9 #include "qemu-common.h"
11 static uint32_t cortexa8_cp15_c0_c1
[8] =
12 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
14 static uint32_t cortexa8_cp15_c0_c2
[8] =
15 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
17 static uint32_t mpcore_cp15_c0_c1
[8] =
18 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
20 static uint32_t mpcore_cp15_c0_c2
[8] =
21 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
23 static uint32_t arm1136_cp15_c0_c1
[8] =
24 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
26 static uint32_t arm1136_cp15_c0_c2
[8] =
27 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
29 static uint32_t cpu_arm_find_by_name(const char *name
);
31 static inline void set_feature(CPUARMState
*env
, int feature
)
33 env
->features
|= 1u << feature
;
36 static void cpu_reset_model_id(CPUARMState
*env
, uint32_t id
)
38 env
->cp15
.c0_cpuid
= id
;
40 case ARM_CPUID_ARM926
:
41 set_feature(env
, ARM_FEATURE_VFP
);
42 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x41011090;
43 env
->cp15
.c0_cachetype
= 0x1dd20d2;
44 env
->cp15
.c1_sys
= 0x00090078;
46 case ARM_CPUID_ARM946
:
47 set_feature(env
, ARM_FEATURE_MPU
);
48 env
->cp15
.c0_cachetype
= 0x0f004006;
49 env
->cp15
.c1_sys
= 0x00000078;
51 case ARM_CPUID_ARM1026
:
52 set_feature(env
, ARM_FEATURE_VFP
);
53 set_feature(env
, ARM_FEATURE_AUXCR
);
54 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410110a0;
55 env
->cp15
.c0_cachetype
= 0x1dd20d2;
56 env
->cp15
.c1_sys
= 0x00090078;
58 case ARM_CPUID_ARM1136_R2
:
59 case ARM_CPUID_ARM1136
:
60 set_feature(env
, ARM_FEATURE_V6
);
61 set_feature(env
, ARM_FEATURE_VFP
);
62 set_feature(env
, ARM_FEATURE_AUXCR
);
63 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410120b4;
64 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = 0x11111111;
65 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = 0x00000000;
66 memcpy(env
->cp15
.c0_c1
, arm1136_cp15_c0_c1
, 8 * sizeof(uint32_t));
67 memcpy(env
->cp15
.c0_c2
, arm1136_cp15_c0_c2
, 8 * sizeof(uint32_t));
68 env
->cp15
.c0_cachetype
= 0x1dd20d2;
70 case ARM_CPUID_ARM11MPCORE
:
71 set_feature(env
, ARM_FEATURE_V6
);
72 set_feature(env
, ARM_FEATURE_V6K
);
73 set_feature(env
, ARM_FEATURE_VFP
);
74 set_feature(env
, ARM_FEATURE_AUXCR
);
75 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410120b4;
76 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = 0x11111111;
77 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = 0x00000000;
78 memcpy(env
->cp15
.c0_c1
, mpcore_cp15_c0_c1
, 8 * sizeof(uint32_t));
79 memcpy(env
->cp15
.c0_c2
, mpcore_cp15_c0_c2
, 8 * sizeof(uint32_t));
80 env
->cp15
.c0_cachetype
= 0x1dd20d2;
82 case ARM_CPUID_CORTEXA8
:
83 set_feature(env
, ARM_FEATURE_V6
);
84 set_feature(env
, ARM_FEATURE_V6K
);
85 set_feature(env
, ARM_FEATURE_V7
);
86 set_feature(env
, ARM_FEATURE_AUXCR
);
87 set_feature(env
, ARM_FEATURE_THUMB2
);
88 set_feature(env
, ARM_FEATURE_VFP
);
89 set_feature(env
, ARM_FEATURE_VFP3
);
90 set_feature(env
, ARM_FEATURE_NEON
);
91 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410330c0;
92 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = 0x11110222;
93 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = 0x00011100;
94 memcpy(env
->cp15
.c0_c1
, cortexa8_cp15_c0_c1
, 8 * sizeof(uint32_t));
95 memcpy(env
->cp15
.c0_c2
, cortexa8_cp15_c0_c2
, 8 * sizeof(uint32_t));
96 env
->cp15
.c0_cachetype
= 0x1dd20d2;
98 case ARM_CPUID_CORTEXM3
:
99 set_feature(env
, ARM_FEATURE_V6
);
100 set_feature(env
, ARM_FEATURE_THUMB2
);
101 set_feature(env
, ARM_FEATURE_V7
);
102 set_feature(env
, ARM_FEATURE_M
);
103 set_feature(env
, ARM_FEATURE_DIV
);
105 case ARM_CPUID_ANY
: /* For userspace emulation. */
106 set_feature(env
, ARM_FEATURE_V6
);
107 set_feature(env
, ARM_FEATURE_V6K
);
108 set_feature(env
, ARM_FEATURE_V7
);
109 set_feature(env
, ARM_FEATURE_THUMB2
);
110 set_feature(env
, ARM_FEATURE_VFP
);
111 set_feature(env
, ARM_FEATURE_VFP3
);
112 set_feature(env
, ARM_FEATURE_NEON
);
113 set_feature(env
, ARM_FEATURE_DIV
);
115 case ARM_CPUID_TI915T
:
116 case ARM_CPUID_TI925T
:
117 set_feature(env
, ARM_FEATURE_OMAPCP
);
118 env
->cp15
.c0_cpuid
= ARM_CPUID_TI925T
; /* Depends on wiring. */
119 env
->cp15
.c0_cachetype
= 0x5109149;
120 env
->cp15
.c1_sys
= 0x00000070;
121 env
->cp15
.c15_i_max
= 0x000;
122 env
->cp15
.c15_i_min
= 0xff0;
124 case ARM_CPUID_PXA250
:
125 case ARM_CPUID_PXA255
:
126 case ARM_CPUID_PXA260
:
127 case ARM_CPUID_PXA261
:
128 case ARM_CPUID_PXA262
:
129 set_feature(env
, ARM_FEATURE_XSCALE
);
130 /* JTAG_ID is ((id << 28) | 0x09265013) */
131 env
->cp15
.c0_cachetype
= 0xd172172;
132 env
->cp15
.c1_sys
= 0x00000078;
134 case ARM_CPUID_PXA270_A0
:
135 case ARM_CPUID_PXA270_A1
:
136 case ARM_CPUID_PXA270_B0
:
137 case ARM_CPUID_PXA270_B1
:
138 case ARM_CPUID_PXA270_C0
:
139 case ARM_CPUID_PXA270_C5
:
140 set_feature(env
, ARM_FEATURE_XSCALE
);
141 /* JTAG_ID is ((id << 28) | 0x09265013) */
142 set_feature(env
, ARM_FEATURE_IWMMXT
);
143 env
->iwmmxt
.cregs
[ARM_IWMMXT_wCID
] = 0x69051000 | 'Q';
144 env
->cp15
.c0_cachetype
= 0xd172172;
145 env
->cp15
.c1_sys
= 0x00000078;
148 cpu_abort(env
, "Bad CPU ID: %x\n", id
);
153 void cpu_reset(CPUARMState
*env
)
156 id
= env
->cp15
.c0_cpuid
;
157 memset(env
, 0, offsetof(CPUARMState
, breakpoints
));
159 cpu_reset_model_id(env
, id
);
160 #if defined (CONFIG_USER_ONLY)
161 env
->uncached_cpsr
= ARM_CPU_MODE_USR
;
162 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 1 << 30;
164 /* SVC mode with interrupts disabled. */
165 env
->uncached_cpsr
= ARM_CPU_MODE_SVC
| CPSR_A
| CPSR_F
| CPSR_I
;
166 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
169 env
->uncached_cpsr
&= ~CPSR_I
;
170 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 0;
176 CPUARMState
*cpu_arm_init(const char *cpu_model
)
180 static int inited
= 0;
182 id
= cpu_arm_find_by_name(cpu_model
);
185 env
= qemu_mallocz(sizeof(CPUARMState
));
191 arm_translate_init();
194 env
->cpu_model_str
= cpu_model
;
195 env
->cp15
.c0_cpuid
= id
;
205 static const struct arm_cpu_t arm_cpu_names
[] = {
206 { ARM_CPUID_ARM926
, "arm926"},
207 { ARM_CPUID_ARM946
, "arm946"},
208 { ARM_CPUID_ARM1026
, "arm1026"},
209 { ARM_CPUID_ARM1136
, "arm1136"},
210 { ARM_CPUID_ARM1136_R2
, "arm1136-r2"},
211 { ARM_CPUID_ARM11MPCORE
, "arm11mpcore"},
212 { ARM_CPUID_CORTEXM3
, "cortex-m3"},
213 { ARM_CPUID_CORTEXA8
, "cortex-a8"},
214 { ARM_CPUID_TI925T
, "ti925t" },
215 { ARM_CPUID_PXA250
, "pxa250" },
216 { ARM_CPUID_PXA255
, "pxa255" },
217 { ARM_CPUID_PXA260
, "pxa260" },
218 { ARM_CPUID_PXA261
, "pxa261" },
219 { ARM_CPUID_PXA262
, "pxa262" },
220 { ARM_CPUID_PXA270
, "pxa270" },
221 { ARM_CPUID_PXA270_A0
, "pxa270-a0" },
222 { ARM_CPUID_PXA270_A1
, "pxa270-a1" },
223 { ARM_CPUID_PXA270_B0
, "pxa270-b0" },
224 { ARM_CPUID_PXA270_B1
, "pxa270-b1" },
225 { ARM_CPUID_PXA270_C0
, "pxa270-c0" },
226 { ARM_CPUID_PXA270_C5
, "pxa270-c5" },
227 { ARM_CPUID_ANY
, "any"},
231 void arm_cpu_list(FILE *f
, int (*cpu_fprintf
)(FILE *f
, const char *fmt
, ...))
