Solaris SMBD hacks (Ben Taylor).
[qemu/mini2440.git] / qemu-doc.texi
blob9b9df33053febad4d2445aff3b246b6b05c19fde
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4 @settitle QEMU Emulator User Documentation
5 @exampleindent 0
6 @paragraphindent 0
7 @c %**end of header
9 @iftex
10 @titlepage
11 @sp 7
12 @center @titlefont{QEMU Emulator}
13 @sp 1
14 @center @titlefont{User Documentation}
15 @sp 3
16 @end titlepage
17 @end iftex
19 @ifnottex
20 @node Top
21 @top
23 @menu
24 * Introduction::
25 * Installation::
26 * QEMU PC System emulator::
27 * QEMU System emulator for non PC targets::
28 * QEMU Linux User space emulator::
29 * compilation:: Compilation from the sources
30 * Index::
31 @end menu
32 @end ifnottex
34 @contents
36 @node Introduction
37 @chapter Introduction
39 @menu
40 * intro_features:: Features
41 @end menu
43 @node intro_features
44 @section Features
46 QEMU is a FAST! processor emulator using dynamic translation to
47 achieve good emulation speed.
49 QEMU has two operating modes:
51 @itemize @minus
53 @item 
54 Full system emulation. In this mode, QEMU emulates a full system (for
55 example a PC), including one or several processors and various
56 peripherals. It can be used to launch different Operating Systems
57 without rebooting the PC or to debug system code.
59 @item 
60 User mode emulation (Linux host only). In this mode, QEMU can launch
61 Linux processes compiled for one CPU on another CPU. It can be used to
62 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 to ease cross-compilation and cross-debugging.
65 @end itemize
67 QEMU can run without an host kernel driver and yet gives acceptable
68 performance. 
70 For system emulation, the following hardware targets are supported:
71 @itemize
72 @item PC (x86 or x86_64 processor)
73 @item ISA PC (old style PC without PCI bus)
74 @item PREP (PowerPC processor)
75 @item G3 BW PowerMac (PowerPC processor)
76 @item Mac99 PowerMac (PowerPC processor, in progress)
77 @item Sun4m (32-bit Sparc processor)
78 @item Sun4u (64-bit Sparc processor, in progress)
79 @item Malta board (32-bit MIPS processor)
80 @item ARM Integrator/CP (ARM926E or 1026E processor)
81 @item ARM Versatile baseboard (ARM926E)
82 @end itemize
84 For user emulation, x86, PowerPC, ARM, MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
86 @node Installation
87 @chapter Installation
89 If you want to compile QEMU yourself, see @ref{compilation}.
91 @menu
92 * install_linux::   Linux
93 * install_windows:: Windows
94 * install_mac::     Macintosh
95 @end menu
97 @node install_linux
98 @section Linux
100 If a precompiled package is available for your distribution - you just
101 have to install it. Otherwise, see @ref{compilation}.
103 @node install_windows
104 @section Windows
106 Download the experimental binary installer at
107 @url{http://www.free.oszoo.org/@/download.html}.
109 @node install_mac
110 @section Mac OS X
112 Download the experimental binary installer at
113 @url{http://www.free.oszoo.org/@/download.html}.
115 @node QEMU PC System emulator
116 @chapter QEMU PC System emulator
118 @menu
119 * pcsys_introduction:: Introduction
120 * pcsys_quickstart::   Quick Start
121 * sec_invocation::     Invocation
122 * pcsys_keys::         Keys
123 * pcsys_monitor::      QEMU Monitor
124 * disk_images::        Disk Images
125 * pcsys_network::      Network emulation
126 * direct_linux_boot::  Direct Linux Boot
127 * pcsys_usb::          USB emulation
128 * gdb_usage::          GDB usage
129 * pcsys_os_specific::  Target OS specific information
130 @end menu
132 @node pcsys_introduction
133 @section Introduction
135 @c man begin DESCRIPTION
137 The QEMU PC System emulator simulates the
138 following peripherals:
140 @itemize @minus
141 @item 
142 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
143 @item
144 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
145 extensions (hardware level, including all non standard modes).
146 @item
147 PS/2 mouse and keyboard
148 @item 
149 2 PCI IDE interfaces with hard disk and CD-ROM support
150 @item
151 Floppy disk
152 @item 
153 NE2000 PCI network adapters
154 @item
155 Serial ports
156 @item
157 Creative SoundBlaster 16 sound card
158 @item
159 ENSONIQ AudioPCI ES1370 sound card
160 @item
161 Adlib(OPL2) - Yamaha YM3812 compatible chip
162 @item
163 PCI UHCI USB controller and a virtual USB hub.
164 @end itemize
166 SMP is supported with up to 255 CPUs.
168 Note that adlib is only available when QEMU was configured with
169 -enable-adlib
171 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
172 VGA BIOS.
174 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
176 @c man end
178 @node pcsys_quickstart
179 @section Quick Start
181 Download and uncompress the linux image (@file{linux.img}) and type:
183 @example
184 qemu linux.img
185 @end example
187 Linux should boot and give you a prompt.
189 @node sec_invocation
190 @section Invocation
192 @example
193 @c man begin SYNOPSIS
194 usage: qemu [options] [disk_image]
195 @c man end
196 @end example
198 @c man begin OPTIONS
199 @var{disk_image} is a raw hard disk image for IDE hard disk 0.
201 General options:
202 @table @option
203 @item -M machine
204 Select the emulated machine (@code{-M ?} for list)
206 @item -fda file
207 @item -fdb file
208 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
209 use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
211 @item -hda file
212 @item -hdb file
213 @item -hdc file
214 @item -hdd file
215 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
217 @item -cdrom file
218 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
219 @option{-cdrom} at the same time). You can use the host CD-ROM by
220 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
222 @item -boot [a|c|d]
223 Boot on floppy (a), hard disk (c) or CD-ROM (d). Hard disk boot is
224 the default.
226 @item -disk ide,img=file[,hdx=a..dd][,type=disk|cdrom]
227 Use @var{file} as the IDE disk/CD-ROM image. The defaults are: hdx=a,type=disk
229 @item -disk scsi,img=file[,sdx=a..g][,type=disk|cdrom][,id=n]
230 Use @var{file} as the SCSI disk/CD-ROM image. The defaults are: sdx=a,type=disk,id='auto assign'
232 @item -snapshot
233 Write to temporary files instead of disk image files. In this case,
234 the raw disk image you use is not written back. You can however force
235 the write back by pressing @key{C-a s} (@pxref{disk_images}).
237 @item -no-fd-bootchk
238 Disable boot signature checking for floppy disks in Bochs BIOS. It may
239 be needed to boot from old floppy disks.
241 @item -m megs
242 Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
244 @item -smp n
245 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
246 CPUs are supported.
248 @item -nographic
250 Normally, QEMU uses SDL to display the VGA output. With this option,
251 you can totally disable graphical output so that QEMU is a simple
252 command line application. The emulated serial port is redirected on
253 the console. Therefore, you can still use QEMU to debug a Linux kernel
254 with a serial console.
256 @item -vnc display
258 Normally, QEMU uses SDL to display the VGA output.  With this option,
259 you can have QEMU listen on VNC display @var{display} and redirect the VGA
260 display over the VNC session.  It is very useful to enable the usb
261 tablet device when using this option (option @option{-usbdevice
262 tablet}). When using the VNC display, you must use the @option{-k}
263 option to set the keyboard layout if you are not using en-us.
