Special Mask Mode for i8259 PIC (Sebastian Reichelt).
[qemu/mini2440.git] / target-mips / op_helper.c
blob008fb2c0bc484c336080cadc19c9c4049dc0283f
1 /*
2 * MIPS emulation helpers for qemu.
4 * Copyright (c) 2004-2005 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <stdlib.h>
21 #include "exec.h"
23 #include "host-utils.h"
25 /*****************************************************************************/
26 /* Exceptions processing helpers */
28 void do_raise_exception_err (uint32_t exception, int error_code)
30 #if 1
31 if (logfile && exception < 0x100)
32 fprintf(logfile, "%s: %d %d\n", __func__, exception, error_code);
33 #endif
34 env->exception_index = exception;
35 env->error_code = error_code;
36 cpu_loop_exit();
39 void do_raise_exception (uint32_t exception)
41 do_raise_exception_err(exception, 0);
44 void do_interrupt_restart (void)
46 if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
47 !(env->CP0_Status & (1 << CP0St_ERL)) &&
48 !(env->hflags & MIPS_HFLAG_DM) &&
49 (env->CP0_Status & (1 << CP0St_IE)) &&
50 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask)) {
51 env->CP0_Cause &= ~(0x1f << CP0Ca_EC);
52 do_raise_exception(EXCP_EXT_INTERRUPT);
56 void do_restore_state (void *pc_ptr)
58 TranslationBlock *tb;
59 unsigned long pc = (unsigned long) pc_ptr;
61 tb = tb_find_pc (pc);
62 if (tb) {
63 cpu_restore_state (tb, env, pc, NULL);
67 target_ulong do_clo (target_ulong t0)
69 return clo32(t0);
72 target_ulong do_clz (target_ulong t0)
74 return clz32(t0);
77 #if defined(TARGET_MIPS64)
78 target_ulong do_dclo (target_ulong t0)
80 return clo64(t0);
83 target_ulong do_dclz (target_ulong t0)
85 return clz64(t0);
87 #endif /* TARGET_MIPS64 */
89 /* 64 bits arithmetic for 32 bits hosts */
90 static always_inline uint64_t get_HILO (void)
92 return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0];
95 static always_inline void set_HILO (uint64_t HILO)
97 env->active_tc.LO[0] = (int32_t)HILO;
98 env->active_tc.HI[0] = (int32_t)(HILO >> 32);
101 static always_inline void set_HIT0_LO (target_ulong t0, uint64_t HILO)
103 env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
104 t0 = env->active_tc.HI[0] = (int32_t)(HILO >> 32);
107 static always_inline void set_HI_LOT0 (target_ulong t0, uint64_t HILO)
109 t0 = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
110 env->active_tc.HI[0] = (int32_t)(HILO >> 32);
113 #if TARGET_LONG_BITS > HOST_LONG_BITS
114 void do_madd (target_ulong t0, target_ulong t1)
116 int64_t tmp;
118 tmp = ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1);
119 set_HILO((int64_t)get_HILO() + tmp);
122 void do_maddu (target_ulong t0, target_ulong t1)
124 uint64_t tmp;
126 tmp = ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1);
127 set_HILO(get_HILO() + tmp);
130 void do_msub (target_ulong t0, target_ulong t1)
132 int64_t tmp;
134 tmp = ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1);
135 set_HILO((int64_t)get_HILO() - tmp);
138 void do_msubu (target_ulong t0, target_ulong t1)
140 uint64_t tmp;
142 tmp = ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1);
143 set_HILO(get_HILO() - tmp);
145 #endif /* TARGET_LONG_BITS > HOST_LONG_BITS */
147 /* Multiplication variants of the vr54xx. */
148 target_ulong do_muls (target_ulong t0, target_ulong t1)
150 set_HI_LOT0(t0, 0 - ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
152 return t0;
155 target_ulong do_mulsu (target_ulong t0, target_ulong t1)
157 set_HI_LOT0(t0, 0 - ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
159 return t0;
162 target_ulong do_macc (target_ulong t0, target_ulong t1)
164 set_HI_LOT0(t0, ((int64_t)get_HILO()) + ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
166 return t0;
169 target_ulong do_macchi (target_ulong t0, target_ulong t1)
171 set_HIT0_LO(t0, ((int64_t)get_HILO()) + ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
173 return t0;
176 target_ulong do_maccu (target_ulong t0, target_ulong t1)
178 set_HI_LOT0(t0, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
180 return t0;
183 target_ulong do_macchiu (target_ulong t0, target_ulong t1)
185 set_HIT0_LO(t0, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
187 return t0;
190 target_ulong do_msac (target_ulong t0, target_ulong t1)
192 set_HI_LOT0(t0, ((int64_t)get_HILO()) - ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
194 return t0;
197 target_ulong do_msachi (target_ulong t0, target_ulong t1)
199 set_HIT0_LO(t0, ((int64_t)get_HILO()) - ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
201 return t0;
204 target_ulong do_msacu (target_ulong t0, target_ulong t1)
206 set_HI_LOT0(t0, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
208 return t0;
211 target_ulong do_msachiu (target_ulong t0, target_ulong t1)
213 set_HIT0_LO(t0, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
215 return t0;
218 target_ulong do_mulhi (target_ulong t0, target_ulong t1)
220 set_HIT0_LO(t0, (int64_t)(int32_t)t0 * (int64_t)(int32_t)t1);
222 return t0;
225 target_ulong do_mulhiu (target_ulong t0, target_ulong t1)
227 set_HIT0_LO(t0, (uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1);
229 return t0;
232 target_ulong do_mulshi (target_ulong t0, target_ulong t1)
234 set_HIT0_LO(t0, 0 - ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
236 return t0;
239 target_ulong do_mulshiu (target_ulong t0, target_ulong t1)
241 set_HIT0_LO(t0, 0 - ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
243 return t0;
246 #ifdef TARGET_MIPS64
247 void do_dmult (target_ulong t0, target_ulong t1)
249 muls64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), t0, t1);
252 void do_dmultu (target_ulong t0, target_ulong t1)
254 mulu64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), t0, t1);
256 #endif
258 #ifdef TARGET_WORDS_BIGENDIAN
259 #define GET_LMASK(v) ((v) & 3)
260 #define GET_OFFSET(addr, offset) (addr + (offset))
261 #else
262 #define GET_LMASK(v) (((v) & 3) ^ 3)
263 #define GET_OFFSET(addr, offset) (addr - (offset))
264 #endif
266 target_ulong do_lwl(target_ulong t0, target_ulong t1, int mem_idx)
268 target_ulong tmp;
270 #ifdef CONFIG_USER_ONLY
271 #define ldfun ldub_raw
272 #else
273 int (*ldfun)(target_ulong);
275 switch (mem_idx)
277 case 0: ldfun = ldub_kernel; break;
278 case 1: ldfun = ldub_super; break;
279 default:
280 case 2: ldfun = ldub_user; break;
282 #endif
283 tmp = ldfun(t0);
284 t1 = (t1 & 0x00FFFFFF) | (tmp << 24);
286 if (GET_LMASK(t0) <= 2) {
287 tmp = ldfun(GET_OFFSET(t0, 1));
288 t1 = (t1 & 0xFF00FFFF) | (tmp << 16);
291 if (GET_LMASK(t0) <= 1) {
292 tmp = ldfun(GET_OFFSET(t0, 2));
293 t1 = (t1 & 0xFFFF00FF) | (tmp << 8);
296 if (GET_LMASK(t0) == 0) {
297 tmp = ldfun(GET_OFFSET(t0, 3));
298 t1 = (t1 & 0xFFFFFF00) | tmp;
300 return (int32_t)t1;
303 target_ulong do_lwr(target_ulong t0, target_ulong t1, int mem_idx)
305 target_ulong tmp;
307 #ifdef CONFIG_USER_ONLY
308 #define ldfun ldub_raw
309 #else
310 int (*ldfun)(target_ulong);
312 switch (mem_idx)
314 case 0: ldfun = ldub_kernel; break;
315 case 1: ldfun = ldub_super; break;
316 default:
317 case 2: ldfun = ldub_user; break;
319 #endif
320 tmp = ldfun(t0);
321 t1 = (t1 & 0xFFFFFF00) | tmp;
323 if (GET_LMASK(t0) >= 1) {
324 tmp = ldfun(GET_OFFSET(t0, -1));
325 t1 = (t1 & 0xFFFF00FF) | (tmp << 8);
328 if (GET_LMASK(t0) >= 2) {
329 tmp = ldfun(GET_OFFSET(t0, -2));
330 t1 = (t1 & 0xFF00FFFF) | (tmp << 16);
333 if (GET_LMASK(t0) == 3) {
334 tmp = ldfun(GET_OFFSET(t0, -3));
335 t1 = (t1 & 0x00FFFFFF) | (tmp << 24);
337 return (int32_t)t1;
340 void do_swl(target_ulong t0, target_ulong t1, int mem_idx)
342 #ifdef CONFIG_USER_ONLY
343 #define stfun stb_raw
344 #else
345 void (*stfun)(target_ulong, int);
347 switch (mem_idx)
349 case 0: stfun = stb_kernel; break;
350 case 1: stfun = stb_super; break;
351 default:
352 case 2: stfun = stb_user; break;
354 #endif
355 stfun(t0, (uint8_t)(t1 >> 24));
357 if (GET_LMASK(t0) <= 2)
358 stfun(GET_OFFSET(t0, 1), (uint8_t)(t1 >> 16));
360 if (GET_LMASK(t0) <= 1)
361 stfun(GET_OFFSET(t0, 2), (uint8_t)(t1 >> 8));
363 if (GET_LMASK(t0) == 0)
364 stfun(GET_OFFSET(t0, 3), (uint8_t)t1);
367 void do_swr(target_ulong t0, target_ulong t1, int mem_idx)
369 #ifdef CONFIG_USER_ONLY
370 #define stfun stb_raw
371 #else
372 void (*stfun)(target_ulong, int);
374 switch (mem_idx)
376 case 0: stfun = stb_kernel; break;
377 case 1: stfun = stb_super; break;
378 default:
379 case 2: stfun = stb_user; break;
381 #endif
382 stfun(t0, (uint8_t)t1);
384 if (GET_LMASK(t0) >= 1)
385 stfun(GET_OFFSET(t0, -1), (uint8_t)(t1 >> 8));
387 if (GET_LMASK(t0) >= 2)
388 stfun(GET_OFFSET(t0, -2), (uint8_t)(t1 >> 16));
390 if (GET_LMASK(t0) == 3)
391 stfun(GET_OFFSET(t0, -3), (uint8_t)(t1 >> 24));
394 #if defined(TARGET_MIPS64)
395 /* "half" load and stores. We must do the memory access inline,
396 or fault handling won't work. */
398 #ifdef TARGET_WORDS_BIGENDIAN
399 #define GET_LMASK64(v) ((v) & 7)
400 #else
401 #define GET_LMASK64(v) (((v) & 7) ^ 7)
402 #endif
404 target_ulong do_ldl(target_ulong t0, target_ulong t1, int mem_idx)
406 uint64_t tmp;
408 #ifdef CONFIG_USER_ONLY
409 #define ldfun ldub_raw
410 #else
411 int (*ldfun)(target_ulong);
413 switch (mem_idx)
415 case 0: ldfun = ldub_kernel; break;
416 case 1: ldfun = ldub_super; break;
417 default:
418 case 2: ldfun = ldub_user; break;
420 #endif
421 tmp = ldfun(t0);
422 t1 = (t1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56);
424 if (GET_LMASK64(t0) <= 6) {
425 tmp = ldfun(GET_OFFSET(t0, 1));
426 t1 = (t1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48);
429 if (GET_LMASK64(t0) <= 5) {
430 tmp = ldfun(GET_OFFSET(t0, 2));
431 t1 = (t1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40);
434 if (GET_LMASK64(t0) <= 4) {
435 tmp = ldfun(GET_OFFSET(t0, 3));
436 t1 = (t1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32);
439 if (GET_LMASK64(t0) <= 3) {
440 tmp = ldfun(GET_OFFSET(t0, 4));
441 t1 = (t1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24);
444 if (GET_LMASK64(t0) <= 2) {
445 tmp = ldfun(GET_OFFSET(t0, 5));
446 t1 = (t1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16);
449 if (GET_LMASK64(t0) <= 1) {
450 tmp = ldfun(GET_OFFSET(t0, 6));
451 t1 = (t1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8);
454 if (GET_LMASK64(t0) == 0) {
455 tmp = ldfun(GET_OFFSET(t0, 7));
