PCI SCSI HBA emulation.
[qemu/mini2440.git] / target-ppc / op_helper.c
blobe949eb42e63635ee4e154fc8f3ce3252f83c6849
1 /*
2 * PowerPC emulation helpers for qemu.
3 *
4 * Copyright (c) 2003-2005 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "exec.h"
22 #define MEMSUFFIX _raw
23 #include "op_helper_mem.h"
24 #if !defined(CONFIG_USER_ONLY)
25 #define MEMSUFFIX _user
26 #include "op_helper_mem.h"
27 #define MEMSUFFIX _kernel
28 #include "op_helper_mem.h"
29 #endif
31 //#define DEBUG_OP
32 //#define DEBUG_EXCEPTIONS
33 //#define FLUSH_ALL_TLBS
35 #define Ts0 (long)((target_long)T0)
36 #define Ts1 (long)((target_long)T1)
37 #define Ts2 (long)((target_long)T2)
39 /*****************************************************************************/
40 /* Exceptions processing helpers */
41 void cpu_loop_exit(void)
43 longjmp(env->jmp_env, 1);
46 void do_raise_exception_err (uint32_t exception, int error_code)
48 #if 0
49 printf("Raise exception %3x code : %d\n", exception, error_code);
50 #endif
51 switch (exception) {
52 case EXCP_PROGRAM:
53 if (error_code == EXCP_FP && msr_fe0 == 0 && msr_fe1 == 0)
54 return;
55 break;
56 default:
57 break;
59 env->exception_index = exception;
60 env->error_code = error_code;
61 cpu_loop_exit();
64 void do_raise_exception (uint32_t exception)
66 do_raise_exception_err(exception, 0);
69 /*****************************************************************************/
70 /* Fixed point operations helpers */
71 void do_addo (void)
73 T2 = T0;
74 T0 += T1;
75 if (likely(!((T2 ^ T1 ^ (-1)) & (T2 ^ T0) & (1 << 31)))) {
76 xer_ov = 0;
77 } else {
78 xer_so = 1;
79 xer_ov = 1;
83 void do_addco (void)
85 T2 = T0;
86 T0 += T1;
87 if (likely(T0 >= T2)) {
88 xer_ca = 0;
89 } else {
90 xer_ca = 1;
92 if (likely(!((T2 ^ T1 ^ (-1)) & (T2 ^ T0) & (1 << 31)))) {
93 xer_ov = 0;
94 } else {
95 xer_so = 1;
96 xer_ov = 1;
100 void do_adde (void)
102 T2 = T0;
103 T0 += T1 + xer_ca;
104 if (likely(!(T0 < T2 || (xer_ca == 1 && T0 == T2)))) {
105 xer_ca = 0;
106 } else {
107 xer_ca = 1;
111 void do_addeo (void)
113 T2 = T0;
114 T0 += T1 + xer_ca;
115 if (likely(!(T0 < T2 || (xer_ca == 1 && T0 == T2)))) {
116 xer_ca = 0;
117 } else {
118 xer_ca = 1;
120 if (likely(!((T2 ^ T1 ^ (-1)) & (T2 ^ T0) & (1 << 31)))) {
121 xer_ov = 0;
122 } else {
123 xer_so = 1;
124 xer_ov = 1;
128 void do_addmeo (void)
130 T1 = T0;
131 T0 += xer_ca + (-1);
132 if (likely(!(T1 & (T1 ^ T0) & (1 << 31)))) {
133 xer_ov = 0;
134 } else {
135 xer_so = 1;
136 xer_ov = 1;
138 if (likely(T1 != 0))
139 xer_ca = 1;
142 void do_addzeo (void)
144 T1 = T0;
145 T0 += xer_ca;
146 if (likely(!((T1 ^ (-1)) & (T1 ^ T0) & (1 << 31)))) {
147 xer_ov = 0;
148 } else {
149 xer_so = 1;
150 xer_ov = 1;
152 if (likely(T0 >= T1)) {
153 xer_ca = 0;
154 } else {
155 xer_ca = 1;
159 void do_divwo (void)