235 (*cpu_fprintf
)(f
, "Available CPUs:\n");
236 for (i
= 0; arm_cpu_names
[i
].name
; i
++) {
237 (*cpu_fprintf
)(f
, " %s\n", arm_cpu_names
[i
].name
);
241 /* return 0 if not found */
242 static uint32_t cpu_arm_find_by_name(const char *name
)
248 for (i
= 0; arm_cpu_names
[i
].name
; i
++) {
249 if (strcmp(name
, arm_cpu_names
[i
].name
) == 0) {
250 id
= arm_cpu_names
[i
].id
;
257 void cpu_arm_close(CPUARMState
*env
)
262 uint32_t cpsr_read(CPUARMState
*env
)
266 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
267 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
268 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
269 | ((env
->condexec_bits
& 0xfc) << 8)
273 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
275 if (mask
& CPSR_NZCV
) {
276 env
->ZF
= (~val
) & CPSR_Z
;
278 env
->CF
= (val
>> 29) & 1;
279 env
->VF
= (val
<< 3) & 0x80000000;
282 env
->QF
= ((val
& CPSR_Q
) != 0);
284 env
->thumb
= ((val
& CPSR_T
) != 0);
285 if (mask
& CPSR_IT_0_1
) {
286 env
->condexec_bits
&= ~3;
287 env
->condexec_bits
|= (val
>> 25) & 3;
289 if (mask
& CPSR_IT_2_7
) {
290 env
->condexec_bits
&= 3;
291 env
->condexec_bits
|= (val
>> 8) & 0xfc;
293 if (mask
& CPSR_GE
) {
294 env
->GE
= (val
>> 16) & 0xf;
297 if ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
) {
298 switch_mode(env
, val
& CPSR_M
);
300 mask
&= ~CACHED_CPSR_BITS
;
301 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
304 /* Sign/zero extend */
305 uint32_t HELPER(sxtb16
)(uint32_t x
)
308 res
= (uint16_t)(int8_t)x
;
309 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
313 uint32_t HELPER(uxtb16
)(uint32_t x
)
316 res
= (uint16_t)(uint8_t)x
;
317 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
321 uint32_t HELPER(clz
)(uint32_t x
)
324 for (count
= 32; x
; count
--)
329 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
336 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
343 uint32_t HELPER(rbit
)(uint32_t x
)
345 x
= ((x
& 0xff000000) >> 24)
346 | ((x
& 0x00ff0000) >> 8)
347 | ((x
& 0x0000ff00) << 8)
348 | ((x
& 0x000000ff) << 24);
349 x
= ((x
& 0xf0f0f0f0) >> 4)
350 | ((x
& 0x0f0f0f0f) << 4);
351 x
= ((x
& 0x88888888) >> 3)
352 | ((x
& 0x44444444) >> 1)
353 | ((x
& 0x22222222) << 1)
354 | ((x
& 0x11111111) << 3);
358 uint32_t HELPER(abs
)(uint32_t x
)
360 return ((int32_t)x
< 0) ? -x
: x
;
363 #if defined(CONFIG_USER_ONLY)
365 void do_interrupt (CPUState
*env
)
367 env
->exception_index
= -1;
370 /* Structure used to record exclusive memory locations. */
371 typedef struct mmon_state
{
372 struct mmon_state
*next
;
373 CPUARMState
*cpu_env
;
377 /* Chain of current locks. */
378 static mmon_state
* mmon_head
= NULL
;
380 int cpu_arm_handle_mmu_fault (CPUState
*env
, target_ulong address
, int rw
,
381 int mmu_idx
, int is_softmmu
)
384 env
->exception_index
= EXCP_PREFETCH_ABORT
;
385 env
->cp15
.c6_insn
= address
;
387 env
->exception_index
= EXCP_DATA_ABORT
;
388 env
->cp15
.c6_data
= address
;
393 static void allocate_mmon_state(CPUState
*env
)
395 env
->mmon_entry
= malloc(sizeof (mmon_state
));
396 if (!env
->mmon_entry
)
398 memset (env
->mmon_entry
, 0, sizeof (mmon_state
));
399 env
->mmon_entry
->cpu_env
= env
;
400 mmon_head
= env
->mmon_entry
;
403 /* Flush any monitor locks for the specified address. */
404 static void flush_mmon(uint32_t addr
)
408 for (mon
= mmon_head
; mon
; mon
= mon
->next
)
410 if (mon
->addr
!= addr
)
418 /* Mark an address for exclusive access. */
419 void HELPER(mark_exclusive
)(CPUState
*env
, uint32_t addr
)
421 if (!env
->mmon_entry
)
422 allocate_mmon_state(env
);
423 /* Clear any previous locks. */
425 env
->mmon_entry
->addr
= addr
;
428 /* Test if an exclusive address is still exclusive. Returns zero
429 if the address is still exclusive. */
430 uint32_t HELPER(test_exclusive
)(CPUState
*env
, uint32_t addr
)
434 if (!env
->mmon_entry
)
436 if (env
->mmon_entry
->addr
== addr
)
444 void HELPER(clrex
)(CPUState
*env
)
446 if (!(env
->mmon_entry
&& env
->mmon_entry
->addr
))
448 flush_mmon(env
->mmon_entry
->addr
);
451 target_phys_addr_t
cpu_get_phys_page_debug(CPUState
*env
, target_ulong addr
)
456 /* These should probably raise undefined insn exceptions. */
457 void HELPER(set_cp
)(CPUState
*env
, uint32_t insn
, uint32_t val
)
459 int op1
= (insn
>> 8) & 0xf;
460 cpu_abort(env
, "cp%i insn %08x\n", op1
, insn
);
464 uint32_t HELPER(get_cp
)(CPUState
*env
, uint32_t insn
)
466 int op1
= (insn
>> 8) & 0xf;
467 cpu_abort(env
, "cp%i insn %08x\n", op1
, insn
);
471 void HELPER(set_cp15
)(CPUState
*env
, uint32_t insn
, uint32_t val
)
473 cpu_abort(env
, "cp15 insn %08x\n", insn
);
476 uint32_t HELPER(get_cp15
)(CPUState
*env
, uint32_t insn
)
478 cpu_abort(env
, "cp15 insn %08x\n", insn
);
482 /* These should probably raise undefined insn exceptions. */
483 void HELPER(v7m_msr
)(CPUState
*env
, uint32_t reg
, uint32_t val
)
485 cpu_abort(env
, "v7m_mrs %d\n", reg
);
488 uint32_t HELPER(v7m_mrs
)(CPUState
*env
, uint32_t reg
)
490 cpu_abort(env
, "v7m_mrs %d\n", reg
);
494 void switch_mode(CPUState
*env
, int mode
)
496 if (mode
!= ARM_CPU_MODE_USR
)
497 cpu_abort(env
, "Tried to switch out of user mode\n");
500 void HELPER(set_r13_banked
)(CPUState
*env
, uint32_t mode
, uint32_t val
)
502 cpu_abort(env
, "banked r13 write\n");
505 uint32_t HELPER(get_r13_banked
)(CPUState
*env
, uint32_t mode
)
507 cpu_abort(env
, "banked r13 read\n");
513 extern int semihosting_enabled
;
515 /* Map CPU modes onto saved register banks. */
516 static inline int bank_number (int mode
)
519 case ARM_CPU_MODE_USR
:
520 case ARM_CPU_MODE_SYS
:
522 case ARM_CPU_MODE_SVC
:
524 case ARM_CPU_MODE_ABT
:
526 case ARM_CPU_MODE_UND
:
528 case ARM_CPU_MODE_IRQ
:
530 case ARM_CPU_MODE_FIQ
:
533 cpu_abort(cpu_single_env
, "Bad mode %x\n", mode
);
537 void switch_mode(CPUState
*env
, int mode
)
542 old_mode
= env
->uncached_cpsr
& CPSR_M