456 t1 = (t1 & 0xFFFFFFFFFFFFFF00ULL) | tmp;
459 return t1;
462 target_ulong do_ldr(target_ulong t0, target_ulong t1, int mem_idx)
464 uint64_t tmp;
466 #ifdef CONFIG_USER_ONLY
467 #define ldfun ldub_raw
468 #else
469 int (*ldfun)(target_ulong);
471 switch (mem_idx)
473 case 0: ldfun = ldub_kernel; break;
474 case 1: ldfun = ldub_super; break;
475 default:
476 case 2: ldfun = ldub_user; break;
478 #endif
479 tmp = ldfun(t0);
480 t1 = (t1 & 0xFFFFFFFFFFFFFF00ULL) | tmp;
482 if (GET_LMASK64(t0) >= 1) {
483 tmp = ldfun(GET_OFFSET(t0, -1));
484 t1 = (t1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8);
487 if (GET_LMASK64(t0) >= 2) {
488 tmp = ldfun(GET_OFFSET(t0, -2));
489 t1 = (t1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16);
492 if (GET_LMASK64(t0) >= 3) {
493 tmp = ldfun(GET_OFFSET(t0, -3));
494 t1 = (t1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24);
497 if (GET_LMASK64(t0) >= 4) {
498 tmp = ldfun(GET_OFFSET(t0, -4));
499 t1 = (t1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32);
502 if (GET_LMASK64(t0) >= 5) {
503 tmp = ldfun(GET_OFFSET(t0, -5));
504 t1 = (t1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40);
507 if (GET_LMASK64(t0) >= 6) {
508 tmp = ldfun(GET_OFFSET(t0, -6));
509 t1 = (t1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48);
512 if (GET_LMASK64(t0) == 7) {
513 tmp = ldfun(GET_OFFSET(t0, -7));
514 t1 = (t1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56);
517 return t1;
520 void do_sdl(target_ulong t0, target_ulong t1, int mem_idx)
522 #ifdef CONFIG_USER_ONLY
523 #define stfun stb_raw
524 #else
525 void (*stfun)(target_ulong, int);
527 switch (mem_idx)
529 case 0: stfun = stb_kernel; break;
530 case 1: stfun = stb_super; break;
531 default:
532 case 2: stfun = stb_user; break;
534 #endif
535 stfun(t0, (uint8_t)(t1 >> 56));
537 if (GET_LMASK64(t0) <= 6)
538 stfun(GET_OFFSET(t0, 1), (uint8_t)(t1 >> 48));
540 if (GET_LMASK64(t0) <= 5)
541 stfun(GET_OFFSET(t0, 2), (uint8_t)(t1 >> 40));
543 if (GET_LMASK64(t0) <= 4)
544 stfun(GET_OFFSET(t0, 3), (uint8_t)(t1 >> 32));
546 if (GET_LMASK64(t0) <= 3)
547 stfun(GET_OFFSET(t0, 4), (uint8_t)(t1 >> 24));
549 if (GET_LMASK64(t0) <= 2)
550 stfun(GET_OFFSET(t0, 5), (uint8_t)(t1 >> 16));
552 if (GET_LMASK64(t0) <= 1)
553 stfun(GET_OFFSET(t0, 6), (uint8_t)(t1 >> 8));
555 if (GET_LMASK64(t0) <= 0)
556 stfun(GET_OFFSET(t0, 7), (uint8_t)t1);
559 void do_sdr(target_ulong t0, target_ulong t1, int mem_idx)
561 #ifdef CONFIG_USER_ONLY
562 #define stfun stb_raw
563 #else
564 void (*stfun)(target_ulong, int);
566 switch (mem_idx)
568 case 0: stfun = stb_kernel; break;
569 case 1: stfun = stb_super; break;
570 default:
571 case 2: stfun = stb_user; break;
573 #endif
574 stfun(t0, (uint8_t)t1);
576 if (GET_LMASK64(t0) >= 1)
577 stfun(GET_OFFSET(t0, -1), (uint8_t)(t1 >> 8));
579 if (GET_LMASK64(t0) >= 2)
580 stfun(GET_OFFSET(t0, -2), (uint8_t)(t1 >> 16));
582 if (GET_LMASK64(t0) >= 3)
583 stfun(GET_OFFSET(t0, -3), (uint8_t)(t1 >> 24));
585 if (GET_LMASK64(t0) >= 4)
586 stfun(GET_OFFSET(t0, -4), (uint8_t)(t1 >> 32));
588 if (GET_LMASK64(t0) >= 5)
589 stfun(GET_OFFSET(t0, -5), (uint8_t)(t1 >> 40));
591 if (GET_LMASK64(t0) >= 6)
592 stfun(GET_OFFSET(t0, -6), (uint8_t)(t1 >> 48));
594 if (GET_LMASK64(t0) == 7)
595 stfun(GET_OFFSET(t0, -7), (uint8_t)(t1 >> 56));
597 #endif /* TARGET_MIPS64 */
599 #ifdef CONFIG_USER_ONLY
600 void do_mfc0_random (void)
602 cpu_abort(env, "mfc0 random\n");
605 void do_mfc0_count (void)
607 cpu_abort(env, "mfc0 count\n");
610 void cpu_mips_store_count(CPUState *env, uint32_t value)
612 cpu_abort(env, "mtc0 count\n");
615 void cpu_mips_store_compare(CPUState *env, uint32_t value)
617 cpu_abort(env, "mtc0 compare\n");
620 void cpu_mips_start_count(CPUState *env)
622 cpu_abort(env, "start count\n");
625 void cpu_mips_stop_count(CPUState *env)
627 cpu_abort(env, "stop count\n");
630 void cpu_mips_update_irq(CPUState *env)
632 cpu_abort(env, "mtc0 status / mtc0 cause\n");
635 void do_mtc0_status_debug(uint32_t old, uint32_t val)
637 cpu_abort(env, "mtc0 status debug\n");
640 void do_mtc0_status_irqraise_debug (void)
642 cpu_abort(env, "mtc0 status irqraise debug\n");
645 void cpu_mips_tlb_flush (CPUState *env, int flush_global)
647 cpu_abort(env, "mips_tlb_flush\n");
650 #else
652 /* CP0 helpers */
653 target_ulong do_mfc0_mvpcontrol (void)
655 return env->mvp->CP0_MVPControl;
658 target_ulong do_mfc0_mvpconf0 (void)
660 return env->mvp->CP0_MVPConf0;
663 target_ulong do_mfc0_mvpconf1 (void)
665 return env->mvp->CP0_MVPConf1;
668 target_ulong do_mfc0_random (void)
670 return (int32_t)cpu_mips_get_random(env);
673 target_ulong do_mfc0_tcstatus (void)
675 return env->active_tc.CP0_TCStatus;
678 target_ulong do_mftc0_tcstatus(void)
680 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
682 if (other_tc == env->current_tc)
683 return env->active_tc.CP0_TCStatus;
684 else
685 return env->tcs[other_tc].CP0_TCStatus;
688 target_ulong do_mfc0_tcbind (void)
690 return env->active_tc.CP0_TCBind;
693 target_ulong do_mftc0_tcbind(void)
695 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
697 if (other_tc == env->current_tc)
698 return env->active_tc.CP0_TCBind;
699 else
700 return env->tcs[other_tc].CP0_TCBind;
703 target_ulong do_mfc0_tcrestart (void)
705 return env->active_tc.PC;
708 target_ulong do_mftc0_tcrestart(void)
710 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
712 if (other_tc == env->current_tc)
713 return env->active_tc.PC;
714 else
715 return env->tcs[other_tc].PC;
718 target_ulong do_mfc0_tchalt (void)
720 return env->active_tc.CP0_TCHalt;
723 target_ulong do_mftc0_tchalt(void)
725 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
727 if (other_tc == env->current_tc)
728 return env->active_tc.CP0_TCHalt;
729 else
730 return env->tcs[other_tc].CP0_TCHalt;
733 target_ulong do_mfc0_tccontext (void)
735 return env->active_tc.CP0_TCContext;
738 target_ulong do_mftc0_tccontext(void)
740 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
742 if (other_tc == env->current_tc)
743 return env->active_tc.CP0_TCContext;
744 else
745 return env->tcs[other_tc].CP0_TCContext;
748 target_ulong do_mfc0_tcschedule (void)
750 return env->active_tc.CP0_TCSchedule;
753 target_ulong do_mftc0_tcschedule(void)
755 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
757 if (other_tc == env->current_tc)
758 return env->active_tc.CP0_TCSchedule;
759 else
760 return env->tcs[other_tc].CP0_TCSchedule;
763 target_ulong do_mfc0_tcschefback (void)
765 return env->active_tc.CP0_TCScheFBack;
768 target_ulong do_mftc0_tcschefback(void)
770 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
772 if (other_tc == env->current_tc)
773 return env->active_tc.CP0_TCScheFBack;
774 else
775 return env->tcs[other_tc].CP0_TCScheFBack;
778 target_ulong do_mfc0_count (void)
780 return (int32_t)cpu_mips_get_count(env);
783 target_ulong do_mftc0_entryhi(void)
785 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
786 int32_t tcstatus;
788 if (other_tc == env->current_tc)
789 tcstatus = env->active_tc.CP0_TCStatus;
790 else
791 tcstatus = env->tcs[other_tc].CP0_TCStatus;
793 return (env->CP0_EntryHi & ~0xff) | (tcstatus & 0xff);
796 target_ulong do_mftc0_status(void)
798 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
799 target_ulong t0;
800 int32_t tcstatus;
802 if (other_tc == env->current_tc)
803 tcstatus = env->active_tc.CP0_TCStatus;
804 else
805 tcstatus = env->tcs[other_tc].CP0_TCStatus;
807 t0 = env->CP0_Status & ~0xf1000018;
808 t0 |= tcstatus & (0xf << CP0TCSt_TCU0);
809 t0 |= (tcstatus & (1 << CP0TCSt_TMX)) >> (CP0TCSt_TMX - CP0St_MX);
810 t0 |= (tcstatus & (0x3 << CP0TCSt_TKSU)) >> (CP0TCSt_TKSU - CP0St_KSU);
812 return t0;
815 target_ulong do_mfc0_lladdr (void)
817 return (int32_t)env->CP0_LLAddr >> 4;
820 target_ulong do_mfc0_watchlo (uint32_t sel)
822 return (int32_t)env->CP0_WatchLo[sel];
825 target_ulong do_mfc0_watchhi (uint32_t sel)
827 return env->CP0_WatchHi[sel];
830 target_ulong do_mfc0_debug (void)
832 target_ulong t0 = env->CP0_Debug;
833 if (env->hflags & MIPS_HFLAG_DM)
834 t0 |= 1 << CP0DB_DM;
836 return t0;
839 target_ulong do_mftc0_debug(void)
841 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
842 int32_t tcstatus;
844 if (other_tc == env->current_tc)
845 tcstatus = env->active_tc.CP0_Debug_tcstatus;
846 else
847 tcstatus = env->tcs[other_tc].CP0_Debug_tcstatus;
849 /* XXX: Might be wrong, check with EJTAG spec. */
850 return (env->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
851 (tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
854 #if defined(TARGET_MIPS64)
855 target_ulong do_dmfc0_tcrestart (void)
857 return env->active_tc.PC;
860 target_ulong do_dmfc0_tchalt (void)
862 return env->active_tc.CP0_TCHalt;
865 target_ulong do_dmfc0_tccontext (void)
867 return env->active_tc.CP0_TCContext;
870 target_ulong do_dmfc0_tcschedule (void)
872 return env->active_tc.CP0_TCSchedule;
875 target_ulong do_dmfc0_tcschefback (void)
877 return env->active_tc.CP0_TCScheFBack;
880 target_ulong do_dmfc0_lladdr (void)
882 return env->CP0_LLAddr >> 4;
885 target_ulong do_dmfc0_watchlo (uint32_t sel)
887 return env->CP0_WatchLo[sel];
889 #endif /* TARGET_MIPS64 */
891 void do_mtc0_index (target_ulong t0)
893 int num = 1;
894 unsigned int tmp = env->tlb->nb_tlb;
896 do {
897 tmp >>= 1;
898 num <<= 1;
899 } while (tmp);
900 env->CP0_Index = (env->CP0_Index & 0x80000000) | (t0 & (num - 1));
903 void do_mtc0_mvpcontrol (target_ulong t0)
905 uint32_t mask = 0;
906 uint32_t newval;
908 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))
909 mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) |
910 (1 << CP0MVPCo_EVP);
911 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
912 mask |= (1 << CP0MVPCo_STLB);
913 newval = (env->mvp->CP0_MVPControl & ~mask) | (t0 & mask);
915 // TODO: Enable/disable shared TLB, enable/disable VPEs.
917 env->mvp->CP0_MVPControl = newval;
920 void do_mtc0_vpecontrol (target_ulong t0)
922 uint32_t mask;
923 uint32_t newval;
925 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
926 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
927 newval = (env->CP0_VPEControl & ~mask) | (t0 & mask);
929 /* Yield scheduler intercept not implemented. */
930 /* Gating storage scheduler intercept not implemented. */
932 // TODO: Enable/disable TCs.