265 @var{display} may be in the form @var{interface:d}, in which case connections
266 will only be allowed from @var{interface} on display @var{d}. Optionally,
267 @var{interface} can be omitted.  @var{display} can also be in the form
268 @var{unix:path} where @var{path} is the location of a unix socket to listen for
269 connections on.
272 @item -k language
274 Use keyboard layout @var{language} (for example @code{fr} for
275 French). This option is only needed where it is not easy to get raw PC
276 keycodes (e.g. on Macs, with some X11 servers or with a VNC
277 display). You don't normally need to use it on PC/Linux or PC/Windows
278 hosts.
280 The available layouts are:
281 @example
282 ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
283 da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
284 de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
285 @end example
287 The default is @code{en-us}.
289 @item -audio-help
291 Will show the audio subsystem help: list of drivers, tunable
292 parameters.
294 @item -soundhw card1,card2,... or -soundhw all
296 Enable audio and selected sound hardware. Use ? to print all
297 available sound hardware.
299 @example
300 qemu -soundhw sb16,adlib hda
301 qemu -soundhw es1370 hda
302 qemu -soundhw all hda
303 qemu -soundhw ?
304 @end example
306 @item -localtime
307 Set the real time clock to local time (the default is to UTC
308 time). This option is needed to have correct date in MS-DOS or
309 Windows.
311 @item -full-screen
312 Start in full screen.
314 @item -pidfile file
315 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
316 from a script.
318 @item -daemonize
319 Daemonize the QEMU process after initialization.  QEMU will not detach from
320 standard IO until it is ready to receive connections on any of its devices.
321 This option is a useful way for external programs to launch QEMU without having
322 to cope with initialization race conditions.
324 @item -win2k-hack
325 Use it when installing Windows 2000 to avoid a disk full bug. After
326 Windows 2000 is installed, you no longer need this option (this option
327 slows down the IDE transfers).
329 @end table
331 USB options:
332 @table @option
334 @item -usb
335 Enable the USB driver (will be the default soon)
337 @item -usbdevice devname
338 Add the USB device @var{devname}. @xref{usb_devices}.
339 @end table
341 Network options:
343 @table @option
345 @item -net nic[,vlan=n][,macaddr=addr][,model=type]
346 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
347 = 0 is the default). The NIC is currently an NE2000 on the PC
348 target. Optionally, the MAC address can be changed. If no
349 @option{-net} option is specified, a single NIC is created.
350 Qemu can emulate several different models of network card.  Valid values for
351 @var{type} are @code{ne2k_pci}, @code{ne2k_isa}, @code{rtl8139},
352 @code{smc91c111} and @code{lance}.  Not all devices are supported on all
353 targets.
355 @item -net user[,vlan=n][,hostname=name]
356 Use the user mode network stack which requires no administrator
357 priviledge to run.  @option{hostname=name} can be used to specify the client
358 hostname reported by the builtin DHCP server.
360 @item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
361 Connect the host TAP network interface @var{name} to VLAN @var{n} and
362 use the network script @var{file} to configure it. The default
363 network script is @file{/etc/qemu-ifup}. If @var{name} is not
364 provided, the OS automatically provides one.  @option{fd=h} can be
365 used to specify the handle of an already opened host TAP interface. Example:
367 @example
368 qemu linux.img -net nic -net tap
369 @end example
371 More complicated example (two NICs, each one connected to a TAP device)
372 @example
373 qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
374                -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
375 @end example
378 @item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
380 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
381 machine using a TCP socket connection. If @option{listen} is
382 specified, QEMU waits for incoming connections on @var{port}
383 (@var{host} is optional). @option{connect} is used to connect to
384 another QEMU instance using the @option{listen} option. @option{fd=h}
385 specifies an already opened TCP socket.
387 Example:
388 @example
389 # launch a first QEMU instance
390 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
391                -net socket,listen=:1234
392 # connect the VLAN 0 of this instance to the VLAN 0
393 # of the first instance
394 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
395                -net socket,connect=127.0.0.1:1234
396 @end example
398 @item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
400 Create a VLAN @var{n} shared with another QEMU virtual
401 machines using a UDP multicast socket, effectively making a bus for 
402 every QEMU with same multicast address @var{maddr} and @var{port}.
403 NOTES:
404 @enumerate
405 @item 
406 Several QEMU can be running on different hosts and share same bus (assuming 
407 correct multicast setup for these hosts).
408 @item
409 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
410 @url{http://user-mode-linux.sf.net}.
411 @item Use @option{fd=h} to specify an already opened UDP multicast socket.
412 @end enumerate
414 Example:
415 @example
416 # launch one QEMU instance
417 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
418                -net socket,mcast=230.0.0.1:1234
419 # launch another QEMU instance on same "bus"
420 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
421                -net socket,mcast=230.0.0.1:1234
422 # launch yet another QEMU instance on same "bus"
423 qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
424                -net socket,mcast=230.0.0.1:1234
425 @end example
427 Example (User Mode Linux compat.):
428 @example
429 # launch QEMU instance (note mcast address selected
430 # is UML's default)
431 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
432                -net socket,mcast=239.192.168.1:1102
433 # launch UML
434 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
435 @end example
437 @item -net none
438 Indicate that no network devices should be configured. It is used to
439 override the default configuration (@option{-net nic -net user}) which
440 is activated if no @option{-net} options are provided.
442 @item -tftp prefix
443 When using the user mode network stack, activate a built-in TFTP
444 server. All filenames beginning with @var{prefix} can be downloaded
445 from the host to the guest using a TFTP client. The TFTP client on the
446 guest must be configured in binary mode (use the command @code{bin} of
447 the Unix TFTP client). The host IP address on the guest is as usual
448 10.0.2.2.
450 @item -smb dir
451 When using the user mode network stack, activate a built-in SMB
452 server so that Windows OSes can access to the host files in @file{dir}
453 transparently.
455 In the guest Windows OS, the line:
456 @example
457 10.0.2.4 smbserver
458 @end example
459 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
460 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
462 Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
464 Note that a SAMBA server must be installed on the host OS in
465 @file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
466 2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
468 @item -redir [tcp|udp]:host-port:[guest-host]:guest-port
470 When using the user mode network stack, redirect incoming TCP or UDP
471 connections to the host port @var{host-port} to the guest
472 @var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
473 is not specified, its value is 10.0.2.15 (default address given by the
474 built-in DHCP server).
476 For example, to redirect host X11 connection from screen 1 to guest
477 screen 0, use the following:
479 @example
480 # on the host
481 qemu -redir tcp:6001::6000 [...]
482 # this host xterm should open in the guest X11 server
483 xterm -display :1
484 @end example
486 To redirect telnet connections from host port 5555 to telnet port on
487 the guest, use the following:
489 @example
490 # on the host
491 qemu -redir tcp:5555::23 [...]
492 telnet localhost 5555
493 @end example
495 Then when you use on the host @code{telnet localhost 5555}, you
496 connect to the guest telnet server.
498 @end table
500 Linux boot specific: When using these options, you can use a given
501 Linux kernel without installing it in the disk image. It can be useful
502 for easier testing of various kernels.
