Partial SD card SPI mode support.
[qemu/mini2440.git] / vl.c
blob1a7f4a34ce385d83b4c32147566a863173cb4c66
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2007 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw/hw.h"
25 #include "hw/boards.h"
26 #include "hw/usb.h"
27 #include "hw/pcmcia.h"
28 #include "hw/pc.h"
29 #include "hw/fdc.h"
30 #include "hw/audiodev.h"
31 #include "hw/isa.h"
32 #include "net.h"
33 #include "console.h"
34 #include "sysemu.h"
35 #include "gdbstub.h"
36 #include "qemu-timer.h"
37 #include "qemu-char.h"
38 #include "block.h"
39 #include "audio/audio.h"
41 #include <unistd.h>
42 #include <fcntl.h>
43 #include <signal.h>
44 #include <time.h>
45 #include <errno.h>
46 #include <sys/time.h>
47 #include <zlib.h>
49 #ifndef _WIN32
50 #include <sys/times.h>
51 #include <sys/wait.h>
52 #include <termios.h>
53 #include <sys/poll.h>
54 #include <sys/mman.h>
55 #include <sys/ioctl.h>
56 #include <sys/socket.h>
57 #include <netinet/in.h>
58 #include <dirent.h>
59 #include <netdb.h>
60 #include <sys/select.h>
61 #include <arpa/inet.h>
62 #ifdef _BSD
63 #include <sys/stat.h>
64 #ifndef __APPLE__
65 #include <libutil.h>
66 #endif
67 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
68 #include <freebsd/stdlib.h>
69 #else
70 #ifndef __sun__
71 #include <linux/if.h>
72 #include <linux/if_tun.h>
73 #include <pty.h>
74 #include <malloc.h>
75 #include <linux/rtc.h>
77 /* For the benefit of older linux systems which don't supply it,
78 we use a local copy of hpet.h. */
79 /* #include <linux/hpet.h> */
80 #include "hpet.h"
82 #include <linux/ppdev.h>
83 #include <linux/parport.h>
84 #else
85 #include <sys/stat.h>
86 #include <sys/ethernet.h>
87 #include <sys/sockio.h>
88 #include <netinet/arp.h>
89 #include <netinet/in.h>
90 #include <netinet/in_systm.h>
91 #include <netinet/ip.h>
92 #include <netinet/ip_icmp.h> // must come after ip.h
93 #include <netinet/udp.h>
94 #include <netinet/tcp.h>
95 #include <net/if.h>
96 #include <syslog.h>
97 #include <stropts.h>
98 #endif
99 #endif
100 #else
101 #include <winsock2.h>
102 int inet_aton(const char *cp, struct in_addr *ia);
103 #endif
105 #if defined(CONFIG_SLIRP)
106 #include "libslirp.h"
107 #endif
109 #ifdef _WIN32
110 #include <malloc.h>
111 #include <sys/timeb.h>
112 #include <windows.h>
113 #define getopt_long_only getopt_long
114 #define memalign(align, size) malloc(size)
115 #endif
117 #include "qemu_socket.h"
119 #ifdef CONFIG_SDL
120 #ifdef __APPLE__
121 #include <SDL/SDL.h>
122 #endif
123 #endif /* CONFIG_SDL */
125 #ifdef CONFIG_COCOA
126 #undef main
127 #define main qemu_main
128 #endif /* CONFIG_COCOA */
130 #include "disas.h"
132 #include "exec-all.h"
134 #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
135 #define DEFAULT_NETWORK_DOWN_SCRIPT "/etc/qemu-ifdown"
136 #ifdef __sun__
137 #define SMBD_COMMAND "/usr/sfw/sbin/smbd"
138 #else
139 #define SMBD_COMMAND "/usr/sbin/smbd"
140 #endif
142 //#define DEBUG_UNUSED_IOPORT
143 //#define DEBUG_IOPORT
145 #define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
147 #ifdef TARGET_PPC
148 #define DEFAULT_RAM_SIZE 144
149 #else
150 #define DEFAULT_RAM_SIZE 128
151 #endif
152 /* in ms */
153 #define GUI_REFRESH_INTERVAL 30
155 /* Max number of USB devices that can be specified on the commandline. */
156 #define MAX_USB_CMDLINE 8
158 /* XXX: use a two level table to limit memory usage */
159 #define MAX_IOPORTS 65536
161 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
162 const char *bios_name = NULL;
163 void *ioport_opaque[MAX_IOPORTS];
164 IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
165 IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
166 /* Note: bs_table[MAX_DISKS] is a dummy block driver if none available
167 to store the VM snapshots */
168 BlockDriverState *bs_table[MAX_DISKS + 1], *fd_table[MAX_FD];
169 BlockDriverState *pflash_table[MAX_PFLASH];
170 BlockDriverState *sd_bdrv;
171 BlockDriverState *mtd_bdrv;
172 /* point to the block driver where the snapshots are managed */
173 BlockDriverState *bs_snapshots;
174 int vga_ram_size;
175 static DisplayState display_state;
176 int nographic;
177 const char* keyboard_layout = NULL;
178 int64_t ticks_per_sec;
179 int ram_size;
180 int pit_min_timer_count = 0;
181 int nb_nics;
182 NICInfo nd_table[MAX_NICS];
183 int vm_running;
184 int rtc_utc = 1;
185 int rtc_start_date = -1; /* -1 means now */
186 int cirrus_vga_enabled = 1;
187 int vmsvga_enabled = 0;
188 #ifdef TARGET_SPARC
189 int graphic_width = 1024;
190 int graphic_height = 768;
191 int graphic_depth = 8;
192 #else
193 int graphic_width = 800;
194 int graphic_height = 600;
195 int graphic_depth = 15;
196 #endif
197 int full_screen = 0;
198 int no_frame = 0;
199 int no_quit = 0;
200 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
201 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
202 #ifdef TARGET_I386
203 int win2k_install_hack = 0;
204 #endif
205 int usb_enabled = 0;
206 static VLANState *first_vlan;
207 int smp_cpus = 1;
208 const char *vnc_display;
209 #if defined(TARGET_SPARC)
210 #define MAX_CPUS 16
211 #elif defined(TARGET_I386)
212 #define MAX_CPUS 255
213 #else
214 #define MAX_CPUS 1
215 #endif
216 int acpi_enabled = 1;
217 int fd_bootchk = 1;
218 int no_reboot = 0;
219 int cursor_hide = 1;
220 int graphic_rotate = 0;
221 int daemonize = 0;
222 const char *option_rom[MAX_OPTION_ROMS];
223 int nb_option_roms;
224 int semihosting_enabled = 0;
225 int autostart = 1;
226 #ifdef TARGET_ARM
227 int old_param = 0;
228 #endif
229 const char *qemu_name;
230 int alt_grab = 0;
231 #ifdef TARGET_SPARC
232 unsigned int nb_prom_envs = 0;
233 const char *prom_envs[MAX_PROM_ENVS];
234 #endif
236 #define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
238 /***********************************************************/
239 /* x86 ISA bus support */
241 target_phys_addr_t isa_mem_base = 0;
242 PicState2 *isa_pic;
244 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
246 #ifdef DEBUG_UNUSED_IOPORT
247 fprintf(stderr, "unused inb: port=0x%04x\n", address);
248 #endif
249 return 0xff;
252 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
254 #ifdef DEBUG_UNUSED_IOPORT
255 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
256 #endif
259 /* default is to make two byte accesses */
260 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
262 uint32_t data;
263 data = ioport_read_table[0][address](ioport_opaque[address], address);
264 address = (address + 1) & (MAX_IOPORTS - 1);
265 data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
266 return data;
269 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
271 ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
272 address = (address + 1) & (MAX_IOPORTS - 1);
273 ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
276 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
278 #ifdef DEBUG_UNUSED_IOPORT
279 fprintf(stderr, "unused inl: port=0x%04x\n", address);
280 #endif
281 return 0xffffffff;
284 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
286 #ifdef DEBUG_UNUSED_IOPORT
287 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
288 #endif
291 static void init_ioports(void)
293 int i;
295 for(i = 0; i < MAX_IOPORTS; i++) {
296 ioport_read_table[0][i] = default_ioport_readb;
297 ioport_write_table[0][i] = default_ioport_writeb;
298 ioport_read_table[1][i] = default_ioport_readw;
299 ioport_write_table[1][i] = default_ioport_writew;
300 ioport_read_table[2][i] = default_ioport_readl;
301 ioport_write_table[2][i] = default_ioport_writel;
305 /* size is the word size in byte */
306 int register_ioport_read(int start, int length, int size,
307 IOPortReadFunc *func, void *opaque)
309 int i, bsize;
311 if (size == 1) {
312 bsize = 0;
313 } else if (size == 2) {
314 bsize = 1;
315 } else if (size == 4) {
316 bsize = 2;
317 } else {
318 hw_error("register_ioport_read: invalid size");
319 return -1;
321 for(i = start; i < start + length; i += size) {
322 ioport_read_table[bsize][i] = func;
323 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
324 hw_error("register_ioport_read: invalid opaque");
325 ioport_opaque[i] = opaque;
327 return 0;
330 /* size is the word size in byte */
331 int register_ioport_write(int start, int length, int size,
332 IOPortWriteFunc *func, void *opaque)
334 int i, bsize;
336 if (size == 1) {
337 bsize = 0;
338 } else if (size == 2) {
339 bsize = 1;
340 } else if (size == 4) {
341 bsize = 2;
342 } else {
343 hw_error("register_ioport_write: invalid size");
344 return -1;
346 for(i = start; i < start + length; i += size) {
347 ioport_write_table[bsize][i] = func;
348 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
349 hw_error("register_ioport_write: invalid opaque");
350 ioport_opaque[i] = opaque;
352 return 0;
355 void isa_unassign_ioport(int start, int length)
357 int i;
359 for(i = start; i < start + length; i++) {
360 ioport_read_table[0][i] = default_ioport_readb;
361 ioport_read_table[1][i] = default_ioport_readw;
362 ioport_read_table[2][i] = default_ioport_readl;
364 ioport_write_table[0][i] = default_ioport_writeb;
365 ioport_write_table[1][i] = default_ioport_writew;
366 ioport_write_table[2][i] = default_ioport_writel;
370 /***********************************************************/
372 void cpu_outb(CPUState *env, int addr, int val)
374 #ifdef DEBUG_IOPORT
375 if (loglevel & CPU_LOG_IOPORT)
376 fprintf(logfile, "outb: %04x %02x\n", addr, val);
377 #endif
378 ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
379 #ifdef USE_KQEMU
380 if (env)
381 env->last_io_time = cpu_get_time_fast();
382 #endif
385 void cpu_outw(CPUState *env, int addr, int val)
387 #ifdef DEBUG_IOPORT
388 if (loglevel & CPU_LOG_IOPORT)
389 fprintf(logfile, "outw: %04x %04x\n", addr, val);
390 #endif
391 ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
392 #ifdef USE_KQEMU
393 if (env)
394 env->last_io_time = cpu_get_time_fast();
395 #endif
398 void cpu_outl(CPUState *env, int addr, int val)
400 #ifdef DEBUG_IOPORT
401 if (loglevel & CPU_LOG_IOPORT)
402 fprintf(logfile, "outl: %04x %08x\n", addr, val);
403 #endif
404 ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
405 #ifdef USE_KQEMU
406 if (env)
407 env->last_io_time = cpu_get_time_fast();
408 #endif
411 int cpu_inb(CPUState *env, int addr)
413 int val;
414 val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
415 #ifdef DEBUG_IOPORT
416 if (loglevel & CPU_LOG_IOPORT)
417 fprintf(logfile, "inb : %04x %02x\n", addr, val);
418 #endif
419 #ifdef USE_KQEMU
420 if (env)
421 env->last_io_time = cpu_get_time_fast();
422 #endif
423 return val;
426 int cpu_inw(CPUState *env, int addr)
428 int val;
429 val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
430 #ifdef DEBUG_IOPORT
431 if (loglevel & CPU_LOG_IOPORT)
432 fprintf(logfile, "inw : %04x %04x\n", addr, val);
433 #endif
434 #ifdef USE_KQEMU
435 if (env)
436 env->last_io_time = cpu_get_time_fast();
437 #endif
438 return val;
441 int cpu_inl(CPUState *env, int addr)
443 int val;
444 val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
445 #ifdef DEBUG_IOPORT
446 if (loglevel & CPU_LOG_IOPORT)
447 fprintf(logfile, "inl : %04x %08x\n", addr, val);
448 #endif
449 #ifdef USE_KQEMU
450 if (env)
451 env->last_io_time = cpu_get_time_fast();
452 #endif
453 return val;
456 /***********************************************************/
457 void hw_error(const char *fmt, ...)