;
543 if (mode
== old_mode
)
546 if (old_mode
== ARM_CPU_MODE_FIQ
) {
547 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
548 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
549 } else if (mode
== ARM_CPU_MODE_FIQ
) {
550 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
551 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
554 i
= bank_number(old_mode
);
555 env
->banked_r13
[i
] = env
->regs
[13];
556 env
->banked_r14
[i
] = env
->regs
[14];
557 env
->banked_spsr
[i
] = env
->spsr
;
559 i
= bank_number(mode
);
560 env
->regs
[13] = env
->banked_r13
[i
];
561 env
->regs
[14] = env
->banked_r14
[i
];
562 env
->spsr
= env
->banked_spsr
[i
];
565 static void v7m_push(CPUARMState
*env
, uint32_t val
)
568 stl_phys(env
->regs
[13], val
);
571 static uint32_t v7m_pop(CPUARMState
*env
)
574 val
= ldl_phys(env
->regs
[13]);
579 /* Switch to V7M main or process stack pointer. */
580 static void switch_v7m_sp(CPUARMState
*env
, int process
)
583 if (env
->v7m
.current_sp
!= process
) {
584 tmp
= env
->v7m
.other_sp
;
585 env
->v7m
.other_sp
= env
->regs
[13];
587 env
->v7m
.current_sp
= process
;
591 static void do_v7m_exception_exit(CPUARMState
*env
)
596 type
= env
->regs
[15];
597 if (env
->v7m
.exception
!= 0)
598 armv7m_nvic_complete_irq(env
->v7m
.nvic
, env
->v7m
.exception
);
600 /* Switch to the target stack. */
601 switch_v7m_sp(env
, (type
& 4) != 0);
603 env
->regs
[0] = v7m_pop(env
);
604 env
->regs
[1] = v7m_pop(env
);
605 env
->regs
[2] = v7m_pop(env
);
606 env
->regs
[3] = v7m_pop(env
);
607 env
->regs
[12] = v7m_pop(env
);
608 env
->regs
[14] = v7m_pop(env
);
609 env
->regs
[15] = v7m_pop(env
);
611 xpsr_write(env
, xpsr
, 0xfffffdff);
612 /* Undo stack alignment. */
615 /* ??? The exception return type specifies Thread/Handler mode. However
616 this is also implied by the xPSR value. Not sure what to do
617 if there is a mismatch. */
618 /* ??? Likewise for mismatches between the CONTROL register and the stack
622 void do_interrupt_v7m(CPUARMState
*env
)
624 uint32_t xpsr
= xpsr_read(env
);
629 if (env
->v7m
.current_sp
)
631 if (env
->v7m
.exception
== 0)
634 /* For exceptions we just mark as pending on the NVIC, and let that
636 /* TODO: Need to escalate if the current priority is higher than the
637 one we're raising. */
638 switch (env
->exception_index
) {
640 armv7m_nvic_set_pending(env
->v7m
.nvic
, ARMV7M_EXCP_USAGE
);
644 armv7m_nvic_set_pending(env
->v7m
.nvic
, ARMV7M_EXCP_SVC
);
646 case EXCP_PREFETCH_ABORT
:
647 case EXCP_DATA_ABORT
:
648 armv7m_nvic_set_pending(env
->v7m
.nvic
, ARMV7M_EXCP_MEM
);
651 if (semihosting_enabled
) {
653 nr
= lduw_code(env
->regs
[15]) & 0xff;
656 env
->regs
[0] = do_arm_semihosting(env
);
660 armv7m_nvic_set_pending(env
->v7m
.nvic
, ARMV7M_EXCP_DEBUG
);
663 env
->v7m
.exception
= armv7m_nvic_acknowledge_irq(env
->v7m
.nvic
);
665 case EXCP_EXCEPTION_EXIT
:
666 do_v7m_exception_exit(env
);
669 cpu_abort(env
, "Unhandled exception 0x%x\n", env
->exception_index
);
670 return; /* Never happens. Keep compiler happy. */
673 /* Align stack pointer. */
674 /* ??? Should only do this if Configuration Control Register
675 STACKALIGN bit is set. */
676 if (env
->regs
[13] & 4) {
680 /* Switch to the handler mode. */
682 v7m_push(env
, env
->regs
[15]);
683 v7m_push(env
, env
->regs
[14]);
684 v7m_push(env
, env
->regs
[12]);
685 v7m_push(env
, env
->regs
[3]);
686 v7m_push(env
, env
->regs
[2]);
687 v7m_push(env
, env
->regs
[1]);
688 v7m_push(env
, env
->regs
[0]);
689 switch_v7m_sp(env
, 0);
690 env
->uncached_cpsr
&= ~CPSR_IT
;
692 addr
= ldl_phys(env
->v7m
.vecbase
+ env
->v7m
.exception
* 4);
693 env
->regs
[15] = addr
& 0xfffffffe;
694 env
->thumb
= addr
& 1;
697 /* Handle a CPU exception. */
698 void do_interrupt(CPUARMState
*env
)
706 do_interrupt_v7m(env
);
709 /* TODO: Vectored interrupt controller. */
710 switch (env
->exception_index
) {
712 new_mode
= ARM_CPU_MODE_UND
;
721 if (semihosting_enabled
) {
722 /* Check for semihosting interrupt. */
724 mask
= lduw_code(env
->regs
[15] - 2) & 0xff;
726 mask
= ldl_code(env
->regs
[15] - 4) & 0xffffff;
728 /* Only intercept calls from privileged modes, to provide some
729 semblance of security. */
730 if (((mask
== 0x123456 && !env
->thumb
)
731 || (mask
== 0xab && env
->thumb
))
732 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
733 env
->regs
[0] = do_arm_semihosting(env
);
737 new_mode
= ARM_CPU_MODE_SVC
;
740 /* The PC already points to the next instruction. */
744 /* See if this is a semihosting syscall. */
745 if (env
->thumb
&& semihosting_enabled
) {
746 mask
= lduw_code(env
->regs
[15]) & 0xff;
748 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
750 env
->regs
[0] = do_arm_semihosting(env
);
754 /* Fall through to prefetch abort. */
755 case EXCP_PREFETCH_ABORT
:
756 new_mode
= ARM_CPU_MODE_ABT
;
758 mask
= CPSR_A
| CPSR_I
;
761 case EXCP_DATA_ABORT
:
762 new_mode
= ARM_CPU_MODE_ABT
;
764 mask
= CPSR_A
| CPSR_I
;
768 new_mode
= ARM_CPU_MODE_IRQ
;
770 /* Disable IRQ and imprecise data aborts. */
771 mask
= CPSR_A
| CPSR_I
;
775 new_mode
= ARM_CPU_MODE_FIQ
;
777 /* Disable FIQ, IRQ and imprecise data aborts. */
778 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
782 cpu_abort(env
, "Unhandled exception 0x%x\n", env
->exception_index
);
783 return; /* Never happens. Keep compiler happy. */
786 if (env
->cp15
.c1_sys
& (1 << 13)) {
789 switch_mode (env
, new_mode
);
790 env
->spsr
= cpsr_read(env
);
792 env
->condexec_bits
= 0;
793 /* Switch to the new mode, and switch to Arm mode. */
794 /* ??? Thumb interrupt handlers not implemented. */
795 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
796 env
->uncached_cpsr
|= mask
;
798 env
->regs
[14] = env
->regs
[15] + offset
;
799 env
->regs
[15] = addr
;
800 env
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
803 /* Check section/page access permissions.
