 0) {
2497 page = addr & TARGET_PAGE_MASK;
2498 l = (page + TARGET_PAGE_SIZE) - addr;
2499 if (l > len)
2500 l = len;
2501 flags = page_get_flags(page);
2502 if (!(flags & PAGE_VALID))
2503 return;
2504 if (is_write) {
2505 if (!(flags & PAGE_WRITE))
2506 return;
2507 /* XXX: this code should not depend on lock_user */
2508 if (!(p = lock_user(VERIFY_WRITE, addr, len, 0)))
2509 /* FIXME - should this return an error rather than just fail? */
2510 return;
2511 memcpy(p, buf, len);
2512 unlock_user(p, addr, len);
2513 } else {
2514 if (!(flags & PAGE_READ))
2515 return;
2516 /* XXX: this code should not depend on lock_user */
2517 if (!(p = lock_user(VERIFY_READ, addr, len, 1)))
2518 /* FIXME - should this return an error rather than just fail? */
2519 return;
2520 memcpy(buf, p, len);
2521 unlock_user(p, addr, 0);
2523 len -= l;
2524 buf += l;
2525 addr += l;
2529 #else
2530 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2531 int len, int is_write)
2533 int l, io_index;
2534 uint8_t *ptr;
2535 uint32_t val;
2536 target_phys_addr_t page;
2537 unsigned long pd;
2538 PhysPageDesc *p;
2540 while (len > 0) {
2541 page = addr & TARGET_PAGE_MASK;
2542 l = (page + TARGET_PAGE_SIZE) - addr;
2543 if (l > len)
2544 l = len;
2545 p = phys_page_find(page >> TARGET_PAGE_BITS);
2546 if (!p) {
2547 pd = IO_MEM_UNASSIGNED;
2548 } else {
2549 pd = p->phys_offset;
2552 if (is_write) {
2553 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2554 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2555 /* XXX: could force cpu_single_env to NULL to avoid
2556 potential bugs */
2557 if (l >= 4 && ((addr & 3) == 0)) {
2558 /* 32 bit write access */
2559 val = ldl_p(buf);
2560 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2561 l = 4;
2562 } else if (l >= 2 && ((addr & 1) == 0)) {
2563 /* 16 bit write access */
2564 val = lduw_p(buf);
2565 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
2566 l = 2;
2567 } else {
2568 /* 8 bit write access */
2569 val = ldub_p(buf);
2570 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
2571 l = 1;
2573 } else {
2574 unsigned long addr1;
2575 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2576 /* RAM case */
2577 ptr = phys_ram_base + addr1;
2578 memcpy(ptr, buf, l);
2579 if (!cpu_physical_memory_is_dirty(addr1)) {
2580 /* invalidate code */
2581 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2582 /* set dirty bit */
2583 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2584 (0xff & ~CODE_DIRTY_FLAG);
2587 } else {
2588 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2589 !(pd & IO_MEM_ROMD)) {
2590 /* I/O case */
2591 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2592 if (l >= 4 && ((addr & 3) == 0)) {
2593 /* 32 bit read access */
2594 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2595 stl_p(buf, val);
2596 l = 4;
2597 } else if (l >= 2 && ((addr & 1) == 0)) {
2598 /* 16 bit read access */
2599 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
2600 stw_p(buf, val);
2601 l = 2;
2602 } else {
2603 /* 8 bit read access */
2604 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
2605 stb_p(buf, val);
2606 l = 1;
2608 } else {
2609 /* RAM case */
2610 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2611 (addr & ~TARGET_PAGE_MASK);
2612 memcpy(buf, ptr, l);
2615 len -= l;
2616 buf += l;
2617 addr += l;
2621 /* used for ROM loading : can write in RAM and ROM */
2622 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
2623 const uint8_t *buf, int len)
2625 int l;
2626 uint8_t *ptr;
2627 target_phys_addr_t page;
2628 unsigned long pd;
2629 PhysPageDesc *p;
2631 while (len > 0) {
2632 page = addr & TARGET_PAGE_MASK;
2633 l = (page + TARGET_PAGE_SIZE) - addr;
2634 if (l > len)
2635 l = len;
2636 p = phys_page_find(page >> TARGET_PAGE_BITS);
2637 if (!p) {
2638 pd = IO_MEM_UNASSIGNED;
2639 } else {
2640 pd = p->phys_offset;
2643 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2644 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
2645 !(pd & IO_MEM_ROMD)) {