459 va_list ap;
460 CPUState *env;
462 va_start(ap, fmt);
463 fprintf(stderr, "qemu: hardware error: ");
464 vfprintf(stderr, fmt, ap);
465 fprintf(stderr, "\n");
466 for(env = first_cpu; env != NULL; env = env->next_cpu) {
467 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
468 #ifdef TARGET_I386
469 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
470 #else
471 cpu_dump_state(env, stderr, fprintf, 0);
472 #endif
474 va_end(ap);
475 abort();
478 /***********************************************************/
479 /* keyboard/mouse */
481 static QEMUPutKBDEvent *qemu_put_kbd_event;
482 static void *qemu_put_kbd_event_opaque;
483 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
484 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
486 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
488 qemu_put_kbd_event_opaque = opaque;
489 qemu_put_kbd_event = func;
492 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
493 void *opaque, int absolute,
494 const char *name)
496 QEMUPutMouseEntry *s, *cursor;
498 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
499 if (!s)
500 return NULL;
502 s->qemu_put_mouse_event = func;
503 s->qemu_put_mouse_event_opaque = opaque;
504 s->qemu_put_mouse_event_absolute = absolute;
505 s->qemu_put_mouse_event_name = qemu_strdup(name);
506 s->next = NULL;
508 if (!qemu_put_mouse_event_head) {
509 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
510 return s;
513 cursor = qemu_put_mouse_event_head;
514 while (cursor->next != NULL)
515 cursor = cursor->next;
517 cursor->next = s;
518 qemu_put_mouse_event_current = s;
520 return s;
523 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
525 QEMUPutMouseEntry *prev = NULL, *cursor;
527 if (!qemu_put_mouse_event_head || entry == NULL)
528 return;
530 cursor = qemu_put_mouse_event_head;
531 while (cursor != NULL && cursor != entry) {
532 prev = cursor;
533 cursor = cursor->next;
536 if (cursor == NULL) // does not exist or list empty
537 return;
538 else if (prev == NULL) { // entry is head
539 qemu_put_mouse_event_head = cursor->next;
540 if (qemu_put_mouse_event_current == entry)
541 qemu_put_mouse_event_current = cursor->next;
542 qemu_free(entry->qemu_put_mouse_event_name);
543 qemu_free(entry);
544 return;
547 prev->next = entry->next;
549 if (qemu_put_mouse_event_current == entry)
550 qemu_put_mouse_event_current = prev;
552 qemu_free(entry->qemu_put_mouse_event_name);
553 qemu_free(entry);
556 void kbd_put_keycode(int keycode)
558 if (qemu_put_kbd_event) {
559 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
563 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
565 QEMUPutMouseEvent *mouse_event;
566 void *mouse_event_opaque;
567 int width;
569 if (!qemu_put_mouse_event_current) {
570 return;
573 mouse_event =
574 qemu_put_mouse_event_current->qemu_put_mouse_event;
575 mouse_event_opaque =
576 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
578 if (mouse_event) {
579 if (graphic_rotate) {
580 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
581 width = 0x7fff;
582 else
583 width = graphic_width;
584 mouse_event(mouse_event_opaque,
585 width - dy, dx, dz, buttons_state);
586 } else
587 mouse_event(mouse_event_opaque,
588 dx, dy, dz, buttons_state);
592 int kbd_mouse_is_absolute(void)
594 if (!qemu_put_mouse_event_current)
595 return 0;
597 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
600 void do_info_mice(void)
602 QEMUPutMouseEntry *cursor;
603 int index = 0;
605 if (!qemu_put_mouse_event_head) {
606 term_printf("No mouse devices connected\n");
607 return;
610 term_printf("Mouse devices available:\n");
611 cursor = qemu_put_mouse_event_head;
612 while (cursor != NULL) {
613 term_printf("%c Mouse #%d: %s\n",
614 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
615 index, cursor->qemu_put_mouse_event_name);
616 index++;
617 cursor = cursor->next;
621 void do_mouse_set(int index)
623 QEMUPutMouseEntry *cursor;
624 int i = 0;
626 if (!qemu_put_mouse_event_head) {
627 term_printf("No mouse devices connected\n");
628 return;
631 cursor = qemu_put_mouse_event_head;
632 while (cursor != NULL && index != i) {
633 i++;
634 cursor = cursor->next;
637 if (cursor != NULL)
638 qemu_put_mouse_event_current = cursor;
639 else
640 term_printf("Mouse at given index not found\n");
643 /* compute with 96 bit intermediate result: (a*b)/c */
644 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
646 union {
647 uint64_t ll;
648 struct {
649 #ifdef WORDS_BIGENDIAN
650 uint32_t high, low;
651 #else
652 uint32_t low, high;
653 #endif
654 } l;
655 } u, res;
656 uint64_t rl, rh;
658 u.ll = a;
659 rl = (uint64_t)u.l.low * (uint64_t)b;
660 rh = (uint64_t)u.l.high * (uint64_t)b;
661 rh += (rl >> 32);
662 res.l.high = rh / c;
663 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
664 return res.ll;
667 /***********************************************************/
668 /* real time host monotonic timer */
670 #define QEMU_TIMER_BASE 1000000000LL
672 #ifdef WIN32
674 static int64_t clock_freq;
676 static void init_get_clock(void)
678 LARGE_INTEGER freq;
679 int ret;
680 ret = QueryPerformanceFrequency(&freq);
681 if (ret == 0) {
682 fprintf(stderr, "Could not calibrate ticks\n");
683 exit(1);
685 clock_freq = freq.QuadPart;
688 static int64_t get_clock(void)
690 LARGE_INTEGER ti;
691 QueryPerformanceCounter(&ti);
692 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
695 #else
697 static int use_rt_clock;
699 static void init_get_clock(void)
701 use_rt_clock = 0;
702 #if defined(__linux__)
704 struct timespec ts;
705 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
706 use_rt_clock = 1;
709 #endif
712 static int64_t get_clock(void)
714 #if defined(__linux__)
715 if (use_rt_clock) {
716 struct timespec ts;
717 clock_gettime(CLOCK_MONOTONIC, &ts);
718 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
719 } else
720 #endif
722 /* XXX: using gettimeofday leads to problems if the date
723 changes, so it should be avoided. */
724 struct timeval tv;
725 gettimeofday(&tv, NULL);
726 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
730 #endif
732 /***********************************************************/
733 /* guest cycle counter */
735 static int64_t cpu_ticks_prev;
736 static int64_t cpu_ticks_offset;
737 static int64_t cpu_clock_offset;
738 static int cpu_ticks_enabled;
740 /* return the host CPU cycle counter and handle stop/restart */
741 int64_t cpu_get_ticks(void)
743 if (!cpu_ticks_enabled) {
744 return cpu_ticks_offset;
745 } else {
746 int64_t ticks;
747 ticks = cpu_get_real_ticks();
748 if (cpu_ticks_prev > ticks) {
749 /* Note: non increasing ticks may happen if the host uses
750 software suspend */
751 cpu_ticks_offset += cpu_ticks_prev - ticks;
753 cpu_ticks_prev = ticks;
754 return ticks + cpu_ticks_offset;
758 /* return the host CPU monotonic timer and handle stop/restart */
759 static int64_t cpu_get_clock(void)
761 int64_t ti;
762 if (!cpu_ticks_enabled) {
763 return cpu_clock_offset;
764 } else {
765 ti = get_clock();
766 return ti + cpu_clock_offset;
770 /* enable cpu_get_ticks() */
771 void cpu_enable_ticks(void)
773 if (!cpu_ticks_enabled) {
774 cpu_ticks_offset -= cpu_get_real_ticks();
775 cpu_clock_offset -= get_clock();
776 cpu_ticks_enabled = 1;
780 /* disable cpu_get_ticks() : the clock is stopped. You must not call
781 cpu_get_ticks() after that. */
782 void cpu_disable_ticks(void)
784 if (cpu_ticks_enabled) {
785 cpu_ticks_offset = cpu_get_ticks();
786 cpu_clock_offset = cpu_get_clock();
787 cpu_ticks_enabled = 0;
791 /***********************************************************/
792 /* timers */
794 #define QEMU_TIMER_REALTIME 0
795 #define QEMU_TIMER_VIRTUAL 1
797 struct QEMUClock {
798 int type;
799 /* XXX: add frequency */
802 struct QEMUTimer {
803 QEMUClock *clock;
804 int64_t expire_time;
805 QEMUTimerCB *cb;
806 void *opaque;
807 struct QEMUTimer *next;
810 struct qemu_alarm_timer {
811 char const *name;
812 unsigned int flags;
814 int (*start)(struct qemu_alarm_timer *t);
815 void (*stop)(struct qemu_alarm_timer *t);
816 void (*rearm)(struct qemu_alarm_timer *t);
817 void *priv;
820 #define ALARM_FLAG_DYNTICKS 0x1
822 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
824 return t->flags & ALARM_FLAG_DYNTICKS;
827 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
829 if (!alarm_has_dynticks(t))
830 return;
832 t->rearm(t);
835 /* TODO: MIN_TIMER_REARM_US should be optimized */
836 #define MIN_TIMER_REARM_US 250
838 static struct qemu_alarm_timer *alarm_timer;
840 #ifdef _WIN32
842 struct qemu_alarm_win32 {
843 MMRESULT timerId;
844 HANDLE host_alarm;
