ETRAX-TIMER: Untabify.
[qemu/mini2440.git] / kvm-all.c
blob0ac4b1e1e0d8681979aab8120bad574acdc4bbc8
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "gdbstub.h"
26 #include "kvm.h"
28 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
29 #define PAGE_SIZE TARGET_PAGE_SIZE
31 //#define DEBUG_KVM
33 #ifdef DEBUG_KVM
34 #define dprintf(fmt, ...) \
35 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
36 #else
37 #define dprintf(fmt, ...) \
38 do { } while (0)
39 #endif
41 typedef struct KVMSlot
43 target_phys_addr_t start_addr;
44 ram_addr_t memory_size;
45 ram_addr_t phys_offset;
46 int slot;
47 int flags;
48 } KVMSlot;
50 typedef struct kvm_dirty_log KVMDirtyLog;
52 int kvm_allowed = 0;
54 struct KVMState
56 KVMSlot slots[32];
57 int fd;
58 int vmfd;
59 int coalesced_mmio;
60 #ifdef KVM_CAP_SET_GUEST_DEBUG
61 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
62 #endif
65 static KVMState *kvm_state;
67 static KVMSlot *kvm_alloc_slot(KVMState *s)
69 int i;
71 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
72 /* KVM private memory slots */
73 if (i >= 8 && i < 12)
74 continue;
75 if (s->slots[i].memory_size == 0)
76 return &s->slots[i];
79 fprintf(stderr, "%s: no free slot available\n", __func__);
80 abort();
83 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
84 target_phys_addr_t start_addr,
85 target_phys_addr_t end_addr)
87 int i;
89 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
90 KVMSlot *mem = &s->slots[i];
92 if (start_addr == mem->start_addr &&
93 end_addr == mem->start_addr + mem->memory_size) {
94 return mem;
98 return NULL;
102 * Find overlapping slot with lowest start address
104 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
105 target_phys_addr_t start_addr,
106 target_phys_addr_t end_addr)
108 KVMSlot *found = NULL;
109 int i;
111 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
112 KVMSlot *mem = &s->slots[i];
114 if (mem->memory_size == 0 ||
115 (found && found->start_addr < mem->start_addr)) {
116 continue;
119 if (end_addr > mem->start_addr &&
120 start_addr < mem->start_addr + mem->memory_size) {
121 found = mem;
125 return found;
128 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
130 struct kvm_userspace_memory_region mem;
132 mem.slot = slot->slot;
133 mem.guest_phys_addr = slot->start_addr;
134 mem.memory_size = slot->memory_size;
135 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
136 mem.flags = slot->flags;
138 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
142 int kvm_init_vcpu(CPUState *env)
144 KVMState *s = kvm_state;
145 long mmap_size;
146 int ret;
148 dprintf("kvm_init_vcpu\n");
150 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
151 if (ret < 0) {
152 dprintf("kvm_create_vcpu failed\n");
153 goto err;
156 env->kvm_fd = ret;
157 env->kvm_state = s;
159 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
160 if (mmap_size < 0) {
161 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
162 goto err;
165 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
166 env->kvm_fd, 0);
167 if (env->kvm_run == MAP_FAILED) {
168 ret = -errno;
169 dprintf("mmap'ing vcpu state failed\n");
170 goto err;
173 ret = kvm_arch_init_vcpu(env);
175 err:
176 return ret;
179 int kvm_sync_vcpus(void)
181 CPUState *env;
183 for (env = first_cpu; env != NULL; env = env->next_cpu) {
184 int ret;
186 ret = kvm_arch_put_registers(env);
187 if (ret)
188 return ret;
191 return 0;
195 * dirty pages logging control
197 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
198 ram_addr_t size, unsigned flags,
199 unsigned mask)
201 KVMState *s = kvm_state;
202 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
203 if (mem == NULL) {
204 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
205 TARGET_FMT_plx "\n", __func__, phys_addr,
206 phys_addr + size - 1);
207 return -EINVAL;
210 flags = (mem->flags & ~mask) | flags;
211 /* Nothing changed, no need to issue ioctl */
212 if (flags == mem->flags)
213 return 0;
215 mem->flags = flags;
217 return kvm_set_user_memory_region(s, mem);
220 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
222 return kvm_dirty_pages_log_change(phys_addr, size,
223 KVM_MEM_LOG_DIRTY_PAGES,
224 KVM_MEM_LOG_DIRTY_PAGES);
227 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
229 return kvm_dirty_pages_log_change(phys_addr, size,
231 KVM_MEM_LOG_DIRTY_PAGES);
235 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
236 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
237 * This means all bits are set to dirty.