804 Returns the page protection flags, or zero if the access is not
806 static inline int check_ap(CPUState
*env
, int ap
, int domain
, int access_type
,
812 return PAGE_READ
| PAGE_WRITE
;
814 if (access_type
== 1)
821 if (access_type
== 1)
823 switch ((env
->cp15
.c1_sys
>> 8) & 3) {
825 return is_user
? 0 : PAGE_READ
;
832 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
837 return PAGE_READ
| PAGE_WRITE
;
839 return PAGE_READ
| PAGE_WRITE
;
840 case 4: case 7: /* Reserved. */
843 return is_user
? 0 : prot_ro
;
851 static int get_phys_addr_v5(CPUState
*env
, uint32_t address
, int access_type
,
852 int is_user
, uint32_t *phys_ptr
, int *prot
)
862 /* Pagetable walk. */
863 /* Lookup l1 descriptor. */
864 if (address
& env
->cp15
.c2_mask
)
865 table
= env
->cp15
.c2_base1
;
867 table
= env
->cp15
.c2_base0
;
868 table
= (table
& 0xffffc000) | ((address
>> 18) & 0x3ffc);
869 desc
= ldl_phys(table
);
871 domain
= (env
->cp15
.c3
>> ((desc
>> 4) & 0x1e)) & 3;
873 /* Section translation fault. */
877 if (domain
== 0 || domain
== 2) {
879 code
= 9; /* Section domain fault. */
881 code
= 11; /* Page domain fault. */
886 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
887 ap
= (desc
>> 10) & 3;
890 /* Lookup l2 entry. */
892 /* Coarse pagetable. */
893 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
895 /* Fine pagetable. */
896 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
898 desc
= ldl_phys(table
);
900 case 0: /* Page translation fault. */
903 case 1: /* 64k page. */
904 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
905 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
907 case 2: /* 4k page. */
908 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
909 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
911 case 3: /* 1k page. */
913 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
914 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
916 /* Page translation fault. */
921 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
923 ap
= (desc
>> 4) & 3;
926 /* Never happens, but compiler isn't smart enough to tell. */
931 *prot
= check_ap(env
, ap
, domain
, access_type
, is_user
);
933 /* Access permission fault. */
936 *phys_ptr
= phys_addr
;
939 return code
| (domain
<< 4);
942 static int get_phys_addr_v6(CPUState
*env
, uint32_t address
, int access_type
,
943 int is_user
, uint32_t *phys_ptr
, int *prot
)
954 /* Pagetable walk. */
955 /* Lookup l1 descriptor. */
956 if (address
& env
->cp15
.c2_mask
)
957 table
= env
->cp15
.c2_base1
;
959 table
= env
->cp15
.c2_base0
;
960 table
= (table
& 0xffffc000) | ((address
>> 18) & 0x3ffc);
961 desc
= ldl_phys(table
);
964 /* Section translation fault. */
968 } else if (type
== 2 && (desc
& (1 << 18))) {
972 /* Section or page. */
973 domain
= (desc
>> 4) & 0x1e;
975 domain
= (env
->cp15
.c3
>> domain
) & 3;
976 if (domain
== 0 || domain
== 2) {
978 code
= 9; /* Section domain fault. */
980 code
= 11; /* Page domain fault. */
984 if (desc
& (1 << 18)) {
986 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
989 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
991 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
992 xn
= desc
& (1 << 4);
995 /* Lookup l2 entry. */
996 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
997 desc
= ldl_phys(table
);
998 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
1000 case 0: /* Page translation fault. */
1003 case 1: /* 64k page. */
1004 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
1005 xn
= desc
& (1 << 15);
1007 case 2: case 3: /* 4k page. */
1008 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
1012 /* Never happens, but compiler isn't smart enough to tell. */
1017 if (xn
&& access_type
== 2)
1020 *prot
= check_ap(env
, ap
, domain
, access_type
, is_user
);
1022 /* Access permission fault. */
1025 *phys_ptr
= phys_addr
;
1028 return code
| (domain
<< 4);
1031 static int get_phys_addr_mpu(CPUState
*env
, uint32_t address
, int access_type
,
1032 int is_user
, uint32_t *phys_ptr
, int *prot
)
1038 *phys_ptr
= address
;
1039 for (n
= 7; n
>= 0; n
--) {
1040 base
= env
->cp15
.c6_region
[n
];
1041 if ((base
& 1) == 0)
1043 mask
= 1 << ((base
>> 1) & 0x1f);
1044 /* Keep this shift separate from the above to avoid an
1045 (undefined) << 32. */
1046 mask
= (mask
<< 1) - 1;
1047 if (((base
^ address
) & ~mask
) == 0)
1053 if (access_type
== 2) {
1054 mask
= env
->cp15
.c5_insn
;
1056 mask
= env
->cp15
.c5_data
;
1058 mask
= (mask
>> (n
* 4)) & 0xf;
1065 *prot
= PAGE_READ
| PAGE_WRITE
;
1070 *prot
|= PAGE_WRITE
;
1073 *prot
= PAGE_READ
| PAGE_WRITE
;
1084 /* Bad permission. */
1090 static inline int get_phys_addr(CPUState
*env
, uint32_t address
,
1091 int access_type
, int is_user
,
1092 uint32_t *phys_ptr
, int *prot
)
1094 /* Fast Context Switch Extension. */
1095 if (address
< 0x02000000)
1096 address
+= env
->cp15
.c13_fcse
;
1098 if ((env
->cp15
.c1_sys
& 1) == 0) {
1099 /* MMU/MPU disabled. */
1100 *phys_ptr
= address
;
1101 *prot
= PAGE_READ
| PAGE_WRITE
;
1103 } else if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1104 return get_phys_addr_mpu(env
, address
, access_type
, is_user
, phys_ptr
,
1106 } else if (env
->cp15
.c1_sys
& (1 << 23)) {
1107 return get_phys_addr_v6(env
, address
, access_type
, is_user
, phys_ptr
,
1110 return get_phys_addr_v5(env
, address
, access_type
, is_user
, phys_ptr
,
1115 int cpu_arm_handle_mmu_fault (CPUState
*env
, target_ulong address
,
1116 int access_type
, int mmu_idx
, int is_softmmu
)
1122 is_user
= mmu_idx
== MMU_USER_IDX
;
1123 ret
= get_phys_addr(env
, address
, access_type
, is_user
, &phys_addr
, &prot
);
1125 /* Map a single [sub]page. */
1126 phys_addr
&= ~(uint32_t)0x3ff;
1127 address
&= ~(uint32_t)0x3ff;
1128 return tlb_set_page (env
, address
, phys_addr
, prot
, mmu_idx
,
1132 if (access_type
== 2) {
1133 env
->cp15
.c5_insn
= ret
;
1134 env
->cp15
.c6_insn
= address
;
1135 env
->exception_index
= EXCP_PREFETCH_ABORT
;
1137 env
->cp15
.c5_data
= ret
;
1138 if (access_type
== 1 && arm_feature(env
, ARM_FEATURE_V6
))
1139 env
->cp15
.c5_data
|= (1 << 11);
1140 env
->cp15
.c6_data
= address
;
1141 env
->exception_index
= EXCP_DATA_ABORT
;
1146 target_phys_addr_t
cpu_get_phys_page_debug(CPUState
*env
, target_ulong addr
)
1152 ret
= get_phys_addr(env
, addr
, 0, 0, &phys_addr
, &prot
);
1160 /* Not really implemented. Need to figure out a sane way of doing this.