845 unsigned int period;
846 } alarm_win32_data = {0, NULL, -1};
848 static int win32_start_timer(struct qemu_alarm_timer *t);
849 static void win32_stop_timer(struct qemu_alarm_timer *t);
850 static void win32_rearm_timer(struct qemu_alarm_timer *t);
852 #else
854 static int unix_start_timer(struct qemu_alarm_timer *t);
855 static void unix_stop_timer(struct qemu_alarm_timer *t);
857 #ifdef __linux__
859 static int dynticks_start_timer(struct qemu_alarm_timer *t);
860 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
861 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
863 static int hpet_start_timer(struct qemu_alarm_timer *t);
864 static void hpet_stop_timer(struct qemu_alarm_timer *t);
866 static int rtc_start_timer(struct qemu_alarm_timer *t);
867 static void rtc_stop_timer(struct qemu_alarm_timer *t);
869 #endif /* __linux__ */
871 #endif /* _WIN32 */
873 static struct qemu_alarm_timer alarm_timers[] = {
874 #ifndef _WIN32
875 #ifdef __linux__
876 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
877 dynticks_stop_timer, dynticks_rearm_timer, NULL},
878 /* HPET - if available - is preferred */
879 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
880 /* ...otherwise try RTC */
881 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
882 #endif
883 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
884 #else
885 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
886 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
887 {"win32", 0, win32_start_timer,
888 win32_stop_timer, NULL, &alarm_win32_data},
889 #endif
890 {NULL, }
893 static void show_available_alarms()
895 int i;
897 printf("Available alarm timers, in order of precedence:\n");
898 for (i = 0; alarm_timers[i].name; i++)
899 printf("%s\n", alarm_timers[i].name);
902 static void configure_alarms(char const *opt)
904 int i;
905 int cur = 0;
906 int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
907 char *arg;
908 char *name;
910 if (!strcmp(opt, "help")) {
911 show_available_alarms();
912 exit(0);
915 arg = strdup(opt);
917 /* Reorder the array */
918 name = strtok(arg, ",");
919 while (name) {
920 struct qemu_alarm_timer tmp;
922 for (i = 0; i < count && alarm_timers[i].name; i++) {
923 if (!strcmp(alarm_timers[i].name, name))
924 break;
927 if (i == count) {
928 fprintf(stderr, "Unknown clock %s\n", name);
929 goto next;
932 if (i < cur)
933 /* Ignore */
934 goto next;
936 /* Swap */
937 tmp = alarm_timers[i];
938 alarm_timers[i] = alarm_timers[cur];
939 alarm_timers[cur] = tmp;
941 cur++;
942 next:
943 name = strtok(NULL, ",");
946 free(arg);
948 if (cur) {
949 /* Disable remaining timers */
950 for (i = cur; i < count; i++)
951 alarm_timers[i].name = NULL;
954 /* debug */
955 show_available_alarms();
958 QEMUClock *rt_clock;
959 QEMUClock *vm_clock;
961 static QEMUTimer *active_timers[2];
963 static QEMUClock *qemu_new_clock(int type)
965 QEMUClock *clock;
966 clock = qemu_mallocz(sizeof(QEMUClock));
967 if (!clock)
968 return NULL;
969 clock->type = type;
970 return clock;
973 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
975 QEMUTimer *ts;
977 ts = qemu_mallocz(sizeof(QEMUTimer));
978 ts->clock = clock;
979 ts->cb = cb;
980 ts->opaque = opaque;
981 return ts;
984 void qemu_free_timer(QEMUTimer *ts)
986 qemu_free(ts);
989 /* stop a timer, but do not dealloc it */
990 void qemu_del_timer(QEMUTimer *ts)
992 QEMUTimer **pt, *t;
994 /* NOTE: this code must be signal safe because
995 qemu_timer_expired() can be called from a signal. */
996 pt = &active_timers[ts->clock->type];
997 for(;;) {
998 t = *pt;
999 if (!t)
1000 break;
1001 if (t == ts) {
1002 *pt = t->next;
1003 break;
1005 pt = &t->next;
1009 /* modify the current timer so that it will be fired when current_time
1010 >= expire_time. The corresponding callback will be called. */
1011 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1013 QEMUTimer **pt, *t;
1015 qemu_del_timer(ts);
1017 /* add the timer in the sorted list */
1018 /* NOTE: this code must be signal safe because
1019 qemu_timer_expired() can be called from a signal. */
1020 pt = &active_timers[ts->clock->type];
1021 for(;;) {
1022 t = *pt;
1023 if (!t)
1024 break;
1025 if (t->expire_time > expire_time)
1026 break;
1027 pt = &t->next;
1029 ts->expire_time = expire_time;
1030 ts->next = *pt;
1031 *pt = ts;
1034 int qemu_timer_pending(QEMUTimer *ts)
1036 QEMUTimer *t;
1037 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1038 if (t == ts)
1039 return 1;
1041 return 0;
1044 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1046 if (!timer_head)
1047 return 0;
1048 return (timer_head->expire_time <= current_time);
1051 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1053 QEMUTimer *ts;
1055 for(;;) {
1056 ts = *ptimer_head;
1057 if (!ts || ts->expire_time > current_time)
1058 break;
1059 /* remove timer from the list before calling the callback */
1060 *ptimer_head = ts->next;
1061 ts->next = NULL;
1063 /* run the callback (the timer list can be modified) */
1064 ts->cb(ts->opaque);
1066 qemu_rearm_alarm_timer(alarm_timer);
1069 int64_t qemu_get_clock(QEMUClock *clock)
1071 switch(clock->type) {
1072 case QEMU_TIMER_REALTIME:
1073 return get_clock() / 1000000;
1074 default:
1075 case QEMU_TIMER_VIRTUAL:
1076 return cpu_get_clock();
1080 static void init_timers(void)
1082 init_get_clock();
1083 ticks_per_sec = QEMU_TIMER_BASE;
1084 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1085 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1088 /* save a timer */
1089 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1091 uint64_t expire_time;
1093 if (qemu_timer_pending(ts)) {
1094 expire_time = ts->expire_time;
1095 } else {
1096 expire_time = -1;
1098 qemu_put_be64(f, expire_time);
1101 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1103 uint64_t expire_time;
1105 expire_time = qemu_get_be64(f);
1106 if (expire_time != -1) {
1107 qemu_mod_timer(ts, expire_time);
1108 } else {
1109 qemu_del_timer(ts);
1113 static void timer_save(QEMUFile *f, void *opaque)
1115 if (cpu_ticks_enabled) {
1116 hw_error("cannot save state if virtual timers are running");
1118 qemu_put_be64s(f, &cpu_ticks_offset);
1119 qemu_put_be64s(f, &ticks_per_sec);
1120 qemu_put_be64s(f, &cpu_clock_offset);
1123 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1125 if (version_id != 1 && version_id != 2)
1126 return -EINVAL;
1127 if (cpu_ticks_enabled) {
1128 return -EINVAL;
1130 qemu_get_be64s(f, &cpu_ticks_offset);
1131 qemu_get_be64s(f, &ticks_per_sec);
1132 if (version_id == 2) {
1133 qemu_get_be64s(f, &cpu_clock_offset);
1135 return 0;
1138 #ifdef _WIN32
1139 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1140 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1141 #else
1142 static void host_alarm_handler(int host_signum)
1143 #endif
1145 #if 0
1146 #define DISP_FREQ 1000
1148 static int64_t delta_min = INT64_MAX;
1149 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1150 static int count;
1151 ti = qemu_get_clock(vm_clock);
1152 if (last_clock != 0) {
1153 delta = ti - last_clock;
1154 if (delta < delta_min)
1155 delta_min = delta;
1156 if (delta > delta_max)
1157 delta_max = delta;
1158 delta_cum += delta;
1159 if (++count == DISP_FREQ) {
1160 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1161 muldiv64(delta_min, 1000000, ticks_per_sec),
1162 muldiv64(delta_max, 1000000, ticks_per_sec),
1163 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1164 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1165 count = 0;
1166 delta_min = INT64_MAX;
1167 delta_max = 0;
1168 delta_cum = 0;
1171 last_clock = ti;
1173 #endif
1174 if (alarm_has_dynticks(alarm_timer) ||
1175 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1176 qemu_get_clock(vm_clock)) ||
1177 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1178 qemu_get_clock(rt_clock))) {
1179 #ifdef _WIN32
1180 struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1181 SetEvent(data->host_alarm);
1182 #endif
1183 CPUState *env = cpu_single_env;
1184 if (env) {
1185 /* stop the currently executing cpu because a timer occured */
1186 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1187 #ifdef USE_KQEMU
1188 if (env->kqemu_enabled) {
1189 kqemu_cpu_interrupt(env);
1191 #endif
1196 static uint64_t qemu_next_deadline(void)
1198 int64_t nearest_delta_us = INT64_MAX;
1199 int64_t vmdelta_us;
1201 if (active_timers[QEMU_TIMER_REALTIME])
1202 nearest_delta_us = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1203 qemu_get_clock(rt_clock))*1000;
1205 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1206 /* round up */