504 @table @option
506 @item -kernel bzImage 
507 Use @var{bzImage} as kernel image.
509 @item -append cmdline 
510 Use @var{cmdline} as kernel command line
512 @item -initrd file
513 Use @var{file} as initial ram disk.
515 @end table
517 Debug/Expert options:
518 @table @option
520 @item -serial dev
521 Redirect the virtual serial port to host character device
522 @var{dev}. The default device is @code{vc} in graphical mode and
523 @code{stdio} in non graphical mode.
525 This option can be used several times to simulate up to 4 serials
526 ports.
528 Use @code{-serial none} to disable all serial ports.
530 Available character devices are:
531 @table @code
532 @item vc
533 Virtual console
534 @item pty
535 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
536 @item none
537 No device is allocated.
538 @item null
539 void device
540 @item /dev/XXX
541 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
542 parameters are set according to the emulated ones.
543 @item /dev/parportN
544 [Linux only, parallel port only] Use host parallel port
545 @var{N}. Currently only SPP parallel port features can be used.
546 @item file:filename
547 Write output to filename. No character can be read.
548 @item stdio
549 [Unix only] standard input/output
550 @item pipe:filename
551 name pipe @var{filename}
552 @item COMn
553 [Windows only] Use host serial port @var{n}
554 @item udp:[remote_host]:remote_port[@@[src_ip]:src_port]
555 This implements UDP Net Console.  When @var{remote_host} or @var{src_ip} are not specified they default to @code{0.0.0.0}.  When not using a specifed @var{src_port} a random port is automatically chosen.
557 If you just want a simple readonly console you can use @code{netcat} or
558 @code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
559 @code{nc -u -l -p 4555}. Any time qemu writes something to that port it
560 will appear in the netconsole session.
562 If you plan to send characters back via netconsole or you want to stop
563 and start qemu a lot of times, you should have qemu use the same
564 source port each time by using something like @code{-serial
565 udp::4555@@:4556} to qemu. Another approach is to use a patched
566 version of netcat which can listen to a TCP port and send and receive
567 characters via udp.  If you have a patched version of netcat which
568 activates telnet remote echo and single char transfer, then you can
569 use the following options to step up a netcat redirector to allow
570 telnet on port 5555 to access the qemu port.
571 @table @code
572 @item Qemu Options:
573 -serial udp::4555@@:4556
574 @item netcat options:
575 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
576 @item telnet options:
577 localhost 5555
578 @end table
581 @item tcp:[host]:port[,server][,nowait]
582 The TCP Net Console has two modes of operation.  It can send the serial
583 I/O to a location or wait for a connection from a location.  By default
584 the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
585 the @var{server} option QEMU will wait for a client socket application
586 to connect to the port before continuing, unless the @code{nowait}
587 option was specified. If @var{host} is omitted, 0.0.0.0 is assumed. Only
588 one TCP connection at a time is accepted. You can use @code{telnet} to
589 connect to the corresponding character device.
590 @table @code
591 @item Example to send tcp console to 192.168.0.2 port 4444
592 -serial tcp:192.168.0.2:4444
593 @item Example to listen and wait on port 4444 for connection
594 -serial tcp::4444,server
595 @item Example to not wait and listen on ip 192.168.0.100 port 4444
596 -serial tcp:192.168.0.100:4444,server,nowait
597 @end table
599 @item telnet:host:port[,server][,nowait]
600 The telnet protocol is used instead of raw tcp sockets.  The options
601 work the same as if you had specified @code{-serial tcp}.  The
602 difference is that the port acts like a telnet server or client using
603 telnet option negotiation.  This will also allow you to send the
604 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
605 sequence.  Typically in unix telnet you do it with Control-] and then
606 type "send break" followed by pressing the enter key.
608 @item unix:path[,server][,nowait]
609 A unix domain socket is used instead of a tcp socket.  The option works the
610 same as if you had specified @code{-serial tcp} except the unix domain socket
611 @var{path} is used for connections.
613 @end table
615 @item -parallel dev
616 Redirect the virtual parallel port to host device @var{dev} (same
617 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
618 be used to use hardware devices connected on the corresponding host
619 parallel port.
621 This option can be used several times to simulate up to 3 parallel
622 ports.
624 Use @code{-parallel none} to disable all parallel ports.
626 @item -monitor dev
627 Redirect the monitor to host device @var{dev} (same devices as the
628 serial port).
629 The default device is @code{vc} in graphical mode and @code{stdio} in
630 non graphical mode.
632 @item -s
633 Wait gdb connection to port 1234 (@pxref{gdb_usage}). 
634 @item -p port
635 Change gdb connection port.
636 @item -S
637 Do not start CPU at startup (you must type 'c' in the monitor).
638 @item -d             
639 Output log in /tmp/qemu.log
640 @item -hdachs c,h,s,[,t]
641 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
642 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
643 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
644 all thoses parameters. This option is useful for old MS-DOS disk
645 images.
647 @item -L path
648 Set the directory for the BIOS, VGA BIOS and keymaps.
650 @item -std-vga
651 Simulate a standard VGA card with Bochs VBE extensions (default is
652 Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
653 VBE extensions (e.g. Windows XP) and if you want to use high
654 resolution modes (>= 1280x1024x16) then you should use this option.
656 @item -no-acpi
657 Disable ACPI (Advanced Configuration and Power Interface) support. Use
658 it if your guest OS complains about ACPI problems (PC target machine
659 only).
661 @item -no-reboot
662 Exit instead of rebooting.
664 @item -loadvm file
665 Start right away with a saved state (@code{loadvm} in monitor)
666 @end table
668 @c man end
670 @node pcsys_keys
671 @section Keys
673 @c man begin OPTIONS
675 During the graphical emulation, you can use the following keys:
676 @table @key
677 @item Ctrl-Alt-f
678 Toggle full screen
680 @item Ctrl-Alt-n
681 Switch to virtual console 'n'. Standard console mappings are:
682 @table @emph
683 @item 1
684 Target system display
685 @item 2
686 Monitor
687 @item 3
688 Serial port
689 @end table
691 @item Ctrl-Alt
692 Toggle mouse and keyboard grab.
693 @end table
695 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
696 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
698 During emulation, if you are using the @option{-nographic} option, use
699 @key{Ctrl-a h} to get terminal commands:
701 @table @key
702 @item Ctrl-a h
703 Print this help
704 @item Ctrl-a x    
705 Exit emulator
706 @item Ctrl-a s    
707 Save disk data back to file (if -snapshot)
708 @item Ctrl-a b
709 Send break (magic sysrq in Linux)
710 @item Ctrl-a c
711 Switch between console and monitor
712 @item Ctrl-a Ctrl-a
713 Send Ctrl-a
714 @end table
715 @c man end
717 @ignore
719 @c man begin SEEALSO
720 The HTML documentation of QEMU for more precise information and Linux
721 user mode emulator invocation.
722 @c man end
724 @c man begin AUTHOR
725 Fabrice Bellard
726 @c man end
728 @end ignore
730 @node pcsys_monitor
731 @section QEMU Monitor
733 The QEMU monitor is used to give complex commands to the QEMU
734 emulator. You can use it to:
736 @itemize @minus
738 @item
739 Remove or insert removable medias images
740 (such as CD-ROM or floppies)
742 @item 
743 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
744 from a disk file.