1161 Maybe add generic watchpoint support and use that. */
1163 void HELPER(mark_exclusive
)(CPUState
*env
, uint32_t addr
)
1165 env
->mmon_addr
= addr
;
1168 uint32_t HELPER(test_exclusive
)(CPUState
*env
, uint32_t addr
)
1170 return (env
->mmon_addr
!= addr
);
1173 void HELPER(clrex
)(CPUState
*env
)
1175 env
->mmon_addr
= -1;
1178 void HELPER(set_cp
)(CPUState
*env
, uint32_t insn
, uint32_t val
)
1180 int cp_num
= (insn
>> 8) & 0xf;
1181 int cp_info
= (insn
>> 5) & 7;
1182 int src
= (insn
>> 16) & 0xf;
1183 int operand
= insn
& 0xf;
1185 if (env
->cp
[cp_num
].cp_write
)
1186 env
->cp
[cp_num
].cp_write(env
->cp
[cp_num
].opaque
,
1187 cp_info
, src
, operand
, val
);
1190 uint32_t HELPER(get_cp
)(CPUState
*env
, uint32_t insn
)
1192 int cp_num
= (insn
>> 8) & 0xf;
1193 int cp_info
= (insn
>> 5) & 7;
1194 int dest
= (insn
>> 16) & 0xf;
1195 int operand
= insn
& 0xf;
1197 if (env
->cp
[cp_num
].cp_read
)
1198 return env
->cp
[cp_num
].cp_read(env
->cp
[cp_num
].opaque
,
1199 cp_info
, dest
, operand
);
1203 /* Return basic MPU access permission bits. */
1204 static uint32_t simple_mpu_ap_bits(uint32_t val
)
1211 for (i
= 0; i
< 16; i
+= 2) {
1212 ret
|= (val
>> i
) & mask
;
1218 /* Pad basic MPU access permission bits to extended format. */
1219 static uint32_t extended_mpu_ap_bits(uint32_t val
)
1226 for (i
= 0; i
< 16; i
+= 2) {
1227 ret
|= (val
& mask
) << i
;
1233 void HELPER(set_cp15
)(CPUState
*env
, uint32_t insn
, uint32_t val
)
1239 op1
= (insn
>> 21) & 7;
1240 op2
= (insn
>> 5) & 7;
1242 switch ((insn
>> 16) & 0xf) {
1244 if (((insn
>> 21) & 7) == 2) {
1245 /* ??? Select cache level. Ignore. */
1249 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1251 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1254 case 1: /* System configuration. */
1255 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1259 if (!arm_feature(env
, ARM_FEATURE_XSCALE
) || crm
== 0)
1260 env
->cp15
.c1_sys
= val
;
1261 /* ??? Lots of these bits are not implemented. */
1262 /* This may enable/disable the MMU, so do a TLB flush. */
1265 case 1: /* Auxiliary cotrol register. */
1266 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1267 env
->cp15
.c1_xscaleauxcr
= val
;
1270 /* Not implemented. */
1273 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1275 env
->cp15
.c1_coproc
= val
;
1276 /* ??? Is this safe when called from within a TB? */
1283 case 2: /* MMU Page table control / MPU cache control. */
1284 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1287 env
->cp15
.c2_data
= val
;
1290 env
->cp15
.c2_insn
= val
;
1298 env
->cp15
.c2_base0
= val
;
1301 env
->cp15
.c2_base1
= val
;
1304 env
->cp15
.c2_mask
= ~(((uint32_t)0xffffffffu
) >> val
);
1311 case 3: /* MMU Domain access control / MPU write buffer control. */
1313 tlb_flush(env
, 1); /* Flush TLB as domain not tracked in TLB */
1315 case 4: /* Reserved. */
1317 case 5: /* MMU Fault status / MPU access permission. */
1318 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1322 if (arm_feature(env
, ARM_FEATURE_MPU
))
1323 val
= extended_mpu_ap_bits(val
);
1324 env
->cp15
.c5_data
= val
;
1327 if (arm_feature(env
, ARM_FEATURE_MPU
))
1328 val
= extended_mpu_ap_bits(val
);
1329 env
->cp15
.c5_insn
= val
;
1332 if (!arm_feature(env
, ARM_FEATURE_MPU
))
1334 env
->cp15
.c5_data
= val
;
1337 if (!arm_feature(env
, ARM_FEATURE_MPU
))
1339 env
->cp15
.c5_insn
= val
;
1345 case 6: /* MMU Fault address / MPU base/size. */
1346 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1349 env
->cp15
.c6_region
[crm
] = val
;
1351 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1355 env
->cp15
.c6_data
= val
;
1357 case 1: /* ??? This is WFAR on armv6 */
1359 env
->cp15
.c6_insn
= val
;
1366 case 7: /* Cache control. */
1367 env
->cp15
.c15_i_max
= 0x000;
1368 env
->cp15
.c15_i_min
= 0xff0;
1369 /* No cache, so nothing to do. */
1370 /* ??? MPCore has VA to PA translation functions. */
1372 case 8: /* MMU TLB control. */
1374 case 0: /* Invalidate all. */
1377 case 1: /* Invalidate single TLB entry. */
1379 /* ??? This is wrong for large pages and sections. */
1380 /* As an ugly hack to make linux work we always flush a 4K
1383 tlb_flush_page(env
, val
);
1384 tlb_flush_page(env
, val
+ 0x400);
1385 tlb_flush_page(env
, val
+ 0x800);
1386 tlb_flush_page(env
, val
+ 0xc00);
1391 case 2: /* Invalidate on ASID. */
1392 tlb_flush(env
, val
== 0);
1394 case 3: /* Invalidate single entry on MVA. */
1395 /* ??? This is like case 1, but ignores ASID. */
1403 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1406 case 0: /* Cache lockdown. */
1408 case 0: /* L1 cache. */
1411 env
->cp15
.c9_data
= val
;
1414 env
->cp15
.c9_insn
= val
;
1420 case 1: /* L2 cache. */
1421 /* Ignore writes to L2 lockdown/auxiliary registers. */
1427 case 1: /* TCM memory region registers. */
1428 /* Not implemented. */
1434 case 10: /* MMU TLB lockdown. */
1435 /* ??? TLB lockdown not implemented. */
1437 case 12: /* Reserved. */
1439 case 13: /* Process ID. */
1442 /* Unlike real hardware the qemu TLB uses virtual addresses,
1443 not modified virtual addresses, so this causes a TLB flush.