239 * @start_add: start of logged region.
240 * @end_addr: end of logged region.
242 void kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
243 target_phys_addr_t end_addr)
245 KVMState *s = kvm_state;
246 KVMDirtyLog d;
247 KVMSlot *mem = kvm_lookup_matching_slot(s, start_addr, end_addr);
248 unsigned long alloc_size;
249 ram_addr_t addr;
250 target_phys_addr_t phys_addr = start_addr;
252 dprintf("sync addr: " TARGET_FMT_lx " into %lx\n", start_addr,
253 mem->phys_offset);
254 if (mem == NULL) {
255 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
256 TARGET_FMT_plx "\n", __func__, phys_addr, end_addr - 1);
257 return;
260 alloc_size = mem->memory_size >> TARGET_PAGE_BITS / sizeof(d.dirty_bitmap);
261 d.dirty_bitmap = qemu_mallocz(alloc_size);
263 d.slot = mem->slot;
264 dprintf("slot %d, phys_addr %llx, uaddr: %llx\n",
265 d.slot, mem->start_addr, mem->phys_offset);
267 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
268 dprintf("ioctl failed %d\n", errno);
269 goto out;
272 phys_addr = start_addr;
273 for (addr = mem->phys_offset; phys_addr < end_addr; phys_addr+= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
274 unsigned long *bitmap = (unsigned long *)d.dirty_bitmap;
275 unsigned nr = (phys_addr - start_addr) >> TARGET_PAGE_BITS;
276 unsigned word = nr / (sizeof(*bitmap) * 8);
277 unsigned bit = nr % (sizeof(*bitmap) * 8);
278 if ((bitmap[word] >> bit) & 1)
279 cpu_physical_memory_set_dirty(addr);
281 out:
282 qemu_free(d.dirty_bitmap);
285 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
287 int ret = -ENOSYS;
288 #ifdef KVM_CAP_COALESCED_MMIO
289 KVMState *s = kvm_state;
291 if (s->coalesced_mmio) {
292 struct kvm_coalesced_mmio_zone zone;
294 zone.addr = start;
295 zone.size = size;
297 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
299 #endif
301 return ret;
304 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
306 int ret = -ENOSYS;
307 #ifdef KVM_CAP_COALESCED_MMIO
308 KVMState *s = kvm_state;
310 if (s->coalesced_mmio) {
311 struct kvm_coalesced_mmio_zone zone;
313 zone.addr = start;
314 zone.size = size;
316 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
318 #endif
320 return ret;
323 int kvm_check_extension(KVMState *s, unsigned int extension)
325 int ret;
327 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
328 if (ret < 0) {
329 ret = 0;
332 return ret;
335 int kvm_init(int smp_cpus)
337 KVMState *s;
338 int ret;
339 int i;
341 if (smp_cpus > 1)
342 return -EINVAL;
344 s = qemu_mallocz(sizeof(KVMState));
346 #ifdef KVM_CAP_SET_GUEST_DEBUG
347 TAILQ_INIT(&s->kvm_sw_breakpoints);
348 #endif
349 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
350 s->slots[i].slot = i;
352 s->vmfd = -1;
353 s->fd = open("/dev/kvm", O_RDWR);
354 if (s->fd == -1) {
355 fprintf(stderr, "Could not access KVM kernel module: %m\n");
356 ret = -errno;
357 goto err;
360 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
361 if (ret < KVM_API_VERSION) {
362 if (ret > 0)
363 ret = -EINVAL;
364 fprintf(stderr, "kvm version too old\n");
365 goto err;
368 if (ret > KVM_API_VERSION) {
369 ret = -EINVAL;
370 fprintf(stderr, "kvm version not supported\n");
371 goto err;
374 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
375 if (s->vmfd < 0)
376 goto err;
378 /* initially, KVM allocated its own memory and we had to jump through
379 * hooks to make phys_ram_base point to this. Modern versions of KVM
380 * just use a user allocated buffer so we can use regular pages
381 * unmodified. Make sure we have a sufficiently modern version of KVM.