746 @item Inspect the VM state without an external debugger.
748 @end itemize
750 @subsection Commands
752 The following commands are available:
754 @table @option
756 @item help or ? [cmd]
757 Show the help for all commands or just for command @var{cmd}.
759 @item commit  
760 Commit changes to the disk images (if -snapshot is used)
762 @item info subcommand 
763 show various information about the system state
765 @table @option
766 @item info network
767 show the various VLANs and the associated devices
768 @item info block
769 show the block devices
770 @item info registers
771 show the cpu registers
772 @item info history
773 show the command line history
774 @item info pci
775 show emulated PCI device
776 @item info usb
777 show USB devices plugged on the virtual USB hub
778 @item info usbhost
779 show all USB host devices
780 @item info capture
781 show information about active capturing
782 @item info snapshots
783 show list of VM snapshots
784 @end table
786 @item q or quit
787 Quit the emulator.
789 @item eject [-f] device
790 Eject a removable media (use -f to force it).
792 @item change device filename
793 Change a removable media.
795 @item screendump filename
796 Save screen into PPM image @var{filename}.
798 @item wavcapture filename [frequency [bits [channels]]]
799 Capture audio into @var{filename}. Using sample rate @var{frequency}
800 bits per sample @var{bits} and number of channels @var{channels}.
802 Defaults:
803 @itemize @minus
804 @item Sample rate = 44100 Hz - CD quality
805 @item Bits = 16
806 @item Number of channels = 2 - Stereo
807 @end itemize
809 @item stopcapture index
810 Stop capture with a given @var{index}, index can be obtained with
811 @example
812 info capture
813 @end example
815 @item log item1[,...]
816 Activate logging of the specified items to @file{/tmp/qemu.log}.
818 @item savevm [tag|id]
819 Create a snapshot of the whole virtual machine. If @var{tag} is
820 provided, it is used as human readable identifier. If there is already
821 a snapshot with the same tag or ID, it is replaced. More info at
822 @ref{vm_snapshots}.
824 @item loadvm tag|id
825 Set the whole virtual machine to the snapshot identified by the tag
826 @var{tag} or the unique snapshot ID @var{id}.
828 @item delvm tag|id
829 Delete the snapshot identified by @var{tag} or @var{id}.
831 @item stop
832 Stop emulation.
834 @item c or cont
835 Resume emulation.
837 @item gdbserver [port]
838 Start gdbserver session (default port=1234)
840 @item x/fmt addr
841 Virtual memory dump starting at @var{addr}.
843 @item xp /fmt addr
844 Physical memory dump starting at @var{addr}.
846 @var{fmt} is a format which tells the command how to format the
847 data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
849 @table @var
850 @item count 
851 is the number of items to be dumped.
853 @item format
854 can be x (hexa), d (signed decimal), u (unsigned decimal), o (octal),
855 c (char) or i (asm instruction).
857 @item size
858 can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
859 @code{h} or @code{w} can be specified with the @code{i} format to
860 respectively select 16 or 32 bit code instruction size.
862 @end table
864 Examples: 
865 @itemize
866 @item
867 Dump 10 instructions at the current instruction pointer:
868 @example 
869 (qemu) x/10i $eip
870 0x90107063:  ret
871 0x90107064:  sti
872 0x90107065:  lea    0x0(%esi,1),%esi
873 0x90107069:  lea    0x0(%edi,1),%edi
874 0x90107070:  ret
875 0x90107071:  jmp    0x90107080
876 0x90107073:  nop
877 0x90107074:  nop
878 0x90107075:  nop
879 0x90107076:  nop
880 @end example
882 @item
883 Dump 80 16 bit values at the start of the video memory.
884 @smallexample 
885 (qemu) xp/80hx 0xb8000
886 0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
887 0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
888 0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
889 0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
890 0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
891 0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
892 0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
893 0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
894 0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
895 0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
896 @end smallexample
897 @end itemize
899 @item p or print/fmt expr
901 Print expression value. Only the @var{format} part of @var{fmt} is
902 used.
904 @item sendkey keys
906 Send @var{keys} to the emulator. Use @code{-} to press several keys
907 simultaneously. Example:
908 @example
909 sendkey ctrl-alt-f1
910 @end example
912 This command is useful to send keys that your graphical user interface
913 intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
915 @item system_reset
917 Reset the system.
919 @item usb_add devname
921 Add the USB device @var{devname}.  For details of available devices see
922 @ref{usb_devices}
924 @item usb_del devname
926 Remove the USB device @var{devname} from the QEMU virtual USB
927 hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
928 command @code{info usb} to see the devices you can remove.
930 @end table
932 @subsection Integer expressions
934 The monitor understands integers expressions for every integer
935 argument. You can use register names to get the value of specifics
936 CPU registers by prefixing them with @emph{$}.
938 @node disk_images
939 @section Disk Images
941 Since version 0.6.1, QEMU supports many disk image formats, including
942 growable disk images (their size increase as non empty sectors are
943 written), compressed and encrypted disk images. Version 0.8.3 added
944 the new qcow2 disk image format which is essential to support VM
945 snapshots.
947 @menu
948 * disk_images_quickstart::    Quick start for disk image creation
949 * disk_images_snapshot_mode:: Snapshot mode
950 * vm_snapshots::              VM snapshots
951 * qemu_img_invocation::       qemu-img Invocation
952 * host_drives::               Using host drives
953 * disk_images_fat_images::    Virtual FAT disk images
954 @end menu
956 @node disk_images_quickstart
957 @subsection Quick start for disk image creation
959 You can create a disk image with the command:
960 @example
961 qemu-img create myimage.img mysize
962 @end example
963 where @var{myimage.img} is the disk image filename and @var{mysize} is its
964 size in kilobytes. You can add an @code{M} suffix to give the size in
965 megabytes and a @code{G} suffix for gigabytes.
967 See @ref{qemu_img_invocation} for more information.
969 @node disk_images_snapshot_mode
970 @subsection Snapshot mode
972 If you use the option @option{-snapshot}, all disk images are
973 considered as read only. When sectors in written, they are written in
974 a temporary file created in @file{/tmp}. You can however force the
975 write back to the raw disk images by using the @code{commit} monitor
976 command (or @key{C-a s} in the serial console).
978 @node vm_snapshots
979 @subsection VM snapshots
981 VM snapshots are snapshots of the complete virtual machine including
982 CPU state, RAM, device state and the content of all the writable
983 disks. In order to use VM snapshots, you must have at least one non
984 removable and writable block device using the @code{qcow2} disk image
985 format. Normally this device is the first virtual hard drive.
987 Use the monitor command @code{savevm} to create a new VM snapshot or
988 replace an existing one. A human readable name can be assigned to each
989 snapshot in addition to its numerical ID.
991 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
992 a VM snapshot. @code{info snapshots} lists the available snapshots
993 with their associated information:
995 @example
996 (qemu) info snapshots
997 Snapshot devices: hda
998 Snapshot list (from hda):
999 ID        TAG                 VM SIZE                DATE       VM CLOCK
1000 1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1001 2                                 40M 2006-08-06 12:43:29   00:00:18.633
1002 3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1003 @end example
1005 A VM snapshot is made of a VM state info (its size is shown in
1006 @code{info snapshots}) and a snapshot of every writable disk image.