1207 vmdelta_us = (active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1208 qemu_get_clock(vm_clock)+999)/1000;
1209 if (vmdelta_us < nearest_delta_us)
1210 nearest_delta_us = vmdelta_us;
1213 /* Avoid arming the timer to negative, zero, or too low values */
1214 if (nearest_delta_us <= MIN_TIMER_REARM_US)
1215 nearest_delta_us = MIN_TIMER_REARM_US;
1217 return nearest_delta_us;
1220 #ifndef _WIN32
1222 #if defined(__linux__)
1224 #define RTC_FREQ 1024
1226 static void enable_sigio_timer(int fd)
1228 struct sigaction act;
1230 /* timer signal */
1231 sigfillset(&act.sa_mask);
1232 act.sa_flags = 0;
1233 act.sa_handler = host_alarm_handler;
1235 sigaction(SIGIO, &act, NULL);
1236 fcntl(fd, F_SETFL, O_ASYNC);
1237 fcntl(fd, F_SETOWN, getpid());
1240 static int hpet_start_timer(struct qemu_alarm_timer *t)
1242 struct hpet_info info;
1243 int r, fd;
1245 fd = open("/dev/hpet", O_RDONLY);
1246 if (fd < 0)
1247 return -1;
1249 /* Set frequency */
1250 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1251 if (r < 0) {
1252 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1253 "error, but for better emulation accuracy type:\n"
1254 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1255 goto fail;
1258 /* Check capabilities */
1259 r = ioctl(fd, HPET_INFO, &info);
1260 if (r < 0)
1261 goto fail;
1263 /* Enable periodic mode */
1264 r = ioctl(fd, HPET_EPI, 0);
1265 if (info.hi_flags && (r < 0))
1266 goto fail;
1268 /* Enable interrupt */
1269 r = ioctl(fd, HPET_IE_ON, 0);
1270 if (r < 0)
1271 goto fail;
1273 enable_sigio_timer(fd);
1274 t->priv = (void *)(long)fd;
1276 return 0;
1277 fail:
1278 close(fd);
1279 return -1;
1282 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1284 int fd = (long)t->priv;
1286 close(fd);
1289 static int rtc_start_timer(struct qemu_alarm_timer *t)
1291 int rtc_fd;
1293 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1294 if (rtc_fd < 0)
1295 return -1;
1296 if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1297 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1298 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1299 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1300 goto fail;
1302 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1303 fail:
1304 close(rtc_fd);
1305 return -1;
1308 enable_sigio_timer(rtc_fd);
1310 t->priv = (void *)(long)rtc_fd;
1312 return 0;
1315 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1317 int rtc_fd = (long)t->priv;
1319 close(rtc_fd);
1322 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1324 struct sigevent ev;
1325 timer_t host_timer;
1326 struct sigaction act;
1328 sigfillset(&act.sa_mask);
1329 act.sa_flags = 0;
1330 act.sa_handler = host_alarm_handler;
1332 sigaction(SIGALRM, &act, NULL);
1334 ev.sigev_value.sival_int = 0;
1335 ev.sigev_notify = SIGEV_SIGNAL;
1336 ev.sigev_signo = SIGALRM;
1338 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1339 perror("timer_create");
1341 /* disable dynticks */
1342 fprintf(stderr, "Dynamic Ticks disabled\n");
1344 return -1;
1347 t->priv = (void *)host_timer;
1349 return 0;
1352 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1354 timer_t host_timer = (timer_t)t->priv;
1356 timer_delete(host_timer);
1359 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1361 timer_t host_timer = (timer_t)t->priv;
1362 struct itimerspec timeout;
1363 int64_t nearest_delta_us = INT64_MAX;
1364 int64_t current_us;
1366 if (!active_timers[QEMU_TIMER_REALTIME] &&
1367 !active_timers[QEMU_TIMER_VIRTUAL])
1368 return;
1370 nearest_delta_us = qemu_next_deadline();
1372 /* check whether a timer is already running */
1373 if (timer_gettime(host_timer, &timeout)) {
1374 perror("gettime");
1375 fprintf(stderr, "Internal timer error: aborting\n");
1376 exit(1);
1378 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1379 if (current_us && current_us <= nearest_delta_us)
1380 return;
1382 timeout.it_interval.tv_sec = 0;
1383 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1384 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1385 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1386 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1387 perror("settime");
1388 fprintf(stderr, "Internal timer error: aborting\n");
1389 exit(1);
1393 #endif /* defined(__linux__) */
1395 static int unix_start_timer(struct qemu_alarm_timer *t)
1397 struct sigaction act;
1398 struct itimerval itv;
1399 int err;
1401 /* timer signal */
1402 sigfillset(&act.sa_mask);
1403 act.sa_flags = 0;
1404 act.sa_handler = host_alarm_handler;
1406 sigaction(SIGALRM, &act, NULL);
1408 itv.it_interval.tv_sec = 0;
1409 /* for i386 kernel 2.6 to get 1 ms */
1410 itv.it_interval.tv_usec = 999;
1411 itv.it_value.tv_sec = 0;
1412 itv.it_value.tv_usec = 10 * 1000;
1414 err = setitimer(ITIMER_REAL, &itv, NULL);
1415 if (err)
1416 return -1;
1418 return 0;
1421 static void unix_stop_timer(struct qemu_alarm_timer *t)
1423 struct itimerval itv;
1425 memset(&itv, 0, sizeof(itv));
1426 setitimer(ITIMER_REAL, &itv, NULL);
1429 #endif /* !defined(_WIN32) */
1431 #ifdef _WIN32
1433 static int win32_start_timer(struct qemu_alarm_timer *t)
1435 TIMECAPS tc;
1436 struct qemu_alarm_win32 *data = t->priv;
1437 UINT flags;
1439 data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1440 if (!data->host_alarm) {
1441 perror("Failed CreateEvent");
1442 return -1;
1445 memset(&tc, 0, sizeof(tc));
1446 timeGetDevCaps(&tc, sizeof(tc));
1448 if (data->period < tc.wPeriodMin)
1449 data->period = tc.wPeriodMin;
1451 timeBeginPeriod(data->period);
1453 flags = TIME_CALLBACK_FUNCTION;
1454 if (alarm_has_dynticks(t))
1455 flags |= TIME_ONESHOT;
1456 else
1457 flags |= TIME_PERIODIC;
1459 data->timerId = timeSetEvent(1, // interval (ms)
1460 data->period, // resolution
1461 host_alarm_handler, // function
1462 (DWORD)t, // parameter
1463 flags);
1465 if (!data->timerId) {
1466 perror("Failed to initialize win32 alarm timer");
1468 timeEndPeriod(data->period);
1469 CloseHandle(data->host_alarm);
1470 return -1;
1473 qemu_add_wait_object(data->host_alarm, NULL, NULL);
1475 return 0;
1478 static void win32_stop_timer(struct qemu_alarm_timer *t)
1480 struct qemu_alarm_win32 *data = t->priv;
1482 timeKillEvent(data->timerId);
1483 timeEndPeriod(data->period);
1485 CloseHandle(data->host_alarm);
1488 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1490 struct qemu_alarm_win32 *data = t->priv;
1491 uint64_t nearest_delta_us;
1493 if (!active_timers[QEMU_TIMER_REALTIME] &&
1494 !active_timers[QEMU_TIMER_VIRTUAL])
1495 return;
1497 nearest_delta_us = qemu_next_deadline();
1498 nearest_delta_us /= 1000;
1500 timeKillEvent(data->timerId);
1502 data->timerId = timeSetEvent(1,
1503 data->period,
1504 host_alarm_handler,
1505 (DWORD)t,
1506 TIME_ONESHOT | TIME_PERIODIC);
1508 if (!data->timerId) {
1509 perror("Failed to re-arm win32 alarm timer");
1511 timeEndPeriod(data->period);
1512 CloseHandle(data->host_alarm);
1513 exit(1);
1517 #endif /* _WIN32 */
1519 static void init_timer_alarm(void)
1521 struct qemu_alarm_timer *t;
1522 int i, err = -1;
1524 for (i = 0; alarm_timers[i].name; i++) {
1525 t = &alarm_timers[i];
1527 err = t->start(t);
1528 if (!err)
1529 break;
1532 if (err) {
1533 fprintf(stderr, "Unable to find any suitable alarm timer.\n");
1534 fprintf(stderr, "Terminating\n");
1535 exit(1);
1538 alarm_timer = t;
1541 static void quit_timers(void)
1543 alarm_timer->stop(alarm_timer);
1544 alarm_timer = NULL;
1547 /***********************************************************/
1548 /* character device */
1550 static void qemu_chr_event(CharDriverState *s, int event)
1552 if (!s->chr_event)
1553 return;
1554 s->chr_event(s->handler_opaque, event);
1557 static void qemu_chr_reset_bh(void *opaque)
1559 CharDriverState *s = opaque;
1560 qemu_chr_event(s, CHR_EVENT_RESET);
1561 qemu_bh_delete(s->bh);
1562 s->bh = NULL;
1565 void qemu_chr_reset(CharDriverState *s)
1567 if (s->bh == NULL) {
1568 s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1569 qemu_bh_schedule(s->bh);
1573 int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1575 return s->chr_write(s, buf, len);
1578 int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1580 if (!s->chr_ioctl)
1581 return -ENOTSUP;
1582 return s->chr_ioctl(s, cmd, arg);
1585 int qemu_chr_can_read(CharDriverState *s)
1587 if (!s->chr_can_read)
1588 return 0;
1589 return s->chr_can_read(s->handler_opaque);
1592 void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1594 s->chr_read(s->handler_opaque, buf, len);
1598 void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1600 char buf[4096];
1601 va_list ap;