1445 if (env
->cp15
.c13_fcse
!= val
)
1447 env
->cp15
.c13_fcse
= val
;
1450 /* This changes the ASID, so do a TLB flush. */
1451 if (env
->cp15
.c13_context
!= val
1452 && !arm_feature(env
, ARM_FEATURE_MPU
))
1454 env
->cp15
.c13_context
= val
;
1457 env
->cp15
.c13_tls1
= val
;
1460 env
->cp15
.c13_tls2
= val
;
1463 env
->cp15
.c13_tls3
= val
;
1469 case 14: /* Reserved. */
1471 case 15: /* Implementation specific. */
1472 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1473 if (op2
== 0 && crm
== 1) {
1474 if (env
->cp15
.c15_cpar
!= (val
& 0x3fff)) {
1475 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1477 env
->cp15
.c15_cpar
= val
& 0x3fff;
1483 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
1487 case 1: /* Set TI925T configuration. */
1488 env
->cp15
.c15_ticonfig
= val
& 0xe7;
1489 env
->cp15
.c0_cpuid
= (val
& (1 << 5)) ? /* OS_TYPE bit */
1490 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
1492 case 2: /* Set I_max. */
1493 env
->cp15
.c15_i_max
= val
;
1495 case 3: /* Set I_min. */
1496 env
->cp15
.c15_i_min
= val
;
1498 case 4: /* Set thread-ID. */
1499 env
->cp15
.c15_threadid
= val
& 0xffff;
1501 case 8: /* Wait-for-interrupt (deprecated). */
1502 cpu_interrupt(env
, CPU_INTERRUPT_HALT
);
1512 /* ??? For debugging only. Should raise illegal instruction exception. */
1513 cpu_abort(env
, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1514 (insn
>> 16) & 0xf, crm
, op1
, op2
);
1517 uint32_t HELPER(get_cp15
)(CPUState
*env
, uint32_t insn
)
1523 op1
= (insn
>> 21) & 7;
1524 op2
= (insn
>> 5) & 7;
1526 switch ((insn
>> 16) & 0xf) {
1527 case 0: /* ID codes. */
1533 case 0: /* Device ID. */
1534 return env
->cp15
.c0_cpuid
;
1535 case 1: /* Cache Type. */
1536 return env
->cp15
.c0_cachetype
;
1537 case 2: /* TCM status. */
1539 case 3: /* TLB type register. */
1540 return 0; /* No lockable TLB entries. */
1541 case 5: /* CPU ID */
1542 return env
->cpu_index
;
1547 if (!arm_feature(env
, ARM_FEATURE_V6
))
1549 return env
->cp15
.c0_c1
[op2
];
1551 if (!arm_feature(env
, ARM_FEATURE_V6
))
1553 return env
->cp15
.c0_c2
[op2
];
1554 case 3: case 4: case 5: case 6: case 7:
1560 /* These registers aren't documented on arm11 cores. However
1561 Linux looks at them anyway. */
1562 if (!arm_feature(env
, ARM_FEATURE_V6
))
1566 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1572 case 1: /* System configuration. */
1573 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1576 case 0: /* Control register. */
1577 return env
->cp15
.c1_sys
;
1578 case 1: /* Auxiliary control register. */
1579 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1580 return env
->cp15
.c1_xscaleauxcr
;
1581 if (!arm_feature(env
, ARM_FEATURE_AUXCR
))
1583 switch (ARM_CPUID(env
)) {
1584 case ARM_CPUID_ARM1026
:
1586 case ARM_CPUID_ARM1136
:
1587 case ARM_CPUID_ARM1136_R2
:
1589 case ARM_CPUID_ARM11MPCORE
:
1591 case ARM_CPUID_CORTEXA8
:
1596 case 2: /* Coprocessor access register. */
1597 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1599 return env
->cp15
.c1_coproc
;
1603 case 2: /* MMU Page table control / MPU cache control. */
1604 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1607 return env
->cp15
.c2_data
;
1610 return env
->cp15
.c2_insn
;
1618 return env
->cp15
.c2_base0
;
1620 return env
->cp15
.c2_base1
;
1626 mask
= env
->cp15
.c2_mask
;
1637 case 3: /* MMU Domain access control / MPU write buffer control. */
1638 return env
->cp15
.c3
;
1639 case 4: /* Reserved. */
1641 case 5: /* MMU Fault status / MPU access permission. */
1642 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1646 if (arm_feature(env
, ARM_FEATURE_MPU
))
1647 return simple_mpu_ap_bits(env
->cp15
.c5_data
);
1648 return env
->cp15
.c5_data
;
1650 if (arm_feature(env
, ARM_FEATURE_MPU
))
1651 return simple_mpu_ap_bits(env
->cp15
.c5_data
);
1652 return env
->cp15
.c5_insn
;
1654 if (!arm_feature(env
, ARM_FEATURE_MPU
))
1656 return env
->cp15
.c5_data
;
1658 if (!arm_feature(env
, ARM_FEATURE_MPU
))
1660 return env
->cp15
.c5_insn
;
1664 case 6: /* MMU Fault address. */
1665 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1668 return env
->cp15
.c6_region
[crm
];
1670 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1674 return env
->cp15
.c6_data
;
1676 if (arm_feature(env
, ARM_FEATURE_V6
)) {
1677 /* Watchpoint Fault Adrress. */
1678 return 0; /* Not implemented. */
1680 /* Instruction Fault Adrress. */
1681 /* Arm9 doesn't have an IFAR, but implementing it anyway
1682 shouldn't do any harm. */
1683 return env
->cp15
.c6_insn
;
1686 if (arm_feature(env
, ARM_FEATURE_V6
)) {
1687 /* Instruction Fault Adrress. */
1688 return env
->cp15
.c6_insn
;
1696 case 7: /* Cache control. */
1697 /* FIXME: Should only clear Z flag if destination is r15. */
1700 case 8: /* MMU TLB control. */
1702 case 9: /* Cache lockdown. */
1704 case 0: /* L1 cache. */
1705 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1709 return env
->cp15
.c9_data
;
1711 return env
->cp15
.c9_insn
;
1715 case 1: /* L2 cache */
1718 /* L2 Lockdown and Auxiliary control. */
1723 case 10: /* MMU TLB lockdown. */
1724 /* ??? TLB lockdown not implemented. */
1726 case 11: /* TCM DMA control. */
1727 case 12: /* Reserved. */
1729 case 13: /* Process ID. */
1732 return env
->cp15
.c13_fcse
;
1734 return env
->cp15
.c13_context
;
1736 return env
->cp15
.c13_tls1
;
1738 return env
->cp15
.c13_tls2
;
1740 return env
->cp15
.c13_tls3
;
1744 case 14: /* Reserved. */
1746 case 15: /* Implementation specific. */
1747 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1748 if (op2
== 0 && crm
== 1)
1749 return env
->cp15
.c15_cpar
;
1753 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
1757 case 1: /* Read TI925T configuration. */
1758 return env
->cp15
.c15_ticonfig
;
1759 case 2: /* Read I_max. */
1760 return env
->cp15
.c15_i_max
;
1761 case 3: /* Read I_min. */
1762 return env
->cp15
.c15_i_min
;
1763 case 4: /* Read thread-ID. */
1764 return env
->cp15
.c15_threadid
;
1765 case 8: /* TI925T_status */
1768 /* TODO: Peripheral port remap register:
1769 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
1770 * controller base address at $rn & ~0xfff and map size of
1771 * 0x200 << ($rn & 0xfff), when MMU is off. */
1777 /* ??? For debugging only. Should raise illegal instruction exception. */
1778 cpu_abort(env
, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1779 (insn
>> 16) & 0xf, crm
, op1
, op2
);
1783 void HELPER(set_r13_banked
)(CPUState
*env
, uint32_t mode
, uint32_t val
)
1785 env
->banked_r13
[bank_number(mode
)] = val
;
1788 uint32_t HELPER(get_r13_banked
)(CPUState
*env
, uint32_t mode
)
1790 return env
->banked_r13
[bank_number(mode
)];
1793 uint32_t HELPER(v7m_mrs
)(CPUState
*env
, uint32_t reg
)
1797 return xpsr_read(env
) & 0xf8000000;
1799 return xpsr_read(env
) & 0xf80001ff;
1801 return xpsr_read(env
) & 0xff00fc00;
1803 return xpsr_read(env
) & 0xff00fdff;
1805 return xpsr_read(env
) & 0x000001ff;
1807 return xpsr_read(env
) & 0x0700fc00;
1809 return xpsr_read(env
) & 0x0700edff;
1811 return env
->v7m
.current_sp
? env
->v7m
.other_sp
: env
->regs
[13];
1813 return env
->v7m
.current_sp
? env
->regs
[13] : env
->v7m
.other_sp
;
1814 case 16: /* PRIMASK */
1815 return (env
->uncached_cpsr
& CPSR_I
) != 0;
1816 case 17: /* FAULTMASK */
1817 return (env
->uncached_cpsr
& CPSR_F
) != 0;
1818 case 18: /* BASEPRI */