161 if (likely(!((Ts0 == INT32_MIN && Ts1 == -1) || Ts1 == 0))) {
162 xer_ov = 0;
163 T0 = (Ts0 / Ts1);
164 } else {
165 xer_so = 1;
166 xer_ov = 1;
167 T0 = (-1) * ((uint32_t)T0 >> 31);
171 void do_divwuo (void)
173 if (likely((uint32_t)T1 != 0)) {
174 xer_ov = 0;
175 T0 = (uint32_t)T0 / (uint32_t)T1;
176 } else {
177 xer_so = 1;
178 xer_ov = 1;
179 T0 = 0;
183 void do_mullwo (void)
185 int64_t res = (int64_t)Ts0 * (int64_t)Ts1;
187 if (likely((int32_t)res == res)) {
188 xer_ov = 0;
189 } else {
190 xer_ov = 1;
191 xer_so = 1;
193 T0 = (int32_t)res;
196 void do_nego (void)
198 if (likely(T0 != INT32_MIN)) {
199 xer_ov = 0;
200 T0 = -Ts0;
201 } else {
202 xer_ov = 1;
203 xer_so = 1;
207 void do_subfo (void)
209 T2 = T0;
210 T0 = T1 - T0;
211 if (likely(!(((~T2) ^ T1 ^ (-1)) & ((~T2) ^ T0) & (1 << 31)))) {
212 xer_ov = 0;
213 } else {
214 xer_so = 1;
215 xer_ov = 1;
217 RETURN();
220 void do_subfco (void)
222 T2 = T0;
223 T0 = T1 - T0;
224 if (likely(T0 > T1)) {
225 xer_ca = 0;
226 } else {
227 xer_ca = 1;
229 if (likely(!(((~T2) ^ T1 ^ (-1)) & ((~T2) ^ T0) & (1 << 31)))) {
230 xer_ov = 0;
231 } else {
232 xer_so = 1;
233 xer_ov = 1;
237 void do_subfe (void)
239 T0 = T1 + ~T0 + xer_ca;
240 if (likely(T0 >= T1 && (xer_ca == 0 || T0 != T1))) {
241 xer_ca = 0;
242 } else {
243 xer_ca = 1;
247 void do_subfeo (void)
249 T2 = T0;
250 T0 = T1 + ~T0 + xer_ca;
251 if (likely(!((~T2 ^ T1 ^ (-1)) & (~T2 ^ T0) & (1 << 31)))) {
252 xer_ov = 0;
253 } else {
254 xer_so = 1;
255 xer_ov = 1;
257 if (likely(T0 >= T1 && (xer_ca == 0 || T0 != T1))) {
258 xer_ca = 0;
259 } else {
260 xer_ca = 1;
264 void do_subfmeo (void)
266 T1 = T0;
267 T0 = ~T0 + xer_ca - 1;
268 if (likely(!(~T1 & (~T1 ^ T0) & (1 << 31)))) {
269 xer_ov = 0;
270 } else {
271 xer_so = 1;
272 xer_ov = 1;
274 if (likely(T1 != -1))
275 xer_ca = 1;
278 void do_subfzeo (void)
280 T1 = T0;
281 T0 = ~T0 + xer_ca;
282 if (likely(!((~T1 ^ (-1)) & ((~T1) ^ T0) & (1 << 31)))) {
283 xer_ov = 0;
284 } else {
285 xer_ov = 1;
286 xer_so = 1;
288 if (likely(T0 >= ~T1)) {
289 xer_ca = 0;
290 } else {
291 xer_ca = 1;
295 /* shift right arithmetic helper */
296 void do_sraw (void)
298 int32_t ret;
300 if (likely(!(T1 & 0x20UL))) {
301 if (likely(T1 != 0)) {
302 ret = (int32_t)T0 >> (T1 & 0x1fUL);
303 if (likely(ret >= 0 || ((int32_t)T0 & ((1 << T1) - 1)) == 0)) {
304 xer_ca = 0;
305 } else {
306 xer_ca = 1;
308 } else {
309 ret = T0;
310 xer_ca = 0;
312 } else {
313 ret = (-1) * ((uint32_t)T0 >> 31);
314 if (likely(ret >= 0 || ((uint32_t)T0 & ~0x80000000UL) == 0)) {
315 xer_ca = 0;
316 } else {
317 xer_ca = 1;
320 T0 = ret;
323 /*****************************************************************************/
324 /* Floating point operations helpers */
325 void do_fctiw (void)
327 union {
328 double d;
329 uint64_t i;
330 } p;
332 /* XXX: higher bits are not supposed to be significant.