934 env->CP0_VPEControl = newval;
937 void do_mtc0_vpeconf0 (target_ulong t0)
939 uint32_t mask = 0;
940 uint32_t newval;
942 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) {
943 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))
944 mask |= (0xff << CP0VPEC0_XTC);
945 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
947 newval = (env->CP0_VPEConf0 & ~mask) | (t0 & mask);
949 // TODO: TC exclusive handling due to ERL/EXL.
951 env->CP0_VPEConf0 = newval;
954 void do_mtc0_vpeconf1 (target_ulong t0)
956 uint32_t mask = 0;
957 uint32_t newval;
959 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
960 mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) |
961 (0xff << CP0VPEC1_NCP1);
962 newval = (env->CP0_VPEConf1 & ~mask) | (t0 & mask);
964 /* UDI not implemented. */
965 /* CP2 not implemented. */
967 // TODO: Handle FPU (CP1) binding.
969 env->CP0_VPEConf1 = newval;
972 void do_mtc0_yqmask (target_ulong t0)
974 /* Yield qualifier inputs not implemented. */
975 env->CP0_YQMask = 0x00000000;
978 void do_mtc0_vpeopt (target_ulong t0)
980 env->CP0_VPEOpt = t0 & 0x0000ffff;
983 void do_mtc0_entrylo0 (target_ulong t0)
985 /* Large physaddr (PABITS) not implemented */
986 /* 1k pages not implemented */
987 env->CP0_EntryLo0 = t0 & 0x3FFFFFFF;
990 void do_mtc0_tcstatus (target_ulong t0)
992 uint32_t mask = env->CP0_TCStatus_rw_bitmask;
993 uint32_t newval;
995 newval = (env->active_tc.CP0_TCStatus & ~mask) | (t0 & mask);
997 // TODO: Sync with CP0_Status.
999 env->active_tc.CP0_TCStatus = newval;
1002 void do_mttc0_tcstatus (target_ulong t0)
1004 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1006 // TODO: Sync with CP0_Status.
1008 if (other_tc == env->current_tc)
1009 env->active_tc.CP0_TCStatus = t0;
1010 else
1011 env->tcs[other_tc].CP0_TCStatus = t0;
1014 void do_mtc0_tcbind (target_ulong t0)
1016 uint32_t mask = (1 << CP0TCBd_TBE);
1017 uint32_t newval;
1019 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1020 mask |= (1 << CP0TCBd_CurVPE);
1021 newval = (env->active_tc.CP0_TCBind & ~mask) | (t0 & mask);
1022 env->active_tc.CP0_TCBind = newval;
1025 void do_mttc0_tcbind (target_ulong t0)
1027 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1028 uint32_t mask = (1 << CP0TCBd_TBE);
1029 uint32_t newval;
1031 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1032 mask |= (1 << CP0TCBd_CurVPE);
1033 if (other_tc == env->current_tc) {
1034 newval = (env->active_tc.CP0_TCBind & ~mask) | (t0 & mask);
1035 env->active_tc.CP0_TCBind = newval;
1036 } else {
1037 newval = (env->tcs[other_tc].CP0_TCBind & ~mask) | (t0 & mask);
1038 env->tcs[other_tc].CP0_TCBind = newval;
1042 void do_mtc0_tcrestart (target_ulong t0)
1044 env->active_tc.PC = t0;
1045 env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1046 env->CP0_LLAddr = 0ULL;
1047 /* MIPS16 not implemented. */
1050 void do_mttc0_tcrestart (target_ulong t0)
1052 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1054 if (other_tc == env->current_tc) {
1055 env->active_tc.PC = t0;
1056 env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1057 env->CP0_LLAddr = 0ULL;
1058 /* MIPS16 not implemented. */
1059 } else {
1060 env->tcs[other_tc].PC = t0;
1061 env->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1062 env->CP0_LLAddr = 0ULL;
1063 /* MIPS16 not implemented. */
1067 void do_mtc0_tchalt (target_ulong t0)
1069 env->active_tc.CP0_TCHalt = t0 & 0x1;
1071 // TODO: Halt TC / Restart (if allocated+active) TC.
1074 void do_mttc0_tchalt (target_ulong t0)
1076 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1078 // TODO: Halt TC / Restart (if allocated+active) TC.
1080 if (other_tc == env->current_tc)
1081 env->active_tc.CP0_TCHalt = t0;
1082 else
1083 env->tcs[other_tc].CP0_TCHalt = t0;
1086 void do_mtc0_tccontext (target_ulong t0)
1088 env->active_tc.CP0_TCContext = t0;
1091 void do_mttc0_tccontext (target_ulong t0)
1093 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1095 if (other_tc == env->current_tc)
1096 env->active_tc.CP0_TCContext = t0;
1097 else
1098 env->tcs[other_tc].CP0_TCContext = t0;
1101 void do_mtc0_tcschedule (target_ulong t0)
1103 env->active_tc.CP0_TCSchedule = t0;
1106 void do_mttc0_tcschedule (target_ulong t0)
1108 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1110 if (other_tc == env->current_tc)
1111 env->active_tc.CP0_TCSchedule = t0;
1112 else
1113 env->tcs[other_tc].CP0_TCSchedule = t0;
1116 void do_mtc0_tcschefback (target_ulong t0)
1118 env->active_tc.CP0_TCScheFBack = t0;
1121 void do_mttc0_tcschefback (target_ulong t0)
1123 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1125 if (other_tc == env->current_tc)
1126 env->active_tc.CP0_TCScheFBack = t0;
1127 else
1128 env->tcs[other_tc].CP0_TCScheFBack = t0;
1131 void do_mtc0_entrylo1 (target_ulong t0)
1133 /* Large physaddr (PABITS) not implemented */
1134 /* 1k pages not implemented */
1135 env->CP0_EntryLo1 = t0 & 0x3FFFFFFF;
1138 void do_mtc0_context (target_ulong t0)
1140 env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (t0 & ~0x007FFFFF);
1143 void do_mtc0_pagemask (target_ulong t0)
1145 /* 1k pages not implemented */
1146 env->CP0_PageMask = t0 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1));
1149 void do_mtc0_pagegrain (target_ulong t0)
1151 /* SmartMIPS not implemented */
1152 /* Large physaddr (PABITS) not implemented */
1153 /* 1k pages not implemented */
1154 env->CP0_PageGrain = 0;
1157 void do_mtc0_wired (target_ulong t0)
1159 env->CP0_Wired = t0 % env->tlb->nb_tlb;
1162 void do_mtc0_srsconf0 (target_ulong t0)
1164 env->CP0_SRSConf0 |= t0 & env->CP0_SRSConf0_rw_bitmask;
1167 void do_mtc0_srsconf1 (target_ulong t0)
1169 env->CP0_SRSConf1 |= t0 & env->CP0_SRSConf1_rw_bitmask;
1172 void do_mtc0_srsconf2 (target_ulong t0)
1174 env->CP0_SRSConf2 |= t0 & env->CP0_SRSConf2_rw_bitmask;
1177 void do_mtc0_srsconf3 (target_ulong t0)
1179 env->CP0_SRSConf3 |= t0 & env->CP0_SRSConf3_rw_bitmask;
1182 void do_mtc0_srsconf4 (target_ulong t0)
1184 env->CP0_SRSConf4 |= t0 & env->CP0_SRSConf4_rw_bitmask;
1187 void do_mtc0_hwrena (target_ulong t0)
1189 env->CP0_HWREna = t0 & 0x0000000F;
1192 void do_mtc0_count (target_ulong t0)
1194 cpu_mips_store_count(env, t0);
1197 void do_mtc0_entryhi (target_ulong t0)
1199 target_ulong old, val;
1201 /* 1k pages not implemented */
1202 val = t0 & ((TARGET_PAGE_MASK << 1) | 0xFF);
1203 #if defined(TARGET_MIPS64)
1204 val &= env->SEGMask;
1205 #endif
1206 old = env->CP0_EntryHi;
1207 env->CP0_EntryHi = val;
1208 if (env->CP0_Config3 & (1 << CP0C3_MT)) {
1209 uint32_t tcst = env->active_tc.CP0_TCStatus & ~0xff;
1210 env->active_tc.CP0_TCStatus = tcst | (val & 0xff);
1212 /* If the ASID changes, flush qemu's TLB. */
1213 if ((old & 0xFF) != (val & 0xFF))
1214 cpu_mips_tlb_flush(env, 1);
1217 void do_mttc0_entryhi(target_ulong t0)
1219 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1220 int32_t tcstatus;
1222 env->CP0_EntryHi = (env->CP0_EntryHi & 0xff) | (t0 & ~0xff);
1223 if (other_tc == env->current_tc) {
1224 tcstatus = (env->active_tc.CP0_TCStatus & ~0xff) | (t0 & 0xff);
1225 env->active_tc.CP0_TCStatus = tcstatus;
1226 } else {
1227 tcstatus = (env->tcs[other_tc].CP0_TCStatus & ~0xff) | (t0 & 0xff);
1228 env->tcs[other_tc].CP0_TCStatus = tcstatus;
1232 void do_mtc0_compare (target_ulong t0)
1234 cpu_mips_store_compare(env, t0);
1237 void do_mtc0_status (target_ulong t0)
1239 uint32_t val, old;
1240 uint32_t mask = env->CP0_Status_rw_bitmask;
1242 val = t0 & mask;
1243 old = env->CP0_Status;
1244 env->CP0_Status = (env->CP0_Status & ~mask) | val;
1245 compute_hflags(env);
1246 if (loglevel & CPU_LOG_EXEC)
1247 do_mtc0_status_debug(old, val);
1248 cpu_mips_update_irq(env);
1251 void do_mttc0_status(target_ulong t0)
1253 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1254 int32_t tcstatus = env->tcs[other_tc].CP0_TCStatus;
1256 env->CP0_Status = t0 & ~0xf1000018;
1257 tcstatus = (tcstatus & ~(0xf << CP0TCSt_TCU0)) | (t0 & (0xf << CP0St_CU0));
1258 tcstatus = (tcstatus & ~(1 << CP0TCSt_TMX)) | ((t0 & (1 << CP0St_MX)) << (CP0TCSt_TMX - CP0St_MX));
1259 tcstatus = (tcstatus & ~(0x3 << CP0TCSt_TKSU)) | ((t0 & (0x3 << CP0St_KSU)) << (CP0TCSt_TKSU - CP0St_KSU));
1260 if (other_tc == env->current_tc)
1261 env->active_tc.CP0_TCStatus = tcstatus;
1262 else
1263 env->tcs[other_tc].CP0_TCStatus = tcstatus;
1266 void do_mtc0_intctl (target_ulong t0)
1268 /* vectored interrupts not implemented, no performance counters. */
1269 env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000002e0) | (t0 & 0x000002e0);
1272 void do_mtc0_srsctl (target_ulong t0)
1274 uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS);
1275 env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (t0 & mask);
1278 void do_mtc0_cause (target_ulong t0)
1280 uint32_t mask = 0x00C00300;
1281 uint32_t old = env->CP0_Cause;
1283 if (env->insn_flags & ISA_MIPS32R2)
1284 mask |= 1 << CP0Ca_DC;
1286 env->CP0_Cause = (env->CP0_Cause & ~mask) | (t0 & mask);
1288 if ((old ^ env->CP0_Cause) & (1 << CP0Ca_DC)) {
1289 if (env->CP0_Cause & (1 << CP0Ca_DC))
1290 cpu_mips_stop_count(env);
1291 else
1292 cpu_mips_start_count(env);
1295 /* Handle the software interrupt as an hardware one, as they
1296 are very similar */
1297 if (t0 & CP0Ca_IP_mask) {
1298 cpu_mips_update_irq(env);
1302 void do_mtc0_ebase (target_ulong t0)
1304 /* vectored interrupts not implemented */
1305 /* Multi-CPU not implemented */
1306 env->CP0_EBase = 0x80000000 | (t0 & 0x3FFFF000);
1309 void do_mtc0_config0 (target_ulong t0)
1311 env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (t0 & 0x00000007);
1314 void do_mtc0_config2 (target_ulong t0)
1316 /* tertiary/secondary caches not implemented */
1317 env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
1320 void do_mtc0_watchlo (target_ulong t0, uint32_t sel)
1322 /* Watch exceptions for instructions, data loads, data stores
1323 not implemented. */
1324 env->CP0_WatchLo[sel] = (t0 & ~0x7);
1327 void do_mtc0_watchhi (target_ulong t0, uint32_t sel)
1329 env->CP0_WatchHi[sel] = (t0 & 0x40FF0FF8);