1007 The VM state info is stored in the first @code{qcow2} non removable
1008 and writable block device. The disk image snapshots are stored in
1009 every disk image. The size of a snapshot in a disk image is difficult
1010 to evaluate and is not shown by @code{info snapshots} because the
1011 associated disk sectors are shared among all the snapshots to save
1012 disk space (otherwise each snapshot would need a full copy of all the
1013 disk images).
1015 When using the (unrelated) @code{-snapshot} option
1016 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1017 but they are deleted as soon as you exit QEMU.
1019 VM snapshots currently have the following known limitations:
1020 @itemize
1021 @item 
1022 They cannot cope with removable devices if they are removed or
1023 inserted after a snapshot is done.
1024 @item 
1025 A few device drivers still have incomplete snapshot support so their
1026 state is not saved or restored properly (in particular USB).
1027 @end itemize
1029 @node qemu_img_invocation
1030 @subsection @code{qemu-img} Invocation
1032 @include qemu-img.texi
1034 @node host_drives
1035 @subsection Using host drives
1037 In addition to disk image files, QEMU can directly access host
1038 devices. We describe here the usage for QEMU version >= 0.8.3.
1040 @subsubsection Linux
1042 On Linux, you can directly use the host device filename instead of a
1043 disk image filename provided you have enough proviledge to access
1044 it. For example, use @file{/dev/cdrom} to access to the CDROM or
1045 @file{/dev/fd0} for the floppy.
1047 @table @code
1048 @item CD
1049 You can specify a CDROM device even if no CDROM is loaded. QEMU has
1050 specific code to detect CDROM insertion or removal. CDROM ejection by
1051 the guest OS is supported. Currently only data CDs are supported.
1052 @item Floppy
1053 You can specify a floppy device even if no floppy is loaded. Floppy
1054 removal is currently not detected accurately (if you change floppy
1055 without doing floppy access while the floppy is not loaded, the guest
1056 OS will think that the same floppy is loaded).
1057 @item Hard disks
1058 Hard disks can be used. Normally you must specify the whole disk
1059 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1060 see it as a partitioned disk. WARNING: unless you know what you do, it
1061 is better to only make READ-ONLY accesses to the hard disk otherwise
1062 you may corrupt your host data (use the @option{-snapshot} command
1063 line option or modify the device permissions accordingly).
1064 @end table
1066 @subsubsection Windows
1068 On Windows you can use any host drives as QEMU drive. The prefered
1069 syntax is the driver letter (e.g. @file{d:}). The alternate syntax
1070 @file{\\.\d:} is supported. @file{/dev/cdrom} is supported as an alias
1071 to the first CDROM drive.
1073 Currently there is no specific code to handle removable medias, so it
1074 is better to use the @code{change} or @code{eject} monitor commands to
1075 change or eject media.
1077 @subsubsection Mac OS X
1079 @file{/dev/cdrom} is an alias to the first CDROM. 
1081 Currently there is no specific code to handle removable medias, so it
1082 is better to use the @code{change} or @code{eject} monitor commands to
1083 change or eject media.
1085 @node disk_images_fat_images
1086 @subsection Virtual FAT disk images
1088 QEMU can automatically create a virtual FAT disk image from a
1089 directory tree. In order to use it, just type:
1091 @example 
1092 qemu linux.img -hdb fat:/my_directory
1093 @end example
1095 Then you access access to all the files in the @file{/my_directory}
1096 directory without having to copy them in a disk image or to export
1097 them via SAMBA or NFS. The default access is @emph{read-only}.
1099 Floppies can be emulated with the @code{:floppy:} option:
1101 @example 
1102 qemu linux.img -fda fat:floppy:/my_directory
1103 @end example
1105 A read/write support is available for testing (beta stage) with the
1106 @code{:rw:} option:
1108 @example 
1109 qemu linux.img -fda fat:floppy:rw:/my_directory
1110 @end example
1112 What you should @emph{never} do:
1113 @itemize
1114 @item use non-ASCII filenames ;
1115 @item use "-snapshot" together with ":rw:" ;
1116 @item expect it to work when loadvm'ing ;
1117 @item write to the FAT directory on the host system while accessing it with the guest system.
1118 @end itemize
1120 @node pcsys_network
1121 @section Network emulation
1123 QEMU can simulate several networks cards (NE2000 boards on the PC
1124 target) and can connect them to an arbitrary number of Virtual Local
1125 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1126 VLAN. VLAN can be connected between separate instances of QEMU to
1127 simulate large networks. For simpler usage, a non priviledged user mode
1128 network stack can replace the TAP device to have a basic network
1129 connection.
1131 @subsection VLANs
1133 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1134 connection between several network devices. These devices can be for
1135 example QEMU virtual Ethernet cards or virtual Host ethernet devices
1136 (TAP devices).
1138 @subsection Using TAP network interfaces
1140 This is the standard way to connect QEMU to a real network. QEMU adds
1141 a virtual network device on your host (called @code{tapN}), and you
1142 can then configure it as if it was a real ethernet card.
1144 @subsubsection Linux host
1146 As an example, you can download the @file{linux-test-xxx.tar.gz}
1147 archive and copy the script @file{qemu-ifup} in @file{/etc} and
1148 configure properly @code{sudo} so that the command @code{ifconfig}
1149 contained in @file{qemu-ifup} can be executed as root. You must verify
1150 that your host kernel supports the TAP network interfaces: the
1151 device @file{/dev/net/tun} must be present.
1153 See @ref{sec_invocation} to have examples of command lines using the
1154 TAP network interfaces.
1156 @subsubsection Windows host
1158 There is a virtual ethernet driver for Windows 2000/XP systems, called
1159 TAP-Win32. But it is not included in standard QEMU for Windows,
1160 so you will need to get it separately. It is part of OpenVPN package,
1161 so download OpenVPN from : @url{http://openvpn.net/}.
1163 @subsection Using the user mode network stack
1165 By using the option @option{-net user} (default configuration if no
1166 @option{-net} option is specified), QEMU uses a completely user mode
1167 network stack (you don't need root priviledge to use the virtual
1168 network). The virtual network configuration is the following:
1170 @example
1172          QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1173                            |          (10.0.2.2)
1174                            |
1175                            ---->  DNS server (10.0.2.3)
1176                            |     
1177                            ---->  SMB server (10.0.2.4)
1178 @end example
1180 The QEMU VM behaves as if it was behind a firewall which blocks all
1181 incoming connections. You can use a DHCP client to automatically
1182 configure the network in the QEMU VM. The DHCP server assign addresses
1183 to the hosts starting from 10.0.2.15.
1185 In order to check that the user mode network is working, you can ping
1186 the address 10.0.2.2 and verify that you got an address in the range
1187 10.0.2.x from the QEMU virtual DHCP server.
1189 Note that @code{ping} is not supported reliably to the internet as it
1190 would require root priviledges. It means you can only ping the local
1191 router (10.0.2.2).
1193 When using the built-in TFTP server, the router is also the TFTP
1194 server.
1196 When using the @option{-redir} option, TCP or UDP connections can be
1197 redirected from the host to the guest. It allows for example to
1198 redirect X11, telnet or SSH connections.
1200 @subsection Connecting VLANs between QEMU instances
1202 Using the @option{-net socket} option, it is possible to make VLANs
1203 that span several QEMU instances. See @ref{sec_invocation} to have a
1204 basic example.