1602 va_start(ap, fmt);
1603 vsnprintf(buf, sizeof(buf), fmt, ap);
1604 qemu_chr_write(s, buf, strlen(buf));
1605 va_end(ap);
1608 void qemu_chr_send_event(CharDriverState *s, int event)
1610 if (s->chr_send_event)
1611 s->chr_send_event(s, event);
1614 void qemu_chr_add_handlers(CharDriverState *s,
1615 IOCanRWHandler *fd_can_read,
1616 IOReadHandler *fd_read,
1617 IOEventHandler *fd_event,
1618 void *opaque)
1620 s->chr_can_read = fd_can_read;
1621 s->chr_read = fd_read;
1622 s->chr_event = fd_event;
1623 s->handler_opaque = opaque;
1624 if (s->chr_update_read_handler)
1625 s->chr_update_read_handler(s);
1628 static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1630 return len;
1633 static CharDriverState *qemu_chr_open_null(void)
1635 CharDriverState *chr;
1637 chr = qemu_mallocz(sizeof(CharDriverState));
1638 if (!chr)
1639 return NULL;
1640 chr->chr_write = null_chr_write;
1641 return chr;
1644 /* MUX driver for serial I/O splitting */
1645 static int term_timestamps;
1646 static int64_t term_timestamps_start;
1647 #define MAX_MUX 4
1648 typedef struct {
1649 IOCanRWHandler *chr_can_read[MAX_MUX];
1650 IOReadHandler *chr_read[MAX_MUX];
1651 IOEventHandler *chr_event[MAX_MUX];
1652 void *ext_opaque[MAX_MUX];
1653 CharDriverState *drv;
1654 int mux_cnt;
1655 int term_got_escape;
1656 int max_size;
1657 } MuxDriver;
1660 static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1662 MuxDriver *d = chr->opaque;
1663 int ret;
1664 if (!term_timestamps) {
1665 ret = d->drv->chr_write(d->drv, buf, len);
1666 } else {
1667 int i;
1669 ret = 0;
1670 for(i = 0; i < len; i++) {
1671 ret += d->drv->chr_write(d->drv, buf+i, 1);
1672 if (buf[i] == '\n') {
1673 char buf1[64];
1674 int64_t ti;
1675 int secs;
1677 ti = get_clock();
1678 if (term_timestamps_start == -1)
1679 term_timestamps_start = ti;
1680 ti -= term_timestamps_start;
1681 secs = ti / 1000000000;
1682 snprintf(buf1, sizeof(buf1),
1683 "[%02d:%02d:%02d.%03d] ",
1684 secs / 3600,
1685 (secs / 60) % 60,
1686 secs % 60,
1687 (int)((ti / 1000000) % 1000));
1688 d->drv->chr_write(d->drv, buf1, strlen(buf1));
1692 return ret;
1695 static char *mux_help[] = {
1696 "% h print this help\n\r",
1697 "% x exit emulator\n\r",
1698 "% s save disk data back to file (if -snapshot)\n\r",
1699 "% t toggle console timestamps\n\r"
1700 "% b send break (magic sysrq)\n\r",
1701 "% c switch between console and monitor\n\r",
1702 "% % sends %\n\r",
1703 NULL
1706 static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1707 static void mux_print_help(CharDriverState *chr)
1709 int i, j;
1710 char ebuf[15] = "Escape-Char";
1711 char cbuf[50] = "\n\r";
1713 if (term_escape_char > 0 && term_escape_char < 26) {
1714 sprintf(cbuf,"\n\r");
1715 sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1716 } else {
1717 sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r", term_escape_char);
1719 chr->chr_write(chr, cbuf, strlen(cbuf));
1720 for (i = 0; mux_help[i] != NULL; i++) {
1721 for (j=0; mux_help[i][j] != '\0'; j++) {
1722 if (mux_help[i][j] == '%')
1723 chr->chr_write(chr, ebuf, strlen(ebuf));
1724 else
1725 chr->chr_write(chr, &mux_help[i][j], 1);
1730 static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1732 if (d->term_got_escape) {
1733 d->term_got_escape = 0;
1734 if (ch == term_escape_char)
1735 goto send_char;
1736 switch(ch) {
1737 case '?':
1738 case 'h':
1739 mux_print_help(chr);
1740 break;
1741 case 'x':
1743 char *term = "QEMU: Terminated\n\r";
1744 chr->chr_write(chr,term,strlen(term));
1745 exit(0);
1746 break;
1748 case 's':
1750 int i;
1751 for (i = 0; i < MAX_DISKS; i++) {
1752 if (bs_table[i])
1753 bdrv_commit(bs_table[i]);
1755 if (mtd_bdrv)
1756 bdrv_commit(mtd_bdrv);
1758 break;
1759 case 'b':
1760 qemu_chr_event(chr, CHR_EVENT_BREAK);
1761 break;
1762 case 'c':
1763 /* Switch to the next registered device */
1764 chr->focus++;
1765 if (chr->focus >= d->mux_cnt)
1766 chr->focus = 0;
1767 break;
1768 case 't':
1769 term_timestamps = !term_timestamps;
1770 term_timestamps_start = -1;
1771 break;
1773 } else if (ch == term_escape_char) {
1774 d->term_got_escape = 1;
1775 } else {
1776 send_char:
1777 return 1;
1779 return 0;
1782 static int mux_chr_can_read(void *opaque)
1784 CharDriverState *chr = opaque;
1785 MuxDriver *d = chr->opaque;
1786 if (d->chr_can_read[chr->focus])
1787 return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1788 return 0;
1791 static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1793 CharDriverState *chr = opaque;
1794 MuxDriver *d = chr->opaque;
1795 int i;
1796 for(i = 0; i < size; i++)
1797 if (mux_proc_byte(chr, d, buf[i]))
1798 d->chr_read[chr->focus](d->ext_opaque[chr->focus], &buf[i], 1);
1801 static void mux_chr_event(void *opaque, int event)
1803 CharDriverState *chr = opaque;
1804 MuxDriver *d = chr->opaque;
1805 int i;
1807 /* Send the event to all registered listeners */
1808 for (i = 0; i < d->mux_cnt; i++)
1809 if (d->chr_event[i])
1810 d->chr_event[i](d->ext_opaque[i], event);
1813 static void mux_chr_update_read_handler(CharDriverState *chr)
1815 MuxDriver *d = chr->opaque;
1817 if (d->mux_cnt >= MAX_MUX) {
1818 fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1819 return;
1821 d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1822 d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1823 d->chr_read[d->mux_cnt] = chr->chr_read;
1824 d->chr_event[d->mux_cnt] = chr->chr_event;
1825 /* Fix up the real driver with mux routines */
1826 if (d->mux_cnt == 0) {
1827 qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1828 mux_chr_event, chr);
1830 chr->focus = d->mux_cnt;
1831 d->mux_cnt++;
1834 static CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1836 CharDriverState *chr;
1837 MuxDriver *d;
1839 chr = qemu_mallocz(sizeof(CharDriverState));
1840 if (!chr)
1841 return NULL;
1842 d = qemu_mallocz(sizeof(MuxDriver));
1843 if (!d) {
1844 free(chr);
1845 return NULL;
1848 chr->opaque = d;
1849 d->drv = drv;
1850 chr->focus = -1;
1851 chr->chr_write = mux_chr_write;
1852 chr->chr_update_read_handler = mux_chr_update_read_handler;
1853 return chr;
1857 #ifdef _WIN32
1859 static void socket_cleanup(void)
1861 WSACleanup();
1864 static int socket_init(void)
1866 WSADATA Data;
1867 int ret, err;
1869 ret = WSAStartup(MAKEWORD(2,2), &Data);
1870 if (ret != 0) {
1871 err = WSAGetLastError();
1872 fprintf(stderr, "WSAStartup: %d\n", err);
1873 return -1;
1875 atexit(socket_cleanup);
1876 return 0;
1879 static int send_all(int fd, const uint8_t *buf, int len1)
1881 int ret, len;
1883 len = len1;
1884 while (len > 0) {
1885 ret = send(fd, buf, len, 0);
1886 if (ret < 0) {
1887 int errno;
1888 errno = WSAGetLastError();
1889 if (errno != WSAEWOULDBLOCK) {
1890 return -1;
1892 } else if (ret == 0) {
1893 break;
1894 } else {
1895 buf += ret;
1896 len -= ret;
1899 return len1 - len;
1902 void socket_set_nonblock(int fd)
1904 unsigned long opt = 1;
1905 ioctlsocket(fd, FIONBIO, &opt);
1908 #else
1910 static int unix_write(int fd, const uint8_t *buf, int len1)
1912 int ret, len;
1914 len = len1;
1915 while (len > 0) {
1916 ret = write(fd, buf, len);
1917 if (ret < 0) {
1918 if (errno != EINTR && errno != EAGAIN)
1919 return -1;
1920 } else if (ret == 0) {
1921 break;
1922 } else {
1923 buf += ret;
1924 len -= ret;
1927 return len1 - len;
1930 static inline int send_all(int fd, const uint8_t *buf, int len1)
1932 return unix_write(fd, buf, len1);
1935 void socket_set_nonblock(int fd)
1937 fcntl(fd, F_SETFL, O_NONBLOCK);
1939 #endif /* !_WIN32 */
1941 #ifndef _WIN32
1943 typedef struct {
1944 int fd_in, fd_out;
1945 int max_size;
1946 } FDCharDriver;
1948 #define STDIO_MAX_CLIENTS 1
1949 static int stdio_nb_clients = 0;
1951 static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1953 FDCharDriver *s = chr->opaque;
1954 return unix_write(s->fd_out, buf, len);
1957 static int fd_chr_read_poll(void *opaque)
1959 CharDriverState *chr = opaque;
1960 FDCharDriver *s = chr->opaque;
1962 s->max_size = qemu_chr_can_read(chr);
1963 return s->max_size;
1966 static void fd_chr_read(void *opaque)
1968 CharDriverState *chr = opaque;
1969 FDCharDriver *s = chr->opaque;
1970 int size, len;
1971 uint8_t buf[1024];
1973 len = sizeof(buf);
1974 if (len > s->max_size)
1975 len = s->max_size;
1976 if (len == 0)
1977 return;
1978 size = read(s->fd_in, buf, len);
1979 if (size == 0) {
1980 /* FD has been closed. Remove it from the active list. */
1981 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
1982 return;
1984 if (size > 0) {
1985 qemu_chr_read(chr, buf, size);
1989 static void fd_chr_update_read_handler(CharDriverState *chr)