1330 env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & t0 & 0x7);
1333 void do_mtc0_xcontext (target_ulong t0)
1335 target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1;
1336 env->CP0_XContext = (env->CP0_XContext & mask) | (t0 & ~mask);
1339 void do_mtc0_framemask (target_ulong t0)
1341 env->CP0_Framemask = t0; /* XXX */
1344 void do_mtc0_debug (target_ulong t0)
1346 env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (t0 & 0x13300120);
1347 if (t0 & (1 << CP0DB_DM))
1348 env->hflags |= MIPS_HFLAG_DM;
1349 else
1350 env->hflags &= ~MIPS_HFLAG_DM;
1353 void do_mttc0_debug(target_ulong t0)
1355 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1356 uint32_t val = t0 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt));
1358 /* XXX: Might be wrong, check with EJTAG spec. */
1359 if (other_tc == env->current_tc)
1360 env->active_tc.CP0_Debug_tcstatus = val;
1361 else
1362 env->tcs[other_tc].CP0_Debug_tcstatus = val;
1363 env->CP0_Debug = (env->CP0_Debug & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
1364 (t0 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
1367 void do_mtc0_performance0 (target_ulong t0)
1369 env->CP0_Performance0 = t0 & 0x000007ff;
1372 void do_mtc0_taglo (target_ulong t0)
1374 env->CP0_TagLo = t0 & 0xFFFFFCF6;
1377 void do_mtc0_datalo (target_ulong t0)
1379 env->CP0_DataLo = t0; /* XXX */
1382 void do_mtc0_taghi (target_ulong t0)
1384 env->CP0_TagHi = t0; /* XXX */
1387 void do_mtc0_datahi (target_ulong t0)
1389 env->CP0_DataHi = t0; /* XXX */
1392 void do_mtc0_status_debug(uint32_t old, uint32_t val)
1394 fprintf(logfile, "Status %08x (%08x) => %08x (%08x) Cause %08x",
1395 old, old & env->CP0_Cause & CP0Ca_IP_mask,
1396 val, val & env->CP0_Cause & CP0Ca_IP_mask,
1397 env->CP0_Cause);
1398 switch (env->hflags & MIPS_HFLAG_KSU) {
1399 case MIPS_HFLAG_UM: fputs(", UM\n", logfile); break;
1400 case MIPS_HFLAG_SM: fputs(", SM\n", logfile); break;
1401 case MIPS_HFLAG_KM: fputs("\n", logfile); break;
1402 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
1406 void do_mtc0_status_irqraise_debug(void)
1408 fprintf(logfile, "Raise pending IRQs\n");
1410 #endif /* !CONFIG_USER_ONLY */
1412 /* MIPS MT functions */
1413 target_ulong do_mftgpr(target_ulong t0, uint32_t sel)
1415 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1417 if (other_tc == env->current_tc)
1418 return env->active_tc.gpr[sel];
1419 else
1420 return env->tcs[other_tc].gpr[sel];
1423 target_ulong do_mftlo(target_ulong t0, uint32_t sel)
1425 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1427 if (other_tc == env->current_tc)
1428 return env->active_tc.LO[sel];
1429 else
1430 return env->tcs[other_tc].LO[sel];
1433 target_ulong do_mfthi(target_ulong t0, uint32_t sel)
1435 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1437 if (other_tc == env->current_tc)
1438 return env->active_tc.HI[sel];
1439 else
1440 return env->tcs[other_tc].HI[sel];
1443 target_ulong do_mftacx(target_ulong t0, uint32_t sel)
1445 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1447 if (other_tc == env->current_tc)
1448 return env->active_tc.ACX[sel];
1449 else
1450 return env->tcs[other_tc].ACX[sel];
1453 target_ulong do_mftdsp(target_ulong t0)
1455 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1457 if (other_tc == env->current_tc)
1458 return env->active_tc.DSPControl;
1459 else
1460 return env->tcs[other_tc].DSPControl;
1463 void do_mttgpr(target_ulong t0, uint32_t sel)
1465 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1467 if (other_tc == env->current_tc)
1468 env->active_tc.gpr[sel] = t0;
1469 else
1470 env->tcs[other_tc].gpr[sel] = t0;
1473 void do_mttlo(target_ulong t0, uint32_t sel)
1475 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1477 if (other_tc == env->current_tc)
1478 env->active_tc.LO[sel] = t0;
1479 else
1480 env->tcs[other_tc].LO[sel] = t0;
1483 void do_mtthi(target_ulong t0, uint32_t sel)
1485 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1487 if (other_tc == env->current_tc)
1488 env->active_tc.HI[sel] = t0;
1489 else
1490 env->tcs[other_tc].HI[sel] = t0;
1493 void do_mttacx(target_ulong t0, uint32_t sel)
1495 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1497 if (other_tc == env->current_tc)
1498 env->active_tc.ACX[sel] = t0;
1499 else
1500 env->tcs[other_tc].ACX[sel] = t0;
1503 void do_mttdsp(target_ulong t0)
1505 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1507 if (other_tc == env->current_tc)
1508 env->active_tc.DSPControl = t0;
1509 else
1510 env->tcs[other_tc].DSPControl = t0;
1513 /* MIPS MT functions */
1514 target_ulong do_dmt(target_ulong t0)
1516 // TODO
1517 t0 = 0;
1518 // rt = t0
1520 return t0;
1523 target_ulong do_emt(target_ulong t0)
1525 // TODO
1526 t0 = 0;
1527 // rt = t0
1529 return t0;
1532 target_ulong do_dvpe(target_ulong t0)
1534 // TODO
1535 t0 = 0;
1536 // rt = t0
1538 return t0;
1541 target_ulong do_evpe(target_ulong t0)
1543 // TODO
1544 t0 = 0;
1545 // rt = t0
1547 return t0;
1550 void do_fork(target_ulong t0, target_ulong t1)
1552 // t0 = rt, t1 = rs
1553 t0 = 0;
1554 // TODO: store to TC register
1557 target_ulong do_yield(target_ulong t0)
1559 if (t0 < 0) {
1560 /* No scheduling policy implemented. */
1561 if (t0 != -2) {
1562 if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) &&
1563 env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) {
1564 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1565 env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT;
1566 do_raise_exception(EXCP_THREAD);
1569 } else if (t0 == 0) {
1570 if (0 /* TODO: TC underflow */) {
1571 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1572 do_raise_exception(EXCP_THREAD);
1573 } else {
1574 // TODO: Deallocate TC
1576 } else if (t0 > 0) {
1577 /* Yield qualifier inputs not implemented. */
1578 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1579 env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT;
1580 do_raise_exception(EXCP_THREAD);
1582 return env->CP0_YQMask;
1585 /* CP1 functions */
1586 void fpu_handle_exception(void)
1588 #ifdef CONFIG_SOFTFLOAT
1589 int flags = get_float_exception_flags(&env->fpu->fp_status);
1590 unsigned int cpuflags = 0, enable, cause = 0;
1592 enable = GET_FP_ENABLE(env->fpu->fcr31);
1594 /* determine current flags */
1595 if (flags & float_flag_invalid) {
1596 cpuflags |= FP_INVALID;
1597 cause |= FP_INVALID & enable;
1599 if (flags & float_flag_divbyzero) {
1600 cpuflags |= FP_DIV0;
1601 cause |= FP_DIV0 & enable;
1603 if (flags & float_flag_overflow) {
1604 cpuflags |= FP_OVERFLOW;
1605 cause |= FP_OVERFLOW & enable;
1607 if (flags & float_flag_underflow) {
1608 cpuflags |= FP_UNDERFLOW;
1609 cause |= FP_UNDERFLOW & enable;
1611 if (flags & float_flag_inexact) {
1612 cpuflags |= FP_INEXACT;
1613 cause |= FP_INEXACT & enable;
1615 SET_FP_FLAGS(env->fpu->fcr31, cpuflags);
1616 SET_FP_CAUSE(env->fpu->fcr31, cause);
1617 #else
1618 SET_FP_FLAGS(env->fpu->fcr31, 0);
1619 SET_FP_CAUSE(env->fpu->fcr31, 0);
1620 #endif
1623 #ifndef CONFIG_USER_ONLY
1624 /* TLB management */
1625 void cpu_mips_tlb_flush (CPUState *env, int flush_global)
1627 /* Flush qemu's TLB and discard all shadowed entries. */
1628 tlb_flush (env, flush_global);
1629 env->tlb->tlb_in_use = env->tlb->nb_tlb;
1632 static void r4k_mips_tlb_flush_extra (CPUState *env, int first)
1634 /* Discard entries from env->tlb[first] onwards. */
1635 while (env->tlb->tlb_in_use > first) {
1636 r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
1640 static void r4k_fill_tlb (int idx)
1642 r4k_tlb_t *tlb;
1644 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
1645 tlb = &env->tlb->mmu.r4k.tlb[idx];
1646 tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
1647 #if defined(TARGET_MIPS64)
1648 tlb->VPN &= env->SEGMask;
1649 #endif
1650 tlb->ASID = env->CP0_EntryHi & 0xFF;
1651 tlb->PageMask = env->CP0_PageMask;
1652 tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
1653 tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
1654 tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
1655 tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
1656 tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
1657 tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
1658 tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
1659 tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
1660 tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
1663 void r4k_do_tlbwi (void)
1665 /* Discard cached TLB entries. We could avoid doing this if the
1666 tlbwi is just upgrading access permissions on the current entry;
1667 that might be a further win. */
1668 r4k_mips_tlb_flush_extra (env, env->tlb->nb_tlb);
1670 r4k_invalidate_tlb(env, env->CP0_Index % env->tlb->nb_tlb, 0);
1671 r4k_fill_tlb(env->CP0_Index % env->tlb->nb_tlb);
1674 void r4k_do_tlbwr (void)
1676 int r = cpu_mips_get_random(env);
1678 r4k_invalidate_tlb(env, r, 1);
1679 r4k_fill_tlb(r);
1682 void r4k_do_tlbp (void)
1684 r4k_tlb_t *tlb;
1685 target_ulong mask;
1686 target_ulong tag;
1687 target_ulong VPN;
1688 uint8_t ASID;
1689 int i;
1691 ASID = env->CP0_EntryHi & 0xFF;
1692 for (i = 0; i < env->tlb->nb_tlb; i++) {
1693 tlb = &env->tlb->mmu.r4k.tlb[i];
1694 /* 1k pages are not supported. */
1695 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1696 tag = env->CP0_EntryHi & ~mask;
1697 VPN = tlb->VPN & ~mask;
1698 /* Check ASID, virtual page number & size */
1699 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
1700 /* TLB match */
1701 env->CP0_Index = i;
1702 break;
1705 if (i == env->tlb->nb_tlb) {
1706 /* No match. Discard any shadow entries, if any of them match. */
1707 for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
1708 tlb = &env->tlb->mmu.r4k.tlb[i];
1709 /* 1k pages are not supported. */
1710 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1711 tag = env->CP0_EntryHi & ~mask;
1712 VPN = tlb->VPN & ~mask;
1713 /* Check ASID, virtual page number & size */
1714 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