1206 @node direct_linux_boot
1207 @section Direct Linux Boot
1209 This section explains how to launch a Linux kernel inside QEMU without
1210 having to make a full bootable image. It is very useful for fast Linux
1211 kernel testing.
1213 The syntax is:
1214 @example
1215 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1216 @end example
1218 Use @option{-kernel} to provide the Linux kernel image and
1219 @option{-append} to give the kernel command line arguments. The
1220 @option{-initrd} option can be used to provide an INITRD image.
1222 When using the direct Linux boot, a disk image for the first hard disk
1223 @file{hda} is required because its boot sector is used to launch the
1224 Linux kernel.
1226 If you do not need graphical output, you can disable it and redirect
1227 the virtual serial port and the QEMU monitor to the console with the
1228 @option{-nographic} option. The typical command line is:
1229 @example
1230 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1231      -append "root=/dev/hda console=ttyS0" -nographic
1232 @end example
1234 Use @key{Ctrl-a c} to switch between the serial console and the
1235 monitor (@pxref{pcsys_keys}).
1237 @node pcsys_usb
1238 @section USB emulation
1240 QEMU emulates a PCI UHCI USB controller. You can virtually plug
1241 virtual USB devices or real host USB devices (experimental, works only
1242 on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1243 as necessary to connect multiple USB devices.
1245 @menu
1246 * usb_devices::
1247 * host_usb_devices::
1248 @end menu
1249 @node usb_devices
1250 @subsection Connecting USB devices
1252 USB devices can be connected with the @option{-usbdevice} commandline option
1253 or the @code{usb_add} monitor command.  Available devices are:
1255 @table @var
1256 @item @code{mouse}
1257 Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1258 @item @code{tablet}
1259 Pointer device that uses absolute coordinates (like a touchscreen).
1260 This means qemu is able to report the mouse position without having
1261 to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1262 @item @code{disk:file}
1263 Mass storage device based on @var{file} (@pxref{disk_images})
1264 @item @code{host:bus.addr}
1265 Pass through the host device identified by @var{bus.addr}
1266 (Linux only)
1267 @item @code{host:vendor_id:product_id}
1268 Pass through the host device identified by @var{vendor_id:product_id}
1269 (Linux only)
1270 @end table
1272 @node host_usb_devices
1273 @subsection Using host USB devices on a Linux host
1275 WARNING: this is an experimental feature. QEMU will slow down when
1276 using it. USB devices requiring real time streaming (i.e. USB Video
1277 Cameras) are not supported yet.
1279 @enumerate
1280 @item If you use an early Linux 2.4 kernel, verify that no Linux driver 
1281 is actually using the USB device. A simple way to do that is simply to
1282 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1283 to @file{mydriver.o.disabled}.
1285 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1286 @example
1287 ls /proc/bus/usb
1288 001  devices  drivers
1289 @end example
1291 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1292 @example
1293 chown -R myuid /proc/bus/usb
1294 @end example
1296 @item Launch QEMU and do in the monitor:
1297 @example 
1298 info usbhost
1299   Device 1.2, speed 480 Mb/s
1300     Class 00: USB device 1234:5678, USB DISK
1301 @end example
1302 You should see the list of the devices you can use (Never try to use
1303 hubs, it won't work).
1305 @item Add the device in QEMU by using:
1306 @example 
1307 usb_add host:1234:5678
1308 @end example
1310 Normally the guest OS should report that a new USB device is
1311 plugged. You can use the option @option{-usbdevice} to do the same.
1313 @item Now you can try to use the host USB device in QEMU.
1315 @end enumerate
1317 When relaunching QEMU, you may have to unplug and plug again the USB
1318 device to make it work again (this is a bug).
1320 @node gdb_usage
1321 @section GDB usage
1323 QEMU has a primitive support to work with gdb, so that you can do
1324 'Ctrl-C' while the virtual machine is running and inspect its state.
1326 In order to use gdb, launch qemu with the '-s' option. It will wait for a
1327 gdb connection:
1328 @example
1329 > qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1330        -append "root=/dev/hda"
1331 Connected to host network interface: tun0
1332 Waiting gdb connection on port 1234
1333 @end example
1335 Then launch gdb on the 'vmlinux' executable:
1336 @example
1337 > gdb vmlinux
1338 @end example
1340 In gdb, connect to QEMU:
1341 @example
1342 (gdb) target remote localhost:1234
1343 @end example
1345 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1346 @example
1347 (gdb) c
1348 @end example
1350 Here are some useful tips in order to use gdb on system code:
1352 @enumerate
1353 @item
1354 Use @code{info reg} to display all the CPU registers.
1355 @item
1356 Use @code{x/10i $eip} to display the code at the PC position.
1357 @item
1358 Use @code{set architecture i8086} to dump 16 bit code. Then use
1359 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1360 @end enumerate
1362 @node pcsys_os_specific
1363 @section Target OS specific information
1365 @subsection Linux
1367 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1368 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1369 color depth in the guest and the host OS.
1371 When using a 2.6 guest Linux kernel, you should add the option
1372 @code{clock=pit} on the kernel command line because the 2.6 Linux
1373 kernels make very strict real time clock checks by default that QEMU
1374 cannot simulate exactly.
1376 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1377 not activated because QEMU is slower with this patch. The QEMU
1378 Accelerator Module is also much slower in this case. Earlier Fedora
1379 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporte this
1380 patch by default. Newer kernels don't have it.
1382 @subsection Windows
1384 If you have a slow host, using Windows 95 is better as it gives the
1385 best speed. Windows 2000 is also a good choice.
1387 @subsubsection SVGA graphic modes support
1389 QEMU emulates a Cirrus Logic GD5446 Video
1390 card. All Windows versions starting from Windows 95 should recognize
1391 and use this graphic card. For optimal performances, use 16 bit color
1392 depth in the guest and the host OS.
1394 If you are using Windows XP as guest OS and if you want to use high
1395 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1396 1280x1024x16), then you should use the VESA VBE virtual graphic card
1397 (option @option{-std-vga}).
1399 @subsubsection CPU usage reduction
1401 Windows 9x does not correctly use the CPU HLT
1402 instruction. The result is that it takes host CPU cycles even when
1403 idle. You can install the utility from
1404 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1405 problem. Note that no such tool is needed for NT, 2000 or XP.
1407 @subsubsection Windows 2000 disk full problem
1409 Windows 2000 has a bug which gives a disk full problem during its
1410 installation. When installing it, use the @option{-win2k-hack} QEMU
1411 option to enable a specific workaround. After Windows 2000 is
1412 installed, you no longer need this option (this option slows down the
1413 IDE transfers).
1415 @subsubsection Windows 2000 shutdown
1417 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1418 can. It comes from the fact that Windows 2000 does not automatically
1419 use the APM driver provided by the BIOS.
1421 In order to correct that, do the following (thanks to Struan
1422 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1423 Add/Troubleshoot a device => Add a new device & Next => No, select the
1424 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1425 (again) a few times. Now the driver is installed and Windows 2000 now
1426 correctly instructs QEMU to shutdown at the appropriate moment. 