1991 FDCharDriver *s = chr->opaque;
1993 if (s->fd_in >= 0) {
1994 if (nographic && s->fd_in == 0) {
1995 } else {
1996 qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
1997 fd_chr_read, NULL, chr);
2002 /* open a character device to a unix fd */
2003 static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
2005 CharDriverState *chr;
2006 FDCharDriver *s;
2008 chr = qemu_mallocz(sizeof(CharDriverState));
2009 if (!chr)
2010 return NULL;
2011 s = qemu_mallocz(sizeof(FDCharDriver));
2012 if (!s) {
2013 free(chr);
2014 return NULL;
2016 s->fd_in = fd_in;
2017 s->fd_out = fd_out;
2018 chr->opaque = s;
2019 chr->chr_write = fd_chr_write;
2020 chr->chr_update_read_handler = fd_chr_update_read_handler;
2022 qemu_chr_reset(chr);
2024 return chr;
2027 static CharDriverState *qemu_chr_open_file_out(const char *file_out)
2029 int fd_out;
2031 TFR(fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666));
2032 if (fd_out < 0)
2033 return NULL;
2034 return qemu_chr_open_fd(-1, fd_out);
2037 static CharDriverState *qemu_chr_open_pipe(const char *filename)
2039 int fd_in, fd_out;
2040 char filename_in[256], filename_out[256];
2042 snprintf(filename_in, 256, "%s.in", filename);
2043 snprintf(filename_out, 256, "%s.out", filename);
2044 TFR(fd_in = open(filename_in, O_RDWR | O_BINARY));
2045 TFR(fd_out = open(filename_out, O_RDWR | O_BINARY));
2046 if (fd_in < 0 || fd_out < 0) {
2047 if (fd_in >= 0)
2048 close(fd_in);
2049 if (fd_out >= 0)
2050 close(fd_out);
2051 TFR(fd_in = fd_out = open(filename, O_RDWR | O_BINARY));
2052 if (fd_in < 0)
2053 return NULL;
2055 return qemu_chr_open_fd(fd_in, fd_out);
2059 /* for STDIO, we handle the case where several clients use it
2060 (nographic mode) */
2062 #define TERM_FIFO_MAX_SIZE 1
2064 static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
2065 static int term_fifo_size;
2067 static int stdio_read_poll(void *opaque)
2069 CharDriverState *chr = opaque;
2071 /* try to flush the queue if needed */
2072 if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
2073 qemu_chr_read(chr, term_fifo, 1);
2074 term_fifo_size = 0;
2076 /* see if we can absorb more chars */
2077 if (term_fifo_size == 0)
2078 return 1;
2079 else
2080 return 0;
2083 static void stdio_read(void *opaque)
2085 int size;
2086 uint8_t buf[1];
2087 CharDriverState *chr = opaque;
2089 size = read(0, buf, 1);
2090 if (size == 0) {
2091 /* stdin has been closed. Remove it from the active list. */
2092 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2093 return;
2095 if (size > 0) {
2096 if (qemu_chr_can_read(chr) > 0) {
2097 qemu_chr_read(chr, buf, 1);
2098 } else if (term_fifo_size == 0) {
2099 term_fifo[term_fifo_size++] = buf[0];
2104 /* init terminal so that we can grab keys */
2105 static struct termios oldtty;
2106 static int old_fd0_flags;
2108 static void term_exit(void)
2110 tcsetattr (0, TCSANOW, &oldtty);
2111 fcntl(0, F_SETFL, old_fd0_flags);
2114 static void term_init(void)
2116 struct termios tty;
2118 tcgetattr (0, &tty);
2119 oldtty = tty;
2120 old_fd0_flags = fcntl(0, F_GETFL);
2122 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2123 |INLCR|IGNCR|ICRNL|IXON);
2124 tty.c_oflag |= OPOST;
2125 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2126 /* if graphical mode, we allow Ctrl-C handling */
2127 if (nographic)
2128 tty.c_lflag &= ~ISIG;
2129 tty.c_cflag &= ~(CSIZE|PARENB);
2130 tty.c_cflag |= CS8;
2131 tty.c_cc[VMIN] = 1;
2132 tty.c_cc[VTIME] = 0;
2134 tcsetattr (0, TCSANOW, &tty);
2136 atexit(term_exit);
2138 fcntl(0, F_SETFL, O_NONBLOCK);
2141 static CharDriverState *qemu_chr_open_stdio(void)
2143 CharDriverState *chr;
2145 if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
2146 return NULL;
2147 chr = qemu_chr_open_fd(0, 1);
2148 qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
2149 stdio_nb_clients++;
2150 term_init();
2152 return chr;
2155 #if defined(__linux__) || defined(__sun__)
2156 static CharDriverState *qemu_chr_open_pty(void)
2158 struct termios tty;
2159 char slave_name[1024];
2160 int master_fd, slave_fd;
2162 #if defined(__linux__)
2163 /* Not satisfying */
2164 if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
2165 return NULL;
2167 #endif
2169 /* Disabling local echo and line-buffered output */
2170 tcgetattr (master_fd, &tty);
2171 tty.c_lflag &= ~(ECHO|ICANON|ISIG);
2172 tty.c_cc[VMIN] = 1;
2173 tty.c_cc[VTIME] = 0;
2174 tcsetattr (master_fd, TCSAFLUSH, &tty);
2176 fprintf(stderr, "char device redirected to %s\n", slave_name);
2177 return qemu_chr_open_fd(master_fd, master_fd);
2180 static void tty_serial_init(int fd, int speed,
2181 int parity, int data_bits, int stop_bits)
2183 struct termios tty;
2184 speed_t spd;
2186 #if 0
2187 printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
2188 speed, parity, data_bits, stop_bits);
2189 #endif
2190 tcgetattr (fd, &tty);
2192 switch(speed) {
2193 case 50:
2194 spd = B50;
2195 break;
2196 case 75:
2197 spd = B75;
2198 break;
2199 case 300:
2200 spd = B300;
2201 break;
2202 case 600:
2203 spd = B600;
2204 break;
2205 case 1200:
2206 spd = B1200;
2207 break;
2208 case 2400:
2209 spd = B2400;
2210 break;
2211 case 4800:
2212 spd = B4800;
2213 break;
2214 case 9600:
2215 spd = B9600;
2216 break;
2217 case 19200:
2218 spd = B19200;
2219 break;
2220 case 38400:
2221 spd = B38400;
2222 break;
2223 case 57600:
2224 spd = B57600;
2225 break;
2226 default:
2227 case 115200:
2228 spd = B115200;
2229 break;
2232 cfsetispeed(&tty, spd);
2233 cfsetospeed(&tty, spd);
2235 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2236 |INLCR|IGNCR|ICRNL|IXON);
2237 tty.c_oflag |= OPOST;
2238 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
2239 tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
2240 switch(data_bits) {
2241 default:
2242 case 8:
2243 tty.c_cflag |= CS8;
2244 break;
2245 case 7:
2246 tty.c_cflag |= CS7;
2247 break;
2248 case 6:
2249 tty.c_cflag |= CS6;
2250 break;
2251 case 5:
2252 tty.c_cflag |= CS5;
2253 break;
2255 switch(parity) {
2256 default:
2257 case 'N':
2258 break;
2259 case 'E':
2260 tty.c_cflag |= PARENB;
2261 break;
2262 case 'O':
2263 tty.c_cflag |= PARENB | PARODD;
2264 break;
2266 if (stop_bits == 2)
2267 tty.c_cflag |= CSTOPB;
2269 tcsetattr (fd, TCSANOW, &tty);
2272 static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
2274 FDCharDriver *s = chr->opaque;
2276 switch(cmd) {
2277 case CHR_IOCTL_SERIAL_SET_PARAMS:
2279 QEMUSerialSetParams *ssp = arg;
2280 tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
2281 ssp->data_bits, ssp->stop_bits);
2283 break;
2284 case CHR_IOCTL_SERIAL_SET_BREAK:
2286 int enable = *(int *)arg;
2287 if (enable)
2288 tcsendbreak(s->fd_in, 1);
2290 break;
2291 default:
2292 return -ENOTSUP;
2294 return 0;
2297 static CharDriverState *qemu_chr_open_tty(const char *filename)
2299 CharDriverState *chr;
2300 int fd;
2302 TFR(fd = open(filename, O_RDWR | O_NONBLOCK));
2303 fcntl(fd, F_SETFL, O_NONBLOCK);
2304 tty_serial_init(fd, 115200, 'N', 8, 1);
2305 chr = qemu_chr_open_fd(fd, fd);
2306 if (!chr) {
2307 close(fd);
2308 return NULL;
2310 chr->chr_ioctl = tty_serial_ioctl;
2311 qemu_chr_reset(chr);
2312 return chr;
2314 #else /* ! __linux__ && ! __sun__ */
2315 static CharDriverState *qemu_chr_open_pty(void)
2317 return NULL;
2319 #endif /* __linux__ || __sun__ */
2321 #if defined(__linux__)
2322 typedef struct {
2323 int fd;
2324 int mode;
2325 } ParallelCharDriver;
2327 static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
2329 if (s->mode != mode) {
2330 int m = mode;
2331 if (ioctl(s->fd, PPSETMODE, &m) < 0)
2332 return 0;
2333 s->mode = mode;
2335 return 1;
2338 static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
2340 ParallelCharDriver *drv = chr->opaque;
2341 int fd = drv->fd;
2342 uint8_t b;
2344 switch(cmd) {
2345 case CHR_IOCTL_PP_READ_DATA:
2346 if (ioctl(fd, PPRDATA, &b) < 0)
2347 return -ENOTSUP;
2348 *(uint8_t *)arg = b;
2349 break;
2350 case CHR_IOCTL_PP_WRITE_DATA:
2351 b = *(uint8_t *)arg;
2352 if (ioctl(fd, PPWDATA, &b) < 0)
2353 return -ENOTSUP;
2354 break;
2355 case CHR_IOCTL_PP_READ_CONTROL:
2356 if (ioctl(fd, PPRCONTROL, &b) < 0)
2357 return -ENOTSUP;
2358 /* Linux gives only the lowest bits, and no way to know data
2359 direction! For better compatibility set the fixed upper
2360 bits. */
2361 *(uint8_t *)arg = b | 0xc0;
2362 break;
2363 case CHR_IOCTL_PP_WRITE_CONTROL:
2364 b = *(uint8_t *)arg;
2365 if (ioctl(fd, PPWCONTROL, &b) < 0)
2366 return -ENOTSUP;
2367 break;
2368 case CHR_IOCTL_PP_READ_STATUS:
2369 if (ioctl(fd, PPRSTATUS, &b) < 0)
2370 return -ENOTSUP;
2371 *(uint8_t *)arg = b;
2372 break;