2646 /* do nothing */
2647 } else {
2648 unsigned long addr1;
2649 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2650 /* ROM/RAM case */
2651 ptr = phys_ram_base + addr1;
2652 memcpy(ptr, buf, l);
2654 len -= l;
2655 buf += l;
2656 addr += l;
2661 /* warning: addr must be aligned */
2662 uint32_t ldl_phys(target_phys_addr_t addr)
2664 int io_index;
2665 uint8_t *ptr;
2666 uint32_t val;
2667 unsigned long pd;
2668 PhysPageDesc *p;
2670 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2671 if (!p) {
2672 pd = IO_MEM_UNASSIGNED;
2673 } else {
2674 pd = p->phys_offset;
2677 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2678 !(pd & IO_MEM_ROMD)) {
2679 /* I/O case */
2680 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2681 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2682 } else {
2683 /* RAM case */
2684 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2685 (addr & ~TARGET_PAGE_MASK);
2686 val = ldl_p(ptr);
2688 return val;
2691 /* warning: addr must be aligned */
2692 uint64_t ldq_phys(target_phys_addr_t addr)
2694 int io_index;
2695 uint8_t *ptr;
2696 uint64_t val;
2697 unsigned long pd;
2698 PhysPageDesc *p;
2700 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2701 if (!p) {
2702 pd = IO_MEM_UNASSIGNED;
2703 } else {
2704 pd = p->phys_offset;
2707 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2708 !(pd & IO_MEM_ROMD)) {
2709 /* I/O case */
2710 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2711 #ifdef TARGET_WORDS_BIGENDIAN
2712 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
2713 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
2714 #else
2715 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2716 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
2717 #endif
2718 } else {
2719 /* RAM case */
2720 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2721 (addr & ~TARGET_PAGE_MASK);
2722 val = ldq_p(ptr);
2724 return val;
2727 /* XXX: optimize */
2728 uint32_t ldub_phys(target_phys_addr_t addr)
2730 uint8_t val;
2731 cpu_physical_memory_read(addr, &val, 1);
2732 return val;
2735 /* XXX: optimize */
2736 uint32_t lduw_phys(target_phys_addr_t addr)
2738 uint16_t val;
2739 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
2740 return tswap16(val);
2743 /* warning: addr must be aligned. The ram page is not masked as dirty
2744 and the code inside is not invalidated. It is useful if the dirty
2745 bits are used to track modified PTEs */
2746 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
2748 int io_index;
2749 uint8_t *ptr;
2750 unsigned long pd;
2751 PhysPageDesc *p;
2753 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2754 if (!p) {
2755 pd = IO_MEM_UNASSIGNED;
2756 } else {
2757 pd = p->phys_offset;
2760 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2761 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2762 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2763 } else {
2764 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2765 (addr & ~TARGET_PAGE_MASK);
2766 stl_p(ptr, val);
2770 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
2772 int io_index;
2773 uint8_t *ptr;
2774 unsigned long pd;
2775 PhysPageDesc *p;
2777 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2778 if (!p) {
2779 pd = IO_MEM_UNASSIGNED;
2780 } else {
2781 pd = p->phys_offset;
2784 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2785 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2786 #ifdef TARGET_WORDS_BIGENDIAN
2787 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
2788 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
2789 #else
2790 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2791 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
2792 #endif
2793 } else {
2794 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2795 (addr & ~TARGET_PAGE_MASK);
2796 stq_p(ptr, val);
2800 /* warning: addr must be aligned */
2801 void stl_phys(target_phys_addr_t addr, uint32_t val)
2803 int io_index;
2804 uint8_t *ptr;