1715 r4k_mips_tlb_flush_extra (env, i);
1716 break;
1720 env->CP0_Index |= 0x80000000;
1724 void r4k_do_tlbr (void)
1726 r4k_tlb_t *tlb;
1727 uint8_t ASID;
1729 ASID = env->CP0_EntryHi & 0xFF;
1730 tlb = &env->tlb->mmu.r4k.tlb[env->CP0_Index % env->tlb->nb_tlb];
1732 /* If this will change the current ASID, flush qemu's TLB. */
1733 if (ASID != tlb->ASID)
1734 cpu_mips_tlb_flush (env, 1);
1736 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
1738 env->CP0_EntryHi = tlb->VPN | tlb->ASID;
1739 env->CP0_PageMask = tlb->PageMask;
1740 env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
1741 (tlb->C0 << 3) | (tlb->PFN[0] >> 6);
1742 env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
1743 (tlb->C1 << 3) | (tlb->PFN[1] >> 6);
1746 #endif /* !CONFIG_USER_ONLY */
1748 /* Specials */
1749 target_ulong do_di (void)
1751 target_ulong t0 = env->CP0_Status;
1753 env->CP0_Status = t0 & ~(1 << CP0St_IE);
1754 cpu_mips_update_irq(env);
1756 return t0;
1759 target_ulong do_ei (void)
1761 target_ulong t0 = env->CP0_Status;
1763 env->CP0_Status = t0 | (1 << CP0St_IE);
1764 cpu_mips_update_irq(env);
1766 return t0;
1769 void debug_pre_eret (void)
1771 fprintf(logfile, "ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
1772 env->active_tc.PC, env->CP0_EPC);
1773 if (env->CP0_Status & (1 << CP0St_ERL))
1774 fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
1775 if (env->hflags & MIPS_HFLAG_DM)
1776 fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
1777 fputs("\n", logfile);
1780 void debug_post_eret (void)
1782 fprintf(logfile, " => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
1783 env->active_tc.PC, env->CP0_EPC);
1784 if (env->CP0_Status & (1 << CP0St_ERL))
1785 fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
1786 if (env->hflags & MIPS_HFLAG_DM)
1787 fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
1788 switch (env->hflags & MIPS_HFLAG_KSU) {
1789 case MIPS_HFLAG_UM: fputs(", UM\n", logfile); break;
1790 case MIPS_HFLAG_SM: fputs(", SM\n", logfile); break;
1791 case MIPS_HFLAG_KM: fputs("\n", logfile); break;
1792 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
1796 void do_eret (void)
1798 if (loglevel & CPU_LOG_EXEC)
1799 debug_pre_eret();
1800 if (env->CP0_Status & (1 << CP0St_ERL)) {
1801 env->active_tc.PC = env->CP0_ErrorEPC;
1802 env->CP0_Status &= ~(1 << CP0St_ERL);
1803 } else {
1804 env->active_tc.PC = env->CP0_EPC;
1805 env->CP0_Status &= ~(1 << CP0St_EXL);
1807 compute_hflags(env);
1808 if (loglevel & CPU_LOG_EXEC)
1809 debug_post_eret();
1810 env->CP0_LLAddr = 1;
1813 void do_deret (void)
1815 if (loglevel & CPU_LOG_EXEC)
1816 debug_pre_eret();
1817 env->active_tc.PC = env->CP0_DEPC;
1818 env->hflags &= MIPS_HFLAG_DM;
1819 compute_hflags(env);
1820 if (loglevel & CPU_LOG_EXEC)
1821 debug_post_eret();
1822 env->CP0_LLAddr = 1;
1825 target_ulong do_rdhwr_cpunum(void)
1827 if ((env->hflags & MIPS_HFLAG_CP0) ||
1828 (env->CP0_HWREna & (1 << 0)))
1829 return env->CP0_EBase & 0x3ff;
1830 else
1831 do_raise_exception(EXCP_RI);
1833 return 0;
1836 target_ulong do_rdhwr_synci_step(void)
1838 if ((env->hflags & MIPS_HFLAG_CP0) ||
1839 (env->CP0_HWREna & (1 << 1)))
1840 return env->SYNCI_Step;
1841 else
1842 do_raise_exception(EXCP_RI);
1844 return 0;
1847 target_ulong do_rdhwr_cc(void)
1849 if ((env->hflags & MIPS_HFLAG_CP0) ||
1850 (env->CP0_HWREna & (1 << 2)))
1851 return env->CP0_Count;
1852 else
1853 do_raise_exception(EXCP_RI);
1855 return 0;
1858 target_ulong do_rdhwr_ccres(void)
1860 if ((env->hflags & MIPS_HFLAG_CP0) ||
1861 (env->CP0_HWREna & (1 << 3)))
1862 return env->CCRes;
1863 else
1864 do_raise_exception(EXCP_RI);
1866 return 0;
1869 /* Bitfield operations. */
1870 target_ulong do_ext(target_ulong t1, uint32_t pos, uint32_t size)
1872 return (int32_t)((t1 >> pos) & ((size < 32) ? ((1 << size) - 1) : ~0));
1875 target_ulong do_ins(target_ulong t0, target_ulong t1, uint32_t pos, uint32_t size)
1877 target_ulong mask = ((size < 32) ? ((1 << size) - 1) : ~0) << pos;
1879 return (int32_t)((t0 & ~mask) | ((t1 << pos) & mask));
1882 target_ulong do_wsbh(target_ulong t1)
1884 return (int32_t)(((t1 << 8) & ~0x00FF00FF) | ((t1 >> 8) & 0x00FF00FF));
1887 #if defined(TARGET_MIPS64)
1888 target_ulong do_dext(target_ulong t1, uint32_t pos, uint32_t size)
1890 return (t1 >> pos) & ((size < 64) ? ((1ULL << size) - 1) : ~0ULL);
1893 target_ulong do_dins(target_ulong t0, target_ulong t1, uint32_t pos, uint32_t size)
1895 target_ulong mask = ((size < 64) ? ((1ULL << size) - 1) : ~0ULL) << pos;
1897 return (t0 & ~mask) | ((t1 << pos) & mask);
1900 target_ulong do_dsbh(target_ulong t1)
1902 return ((t1 << 8) & ~0x00FF00FF00FF00FFULL) | ((t1 >> 8) & 0x00FF00FF00FF00FFULL);
1905 target_ulong do_dshd(target_ulong t1)
1907 t1 = ((t1 << 16) & ~0x0000FFFF0000FFFFULL) | ((t1 >> 16) & 0x0000FFFF0000FFFFULL);
1908 return (t1 << 32) | (t1 >> 32);
1910 #endif
1912 void do_pmon (int function)
1914 function /= 2;
1915 switch (function) {
1916 case 2: /* TODO: char inbyte(int waitflag); */
1917 if (env->active_tc.gpr[4] == 0)
1918 env->active_tc.gpr[2] = -1;
1919 /* Fall through */
1920 case 11: /* TODO: char inbyte (void); */
1921 env->active_tc.gpr[2] = -1;
1922 break;
1923 case 3:
1924 case 12:
1925 printf("%c", (char)(env->active_tc.gpr[4] & 0xFF));
1926 break;
1927 case 17:
1928 break;
1929 case 158:
1931 unsigned char *fmt = (void *)(unsigned long)env->active_tc.gpr[4];
1932 printf("%s", fmt);
1934 break;
1938 void do_wait (void)
1940 env->halted = 1;
1941 do_raise_exception(EXCP_HLT);
1944 #if !defined(CONFIG_USER_ONLY)
1946 static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr);
1948 #define MMUSUFFIX _mmu
1949 #define ALIGNED_ONLY
1951 #define SHIFT 0
1952 #include "softmmu_template.h"
1954 #define SHIFT 1
1955 #include "softmmu_template.h"
1957 #define SHIFT 2
1958 #include "softmmu_template.h"
1960 #define SHIFT 3
1961 #include "softmmu_template.h"
1963 static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr)
1965 env->CP0_BadVAddr = addr;
1966 do_restore_state (retaddr);
1967 do_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL);
1970 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
1972 TranslationBlock *tb;
1973 CPUState *saved_env;
1974 unsigned long pc;
1975 int ret;
1977 /* XXX: hack to restore env in all cases, even if not called from
1978 generated code */
1979 saved_env = env;
1980 env = cpu_single_env;
1981 ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
1982 if (ret) {
1983 if (retaddr) {
1984 /* now we have a real cpu fault */
1985 pc = (unsigned long)retaddr;
1986 tb = tb_find_pc(pc);
1987 if (tb) {
1988 /* the PC is inside the translated code. It means that we have
1989 a virtual CPU fault */
1990 cpu_restore_state(tb, env, pc, NULL);
1993 do_raise_exception_err(env->exception_index, env->error_code);
1995 env = saved_env;
1998 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
1999 int unused)
2001 if (is_exec)
2002 do_raise_exception(EXCP_IBE);
2003 else
2004 do_raise_exception(EXCP_DBE);
2006 #endif /* !CONFIG_USER_ONLY */
2008 /* Complex FPU operations which may need stack space. */
2010 #define FLOAT_ONE32 make_float32(0x3f8 << 20)
2011 #define FLOAT_ONE64 make_float64(0x3ffULL << 52)
2012 #define FLOAT_TWO32 make_float32(1 << 30)
2013 #define FLOAT_TWO64 make_float64(1ULL << 62)
2014 #define FLOAT_QNAN32 0x7fbfffff
2015 #define FLOAT_QNAN64 0x7ff7ffffffffffffULL
2016 #define FLOAT_SNAN32 0x7fffffff
2017 #define FLOAT_SNAN64 0x7fffffffffffffffULL
2019 /* convert MIPS rounding mode in FCR31 to IEEE library */
2020 unsigned int ieee_rm[] = {
2021 float_round_nearest_even,
2022 float_round_to_zero,
2023 float_round_up,
2024 float_round_down
2027 #define RESTORE_ROUNDING_MODE \
2028 set_float_rounding_mode(ieee_rm[env->fpu->fcr31 & 3], &env->fpu->fp_status)
2030 target_ulong do_cfc1 (uint32_t reg)
2032 target_ulong t0;
2034 switch (reg) {
2035 case 0:
2036 t0 = (int32_t)env->fpu->fcr0;
2037 break;
2038 case 25:
2039 t0 = ((env->fpu->fcr31 >> 24) & 0xfe) | ((env->fpu->fcr31 >> 23) & 0x1);
2040 break;
2041 case 26:
2042 t0 = env->fpu->fcr31 & 0x0003f07c;
2043 break;
2044 case 28:
2045 t0 = (env->fpu->fcr31 & 0x00000f83) | ((env->fpu->fcr31 >> 22) & 0x4);
2046 break;
2047 default:
2048 t0 = (int32_t)env->fpu->fcr31;
2049 break;
2052 return t0;
2055 void do_ctc1 (target_ulong t0, uint32_t reg)
2057 switch(reg) {
2058 case 25:
2059 if (t0 & 0xffffff00)
2060 return;
2061 env->fpu->fcr31 = (env->fpu->fcr31 & 0x017fffff) | ((t0 & 0xfe) << 24) |
2062 ((t0 & 0x1) << 23);
2063 break;
2064 case 26:
2065 if (t0 & 0x007c0000)
2066 return;
2067 env->fpu->fcr31 = (env->fpu->fcr31 & 0xfffc0f83) | (t0 & 0x0003f07c);
2068 break;
2069 case 28:
2070 if (t0 & 0x007c0000)
2071 return;
2072 env->fpu->fcr31 = (env->fpu->fcr31 & 0xfefff07c) | (t0 & 0x00000f83) |
2073 ((t0 & 0x4) << 22);
2074 break;
2075 case 31:
2076 if (t0 & 0x007c0000)
2077 return;
2078 env->fpu->fcr31 = t0;
2079 break;
2080 default:
2081 return;
2083 /* set rounding mode */
2084 RESTORE_ROUNDING_MODE;
2085 set_float_exception_flags(0, &env->fpu->fp_status);
2086 if ((GET_FP_ENABLE(env->fpu->fcr31) | 0x20) & GET_FP_CAUSE(env->fpu->fcr31))
2087 do_raise_exception(EXCP_FPE);
2090 static always_inline char ieee_ex_to_mips(char xcpt)
2092 return (xcpt & float_flag_inexact) >> 5 |
2093 (xcpt & float_flag_underflow) >> 3 |
2094 (xcpt & float_flag_overflow) >> 1 |
2095 (xcpt & float_flag_divbyzero) << 1 |
2096 (xcpt & float_flag_invalid) << 4;
2099 static always_inline char mips_ex_to_ieee(char xcpt)
2101 return (xcpt & FP_INEXACT) << 5 |
2102 (xcpt & FP_UNDERFLOW) << 3 |
2103 (xcpt & FP_OVERFLOW) << 1 |
2104 (xcpt & FP_DIV0) >> 1 |
2105 (xcpt & FP_INVALID) >> 4;
2108 static always_inline void update_fcr31(void)
2110 int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->fpu->fp_status));
2112 SET_FP_CAUSE(env->fpu->fcr31, tmp);
2113 if (GET_FP_ENABLE(env->fpu->fcr31) & tmp)
2114 do_raise_exception(EXCP_FPE);
2115 else
2116 UPDATE_FP_FLAGS(env->fpu->fcr31, tmp);
2119 /* Float support.