2373 case CHR_IOCTL_PP_EPP_READ_ADDR:
2374 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2375 struct ParallelIOArg *parg = arg;
2376 int n = read(fd, parg->buffer, parg->count);
2377 if (n != parg->count) {
2378 return -EIO;
2381 break;
2382 case CHR_IOCTL_PP_EPP_READ:
2383 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2384 struct ParallelIOArg *parg = arg;
2385 int n = read(fd, parg->buffer, parg->count);
2386 if (n != parg->count) {
2387 return -EIO;
2390 break;
2391 case CHR_IOCTL_PP_EPP_WRITE_ADDR:
2392 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2393 struct ParallelIOArg *parg = arg;
2394 int n = write(fd, parg->buffer, parg->count);
2395 if (n != parg->count) {
2396 return -EIO;
2399 break;
2400 case CHR_IOCTL_PP_EPP_WRITE:
2401 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2402 struct ParallelIOArg *parg = arg;
2403 int n = write(fd, parg->buffer, parg->count);
2404 if (n != parg->count) {
2405 return -EIO;
2408 break;
2409 default:
2410 return -ENOTSUP;
2412 return 0;
2415 static void pp_close(CharDriverState *chr)
2417 ParallelCharDriver *drv = chr->opaque;
2418 int fd = drv->fd;
2420 pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2421 ioctl(fd, PPRELEASE);
2422 close(fd);
2423 qemu_free(drv);
2426 static CharDriverState *qemu_chr_open_pp(const char *filename)
2428 CharDriverState *chr;
2429 ParallelCharDriver *drv;
2430 int fd;
2432 TFR(fd = open(filename, O_RDWR));
2433 if (fd < 0)
2434 return NULL;
2436 if (ioctl(fd, PPCLAIM) < 0) {
2437 close(fd);
2438 return NULL;
2441 drv = qemu_mallocz(sizeof(ParallelCharDriver));
2442 if (!drv) {
2443 close(fd);
2444 return NULL;
2446 drv->fd = fd;
2447 drv->mode = IEEE1284_MODE_COMPAT;
2449 chr = qemu_mallocz(sizeof(CharDriverState));
2450 if (!chr) {
2451 qemu_free(drv);
2452 close(fd);
2453 return NULL;
2455 chr->chr_write = null_chr_write;
2456 chr->chr_ioctl = pp_ioctl;
2457 chr->chr_close = pp_close;
2458 chr->opaque = drv;
2460 qemu_chr_reset(chr);
2462 return chr;
2464 #endif /* __linux__ */
2466 #else /* _WIN32 */
2468 typedef struct {
2469 int max_size;
2470 HANDLE hcom, hrecv, hsend;
2471 OVERLAPPED orecv, osend;
2472 BOOL fpipe;
2473 DWORD len;
2474 } WinCharState;
2476 #define NSENDBUF 2048
2477 #define NRECVBUF 2048
2478 #define MAXCONNECT 1
2479 #define NTIMEOUT 5000
2481 static int win_chr_poll(void *opaque);
2482 static int win_chr_pipe_poll(void *opaque);
2484 static void win_chr_close(CharDriverState *chr)
2486 WinCharState *s = chr->opaque;
2488 if (s->hsend) {
2489 CloseHandle(s->hsend);
2490 s->hsend = NULL;
2492 if (s->hrecv) {
2493 CloseHandle(s->hrecv);
2494 s->hrecv = NULL;
2496 if (s->hcom) {
2497 CloseHandle(s->hcom);
2498 s->hcom = NULL;
2500 if (s->fpipe)
2501 qemu_del_polling_cb(win_chr_pipe_poll, chr);
2502 else
2503 qemu_del_polling_cb(win_chr_poll, chr);
2506 static int win_chr_init(CharDriverState *chr, const char *filename)
2508 WinCharState *s = chr->opaque;
2509 COMMCONFIG comcfg;
2510 COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2511 COMSTAT comstat;
2512 DWORD size;
2513 DWORD err;
2515 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2516 if (!s->hsend) {
2517 fprintf(stderr, "Failed CreateEvent\n");
2518 goto fail;
2520 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2521 if (!s->hrecv) {
2522 fprintf(stderr, "Failed CreateEvent\n");
2523 goto fail;
2526 s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2527 OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2528 if (s->hcom == INVALID_HANDLE_VALUE) {
2529 fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2530 s->hcom = NULL;
2531 goto fail;
2534 if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2535 fprintf(stderr, "Failed SetupComm\n");
2536 goto fail;
2539 ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2540 size = sizeof(COMMCONFIG);
2541 GetDefaultCommConfig(filename, &comcfg, &size);
2542 comcfg.dcb.DCBlength = sizeof(DCB);
2543 CommConfigDialog(filename, NULL, &comcfg);
2545 if (!SetCommState(s->hcom, &comcfg.dcb)) {
2546 fprintf(stderr, "Failed SetCommState\n");
2547 goto fail;
2550 if (!SetCommMask(s->hcom, EV_ERR)) {
2551 fprintf(stderr, "Failed SetCommMask\n");
2552 goto fail;
2555 cto.ReadIntervalTimeout = MAXDWORD;
2556 if (!SetCommTimeouts(s->hcom, &cto)) {
2557 fprintf(stderr, "Failed SetCommTimeouts\n");
2558 goto fail;
2561 if (!ClearCommError(s->hcom, &err, &comstat)) {
2562 fprintf(stderr, "Failed ClearCommError\n");
2563 goto fail;
2565 qemu_add_polling_cb(win_chr_poll, chr);
2566 return 0;
2568 fail:
2569 win_chr_close(chr);
2570 return -1;
2573 static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2575 WinCharState *s = chr->opaque;
2576 DWORD len, ret, size, err;
2578 len = len1;
2579 ZeroMemory(&s->osend, sizeof(s->osend));
2580 s->osend.hEvent = s->hsend;
2581 while (len > 0) {
2582 if (s->hsend)
2583 ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2584 else
2585 ret = WriteFile(s->hcom, buf, len, &size, NULL);
2586 if (!ret) {
2587 err = GetLastError();
2588 if (err == ERROR_IO_PENDING) {
2589 ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2590 if (ret) {
2591 buf += size;
2592 len -= size;
2593 } else {
2594 break;
2596 } else {
2597 break;
2599 } else {
2600 buf += size;
2601 len -= size;
2604 return len1 - len;
2607 static int win_chr_read_poll(CharDriverState *chr)
2609 WinCharState *s = chr->opaque;
2611 s->max_size = qemu_chr_can_read(chr);
2612 return s->max_size;
2615 static void win_chr_readfile(CharDriverState *chr)
2617 WinCharState *s = chr->opaque;
2618 int ret, err;
2619 uint8_t buf[1024];
2620 DWORD size;
2622 ZeroMemory(&s->orecv, sizeof(s->orecv));
2623 s->orecv.hEvent = s->hrecv;
2624 ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2625 if (!ret) {
2626 err = GetLastError();
2627 if (err == ERROR_IO_PENDING) {
2628 ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2632 if (size > 0) {
2633 qemu_chr_read(chr, buf, size);
2637 static void win_chr_read(CharDriverState *chr)
2639 WinCharState *s = chr->opaque;
2641 if (s->len > s->max_size)
2642 s->len = s->max_size;
2643 if (s->len == 0)
2644 return;
2646 win_chr_readfile(chr);
2649 static int win_chr_poll(void *opaque)
2651 CharDriverState *chr = opaque;
2652 WinCharState *s = chr->opaque;
2653 COMSTAT status;
2654 DWORD comerr;
2656 ClearCommError(s->hcom, &comerr, &status);
2657 if (status.cbInQue > 0) {
2658 s->len = status.cbInQue;
2659 win_chr_read_poll(chr);
2660 win_chr_read(chr);
2661 return 1;
2663 return 0;
2666 static CharDriverState *qemu_chr_open_win(const char *filename)
2668 CharDriverState *chr;
2669 WinCharState *s;
2671 chr = qemu_mallocz(sizeof(CharDriverState));
2672 if (!chr)
2673 return NULL;
2674 s = qemu_mallocz(sizeof(WinCharState));
2675 if (!s) {
2676 free(chr);
2677 return NULL;
2679 chr->opaque = s;
2680 chr->chr_write = win_chr_write;
2681 chr->chr_close = win_chr_close;
2683 if (win_chr_init(chr, filename) < 0) {
2684 free(s);
2685 free(chr);
2686 return NULL;
2688 qemu_chr_reset(chr);
2689 return chr;
2692 static int win_chr_pipe_poll(void *opaque)
2694 CharDriverState *chr = opaque;
2695 WinCharState *s = chr->opaque;
2696 DWORD size;
2698 PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2699 if (size > 0) {
2700 s->len = size;
2701 win_chr_read_poll(chr);
2702 win_chr_read(chr);
2703 return 1;
2705 return 0;
2708 static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2710 WinCharState *s = chr->opaque;
2711 OVERLAPPED ov;
2712 int ret;
2713 DWORD size;
2714 char openname[256];
2716 s->fpipe = TRUE;
2718 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2719 if (!s->hsend) {
2720 fprintf(stderr, "Failed CreateEvent\n");
2721 goto fail;
2723 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2724 if (!s->hrecv) {
2725 fprintf(stderr, "Failed CreateEvent\n");
2726 goto fail;
2729 snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2730 s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2731 PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2732 PIPE_WAIT,
2733 MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2734 if (s->hcom == INVALID_HANDLE_VALUE) {
2735 fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2736 s->hcom = NULL;
2737 goto fail;
2740 ZeroMemory(&ov, sizeof(ov));
2741 ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2742 ret = ConnectNamedPipe(s->hcom, &ov);
2743 if (ret) {
2744 fprintf(stderr, "Failed ConnectNamedPipe\n");
2745 goto fail;
2748 ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2749 if (!ret) {
2750 fprintf(stderr, "Failed GetOverlappedResult\n");
2751 if (ov.hEvent) {
2752 CloseHandle(ov.hEvent);
2753 ov.hEvent = NULL;