2805 unsigned long pd;
2806 PhysPageDesc *p;
2808 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2809 if (!p) {
2810 pd = IO_MEM_UNASSIGNED;
2811 } else {
2812 pd = p->phys_offset;
2815 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2816 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2817 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2818 } else {
2819 unsigned long addr1;
2820 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2821 /* RAM case */
2822 ptr = phys_ram_base + addr1;
2823 stl_p(ptr, val);
2824 if (!cpu_physical_memory_is_dirty(addr1)) {
2825 /* invalidate code */
2826 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2827 /* set dirty bit */
2828 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2829 (0xff & ~CODE_DIRTY_FLAG);
2834 /* XXX: optimize */
2835 void stb_phys(target_phys_addr_t addr, uint32_t val)
2837 uint8_t v = val;
2838 cpu_physical_memory_write(addr, &v, 1);
2841 /* XXX: optimize */
2842 void stw_phys(target_phys_addr_t addr, uint32_t val)
2844 uint16_t v = tswap16(val);
2845 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
2848 /* XXX: optimize */
2849 void stq_phys(target_phys_addr_t addr, uint64_t val)
2851 val = tswap64(val);
2852 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
2855 #endif
2857 /* virtual memory access for debug */
2858 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
2859 uint8_t *buf, int len, int is_write)
2861 int l;
2862 target_phys_addr_t phys_addr;
2863 target_ulong page;
2865 while (len > 0) {
2866 page = addr & TARGET_PAGE_MASK;
2867 phys_addr = cpu_get_phys_page_debug(env, page);
2868 /* if no physical page mapped, return an error */
2869 if (phys_addr == -1)
2870 return -1;
2871 l = (page + TARGET_PAGE_SIZE) - addr;
2872 if (l > len)
2873 l = len;
2874 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
2875 buf, l, is_write);
2876 len -= l;
2877 buf += l;
2878 addr += l;
2880 return 0;
2883 void dump_exec_info(FILE *f,
2884 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
2886 int i, target_code_size, max_target_code_size;
2887 int direct_jmp_count, direct_jmp2_count, cross_page;
2888 TranslationBlock *tb;
2890 target_code_size = 0;
2891 max_target_code_size = 0;
2892 cross_page = 0;
2893 direct_jmp_count = 0;
2894 direct_jmp2_count = 0;
2895 for(i = 0; i < nb_tbs; i++) {
2896 tb = &tbs[i];
2897 target_code_size += tb->size;
2898 if (tb->size > max_target_code_size)
2899 max_target_code_size = tb->size;
2900 if (tb->page_addr[1] != -1)
2901 cross_page++;
2902 if (tb->tb_next_offset[0] != 0xffff) {
2903 direct_jmp_count++;
2904 if (tb->tb_next_offset[1] != 0xffff) {
2905 direct_jmp2_count++;
2909 /* XXX: avoid using doubles ? */
2910 cpu_fprintf(f, "TB count %d\n", nb_tbs);
2911 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
2912 nb_tbs ? target_code_size / nb_tbs : 0,
2913 max_target_code_size);
2914 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
2915 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
2916 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
2917 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
2918 cross_page,
2919 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
2920 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
2921 direct_jmp_count,
2922 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
2923 direct_jmp2_count,
2924 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
2925 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
2926 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
2927 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
2930 #if !defined(CONFIG_USER_ONLY)
2932 #define MMUSUFFIX _cmmu
2933 #define GETPC() NULL
2934 #define env cpu_single_env
2935 #define SOFTMMU_CODE_ACCESS
2937 #define SHIFT 0
2938 #include "softmmu_template.h"
2940 #define SHIFT 1
2941 #include "softmmu_template.h"
2943 #define SHIFT 2
2944 #include "softmmu_template.h"
2946 #define SHIFT 3
2947 #include "softmmu_template.h"
2949 #undef env
2951 #endif