383 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
384 ret = -EINVAL;
385 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n");
386 goto err;
389 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
390 * destroyed properly. Since we rely on this capability, refuse to work
391 * with any kernel without this capability. */
392 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
393 ret = -EINVAL;
395 fprintf(stderr,
396 "KVM kernel module broken (DESTROY_MEMORY_REGION)\n"
397 "Please upgrade to at least kvm-81.\n");
398 goto err;
401 #ifdef KVM_CAP_COALESCED_MMIO
402 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
403 #else
404 s->coalesced_mmio = 0;
405 #endif
407 ret = kvm_arch_init(s, smp_cpus);
408 if (ret < 0)
409 goto err;
411 kvm_state = s;
413 return 0;
415 err:
416 if (s) {
417 if (s->vmfd != -1)
418 close(s->vmfd);
419 if (s->fd != -1)
420 close(s->fd);
422 qemu_free(s);
424 return ret;
427 static int kvm_handle_io(CPUState *env, uint16_t port, void *data,
428 int direction, int size, uint32_t count)
430 int i;
431 uint8_t *ptr = data;
433 for (i = 0; i < count; i++) {
434 if (direction == KVM_EXIT_IO_IN) {
435 switch (size) {
436 case 1:
437 stb_p(ptr, cpu_inb(env, port));
438 break;
439 case 2:
440 stw_p(ptr, cpu_inw(env, port));
441 break;
442 case 4:
443 stl_p(ptr, cpu_inl(env, port));
444 break;
446 } else {
447 switch (size) {
448 case 1:
449 cpu_outb(env, port, ldub_p(ptr));
450 break;
451 case 2:
452 cpu_outw(env, port, lduw_p(ptr));
453 break;
454 case 4:
455 cpu_outl(env, port, ldl_p(ptr));
456 break;
460 ptr += size;
463 return 1;
466 static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
468 #ifdef KVM_CAP_COALESCED_MMIO
469 KVMState *s = kvm_state;
470 if (s->coalesced_mmio) {
471 struct kvm_coalesced_mmio_ring *ring;
473 ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
474 while (ring->first != ring->last) {
475 struct kvm_coalesced_mmio *ent;
477 ent = &ring->coalesced_mmio[ring->first];
479 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
480 /* FIXME smp_wmb() */
481 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
484 #endif
487 int kvm_cpu_exec(CPUState *env)
489 struct kvm_run *run = env->kvm_run;
490 int ret;
492 dprintf("kvm_cpu_exec()\n");
494 do {
495 kvm_arch_pre_run(env, run);
497 if (env->exit_request) {
498 dprintf("interrupt exit requested\n");
499 ret = 0;
500 break;
503 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
504 kvm_arch_post_run(env, run);
506 if (ret == -EINTR || ret == -EAGAIN) {
507 dprintf("io window exit\n");
508 ret = 0;
509 break;
512 if (ret < 0) {
513 dprintf("kvm run failed %s\n", strerror(-ret));
514 abort();
517 kvm_run_coalesced_mmio(env, run);
519 ret = 0; /* exit loop */
520 switch (run->exit_reason) {
521 case KVM_EXIT_IO:
522 dprintf("handle_io\n");
523 ret = kvm_handle_io(env, run->io.port,
524 (uint8_t *)run + run->io.data_offset,
525 run->io.direction,
526 run->io.size,
527 run->io.count);
528 break;
529 case KVM_EXIT_MMIO:
530 dprintf("handle_mmio\n");
531 cpu_physical_memory_rw(run->mmio.phys_addr,
532 run->mmio.data,
533 run->mmio.len,
534 run->mmio.is_write);
535 ret = 1;
536 break;
537 case KVM_EXIT_IRQ_WINDOW_OPEN:
538 dprintf("irq_window_open\n");
539 break;
540 case KVM_EXIT_SHUTDOWN:
541 dprintf("shutdown\n");
542 qemu_system_reset_request();
543 ret = 1;
544 break;
545 case KVM_EXIT_UNKNOWN:
546 dprintf("kvm_exit_unknown\n");
547 break;
548 case KVM_EXIT_FAIL_ENTRY:
549 dprintf("kvm_exit_fail_entry\n");
550 break;
551 case KVM_EXIT_EXCEPTION:
552 dprintf("kvm_exit_exception\n");
553 break;
554 case KVM_EXIT_DEBUG:
555 dprintf("kvm_exit_debug\n");
556 #ifdef KVM_CAP_SET_GUEST_DEBUG
557 if (kvm_arch_debug(&run->debug.arch)) {
558 gdb_set_stop_cpu(env);
559 vm_stop(EXCP_DEBUG);
560 env->exception_index = EXCP_DEBUG;
561 return 0;
563 /* re-enter, this exception was guest-internal */
564 ret = 1;
565 #endif /* KVM_CAP_SET_GUEST_DEBUG */
566 break;
567 default:
568 dprintf("kvm_arch_handle_exit\n");