2120 Single precition routines have a "s" suffix, double precision a
2121 "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
2122 paired single lower "pl", paired single upper "pu". */
2124 /* unary operations, modifying fp status */
2125 uint64_t do_float_sqrt_d(uint64_t fdt0)
2127 return float64_sqrt(fdt0, &env->fpu->fp_status);
2130 uint32_t do_float_sqrt_s(uint32_t fst0)
2132 return float32_sqrt(fst0, &env->fpu->fp_status);
2135 uint64_t do_float_cvtd_s(uint32_t fst0)
2137 uint64_t fdt2;
2139 set_float_exception_flags(0, &env->fpu->fp_status);
2140 fdt2 = float32_to_float64(fst0, &env->fpu->fp_status);
2141 update_fcr31();
2142 return fdt2;
2145 uint64_t do_float_cvtd_w(uint32_t wt0)
2147 uint64_t fdt2;
2149 set_float_exception_flags(0, &env->fpu->fp_status);
2150 fdt2 = int32_to_float64(wt0, &env->fpu->fp_status);
2151 update_fcr31();
2152 return fdt2;
2155 uint64_t do_float_cvtd_l(uint64_t dt0)
2157 uint64_t fdt2;
2159 set_float_exception_flags(0, &env->fpu->fp_status);
2160 fdt2 = int64_to_float64(dt0, &env->fpu->fp_status);
2161 update_fcr31();
2162 return fdt2;
2165 uint64_t do_float_cvtl_d(uint64_t fdt0)
2167 uint64_t dt2;
2169 set_float_exception_flags(0, &env->fpu->fp_status);
2170 dt2 = float64_to_int64(fdt0, &env->fpu->fp_status);
2171 update_fcr31();
2172 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
2173 dt2 = FLOAT_SNAN64;
2174 return dt2;
2177 uint64_t do_float_cvtl_s(uint32_t fst0)
2179 uint64_t dt2;
2181 set_float_exception_flags(0, &env->fpu->fp_status);
2182 dt2 = float32_to_int64(fst0, &env->fpu->fp_status);
2183 update_fcr31();
2184 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
2185 dt2 = FLOAT_SNAN64;
2186 return dt2;
2189 uint64_t do_float_cvtps_pw(uint64_t dt0)
2191 uint32_t fst2;
2192 uint32_t fsth2;
2194 set_float_exception_flags(0, &env->fpu->fp_status);
2195 fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->fpu->fp_status);
2196 fsth2 = int32_to_float32(dt0 >> 32, &env->fpu->fp_status);
2197 update_fcr31();
2198 return ((uint64_t)fsth2 << 32) | fst2;
2201 uint64_t do_float_cvtpw_ps(uint64_t fdt0)
2203 uint32_t wt2;
2204 uint32_t wth2;
2206 set_float_exception_flags(0, &env->fpu->fp_status);
2207 wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->fpu->fp_status);
2208 wth2 = float32_to_int32(fdt0 >> 32, &env->fpu->fp_status);
2209 update_fcr31();
2210 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID)) {
2211 wt2 = FLOAT_SNAN32;
2212 wth2 = FLOAT_SNAN32;
2214 return ((uint64_t)wth2 << 32) | wt2;
2217 uint32_t do_float_cvts_d(uint64_t fdt0)
2219 uint32_t fst2;
2221 set_float_exception_flags(0, &env->fpu->fp_status);
2222 fst2 = float64_to_float32(fdt0, &env->fpu->fp_status);
2223 update_fcr31();
2224 return fst2;
2227 uint32_t do_float_cvts_w(uint32_t wt0)
2229 uint32_t fst2;
2231 set_float_exception_flags(0, &env->fpu->fp_status);
2232 fst2 = int32_to_float32(wt0, &env->fpu->fp_status);
2233 update_fcr31();
2234 return fst2;
2237 uint32_t do_float_cvts_l(uint64_t dt0)
2239 uint32_t fst2;
2241 set_float_exception_flags(0, &env->fpu->fp_status);
2242 fst2 = int64_to_float32(dt0, &env->fpu->fp_status);
2243 update_fcr31();
2244 return fst2;
2247 uint32_t do_float_cvts_pl(uint32_t wt0)
2249 uint32_t wt2;
2251 set_float_exception_flags(0, &env->fpu->fp_status);
2252 wt2 = wt0;
2253 update_fcr31();
2254 return wt2;
2257 uint32_t do_float_cvts_pu(uint32_t wth0)
2259 uint32_t wt2;
2261 set_float_exception_flags(0, &env->fpu->fp_status);
2262 wt2 = wth0;
2263 update_fcr31();
2264 return wt2;
2267 uint32_t do_float_cvtw_s(uint32_t fst0)
2269 uint32_t wt2;
2271 set_float_exception_flags(0, &env->fpu->fp_status);
2272 wt2 = float32_to_int32(fst0, &env->fpu->fp_status);
2273 update_fcr31();
2274 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
2275 wt2 = FLOAT_SNAN32;
2276 return wt2;
2279 uint32_t do_float_cvtw_d(uint64_t fdt0)
2281 uint32_t wt2;
2283 set_float_exception_flags(0, &env->fpu->fp_status);
2284 wt2 = float64_to_int32(fdt0, &env->fpu->fp_status);
2285 update_fcr31();
2286 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
2287 wt2 = FLOAT_SNAN32;
2288 return wt2;
2291 uint64_t do_float_roundl_d(uint64_t fdt0)
2293 uint64_t dt2;
2295 set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
2296 dt2 = float64_to_int64(fdt0, &env->fpu->fp_status);
2297 RESTORE_ROUNDING_MODE;
2298 update_fcr31();
2299 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
2300 dt2 = FLOAT_SNAN64;
2301 return dt2;
2304 uint64_t do_float_roundl_s(uint32_t fst0)
2306 uint64_t dt2;
2308 set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
2309 dt2 = float32_to_int64(fst0, &env->fpu->fp_status);
2310 RESTORE_ROUNDING_MODE;
2311 update_fcr31();
2312 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
2313 dt2 = FLOAT_SNAN64;
2314 return dt2;
2317 uint32_t do_float_roundw_d(uint64_t fdt0)
2319 uint32_t wt2;
2321 set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
2322 wt2 = float64_to_int32(fdt0, &env->fpu->fp_status);
2323 RESTORE_ROUNDING_MODE;
2324 update_fcr31();
2325 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
2326 wt2 = FLOAT_SNAN32;
2327 return wt2;
2330 uint32_t do_float_roundw_s(uint32_t fst0)
2332 uint32_t wt2;
2334 set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
2335 wt2 = float32_to_int32(fst0, &env->fpu->fp_status);
2336 RESTORE_ROUNDING_MODE;
2337 update_fcr31();
2338 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
2339 wt2 = FLOAT_SNAN32;
2340 return wt2;
2343 uint64_t do_float_truncl_d(uint64_t fdt0)
2345 uint64_t dt2;
2347 dt2 = float64_to_int64_round_to_zero(fdt0, &env->fpu->fp_status);
2348 update_fcr31();
2349 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
2350 dt2 = FLOAT_SNAN64;
2351 return dt2;
2354 uint64_t do_float_truncl_s(uint32_t fst0)
2356 uint64_t dt2;
2358 dt2 = float32_to_int64_round_to_zero(fst0, &env->fpu->fp_status);
2359 update_fcr31();
2360 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
2361 dt2 = FLOAT_SNAN64;
2362 return dt2;
2365 uint32_t do_float_truncw_d(uint64_t fdt0)
2367 uint32_t wt2;
2369 wt2 = float64_to_int32_round_to_zero(fdt0, &env->fpu->fp_status);
2370 update_fcr31();
2371 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
2372 wt2 = FLOAT_SNAN32;
2373 return wt2;
2376 uint32_t do_float_truncw_s(uint32_t fst0)
2378 uint32_t wt2;
2380 wt2 = float32_to_int32_round_to_zero(fst0, &env->fpu->fp_status);
2381 update_fcr31();
2382 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
2383 wt2 = FLOAT_SNAN32;
2384 return wt2;
2387 uint64_t do_float_ceill_d(uint64_t fdt0)
2389 uint64_t dt2;
2391 set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
2392 dt2 = float64_to_int64(fdt0, &env->fpu->fp_status);
2393 RESTORE_ROUNDING_MODE;
2394 update_fcr31();
2395 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
2396 dt2 = FLOAT_SNAN64;
2397 return dt2;
2400 uint64_t do_float_ceill_s(uint32_t fst0)
2402 uint64_t dt2;
2404 set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
2405 dt2 = float32_to_int64(fst0, &env->fpu->fp_status);
2406 RESTORE_ROUNDING_MODE;
2407 update_fcr31();
2408 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
2409 dt2 = FLOAT_SNAN64;
2410 return dt2;
2413 uint32_t do_float_ceilw_d(uint64_t fdt0)
2415 uint32_t wt2;
2417 set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
2418 wt2 = float64_to_int32(fdt0, &env->fpu->fp_status);
2419 RESTORE_ROUNDING_MODE;
2420 update_fcr31();
2421 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
2422 wt2 = FLOAT_SNAN32;
2423 return wt2;
2426 uint32_t do_float_ceilw_s(uint32_t fst0)
2428 uint32_t wt2;
2430 set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
2431 wt2 = float32_to_int32(fst0, &env->fpu->fp_status);
2432 RESTORE_ROUNDING_MODE;
2433 update_fcr31();
2434 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
2435 wt2 = FLOAT_SNAN32;
2436 return wt2;
2439 uint64_t do_float_floorl_d(uint64_t fdt0)
2441 uint64_t dt2;
2443 set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
2444 dt2 = float64_to_int64(fdt0, &env->fpu->fp_status);
2445 RESTORE_ROUNDING_MODE;
2446 update_fcr31();
2447 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
2448 dt2 = FLOAT_SNAN64;
2449 return dt2;
2452 uint64_t do_float_floorl_s(uint32_t fst0)
2454 uint64_t dt2;
2456 set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
2457 dt2 = float32_to_int64(fst0, &env->fpu->fp_status);
2458 RESTORE_ROUNDING_MODE;
2459 update_fcr31();
2460 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
2461 dt2 = FLOAT_SNAN64;
2462 return dt2;
2465 uint32_t do_float_floorw_d(uint64_t fdt0)
2467 uint32_t wt2;
2469 set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
2470 wt2 = float64_to_int32(fdt0, &env->fpu->fp_status);
2471 RESTORE_ROUNDING_MODE;
2472 update_fcr31();
2473 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
2474 wt2 = FLOAT_SNAN32;
2475 return wt2;
2478 uint32_t do_float_floorw_s(uint32_t fst0)
2480 uint32_t wt2;
2482 set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
2483 wt2 = float32_to_int32(fst0, &env->fpu->fp_status);
2484 RESTORE_ROUNDING_MODE;
2485 update_fcr31();
2486 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
2487 wt2 = FLOAT_SNAN32;
2488 return wt2;
2491 /* unary operations, not modifying fp status */
2492 #define FLOAT_UNOP(name) \
2493 uint64_t do_float_ ## name ## _d(uint64_t fdt0) \
2495 return float64_ ## name(fdt0); \
2497 uint32_t do_float_ ## name ## _s(uint32_t fst0) \
2499 return float32_ ## name(fst0); \
2501 uint64_t do_float_ ## name ## _ps(uint64_t fdt0) \
2503 uint32_t wt0; \
2504 uint32_t wth0; \
2506 wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
2507 wth0 = float32_ ## name(fdt0 >> 32); \
2508 return ((uint64_t)wth0 << 32) | wt0; \
2510 FLOAT_UNOP(abs)
2511 FLOAT_UNOP(chs)
2512 #undef FLOAT_UNOP
2514 /* MIPS specific unary operations */
2515 uint64_t do_float_recip_d(uint64_t fdt0)
2517 uint64_t fdt2;
2519 set_float_exception_flags(0, &env->fpu->fp_status);
2520 fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->fpu->fp_status);
2521 update_fcr31();
2522 return fdt2;
2525 uint32_t do_float_recip_s(uint32_t fst0)
2527 uint32_t fst2;
2529 set_float_exception_flags(0, &env->fpu->fp_status);
2530 fst2 = float32_div(FLOAT_ONE32, fst0, &env->fpu->fp_status);
2531 update_fcr31();
2532 return fst2;
2535 uint64_t do_float_rsqrt_d(uint64_t fdt0)
2537 uint64_t fdt2;
2539 set_float_exception_flags(0, &env->fpu->fp_status);
2540 fdt2 = float64_sqrt(fdt0, &env->fpu->fp_status);
2541 fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->fpu->fp_status);
2542 update_fcr31();
2543 return fdt2;
2546 uint32_t do_float_rsqrt_s(uint32_t fst0)
2548 uint32_t fst2;
2550 set_float_exception_flags(0, &env->fpu->fp_status);