1428 @subsubsection Share a directory between Unix and Windows
1430 See @ref{sec_invocation} about the help of the option @option{-smb}.
1432 @subsubsection Windows XP security problem
1434 Some releases of Windows XP install correctly but give a security
1435 error when booting:
1436 @example
1437 A problem is preventing Windows from accurately checking the
1438 license for this computer. Error code: 0x800703e6.
1439 @end example
1441 The workaround is to install a service pack for XP after a boot in safe
1442 mode. Then reboot, and the problem should go away. Since there is no
1443 network while in safe mode, its recommended to download the full
1444 installation of SP1 or SP2 and transfer that via an ISO or using the
1445 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1447 @subsection MS-DOS and FreeDOS
1449 @subsubsection CPU usage reduction
1451 DOS does not correctly use the CPU HLT instruction. The result is that
1452 it takes host CPU cycles even when idle. You can install the utility
1453 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1454 problem.
1456 @node QEMU System emulator for non PC targets
1457 @chapter QEMU System emulator for non PC targets
1459 QEMU is a generic emulator and it emulates many non PC
1460 machines. Most of the options are similar to the PC emulator. The
1461 differences are mentionned in the following sections.
1463 @menu
1464 * QEMU PowerPC System emulator::
1465 * Sparc32 System emulator invocation::
1466 * Sparc64 System emulator invocation::
1467 * MIPS System emulator invocation::
1468 * ARM System emulator invocation::
1469 @end menu
1471 @node QEMU PowerPC System emulator
1472 @section QEMU PowerPC System emulator
1474 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1475 or PowerMac PowerPC system.
1477 QEMU emulates the following PowerMac peripherals:
1479 @itemize @minus
1480 @item 
1481 UniNorth PCI Bridge 
1482 @item
1483 PCI VGA compatible card with VESA Bochs Extensions
1484 @item 
1485 2 PMAC IDE interfaces with hard disk and CD-ROM support
1486 @item 
1487 NE2000 PCI adapters
1488 @item
1489 Non Volatile RAM
1490 @item
1491 VIA-CUDA with ADB keyboard and mouse.
1492 @end itemize
1494 QEMU emulates the following PREP peripherals:
1496 @itemize @minus
1497 @item 
1498 PCI Bridge
1499 @item
1500 PCI VGA compatible card with VESA Bochs Extensions
1501 @item 
1502 2 IDE interfaces with hard disk and CD-ROM support
1503 @item
1504 Floppy disk
1505 @item 
1506 NE2000 network adapters
1507 @item
1508 Serial port
1509 @item
1510 PREP Non Volatile RAM
1511 @item
1512 PC compatible keyboard and mouse.
1513 @end itemize
1515 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1516 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1518 @c man begin OPTIONS
1520 The following options are specific to the PowerPC emulation:
1522 @table @option
1524 @item -g WxH[xDEPTH]  
1526 Set the initial VGA graphic mode. The default is 800x600x15.
1528 @end table
1530 @c man end 
1533 More information is available at
1534 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1536 @node Sparc32 System emulator invocation
1537 @section Sparc32 System emulator invocation
1539 Use the executable @file{qemu-system-sparc} to simulate a SparcStation 5
1540 (sun4m architecture). The emulation is somewhat complete.
1542 QEMU emulates the following sun4m peripherals:
1544 @itemize @minus
1545 @item
1546 IOMMU
1547 @item
1548 TCX Frame buffer
1549 @item 
1550 Lance (Am7990) Ethernet
1551 @item
1552 Non Volatile RAM M48T08
1553 @item
1554 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1555 and power/reset logic
1556 @item
1557 ESP SCSI controller with hard disk and CD-ROM support
1558 @item
1559 Floppy drive
1560 @end itemize
1562 The number of peripherals is fixed in the architecture.
1564 Since version 0.8.2, QEMU uses OpenBIOS
1565 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1566 firmware implementation. The goal is to implement a 100% IEEE
1567 1275-1994 (referred to as Open Firmware) compliant firmware.
1569 A sample Linux 2.6 series kernel and ram disk image are available on
1570 the QEMU web site. Please note that currently NetBSD, OpenBSD or
1571 Solaris kernels don't work.
1573 @c man begin OPTIONS
1575 The following options are specific to the Sparc emulation:
1577 @table @option
1579 @item -g WxH
1581 Set the initial TCX graphic mode. The default is 1024x768.
1583 @end table
1585 @c man end 
1587 @node Sparc64 System emulator invocation
1588 @section Sparc64 System emulator invocation
1590 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
1591 The emulator is not usable for anything yet.
1593 QEMU emulates the following sun4u peripherals:
1595 @itemize @minus
1596 @item
1597 UltraSparc IIi APB PCI Bridge 
1598 @item
1599 PCI VGA compatible card with VESA Bochs Extensions
1600 @item
1601 Non Volatile RAM M48T59
1602 @item
1603 PC-compatible serial ports
1604 @end itemize
1606 @node MIPS System emulator invocation
1607 @section MIPS System emulator invocation
1609 Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
1610 The emulator is able to boot a Linux kernel and to run a Linux Debian
1611 installation from NFS. The following devices are emulated:
1613 @itemize @minus
1614 @item 
1615 MIPS R4K CPU
1616 @item
1617 PC style serial port
1618 @item
1619 NE2000 network card
1620 @end itemize
1622 More information is available in the QEMU mailing-list archive.
1624 @node ARM System emulator invocation
1625 @section ARM System emulator invocation
1627 Use the executable @file{qemu-system-arm} to simulate a ARM
1628 machine. The ARM Integrator/CP board is emulated with the following
1629 devices:
1631 @itemize @minus
1632 @item
1633 ARM926E or ARM1026E CPU
1634 @item
1635 Two PL011 UARTs
1636 @item 
1637 SMC 91c111 Ethernet adapter
1638 @item
1639 PL110 LCD controller
1640 @item
1641 PL050 KMI with PS/2 keyboard and mouse.
1642 @end itemize
1644 The ARM Versatile baseboard is emulated with the following devices:
1646 @itemize @minus
1647 @item
1648 ARM926E CPU
1649 @item
1650 PL190 Vectored Interrupt Controller
1651 @item
1652 Four PL011 UARTs
1653 @item 
1654 SMC 91c111 Ethernet adapter
1655 @item
1656 PL110 LCD controller
1657 @item
1658 PL050 KMI with PS/2 keyboard and mouse.
1659 @item
1660 PCI host bridge.  Note the emulated PCI bridge only provides access to
1661 PCI memory space.  It does not provide access to PCI IO space.
1662 This means some devices (eg. ne2k_pci NIC) are not useable, and others
1663 (eg. rtl8139 NIC) are only useable when the guest drivers use the memory
1664 mapped control registers.
1665 @item
1666 PCI OHCI USB controller.
1667 @item
1668 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1669 @end itemize
1671 A Linux 2.6 test image is available on the QEMU web site. More
1672 information is available in the QEMU mailing-list archive.
1674 @node QEMU Linux User space emulator 
1675 @chapter QEMU Linux User space emulator 
1677 @menu
1678 * Quick Start::
1679 * Wine launch::
1680 * Command line options::
1681 * Other binaries::
1682 @end menu
1684 @node Quick Start
1685 @section Quick Start
1687 In order to launch a Linux process, QEMU needs the process executable
1688 itself and all the target (x86) dynamic libraries used by it. 