569 ret = kvm_arch_handle_exit(env, run);
570 break;
572 } while (ret > 0);
574 if (env->exit_request) {
575 env->exit_request = 0;
576 env->exception_index = EXCP_INTERRUPT;
579 return ret;
582 void kvm_set_phys_mem(target_phys_addr_t start_addr,
583 ram_addr_t size,
584 ram_addr_t phys_offset)
586 KVMState *s = kvm_state;
587 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
588 KVMSlot *mem, old;
589 int err;
591 if (start_addr & ~TARGET_PAGE_MASK) {
592 if (flags >= IO_MEM_UNASSIGNED) {
593 if (!kvm_lookup_overlapping_slot(s, start_addr,
594 start_addr + size)) {
595 return;
597 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
598 } else {
599 fprintf(stderr, "Only page-aligned memory slots supported\n");
601 abort();
604 /* KVM does not support read-only slots */
605 phys_offset &= ~IO_MEM_ROM;
607 while (1) {
608 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
609 if (!mem) {
610 break;
613 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
614 (start_addr + size <= mem->start_addr + mem->memory_size) &&
615 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
616 /* The new slot fits into the existing one and comes with
617 * identical parameters - nothing to be done. */
618 return;
621 old = *mem;
623 /* unregister the overlapping slot */
624 mem->memory_size = 0;
625 err = kvm_set_user_memory_region(s, mem);
626 if (err) {
627 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
628 __func__, strerror(-err));
629 abort();
632 /* Workaround for older KVM versions: we can't join slots, even not by
633 * unregistering the previous ones and then registering the larger
634 * slot. We have to maintain the existing fragmentation. Sigh.
636 * This workaround assumes that the new slot starts at the same
637 * address as the first existing one. If not or if some overlapping
638 * slot comes around later, we will fail (not seen in practice so far)
639 * - and actually require a recent KVM version. */
640 if (old.start_addr == start_addr && old.memory_size < size &&
641 flags < IO_MEM_UNASSIGNED) {
642 mem = kvm_alloc_slot(s);
643 mem->memory_size = old.memory_size;
644 mem->start_addr = old.start_addr;
645 mem->phys_offset = old.phys_offset;
646 mem->flags = 0;
648 err = kvm_set_user_memory_region(s, mem);
649 if (err) {
650 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
651 strerror(-err));
652 abort();
655 start_addr += old.memory_size;
656 phys_offset += old.memory_size;
657 size -= old.memory_size;
658 continue;
661 /* register prefix slot */
662 if (old.start_addr < start_addr) {
663 mem = kvm_alloc_slot(s);
664 mem->memory_size = start_addr - old.start_addr;
665 mem->start_addr = old.start_addr;
666 mem->phys_offset = old.phys_offset;
667 mem->flags = 0;
669 err = kvm_set_user_memory_region(s, mem);
670 if (err) {
671 fprintf(stderr, "%s: error registering prefix slot: %s\n",
672 __func__, strerror(-err));
673 abort();
677 /* register suffix slot */
678 if (old.start_addr + old.memory_size > start_addr + size) {
679 ram_addr_t size_delta;
681 mem = kvm_alloc_slot(s);
682 mem->start_addr = start_addr + size;
683 size_delta = mem->start_addr - old.start_addr;
684 mem->memory_size = old.memory_size - size_delta;
685 mem->phys_offset = old.phys_offset + size_delta;
686 mem->flags = 0;
688 err = kvm_set_user_memory_region(s, mem);
689 if (err) {
690 fprintf(stderr, "%s: error registering suffix slot: %s\n",
691 __func__, strerror(-err));
692 abort();
697 /* in case the KVM bug workaround already "consumed" the new slot */
698 if (!size)
699 return;
701 /* KVM does not need to know about this memory */
702 if (flags >= IO_MEM_UNASSIGNED)
703 return;
705 mem = kvm_alloc_slot(s);
706 mem->memory_size = size;
707 mem->start_addr = start_addr;
708 mem->phys_offset = phys_offset;
709 mem->flags = 0;
711 err = kvm_set_user_memory_region(s, mem);
712 if (err) {
713 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
714 strerror(-err));
715 abort();
719 int kvm_ioctl(KVMState *s, int type, ...)