333 * to make tests easier, return the same as a real PowerPC 750 (aka G3)
335 p.i = float64_to_int32(FT0, &env->fp_status);
336 p.i |= 0xFFF80000ULL << 32;
337 FT0 = p.d;
340 void do_fctiwz (void)
342 union {
343 double d;
344 uint64_t i;
345 } p;
347 /* XXX: higher bits are not supposed to be significant.
348 * to make tests easier, return the same as a real PowerPC 750 (aka G3)
350 p.i = float64_to_int32_round_to_zero(FT0, &env->fp_status);
351 p.i |= 0xFFF80000ULL << 32;
352 FT0 = p.d;
355 void do_fnmadd (void)
357 FT0 = float64_mul(FT0, FT1, &env->fp_status);
358 FT0 = float64_add(FT0, FT2, &env->fp_status);
359 if (likely(!isnan(FT0)))
360 FT0 = float64_chs(FT0);
363 void do_fnmsub (void)
365 FT0 = float64_mul(FT0, FT1, &env->fp_status);
366 FT0 = float64_sub(FT0, FT2, &env->fp_status);
367 if (likely(!isnan(FT0)))
368 FT0 = float64_chs(FT0);
371 void do_fsqrt (void)
373 FT0 = float64_sqrt(FT0, &env->fp_status);
376 void do_fres (void)
378 union {
379 double d;
380 uint64_t i;
381 } p;
383 if (likely(isnormal(FT0))) {
384 FT0 = (float)(1.0 / FT0);
385 } else {
386 p.d = FT0;
387 if (p.i == 0x8000000000000000ULL) {
388 p.i = 0xFFF0000000000000ULL;
389 } else if (p.i == 0x0000000000000000ULL) {
390 p.i = 0x7FF0000000000000ULL;
391 } else if (isnan(FT0)) {
392 p.i = 0x7FF8000000000000ULL;
393 } else if (FT0 < 0.0) {
394 p.i = 0x8000000000000000ULL;
395 } else {
396 p.i = 0x0000000000000000ULL;
398 FT0 = p.d;
402 void do_frsqrte (void)
404 union {
405 double d;
406 uint64_t i;
407 } p;
409 if (likely(isnormal(FT0) && FT0 > 0.0)) {
410 FT0 = float64_sqrt(FT0, &env->fp_status);
411 FT0 = float32_div(1.0, FT0, &env->fp_status);
412 } else {
413 p.d = FT0;
414 if (p.i == 0x8000000000000000ULL) {
415 p.i = 0xFFF0000000000000ULL;
416 } else if (p.i == 0x0000000000000000ULL) {
417 p.i = 0x7FF0000000000000ULL;
418 } else if (isnan(FT0)) {
419 if (!(p.i & 0x0008000000000000ULL))
420 p.i |= 0x000FFFFFFFFFFFFFULL;
421 } else if (FT0 < 0) {
422 p.i = 0x7FF8000000000000ULL;
423 } else {
424 p.i = 0x0000000000000000ULL;
426 FT0 = p.d;
430 void do_fsel (void)
432 if (FT0 >= 0)
433 FT0 = FT1;
434 else
435 FT0 = FT2;
438 void do_fcmpu (void)
440 if (likely(!isnan(FT0) && !isnan(FT1))) {
441 if (float64_lt(FT0, FT1, &env->fp_status)) {
442 T0 = 0x08UL;
443 } else if (!float64_le(FT0, FT1, &env->fp_status)) {
444 T0 = 0x04UL;
445 } else {
446 T0 = 0x02UL;
448 } else {
449 T0 = 0x01UL;
450 env->fpscr[4] |= 0x1;
451 env->fpscr[6] |= 0x1;
453 env->fpscr[3] = T0;
456 void do_fcmpo (void)
458 env->fpscr[4] &= ~0x1;
459 if (likely(!isnan(FT0) && !isnan(FT1))) {
460 if (float64_lt(FT0, FT1, &env->fp_status)) {
461 T0 = 0x08UL;
462 } else if (!float64_le(FT0, FT1, &env->fp_status)) {
463 T0 = 0x04UL;
464 } else {
465 T0 = 0x02UL;
467 } else {
468 T0 = 0x01UL;
469 env->fpscr[4] |= 0x1;
470 /* I don't know how to test "quiet" nan... */
471 if (0 /* || ! quiet_nan(...) */) {
472 env->fpscr[6] |= 0x1;
473 if (!(env->fpscr[1] & 0x8))