2551 fst2 = float32_sqrt(fst0, &env->fpu->fp_status);
2552 fst2 = float32_div(FLOAT_ONE32, fst2, &env->fpu->fp_status);
2553 update_fcr31();
2554 return fst2;
2557 uint64_t do_float_recip1_d(uint64_t fdt0)
2559 uint64_t fdt2;
2561 set_float_exception_flags(0, &env->fpu->fp_status);
2562 fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->fpu->fp_status);
2563 update_fcr31();
2564 return fdt2;
2567 uint32_t do_float_recip1_s(uint32_t fst0)
2569 uint32_t fst2;
2571 set_float_exception_flags(0, &env->fpu->fp_status);
2572 fst2 = float32_div(FLOAT_ONE32, fst0, &env->fpu->fp_status);
2573 update_fcr31();
2574 return fst2;
2577 uint64_t do_float_recip1_ps(uint64_t fdt0)
2579 uint32_t fst2;
2580 uint32_t fsth2;
2582 set_float_exception_flags(0, &env->fpu->fp_status);
2583 fst2 = float32_div(FLOAT_ONE32, fdt0 & 0XFFFFFFFF, &env->fpu->fp_status);
2584 fsth2 = float32_div(FLOAT_ONE32, fdt0 >> 32, &env->fpu->fp_status);
2585 update_fcr31();
2586 return ((uint64_t)fsth2 << 32) | fst2;
2589 uint64_t do_float_rsqrt1_d(uint64_t fdt0)
2591 uint64_t fdt2;
2593 set_float_exception_flags(0, &env->fpu->fp_status);
2594 fdt2 = float64_sqrt(fdt0, &env->fpu->fp_status);
2595 fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->fpu->fp_status);
2596 update_fcr31();
2597 return fdt2;
2600 uint32_t do_float_rsqrt1_s(uint32_t fst0)
2602 uint32_t fst2;
2604 set_float_exception_flags(0, &env->fpu->fp_status);
2605 fst2 = float32_sqrt(fst0, &env->fpu->fp_status);
2606 fst2 = float32_div(FLOAT_ONE32, fst2, &env->fpu->fp_status);
2607 update_fcr31();
2608 return fst2;
2611 uint64_t do_float_rsqrt1_ps(uint64_t fdt0)
2613 uint32_t fst2;
2614 uint32_t fsth2;
2616 set_float_exception_flags(0, &env->fpu->fp_status);
2617 fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->fpu->fp_status);
2618 fsth2 = float32_sqrt(fdt0 >> 32, &env->fpu->fp_status);
2619 fst2 = float32_div(FLOAT_ONE32, fst2, &env->fpu->fp_status);
2620 fsth2 = float32_div(FLOAT_ONE32, fsth2, &env->fpu->fp_status);
2621 update_fcr31();
2622 return ((uint64_t)fsth2 << 32) | fst2;
2625 #define FLOAT_OP(name, p) void do_float_##name##_##p(void)
2627 /* binary operations */
2628 #define FLOAT_BINOP(name) \
2629 uint64_t do_float_ ## name ## _d(uint64_t fdt0, uint64_t fdt1) \
2631 uint64_t dt2; \
2633 set_float_exception_flags(0, &env->fpu->fp_status); \
2634 dt2 = float64_ ## name (fdt0, fdt1, &env->fpu->fp_status); \
2635 update_fcr31(); \
2636 if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID) \
2637 dt2 = FLOAT_QNAN64; \
2638 return dt2; \
2641 uint32_t do_float_ ## name ## _s(uint32_t fst0, uint32_t fst1) \
2643 uint32_t wt2; \
2645 set_float_exception_flags(0, &env->fpu->fp_status); \
2646 wt2 = float32_ ## name (fst0, fst1, &env->fpu->fp_status); \
2647 update_fcr31(); \
2648 if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID) \
2649 wt2 = FLOAT_QNAN32; \
2650 return wt2; \
2653 uint64_t do_float_ ## name ## _ps(uint64_t fdt0, uint64_t fdt1) \
2655 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2656 uint32_t fsth0 = fdt0 >> 32; \
2657 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2658 uint32_t fsth1 = fdt1 >> 32; \
2659 uint32_t wt2; \
2660 uint32_t wth2; \
2662 set_float_exception_flags(0, &env->fpu->fp_status); \
2663 wt2 = float32_ ## name (fst0, fst1, &env->fpu->fp_status); \
2664 wth2 = float32_ ## name (fsth0, fsth1, &env->fpu->fp_status); \
2665 update_fcr31(); \
2666 if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID) { \
2667 wt2 = FLOAT_QNAN32; \
2668 wth2 = FLOAT_QNAN32; \
2670 return ((uint64_t)wth2 << 32) | wt2; \
2673 FLOAT_BINOP(add)
2674 FLOAT_BINOP(sub)
2675 FLOAT_BINOP(mul)
2676 FLOAT_BINOP(div)
2677 #undef FLOAT_BINOP
2679 /* ternary operations */
2680 #define FLOAT_TERNOP(name1, name2) \
2681 uint64_t do_float_ ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2682 uint64_t fdt2) \
2684 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->fpu->fp_status); \
2685 return float64_ ## name2 (fdt0, fdt2, &env->fpu->fp_status); \
2688 uint32_t do_float_ ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2689 uint32_t fst2) \
2691 fst0 = float32_ ## name1 (fst0, fst1, &env->fpu->fp_status); \
2692 return float32_ ## name2 (fst0, fst2, &env->fpu->fp_status); \
2695 uint64_t do_float_ ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1, \
2696 uint64_t fdt2) \
2698 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2699 uint32_t fsth0 = fdt0 >> 32; \
2700 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2701 uint32_t fsth1 = fdt1 >> 32; \
2702 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2703 uint32_t fsth2 = fdt2 >> 32; \
2705 fst0 = float32_ ## name1 (fst0, fst1, &env->fpu->fp_status); \
2706 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->fpu->fp_status); \
2707 fst2 = float32_ ## name2 (fst0, fst2, &env->fpu->fp_status); \
2708 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->fpu->fp_status); \
2709 return ((uint64_t)fsth2 << 32) | fst2; \
2712 FLOAT_TERNOP(mul, add)
2713 FLOAT_TERNOP(mul, sub)
2714 #undef FLOAT_TERNOP
2716 /* negated ternary operations */
2717 #define FLOAT_NTERNOP(name1, name2) \
2718 uint64_t do_float_n ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2719 uint64_t fdt2) \
2721 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->fpu->fp_status); \
2722 fdt2 = float64_ ## name2 (fdt0, fdt2, &env->fpu->fp_status); \
2723 return float64_chs(fdt2); \
2726 uint32_t do_float_n ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2727 uint32_t fst2) \
2729 fst0 = float32_ ## name1 (fst0, fst1, &env->fpu->fp_status); \
2730 fst2 = float32_ ## name2 (fst0, fst2, &env->fpu->fp_status); \
2731 return float32_chs(fst2); \
2734 uint64_t do_float_n ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1,\
2735 uint64_t fdt2) \
2737 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2738 uint32_t fsth0 = fdt0 >> 32; \
2739 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2740 uint32_t fsth1 = fdt1 >> 32; \
2741 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2742 uint32_t fsth2 = fdt2 >> 32; \
2744 fst0 = float32_ ## name1 (fst0, fst1, &env->fpu->fp_status); \
2745 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->fpu->fp_status); \
2746 fst2 = float32_ ## name2 (fst0, fst2, &env->fpu->fp_status); \
2747 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->fpu->fp_status); \
2748 fst2 = float32_chs(fst2); \
2749 fsth2 = float32_chs(fsth2); \
2750 return ((uint64_t)fsth2 << 32) | fst2; \
2753 FLOAT_NTERNOP(mul, add)
2754 FLOAT_NTERNOP(mul, sub)
2755 #undef FLOAT_NTERNOP
2757 /* MIPS specific binary operations */
2758 uint64_t do_float_recip2_d(uint64_t fdt0, uint64_t fdt2)
2760 set_float_exception_flags(0, &env->fpu->fp_status);
2761 fdt2 = float64_mul(fdt0, fdt2, &env->fpu->fp_status);
2762 fdt2 = float64_chs(float64_sub(fdt2, FLOAT_ONE64, &env->fpu->fp_status));
2763 update_fcr31();
2764 return fdt2;
2767 uint32_t do_float_recip2_s(uint32_t fst0, uint32_t fst2)
2769 set_float_exception_flags(0, &env->fpu->fp_status);
2770 fst2 = float32_mul(fst0, fst2, &env->fpu->fp_status);
2771 fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->fpu->fp_status));
2772 update_fcr31();
2773 return fst2;
2776 uint64_t do_float_recip2_ps(uint64_t fdt0, uint64_t fdt2)
2778 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2779 uint32_t fsth0 = fdt0 >> 32;
2780 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
2781 uint32_t fsth2 = fdt2 >> 32;
2783 set_float_exception_flags(0, &env->fpu->fp_status);
2784 fst2 = float32_mul(fst0, fst2, &env->fpu->fp_status);
2785 fsth2 = float32_mul(fsth0, fsth2, &env->fpu->fp_status);
2786 fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->fpu->fp_status));
2787 fsth2 = float32_chs(float32_sub(fsth2, FLOAT_ONE32, &env->fpu->fp_status));
2788 update_fcr31();
2789 return ((uint64_t)fsth2 << 32) | fst2;
2792 uint64_t do_float_rsqrt2_d(uint64_t fdt0, uint64_t fdt2)
2794 set_float_exception_flags(0, &env->fpu->fp_status);
2795 fdt2 = float64_mul(fdt0, fdt2, &env->fpu->fp_status);
2796 fdt2 = float64_sub(fdt2, FLOAT_ONE64, &env->fpu->fp_status);
2797 fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->fpu->fp_status));
2798 update_fcr31();
2799 return fdt2;
2802 uint32_t do_float_rsqrt2_s(uint32_t fst0, uint32_t fst2)
2804 set_float_exception_flags(0, &env->fpu->fp_status);
2805 fst2 = float32_mul(fst0, fst2, &env->fpu->fp_status);
2806 fst2 = float32_sub(fst2, FLOAT_ONE32, &env->fpu->fp_status);
2807 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->fpu->fp_status));
2808 update_fcr31();
2809 return fst2;
2812 uint64_t do_float_rsqrt2_ps(uint64_t fdt0, uint64_t fdt2)
2814 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2815 uint32_t fsth0 = fdt0 >> 32;
2816 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
2817 uint32_t fsth2 = fdt2 >> 32;
2819 set_float_exception_flags(0, &env->fpu->fp_status);
2820 fst2 = float32_mul(fst0, fst2, &env->fpu->fp_status);
2821 fsth2 = float32_mul(fsth0, fsth2, &env->fpu->fp_status);
2822 fst2 = float32_sub(fst2, FLOAT_ONE32, &env->fpu->fp_status);
2823 fsth2 = float32_sub(fsth2, FLOAT_ONE32, &env->fpu->fp_status);
2824 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->fpu->fp_status));
2825 fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->fpu->fp_status));
2826 update_fcr31();
2827 return ((uint64_t)fsth2 << 32) | fst2;
2830 uint64_t do_float_addr_ps(uint64_t fdt0, uint64_t fdt1)
2832 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2833 uint32_t fsth0 = fdt0 >> 32;
2834 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
2835 uint32_t fsth1 = fdt1 >> 32;
2836 uint32_t fst2;
2837 uint32_t fsth2;
2839 set_float_exception_flags(0, &env->fpu->fp_status);
2840 fst2 = float32_add (fst0, fsth0, &env->fpu->fp_status);
2841 fsth2 = float32_add (fst1, fsth1, &env->fpu->fp_status);
2842 update_fcr31();
2843 return ((uint64_t)fsth2 << 32) | fst2;
2846 uint64_t do_float_mulr_ps(uint64_t fdt0, uint64_t fdt1)
2848 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2849 uint32_t fsth0 = fdt0 >> 32;
2850 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
2851 uint32_t fsth1 = fdt1 >> 32;
2852 uint32_t fst2;
2853 uint32_t fsth2;
2855 set_float_exception_flags(0, &env->fpu->fp_status);
2856 fst2 = float32_mul (fst0, fsth0, &env->fpu->fp_status);
2857 fsth2 = float32_mul (fst1, fsth1, &env->fpu->fp_status);
2858 update_fcr31();
2859 return ((uint64_t)fsth2 << 32) | fst2;
2862 /* compare operations */
2863 #define FOP_COND_D(op, cond) \
2864 void do_cmp_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2866 int c = cond; \
2867 update_fcr31(); \
2868 if (c) \
2869 SET_FP_COND(cc, env->fpu); \
2870 else \
2871 CLEAR_FP_COND(cc, env->fpu); \