1819 case 19: /* BASEPRI_MAX */
1820 return env
->v7m
.basepri
;
1821 case 20: /* CONTROL */
1822 return env
->v7m
.control
;
1824 /* ??? For debugging only. */
1825 cpu_abort(env
, "Unimplemented system register read (%d)\n", reg
);
1830 void HELPER(v7m_msr
)(CPUState
*env
, uint32_t reg
, uint32_t val
)
1834 xpsr_write(env
, val
, 0xf8000000);
1837 xpsr_write(env
, val
, 0xf8000000);
1840 xpsr_write(env
, val
, 0xfe00fc00);
1843 xpsr_write(env
, val
, 0xfe00fc00);
1846 /* IPSR bits are readonly. */
1849 xpsr_write(env
, val
, 0x0600fc00);
1852 xpsr_write(env
, val
, 0x0600fc00);
1855 if (env
->v7m
.current_sp
)
1856 env
->v7m
.other_sp
= val
;
1858 env
->regs
[13] = val
;
1861 if (env
->v7m
.current_sp
)
1862 env
->regs
[13] = val
;
1864 env
->v7m
.other_sp
= val
;
1866 case 16: /* PRIMASK */
1868 env
->uncached_cpsr
|= CPSR_I
;
1870 env
->uncached_cpsr
&= ~CPSR_I
;
1872 case 17: /* FAULTMASK */
1874 env
->uncached_cpsr
|= CPSR_F
;
1876 env
->uncached_cpsr
&= ~CPSR_F
;
1878 case 18: /* BASEPRI */
1879 env
->v7m
.basepri
= val
& 0xff;
1881 case 19: /* BASEPRI_MAX */
1883 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
1884 env
->v7m
.basepri
= val
;
1886 case 20: /* CONTROL */
1887 env
->v7m
.control
= val
& 3;
1888 switch_v7m_sp(env
, (val
& 2) != 0);
1891 /* ??? For debugging only. */
1892 cpu_abort(env
, "Unimplemented system register write (%d)\n", reg
);
1897 void cpu_arm_set_cp_io(CPUARMState
*env
, int cpnum
,
1898 ARMReadCPFunc
*cp_read
, ARMWriteCPFunc
*cp_write
,
1901 if (cpnum
< 0 || cpnum
> 14) {
1902 cpu_abort(env
, "Bad coprocessor number: %i\n", cpnum
);
1906 env
->cp
[cpnum
].cp_read
= cp_read
;
1907 env
->cp
[cpnum
].cp_write
= cp_write
;
1908 env
->cp
[cpnum
].opaque
= opaque
;
1913 /* Note that signed overflow is undefined in C. The following routines are
1914 careful to use unsigned types where modulo arithmetic is required.
1915 Failure to do so _will_ break on newer gcc. */
1917 /* Signed saturating arithmetic. */
1919 /* Perform 16-bit signed saturating addition. */
1920 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
1925 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
1934 /* Perform 8-bit signed saturating addition. */
1935 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
1940 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
1949 /* Perform 16-bit signed saturating subtraction. */
1950 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
1955 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
1964 /* Perform 8-bit signed saturating subtraction. */
1965 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
1970 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
1979 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
1980 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
1981 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
1982 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
1985 #include "op_addsub.h"
1987 /* Unsigned saturating arithmetic. */
1988 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
1997 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
2005 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
2014 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
2022 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2023 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2024 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2025 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2028 #include "op_addsub.h"
2030 /* Signed modulo arithmetic. */
2031 #define SARITH16(a, b, n, op) do { \
2033 sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \
2034 RESULT(sum, n, 16); \
2036 ge |= 3 << (n * 2); \
2039 #define SARITH8(a, b, n, op) do { \
2041 sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \
2042 RESULT(sum, n, 8); \
2048 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2049 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2050 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2051 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2055 #include "op_addsub.h"
2057 /* Unsigned modulo arithmetic. */
2058 #define ADD16(a, b, n) do { \
2060 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2061 RESULT(sum, n, 16); \
2062 if ((sum >> 16) == 1) \
2063 ge |= 3 << (n * 2); \
2066 #define ADD8(a, b, n) do { \
2068 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2069 RESULT(sum, n, 8); \
2070 if ((sum >> 8) == 1) \
2074 #define SUB16(a, b, n) do { \
2076 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2077 RESULT(sum, n, 16); \
2078 if ((sum >> 16) == 0) \
2079 ge |= 3 << (n * 2); \
2082 #define SUB8(a, b, n) do { \
2084 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2085 RESULT(sum, n, 8); \
2086 if ((sum >> 8) == 0) \
2093 #include "op_addsub.h"
2095 /* Halved signed arithmetic. */
2096 #define ADD16(a, b, n) \
2097 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2098 #define SUB16(a, b, n) \
2099 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2100 #define ADD8(a, b, n) \
2101 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2102 #define SUB8(a, b, n) \
2103 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2106 #include "op_addsub.h"
2108 /* Halved unsigned arithmetic. */
2109 #define ADD16(a, b, n) \
2110 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2111 #define SUB16(a, b, n) \
2112 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2113 #define ADD8(a, b, n) \
2114 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2115 #define SUB8(a, b, n) \
2116 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2119 #include "op_addsub.h"
2121 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
2129 /* Unsigned sum of absolute byte differences. */
2130 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
2133 sum
= do_usad(a
, b
);
2134 sum
+= do_usad(a
>> 8, b
>> 8);
2135 sum
+= do_usad(a
>> 16, b
>>16);
2136 sum
+= do_usad(a
>> 24, b
>> 24);
2140 /* For ARMv6 SEL instruction. */
2141 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
2154 return (a
& mask
) | (b
& ~mask
);
2157 uint32_t HELPER(logicq_cc
)(uint64_t val
)
2159 return (val
>> 32) | (val
!= 0);
2162 /* VFP support. We follow the convention used for VFP instrunctions:
2163 Single precition routines have a "s" suffix, double precision a
2166 /* Convert host exception flags to vfp form. */
2167 static inline int vfp_exceptbits_from_host(int host_bits
)
2169 int target_bits
= 0;
2171 if (host_bits
& float_flag_invalid
)
2173 if (host_bits
& float_flag_divbyzero
)
2175 if (host_bits
& float_flag_overflow
)
2177 if (host_bits
& float_flag_underflow
)
2179 if (host_bits
& float_flag_inexact
)
2180 target_bits
|= 0x10;
2184 uint32_t HELPER(vfp_get_fpscr
)(CPUState
*env
)
2189 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
2190 | (env
->vfp
.vec_len
<< 16)
2191 | (env
->vfp
.vec_stride
<< 20);
2192 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
2193 fpscr
|= vfp_exceptbits_from_host(i
);
2197 /* Convert vfp exception flags to target form. */
2198 static inline int vfp_exceptbits_to_host(int target_bits
)
2202 if (target_bits
& 1)
2203 host_bits
|= float_flag_invalid
;
2204 if (target_bits
& 2)
2205 host_bits
|= float_flag_divbyzero
;
2206 if (target_bits
& 4)
2207 host_bits
|= float_flag_overflow
;
2208 if (target_bits
& 8)
2209 host_bits
|= float_flag_underflow
;
2210 if (target_bits