474 env->fpscr[4] |= 0x8;
475 } else {
476 env->fpscr[4] |= 0x8;
479 env->fpscr[3] = T0;
482 void do_rfi (void)
484 env->nip = env->spr[SPR_SRR0] & ~0x00000003;
485 T0 = env->spr[SPR_SRR1] & ~0xFFFF0000UL;
486 do_store_msr(env, T0);
487 #if defined (DEBUG_OP)
488 dump_rfi();
489 #endif
490 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
493 void do_tw (uint32_t cmp, int flags)
495 if (!likely(!((Ts0 < (int32_t)cmp && (flags & 0x10)) ||
496 (Ts0 > (int32_t)cmp && (flags & 0x08)) ||
497 (Ts0 == (int32_t)cmp && (flags & 0x04)) ||
498 (T0 < cmp && (flags & 0x02)) ||
499 (T0 > cmp && (flags & 0x01)))))
500 do_raise_exception_err(EXCP_PROGRAM, EXCP_TRAP);
503 /* Instruction cache invalidation helper */
504 void do_icbi (void)
506 uint32_t tmp;
507 /* Invalidate one cache line :
508 * PowerPC specification says this is to be treated like a load
509 * (not a fetch) by the MMU. To be sure it will be so,
510 * do the load "by hand".
512 #if defined(TARGET_PPC64)
513 if (!msr_sf)
514 T0 &= 0xFFFFFFFFULL;
515 #endif
516 tmp = ldl_kernel(T0);
517 T0 &= ~(ICACHE_LINE_SIZE - 1);
518 tb_invalidate_page_range(T0, T0 + ICACHE_LINE_SIZE);
521 /*****************************************************************************/
522 /* MMU related helpers */
523 /* TLB invalidation helpers */
524 void do_tlbia (void)
526 tlb_flush(env, 1);
529 void do_tlbie (void)
531 #if !defined(FLUSH_ALL_TLBS)
532 tlb_flush_page(env, T0);
533 #else
534 do_tlbia();
535 #endif
538 /*****************************************************************************/
539 /* Softmmu support */
540 #if !defined (CONFIG_USER_ONLY)
542 #define MMUSUFFIX _mmu
543 #define GETPC() (__builtin_return_address(0))
545 #define SHIFT 0
546 #include "softmmu_template.h"
548 #define SHIFT 1
549 #include "softmmu_template.h"
551 #define SHIFT 2
552 #include "softmmu_template.h"
554 #define SHIFT 3
555 #include "softmmu_template.h"
557 /* try to fill the TLB and return an exception if error. If retaddr is
558 NULL, it means that the function was called in C code (i.e. not
559 from generated code or from helper.c) */
560 /* XXX: fix it to restore all registers */
561 void tlb_fill (target_ulong addr, int is_write, int is_user, void *retaddr)
563 TranslationBlock *tb;
564 CPUState *saved_env;
565 target_phys_addr_t pc;
566 int ret;
568 /* XXX: hack to restore env in all cases, even if not called from
569 generated code */
570 saved_env = env;
571 env = cpu_single_env;
572 ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, is_user, 1);
573 if (!likely(ret == 0)) {
574 if (likely(retaddr)) {
575 /* now we have a real cpu fault */
576 pc = (target_phys_addr_t)retaddr;
577 tb = tb_find_pc(pc);
578 if (likely(tb)) {
579 /* the PC is inside the translated code. It means that we have
580 a virtual CPU fault */
581 cpu_restore_state(tb, env, pc, NULL);
584 do_raise_exception_err(env->exception_index, env->error_code);
586 env = saved_env;
588 #endif /* !CONFIG_USER_ONLY */