2873 void do_cmpabs_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2875 int c; \
2876 fdt0 = float64_abs(fdt0); \
2877 fdt1 = float64_abs(fdt1); \
2878 c = cond; \
2879 update_fcr31(); \
2880 if (c) \
2881 SET_FP_COND(cc, env->fpu); \
2882 else \
2883 CLEAR_FP_COND(cc, env->fpu); \
2886 int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM)
2888 if (float64_is_signaling_nan(a) ||
2889 float64_is_signaling_nan(b) ||
2890 (sig && (float64_is_nan(a) || float64_is_nan(b)))) {
2891 float_raise(float_flag_invalid, status);
2892 return 1;
2893 } else if (float64_is_nan(a) || float64_is_nan(b)) {
2894 return 1;
2895 } else {
2896 return 0;
2900 /* NOTE: the comma operator will make "cond" to eval to false,
2901 * but float*_is_unordered() is still called. */
2902 FOP_COND_D(f, (float64_is_unordered(0, fdt1, fdt0, &env->fpu->fp_status), 0))
2903 FOP_COND_D(un, float64_is_unordered(0, fdt1, fdt0, &env->fpu->fp_status))
2904 FOP_COND_D(eq, !float64_is_unordered(0, fdt1, fdt0, &env->fpu->fp_status) && float64_eq(fdt0, fdt1, &env->fpu->fp_status))
2905 FOP_COND_D(ueq, float64_is_unordered(0, fdt1, fdt0, &env->fpu->fp_status) || float64_eq(fdt0, fdt1, &env->fpu->fp_status))
2906 FOP_COND_D(olt, !float64_is_unordered(0, fdt1, fdt0, &env->fpu->fp_status) && float64_lt(fdt0, fdt1, &env->fpu->fp_status))
2907 FOP_COND_D(ult, float64_is_unordered(0, fdt1, fdt0, &env->fpu->fp_status) || float64_lt(fdt0, fdt1, &env->fpu->fp_status))
2908 FOP_COND_D(ole, !float64_is_unordered(0, fdt1, fdt0, &env->fpu->fp_status) && float64_le(fdt0, fdt1, &env->fpu->fp_status))
2909 FOP_COND_D(ule, float64_is_unordered(0, fdt1, fdt0, &env->fpu->fp_status) || float64_le(fdt0, fdt1, &env->fpu->fp_status))
2910 /* NOTE: the comma operator will make "cond" to eval to false,
2911 * but float*_is_unordered() is still called. */
2912 FOP_COND_D(sf, (float64_is_unordered(1, fdt1, fdt0, &env->fpu->fp_status), 0))
2913 FOP_COND_D(ngle,float64_is_unordered(1, fdt1, fdt0, &env->fpu->fp_status))
2914 FOP_COND_D(seq, !float64_is_unordered(1, fdt1, fdt0, &env->fpu->fp_status) && float64_eq(fdt0, fdt1, &env->fpu->fp_status))
2915 FOP_COND_D(ngl, float64_is_unordered(1, fdt1, fdt0, &env->fpu->fp_status) || float64_eq(fdt0, fdt1, &env->fpu->fp_status))
2916 FOP_COND_D(lt, !float64_is_unordered(1, fdt1, fdt0, &env->fpu->fp_status) && float64_lt(fdt0, fdt1, &env->fpu->fp_status))
2917 FOP_COND_D(nge, float64_is_unordered(1, fdt1, fdt0, &env->fpu->fp_status) || float64_lt(fdt0, fdt1, &env->fpu->fp_status))
2918 FOP_COND_D(le, !float64_is_unordered(1, fdt1, fdt0, &env->fpu->fp_status) && float64_le(fdt0, fdt1, &env->fpu->fp_status))
2919 FOP_COND_D(ngt, float64_is_unordered(1, fdt1, fdt0, &env->fpu->fp_status) || float64_le(fdt0, fdt1, &env->fpu->fp_status))
2921 #define FOP_COND_S(op, cond) \
2922 void do_cmp_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
2924 int c = cond; \
2925 update_fcr31(); \
2926 if (c) \
2927 SET_FP_COND(cc, env->fpu); \
2928 else \
2929 CLEAR_FP_COND(cc, env->fpu); \
2931 void do_cmpabs_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
2933 int c; \
2934 fst0 = float32_abs(fst0); \
2935 fst1 = float32_abs(fst1); \
2936 c = cond; \
2937 update_fcr31(); \
2938 if (c) \
2939 SET_FP_COND(cc, env->fpu); \
2940 else \
2941 CLEAR_FP_COND(cc, env->fpu); \
2944 flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM)
2946 if (float32_is_signaling_nan(a) ||
2947 float32_is_signaling_nan(b) ||
2948 (sig && (float32_is_nan(a) || float32_is_nan(b)))) {
2949 float_raise(float_flag_invalid, status);
2950 return 1;
2951 } else if (float32_is_nan(a) || float32_is_nan(b)) {
2952 return 1;
2953 } else {
2954 return 0;
2958 /* NOTE: the comma operator will make "cond" to eval to false,
2959 * but float*_is_unordered() is still called. */
2960 FOP_COND_S(f, (float32_is_unordered(0, fst1, fst0, &env->fpu->fp_status), 0))
2961 FOP_COND_S(un, float32_is_unordered(0, fst1, fst0, &env->fpu->fp_status))
2962 FOP_COND_S(eq, !float32_is_unordered(0, fst1, fst0, &env->fpu->fp_status) && float32_eq(fst0, fst1, &env->fpu->fp_status))
2963 FOP_COND_S(ueq, float32_is_unordered(0, fst1, fst0, &env->fpu->fp_status) || float32_eq(fst0, fst1, &env->fpu->fp_status))
2964 FOP_COND_S(olt, !float32_is_unordered(0, fst1, fst0, &env->fpu->fp_status) && float32_lt(fst0, fst1, &env->fpu->fp_status))
2965 FOP_COND_S(ult, float32_is_unordered(0, fst1, fst0, &env->fpu->fp_status) || float32_lt(fst0, fst1, &env->fpu->fp_status))
2966 FOP_COND_S(ole, !float32_is_unordered(0, fst1, fst0, &env->fpu->fp_status) && float32_le(fst0, fst1, &env->fpu->fp_status))
2967 FOP_COND_S(ule, float32_is_unordered(0, fst1, fst0, &env->fpu->fp_status) || float32_le(fst0, fst1, &env->fpu->fp_status))
2968 /* NOTE: the comma operator will make "cond" to eval to false,
2969 * but float*_is_unordered() is still called. */
2970 FOP_COND_S(sf, (float32_is_unordered(1, fst1, fst0, &env->fpu->fp_status), 0))
2971 FOP_COND_S(ngle,float32_is_unordered(1, fst1, fst0, &env->fpu->fp_status))
2972 FOP_COND_S(seq, !float32_is_unordered(1, fst1, fst0, &env->fpu->fp_status) && float32_eq(fst0, fst1, &env->fpu->fp_status))
2973 FOP_COND_S(ngl, float32_is_unordered(1, fst1, fst0, &env->fpu->fp_status) || float32_eq(fst0, fst1, &env->fpu->fp_status))
2974 FOP_COND_S(lt, !float32_is_unordered(1, fst1, fst0, &env->fpu->fp_status) && float32_lt(fst0, fst1, &env->fpu->fp_status))
2975 FOP_COND_S(nge, float32_is_unordered(1, fst1, fst0, &env->fpu->fp_status) || float32_lt(fst0, fst1, &env->fpu->fp_status))
2976 FOP_COND_S(le, !float32_is_unordered(1, fst1, fst0, &env->fpu->fp_status) && float32_le(fst0, fst1, &env->fpu->fp_status))
2977 FOP_COND_S(ngt, float32_is_unordered(1, fst1, fst0, &env->fpu->fp_status) || float32_le(fst0, fst1, &env->fpu->fp_status))
2979 #define FOP_COND_PS(op, condl, condh) \
2980 void do_cmp_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2982 uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
2983 uint32_t fsth0 = float32_abs(fdt0 >> 32); \
2984 uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
2985 uint32_t fsth1 = float32_abs(fdt1 >> 32); \
2986 int cl = condl; \
2987 int ch = condh; \
2989 update_fcr31(); \
2990 if (cl) \
2991 SET_FP_COND(cc, env->fpu); \
2992 else \
2993 CLEAR_FP_COND(cc, env->fpu); \
2994 if (ch) \
2995 SET_FP_COND(cc + 1, env->fpu); \
2996 else \
2997 CLEAR_FP_COND(cc + 1, env->fpu); \
2999 void do_cmpabs_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
3001 uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
3002 uint32_t fsth0 = float32_abs(fdt0 >> 32); \
3003 uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
3004 uint32_t fsth1 = float32_abs(fdt1 >> 32); \
3005 int cl = condl; \
3006 int ch = condh; \
3008 update_fcr31(); \
3009 if (cl) \
3010 SET_FP_COND(cc, env->fpu); \
3011 else \
3012 CLEAR_FP_COND(cc, env->fpu); \
3013 if (ch) \
3014 SET_FP_COND(cc + 1, env->fpu); \
3015 else \
3016 CLEAR_FP_COND(cc + 1, env->fpu); \
3019 /* NOTE: the comma operator will make "cond" to eval to false,
3020 * but float*_is_unordered() is still called. */
3021 FOP_COND_PS(f, (float32_is_unordered(0, fst1, fst0, &env->fpu->fp_status), 0),
3022 (float32_is_unordered(0, fsth1, fsth0, &env->fpu->fp_status), 0))
3023 FOP_COND_PS(un, float32_is_unordered(0, fst1, fst0, &env->fpu->fp_status),
3024 float32_is_unordered(0, fsth1, fsth0, &env->fpu->fp_status))
3025 FOP_COND_PS(eq, !float32_is_unordered(0, fst1, fst0, &env->fpu->fp_status) && float32_eq(fst0, fst1, &env->fpu->fp_status),
3026 !float32_is_unordered(0, fsth1, fsth0, &env->fpu->fp_status) && float32_eq(fsth0, fsth1, &env->fpu->fp_status))
3027 FOP_COND_PS(ueq, float32_is_unordered(0, fst1, fst0, &env->fpu->fp_status) || float32_eq(fst0, fst1, &env->fpu->fp_status),
3028 float32_is_unordered(0, fsth1, fsth0, &env->fpu->fp_status) || float32_eq(fsth0, fsth1, &env->fpu->fp_status))
3029 FOP_COND_PS(olt, !float32_is_unordered(0, fst1, fst0, &env->fpu->fp_status) && float32_lt(fst0, fst1, &env->fpu->fp_status),
3030 !float32_is_unordered(0, fsth1, fsth0, &env->fpu->fp_status) && float32_lt(fsth0, fsth1, &env->fpu->fp_status))
3031 FOP_COND_PS(ult, float32_is_unordered(0, fst1, fst0, &env->fpu->fp_status) || float32_lt(fst0, fst1, &env->fpu->fp_status),
3032 float32_is_unordered(0, fsth1, fsth0, &env->fpu->fp_status) || float32_lt(fsth0, fsth1, &env->fpu->fp_status))
3033 FOP_COND_PS(ole, !float32_is_unordered(0, fst1, fst0, &env->fpu->fp_status) && float32_le(fst0, fst1, &env->fpu->fp_status),
3034 !float32_is_unordered(0, fsth1, fsth0, &env->fpu->fp_status) && float32_le(fsth0, fsth1, &env->fpu->fp_status))
3035 FOP_COND_PS(ule, float32_is_unordered(0, fst1, fst0, &env->fpu->fp_status) || float32_le(fst0, fst1, &env->fpu->fp_status),
3036 float32_is_unordered(0, fsth1, fsth0, &env->fpu->fp_status) || float32_le(fsth0, fsth1, &env->fpu->fp_status))
3037 /* NOTE: the comma operator will make "cond" to eval to false,
3038 * but float*_is_unordered() is still called. */
3039 FOP_COND_PS(sf, (float32_is_unordered(1, fst1, fst0, &env->fpu->fp_status), 0),
3040 (float32_is_unordered(1, fsth1, fsth0, &env->fpu->fp_status), 0))
3041 FOP_COND_PS(ngle,float32_is_unordered(1, fst1, fst0, &env->fpu->fp_status),
3042 float32_is_unordered(1, fsth1, fsth0, &env->fpu->fp_status))
3043 FOP_COND_PS(seq, !float32_is_unordered(1, fst1, fst0, &env->fpu->fp_status) && float32_eq(fst0, fst1, &env->fpu->fp_status),
3044 !float32_is_unordered(1, fsth1, fsth0, &env->fpu->fp_status) && float32_eq(fsth0, fsth1, &env->fpu->fp_status))
3045 FOP_COND_PS(ngl, float32_is_unordered(1, fst1, fst0, &env->fpu->fp_status) || float32_eq(fst0, fst1, &env->fpu->fp_status),
3046 float32_is_unordered(1, fsth1, fsth0, &env->fpu->fp_status) || float32_eq(fsth0, fsth1, &env->fpu->fp_status))
3047 FOP_COND_PS(lt, !float32_is_unordered(1, fst1, fst0, &env->fpu->fp_status) && float32_lt(fst0, fst1, &env->fpu->fp_status),
3048 !float32_is_unordered(1, fsth1, fsth0, &env->fpu->fp_status) && float32_lt(fsth0, fsth1, &env->fpu->fp_status))
3049 FOP_COND_PS(nge, float32_is_unordered(1, fst1, fst0, &env->fpu->fp_status) || float32_lt(fst0, fst1, &env->fpu->fp_status),
3050 float32_is_unordered(1, fsth1, fsth0, &env->fpu->fp_status) || float32_lt(fsth0, fsth1, &env->fpu->fp_status))
3051 FOP_COND_PS(le, !float32_is_unordered(1, fst1, fst0, &env->fpu->fp_status) && float32_le(fst0, fst1, &env->fpu->fp_status),
3052 !float32_is_unordered(1, fsth1, fsth0, &env->fpu->fp_status) && float32_le(fsth0, fsth1, &env->fpu->fp_status))
3053 FOP_COND_PS(ngt, float32_is_unordered(1, fst1, fst0, &env->fpu->fp_status) || float32_le(fst0, fst1, &env->fpu->fp_status),
3054 float32_is_unordered(1, fsth1, fsth0, &env->fpu->fp_status) || float32_le(fsth0, fsth1, &env->fpu->fp_status))