& 0x10)
2211 host_bits
|= float_flag_inexact
;
2215 void HELPER(vfp_set_fpscr
)(CPUState
*env
, uint32_t val
)
2220 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
2221 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
2222 env
->vfp
.vec_len
= (val
>> 16) & 7;
2223 env
->vfp
.vec_stride
= (val
>> 20) & 3;
2226 if (changed
& (3 << 22)) {
2227 i
= (val
>> 22) & 3;
2230 i
= float_round_nearest_even
;
2236 i
= float_round_down
;
2239 i
= float_round_to_zero
;
2242 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
2245 i
= vfp_exceptbits_to_host((val
>> 8) & 0x1f);
2246 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
2247 /* XXX: FZ and DN are not implemented. */
2250 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2252 #define VFP_BINOP(name) \
2253 float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \
2255 return float32_ ## name (a, b, &env->vfp.fp_status); \
2257 float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \
2259 return float64_ ## name (a, b, &env->vfp.fp_status); \
2267 float32
VFP_HELPER(neg
, s
)(float32 a
)
2269 return float32_chs(a
);
2272 float64
VFP_HELPER(neg
, d
)(float64 a
)
2274 return float64_chs(a
);
2277 float32
VFP_HELPER(abs
, s
)(float32 a
)
2279 return float32_abs(a
);
2282 float64
VFP_HELPER(abs
, d
)(float64 a
)
2284 return float64_abs(a
);
2287 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUState
*env
)
2289 return float32_sqrt(a
, &env
->vfp
.fp_status
);
2292 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUState
*env
)
2294 return float64_sqrt(a
, &env
->vfp
.fp_status
);
2297 /* XXX: check quiet/signaling case */
2298 #define DO_VFP_cmp(p, type) \
2299 void VFP_HELPER(cmp, p)(type a, type b, CPUState *env) \
2302 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2303 case 0: flags = 0x6; break; \
2304 case -1: flags = 0x8; break; \
2305 case 1: flags = 0x2; break; \
2306 default: case 2: flags = 0x3; break; \
2308 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2309 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2311 void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2314 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2315 case 0: flags = 0x6; break; \
2316 case -1: flags = 0x8; break; \
2317 case 1: flags = 0x2; break; \
2318 default: case 2: flags = 0x3; break; \
2320 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2321 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2323 DO_VFP_cmp(s
, float32
)
2324 DO_VFP_cmp(d
, float64
)
2327 /* Helper routines to perform bitwise copies between float and int. */
2328 static inline float32
vfp_itos(uint32_t i
)
2339 static inline uint32_t vfp_stoi(float32 s
)
2350 static inline float64
vfp_itod(uint64_t i
)
2361 static inline uint64_t vfp_dtoi(float64 d
)
2372 /* Integer to float conversion. */
2373 float32
VFP_HELPER(uito
, s
)(float32 x
, CPUState
*env
)
2375 return uint32_to_float32(vfp_stoi(x
), &env
->vfp
.fp_status
);
2378 float64
VFP_HELPER(uito
, d
)(float32 x
, CPUState
*env
)
2380 return uint32_to_float64(vfp_stoi(x
), &env
->vfp
.fp_status
);
2383 float32
VFP_HELPER(sito
, s
)(float32 x
, CPUState
*env
)
2385 return int32_to_float32(vfp_stoi(x
), &env
->vfp
.fp_status
);
2388 float64
VFP_HELPER(sito
, d
)(float32 x
, CPUState
*env
)
2390 return int32_to_float64(vfp_stoi(x
), &env
->vfp
.fp_status
);
2393 /* Float to integer conversion. */
2394 float32
VFP_HELPER(toui
, s
)(float32 x
, CPUState
*env
)
2396 return vfp_itos(float32_to_uint32(x
, &env
->vfp
.fp_status
));
2399 float32
VFP_HELPER(toui
, d
)(float64 x
, CPUState
*env
)
2401 return vfp_itos(float64_to_uint32(x
, &env
->vfp
.fp_status
));
2404 float32
VFP_HELPER(tosi
, s
)(float32 x
, CPUState
*env
)
2406 return vfp_itos(float32_to_int32(x
, &env
->vfp
.fp_status
));
2409 float32
VFP_HELPER(tosi
, d
)(float64 x
, CPUState
*env
)
2411 return vfp_itos(float64_to_int32(x
, &env
->vfp
.fp_status
));
2414 float32
VFP_HELPER(touiz
, s
)(float32 x
, CPUState
*env
)
2416 return vfp_itos(float32_to_uint32_round_to_zero(x
, &env
->vfp
.fp_status
));
2419 float32
VFP_HELPER(touiz
, d
)(float64 x
, CPUState
*env
)
2421 return vfp_itos(float64_to_uint32_round_to_zero(x
, &env
->vfp
.fp_status
));
2424 float32
VFP_HELPER(tosiz
, s
)(float32 x
, CPUState
*env
)
2426 return vfp_itos(float32_to_int32_round_to_zero(x
, &env
->vfp
.fp_status
));
2429 float32
VFP_HELPER(tosiz
, d
)(float64 x
, CPUState
*env
)
2431 return vfp_itos(float64_to_int32_round_to_zero(x
, &env
->vfp
.fp_status
));
2434 /* floating point conversion */
2435 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUState
*env
)
2437 return float32_to_float64(x
, &env
->vfp
.fp_status
);
2440 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUState
*env
)
2442 return float64_to_float32(x
, &env
->vfp
.fp_status
);
2445 /* VFP3 fixed point conversion. */
2446 #define VFP_CONV_FIX(name, p, ftype, itype, sign) \
2447 ftype VFP_HELPER(name##to, p)(ftype x, uint32_t shift, CPUState *env) \
2450 tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(x), \
2451 &env->vfp.fp_status); \
2452 return ftype##_scalbn(tmp, shift, &env->vfp.fp_status); \
2454 ftype VFP_HELPER(to##name, p)(ftype x, uint32_t shift, CPUState *env) \
2457 tmp = ftype##_scalbn(x, shift, &env->vfp.fp_status); \
2458 return vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \
2459 &env->vfp.fp_status)); \
2462 VFP_CONV_FIX(sh
, d
, float64
, int16
, )
2463 VFP_CONV_FIX(sl
, d
, float64
, int32
, )
2464 VFP_CONV_FIX(uh
, d
, float64
, uint16
, u
)
2465 VFP_CONV_FIX(ul
, d
, float64
, uint32
, u
)
2466 VFP_CONV_FIX(sh
, s
, float32
, int16
, )
2467 VFP_CONV_FIX(sl
, s
, float32
, int32
, )
2468 VFP_CONV_FIX(uh
, s
, float32
, uint16
, u
)
2469 VFP_CONV_FIX(ul
, s
, float32
, uint32
, u
)
2472 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUState
*env
)
2474 float_status
*s
= &env
->vfp
.fp_status
;
2475 float32 two
= int32_to_float32(2, s
);
2476 return float32_sub(two
, float32_mul(a
, b
, s
), s
);
2479 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUState
*env
)
2481 float_status
*s
= &env
->vfp
.fp_status
;
2482 float32 three
= int32_to_float32(3, s
);
2483 return float32_sub(three
, float32_mul(a
, b
, s
), s
);
2488 /* TODO: The architecture specifies the value that the estimate functions
2489 should return. We return the exact reciprocal/root instead. */
2490 float32
HELPER(recpe_f32
)(float32 a
, CPUState
*env
)
2492 float_status
*s
= &env
->vfp
.fp_status
;
2493 float32 one
= int32_to_float32(1, s
);
2494 return float32_div(one
, a
, s
);
2497 float32
HELPER(rsqrte_f32
)(float32 a
, CPUState
*env
)
2499 float_status
*s
= &env
->vfp
.fp_status
;
2500 float32 one
= int32_to_float32(1, s
);
2501 return float32_div(one
, float32_sqrt(a
, s
), s
);
2504 uint32_t HELPER(recpe_u32
)(uint32_t a
, CPUState
*env
)
2506 float_status
*s
= &env
->vfp
.fp_status
;
2508 tmp
= int32_to_float32(a
, s
);
2509 tmp
= float32_scalbn(tmp
, -32, s
);
2510 tmp
= helper_recpe_f32(tmp
, env
);
2511 tmp
= float32_scalbn(tmp
, 31, s
);
2512 return float32_to_int32(tmp
, s
);
2515 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, CPUState
*env
)
2517 float_status
*s
= &env
->vfp
.fp_status
;
2519 tmp
= int32_to_float32(a
, s
);
2520 tmp
= float32_scalbn(tmp
, -32, s
);
2521 tmp
= helper_rsqrte_f32(tmp
, env
);
2522 tmp
= float32_scalbn(tmp
, 31, s
);
2523 return float32_to_int32(tmp
, s
);