1690 @itemize
1692 @item On x86, you can just try to launch any process by using the native
1693 libraries:
1695 @example 
1696 qemu-i386 -L / /bin/ls
1697 @end example
1699 @code{-L /} tells that the x86 dynamic linker must be searched with a
1700 @file{/} prefix.
1702 @item Since QEMU is also a linux process, you can launch qemu with qemu (NOTE: you can only do that if you compiled QEMU from the sources):
1704 @example 
1705 qemu-i386 -L / qemu-i386 -L / /bin/ls
1706 @end example
1708 @item On non x86 CPUs, you need first to download at least an x86 glibc
1709 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
1710 @code{LD_LIBRARY_PATH} is not set:
1712 @example
1713 unset LD_LIBRARY_PATH 
1714 @end example
1716 Then you can launch the precompiled @file{ls} x86 executable:
1718 @example
1719 qemu-i386 tests/i386/ls
1720 @end example
1721 You can look at @file{qemu-binfmt-conf.sh} so that
1722 QEMU is automatically launched by the Linux kernel when you try to
1723 launch x86 executables. It requires the @code{binfmt_misc} module in the
1724 Linux kernel.
1726 @item The x86 version of QEMU is also included. You can try weird things such as:
1727 @example
1728 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
1729           /usr/local/qemu-i386/bin/ls-i386
1730 @end example
1732 @end itemize
1734 @node Wine launch
1735 @section Wine launch
1737 @itemize
1739 @item Ensure that you have a working QEMU with the x86 glibc
1740 distribution (see previous section). In order to verify it, you must be
1741 able to do:
1743 @example
1744 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
1745 @end example
1747 @item Download the binary x86 Wine install
1748 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page). 
1750 @item Configure Wine on your account. Look at the provided script
1751 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1752 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
1754 @item Then you can try the example @file{putty.exe}:
1756 @example
1757 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
1758           /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1759 @end example
1761 @end itemize
1763 @node Command line options
1764 @section Command line options
1766 @example
1767 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
1768 @end example
1770 @table @option
1771 @item -h
1772 Print the help
1773 @item -L path   
1774 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
1775 @item -s size
1776 Set the x86 stack size in bytes (default=524288)
1777 @end table
1779 Debug options:
1781 @table @option
1782 @item -d
1783 Activate log (logfile=/tmp/qemu.log)
1784 @item -p pagesize
1785 Act as if the host page size was 'pagesize' bytes
1786 @end table
1788 @node Other binaries
1789 @section Other binaries
1791 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
1792 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
1793 configurations), and arm-uclinux bFLT format binaries.
1795 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
1796 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
1797 coldfire uClinux bFLT format binaries.
1799 The binary format is detected automatically.
1801 @node compilation
1802 @chapter Compilation from the sources
1804 @menu
1805 * Linux/Unix::
1806 * Windows::
1807 * Cross compilation for Windows with Linux::
1808 * Mac OS X::
1809 @end menu
1811 @node Linux/Unix
1812 @section Linux/Unix
1814 @subsection Compilation
1816 First you must decompress the sources:
1817 @example
1818 cd /tmp
1819 tar zxvf qemu-x.y.z.tar.gz
1820 cd qemu-x.y.z
1821 @end example
1823 Then you configure QEMU and build it (usually no options are needed):
1824 @example
1825 ./configure
1826 make
1827 @end example
1829 Then type as root user:
1830 @example
1831 make install
1832 @end example
1833 to install QEMU in @file{/usr/local}.
1835 @subsection Tested tool versions
1837 In order to compile QEMU successfully, it is very important that you
1838 have the right tools. The most important one is gcc. I cannot guaranty
1839 that QEMU works if you do not use a tested gcc version. Look at
1840 'configure' and 'Makefile' if you want to make a different gcc
1841 version work.
1843 @example
1844 host      gcc      binutils      glibc    linux       distribution
1845 ----------------------------------------------------------------------
1846 x86       3.2      2.13.2        2.1.3    2.4.18
1847           2.96     2.11.93.0.2   2.2.5    2.4.18      Red Hat 7.3
1848           3.2.2    2.13.90.0.18  2.3.2    2.4.20      Red Hat 9
1850 PowerPC   3.3 [4]  2.13.90.0.18  2.3.1    2.4.20briq
1851           3.2
1853 Alpha     3.3 [1]  2.14.90.0.4   2.2.5    2.2.20 [2]  Debian 3.0
1855 Sparc32   2.95.4   2.12.90.0.1   2.2.5    2.4.18      Debian 3.0
1857 ARM       2.95.4   2.12.90.0.1   2.2.5    2.4.9 [3]   Debian 3.0
1859 [1] On Alpha, QEMU needs the gcc 'visibility' attribute only available
1860     for gcc version >= 3.3.
1861 [2] Linux >= 2.4.20 is necessary for precise exception support
1862     (untested).
1863 [3] 2.4.9-ac10-rmk2-np1-cerf2
1865 [4] gcc 2.95.x generates invalid code when using too many register
1866 variables. You must use gcc 3.x on PowerPC.
1867 @end example
1869 @node Windows
1870 @section Windows
1872 @itemize
1873 @item Install the current versions of MSYS and MinGW from
1874 @url{http://www.mingw.org/}. You can find detailed installation
1875 instructions in the download section and the FAQ.
1877 @item Download 
1878 the MinGW development library of SDL 1.2.x
1879 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
1880 @url{http://www.libsdl.org}. Unpack it in a temporary place, and
1881 unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
1882 directory. Edit the @file{sdl-config} script so that it gives the
1883 correct SDL directory when invoked.
1885 @item Extract the current version of QEMU.
1887 @item Start the MSYS shell (file @file{msys.bat}).
1889 @item Change to the QEMU directory. Launch @file{./configure} and 
1890 @file{make}.  If you have problems using SDL, verify that
1891 @file{sdl-config} can be launched from the MSYS command line.
1893 @item You can install QEMU in @file{Program Files/Qemu} by typing 
1894 @file{make install}. Don't forget to copy @file{SDL.dll} in
1895 @file{Program Files/Qemu}.
1897 @end itemize
1899 @node Cross compilation for Windows with Linux
1900 @section Cross compilation for Windows with Linux
1902 @itemize
1903 @item
1904 Install the MinGW cross compilation tools available at
1905 @url{http://www.mingw.org/}.
1907 @item 
1908 Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
1909 unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
1910 variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
1911 the QEMU configuration script.
1913 @item 
1914 Configure QEMU for Windows cross compilation:
1915 @example
1916 ./configure --enable-mingw32
1917 @end example
1918 If necessary, you can change the cross-prefix according to the prefix
1919 choosen for the MinGW tools with --cross-prefix. You can also use
1920 --prefix to set the Win32 install path.
1922 @item You can install QEMU in the installation directory by typing 
1923 @file{make install}. Don't forget to copy @file{SDL.dll} in the
1924 installation directory. 
1926 @end itemize
1928 Note: Currently, Wine does not seem able to launch
1929 QEMU for Win32.
1931 @node Mac OS X
1932 @section Mac OS X
1934 The Mac OS X patches are not fully merged in QEMU, so you should look
1935 at the QEMU mailing list archive to have all the necessary
1936 information.
1938 @node Index
1939 @chapter Index
1940 @printindex cp
1942 @bye