721 int ret;
722 void *arg;
723 va_list ap;
725 va_start(ap, type);
726 arg = va_arg(ap, void *);
727 va_end(ap);
729 ret = ioctl(s->fd, type, arg);
730 if (ret == -1)
731 ret = -errno;
733 return ret;
736 int kvm_vm_ioctl(KVMState *s, int type, ...)
738 int ret;
739 void *arg;
740 va_list ap;
742 va_start(ap, type);
743 arg = va_arg(ap, void *);
744 va_end(ap);
746 ret = ioctl(s->vmfd, type, arg);
747 if (ret == -1)
748 ret = -errno;
750 return ret;
753 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
755 int ret;
756 void *arg;
757 va_list ap;
759 va_start(ap, type);
760 arg = va_arg(ap, void *);
761 va_end(ap);
763 ret = ioctl(env->kvm_fd, type, arg);
764 if (ret == -1)
765 ret = -errno;
767 return ret;
770 int kvm_has_sync_mmu(void)
772 #ifdef KVM_CAP_SYNC_MMU
773 KVMState *s = kvm_state;
775 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
776 #else
777 return 0;
778 #endif
781 void kvm_setup_guest_memory(void *start, size_t size)
783 if (!kvm_has_sync_mmu()) {
784 #ifdef MADV_DONTFORK
785 int ret = madvise(start, size, MADV_DONTFORK);
787 if (ret) {
788 perror("madvice");
789 exit(1);
791 #else
792 fprintf(stderr,
793 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
794 exit(1);
795 #endif
799 #ifdef KVM_CAP_SET_GUEST_DEBUG
800 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
801 target_ulong pc)
803 struct kvm_sw_breakpoint *bp;
805 TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
806 if (bp->pc == pc)
807 return bp;
809 return NULL;
812 int kvm_sw_breakpoints_active(CPUState *env)
814 return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
817 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
819 struct kvm_guest_debug dbg;
821 dbg.control = 0;
822 if (env->singlestep_enabled)
823 dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
825 kvm_arch_update_guest_debug(env, &dbg);
826 dbg.control |= reinject_trap;
828 return kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg);
831 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
832 target_ulong len, int type)
834 struct kvm_sw_breakpoint *bp;
835 CPUState *env;
836 int err;
838 if (type == GDB_BREAKPOINT_SW) {
839 bp = kvm_find_sw_breakpoint(current_env, addr);
840 if (bp) {
841 bp->use_count++;
842 return 0;
845 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
846 if (!bp)
847 return -ENOMEM;
849 bp->pc = addr;
850 bp->use_count = 1;
851 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
852 if (err) {
853 free(bp);
854 return err;
857 TAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
858 bp, entry);
859 } else {
860 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
861 if (err)
862 return err;
865 for (env = first_cpu; env != NULL; env = env->next_cpu) {
866 err = kvm_update_guest_debug(env, 0);
867 if (err)
868 return err;
870 return 0;
873 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
874 target_ulong len, int type)
876 struct kvm_sw_breakpoint *bp;
877 CPUState *env;
878 int err;
880 if (type == GDB_BREAKPOINT_SW) {
881 bp = kvm_find_sw_breakpoint(current_env, addr);
882 if (!bp)
883 return -ENOENT;
885 if (bp->use_count > 1) {
886 bp->use_count--;
887 return 0;
890 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
891 if (err)
892 return err;
894 TAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
895 qemu_free(bp);
896 } else {
897 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
898 if (err)
899 return err;
902 for (env = first_cpu; env != NULL; env = env->next_cpu) {
903 err = kvm_update_guest_debug(env, 0);
904 if (err)
905 return err;
907 return 0;
910 void kvm_remove_all_breakpoints(CPUState *current_env)
912 struct kvm_sw_breakpoint *bp, *next;
913 KVMState *s = current_env->kvm_state;
914 CPUState *env;
916 TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
917 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
918 /* Try harder to find a CPU that currently sees the breakpoint. */
919 for (env = first_cpu; env != NULL; env = env->next_cpu) {
920 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
921 break;
925 kvm_arch_remove_all_hw_breakpoints();
927 for (env = first_cpu; env != NULL; env = env->next_cpu)
928 kvm_update_guest_debug(env, 0);
931 #else /* !KVM_CAP_SET_GUEST_DEBUG */
933 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
935 return -EINVAL;
938 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
939 target_ulong len, int type)
941 return -EINVAL;
944 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
945 target_ulong len, int type)
947 return -EINVAL;
950 void kvm_remove_all_breakpoints(CPUState *current_env)
953 #endif /* !KVM_CAP_SET_GUEST_DEBUG */