2755 goto fail;
2758 if (ov.hEvent) {
2759 CloseHandle(ov.hEvent);
2760 ov.hEvent = NULL;
2762 qemu_add_polling_cb(win_chr_pipe_poll, chr);
2763 return 0;
2765 fail:
2766 win_chr_close(chr);
2767 return -1;
2771 static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2773 CharDriverState *chr;
2774 WinCharState *s;
2776 chr = qemu_mallocz(sizeof(CharDriverState));
2777 if (!chr)
2778 return NULL;
2779 s = qemu_mallocz(sizeof(WinCharState));
2780 if (!s) {
2781 free(chr);
2782 return NULL;
2784 chr->opaque = s;
2785 chr->chr_write = win_chr_write;
2786 chr->chr_close = win_chr_close;
2788 if (win_chr_pipe_init(chr, filename) < 0) {
2789 free(s);
2790 free(chr);
2791 return NULL;
2793 qemu_chr_reset(chr);
2794 return chr;
2797 static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2799 CharDriverState *chr;
2800 WinCharState *s;
2802 chr = qemu_mallocz(sizeof(CharDriverState));
2803 if (!chr)
2804 return NULL;
2805 s = qemu_mallocz(sizeof(WinCharState));
2806 if (!s) {
2807 free(chr);
2808 return NULL;
2810 s->hcom = fd_out;
2811 chr->opaque = s;
2812 chr->chr_write = win_chr_write;
2813 qemu_chr_reset(chr);
2814 return chr;
2817 static CharDriverState *qemu_chr_open_win_con(const char *filename)
2819 return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
2822 static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2824 HANDLE fd_out;
2826 fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2827 OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2828 if (fd_out == INVALID_HANDLE_VALUE)
2829 return NULL;
2831 return qemu_chr_open_win_file(fd_out);
2833 #endif /* !_WIN32 */
2835 /***********************************************************/
2836 /* UDP Net console */
2838 typedef struct {
2839 int fd;
2840 struct sockaddr_in daddr;
2841 char buf[1024];
2842 int bufcnt;
2843 int bufptr;
2844 int max_size;
2845 } NetCharDriver;
2847 static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2849 NetCharDriver *s = chr->opaque;
2851 return sendto(s->fd, buf, len, 0,
2852 (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2855 static int udp_chr_read_poll(void *opaque)
2857 CharDriverState *chr = opaque;
2858 NetCharDriver *s = chr->opaque;
2860 s->max_size = qemu_chr_can_read(chr);
2862 /* If there were any stray characters in the queue process them
2863 * first
2865 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2866 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2867 s->bufptr++;
2868 s->max_size = qemu_chr_can_read(chr);
2870 return s->max_size;
2873 static void udp_chr_read(void *opaque)
2875 CharDriverState *chr = opaque;
2876 NetCharDriver *s = chr->opaque;
2878 if (s->max_size == 0)
2879 return;
2880 s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2881 s->bufptr = s->bufcnt;
2882 if (s->bufcnt <= 0)
2883 return;
2885 s->bufptr = 0;
2886 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2887 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2888 s->bufptr++;
2889 s->max_size = qemu_chr_can_read(chr);
2893 static void udp_chr_update_read_handler(CharDriverState *chr)
2895 NetCharDriver *s = chr->opaque;
2897 if (s->fd >= 0) {
2898 qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
2899 udp_chr_read, NULL, chr);
2903 int parse_host_port(struct sockaddr_in *saddr, const char *str);
2904 #ifndef _WIN32
2905 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
2906 #endif
2907 int parse_host_src_port(struct sockaddr_in *haddr,
2908 struct sockaddr_in *saddr,
2909 const char *str);
2911 static CharDriverState *qemu_chr_open_udp(const char *def)
2913 CharDriverState *chr = NULL;
2914 NetCharDriver *s = NULL;
2915 int fd = -1;
2916 struct sockaddr_in saddr;
2918 chr = qemu_mallocz(sizeof(CharDriverState));
2919 if (!chr)
2920 goto return_err;
2921 s = qemu_mallocz(sizeof(NetCharDriver));
2922 if (!s)
2923 goto return_err;
2925 fd = socket(PF_INET, SOCK_DGRAM, 0);
2926 if (fd < 0) {
2927 perror("socket(PF_INET, SOCK_DGRAM)");
2928 goto return_err;
2931 if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
2932 printf("Could not parse: %s\n", def);
2933 goto return_err;
2936 if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
2938 perror("bind");
2939 goto return_err;
2942 s->fd = fd;
2943 s->bufcnt = 0;
2944 s->bufptr = 0;
2945 chr->opaque = s;
2946 chr->chr_write = udp_chr_write;
2947 chr->chr_update_read_handler = udp_chr_update_read_handler;
2948 return chr;
2950 return_err:
2951 if (chr)
2952 free(chr);
2953 if (s)
2954 free(s);
2955 if (fd >= 0)
2956 closesocket(fd);
2957 return NULL;
2960 /***********************************************************/
2961 /* TCP Net console */
2963 typedef struct {
2964 int fd, listen_fd;
2965 int connected;
2966 int max_size;
2967 int do_telnetopt;
2968 int do_nodelay;
2969 int is_unix;
2970 } TCPCharDriver;
2972 static void tcp_chr_accept(void *opaque);
2974 static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2976 TCPCharDriver *s = chr->opaque;
2977 if (s->connected) {
2978 return send_all(s->fd, buf, len);
2979 } else {
2980 /* XXX: indicate an error ? */
2981 return len;
2985 static int tcp_chr_read_poll(void *opaque)
2987 CharDriverState *chr = opaque;
2988 TCPCharDriver *s = chr->opaque;
2989 if (!s->connected)
2990 return 0;
2991 s->max_size = qemu_chr_can_read(chr);
2992 return s->max_size;
2995 #define IAC 255
2996 #define IAC_BREAK 243
2997 static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
2998 TCPCharDriver *s,
2999 char *buf, int *size)
3001 /* Handle any telnet client's basic IAC options to satisfy char by
3002 * char mode with no echo. All IAC options will be removed from
3003 * the buf and the do_telnetopt variable will be used to track the
3004 * state of the width of the IAC information.
3006 * IAC commands come in sets of 3 bytes with the exception of the
3007 * "IAC BREAK" command and the double IAC.
3010 int i;
3011 int j = 0;
3013 for (i = 0; i < *size; i++) {
3014 if (s->do_telnetopt > 1) {
3015 if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
3016 /* Double IAC means send an IAC */
3017 if (j != i)
3018 buf[j] = buf[i];
3019 j++;
3020 s->do_telnetopt = 1;
3021 } else {
3022 if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
3023 /* Handle IAC break commands by sending a serial break */
3024 qemu_chr_event(chr, CHR_EVENT_BREAK);
3025 s->do_telnetopt++;
3027 s->do_telnetopt++;
3029 if (s->do_telnetopt >= 4) {
3030 s->do_telnetopt = 1;
3032 } else {
3033 if ((unsigned char)buf[i] == IAC) {
3034 s->do_telnetopt = 2;
3035 } else {
3036 if (j != i)
3037 buf[j] = buf[i];
3038 j++;
3042 *size = j;
3045 static void tcp_chr_read(void *opaque)
3047 CharDriverState *chr = opaque;
3048 TCPCharDriver *s = chr->opaque;
3049 uint8_t buf[1024];
3050 int len, size;
3052 if (!s->connected || s->max_size <= 0)
3053 return;
3054 len = sizeof(buf);
3055 if (len > s->max_size)
3056 len = s->max_size;
3057 size = recv(s->fd, buf, len, 0);
3058 if (size == 0) {
3059 /* connection closed */
3060 s->connected = 0;
3061 if (s->listen_fd >= 0) {
3062 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3064 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3065 closesocket(s->fd);
3066 s->fd = -1;
3067 } else if (size > 0) {
3068 if (s->do_telnetopt)
3069 tcp_chr_process_IAC_bytes(chr, s, buf, &size);
3070 if (size > 0)
3071 qemu_chr_read(chr, buf, size);
3075 static void tcp_chr_connect(void *opaque)
3077 CharDriverState *chr = opaque;
3078 TCPCharDriver *s = chr->opaque;
3080 s->connected = 1;
3081 qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
3082 tcp_chr_read, NULL, chr);
3083 qemu_chr_reset(chr);
3086 #define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
3087 static void tcp_chr_telnet_init(int fd)
3089 char buf[3];
3090 /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
3091 IACSET(buf, 0xff, 0xfb, 0x01); /* IAC WILL ECHO */
3092 send(fd, (char *)buf, 3, 0);
3093 IACSET(buf, 0xff, 0xfb, 0x03); /* IAC WILL Suppress go ahead */
3094 send(fd, (char *)buf, 3, 0);
3095 IACSET(buf, 0xff, 0xfb, 0x00); /* IAC WILL Binary */
3096 send(fd, (char *)buf, 3, 0);
3097 IACSET(buf, 0xff, 0xfd, 0x00); /* IAC DO Binary */
3098 send(fd, (char *)buf, 3, 0);
3101 static void socket_set_nodelay(int fd)
3103 int val = 1;
3104 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
3107 static void tcp_chr_accept(void *opaque)
3109 CharDriverState *chr = opaque;
3110 TCPCharDriver *s = chr->opaque;
3111 struct sockaddr_in saddr;
3112 #ifndef _WIN32
3113 struct sockaddr_un uaddr;
3114 #endif
3115 struct sockaddr *addr;
3116 socklen_t len;
3117 int fd;
3119 for(;;) {
3120 #ifndef _WIN32
3121 if (s->is_unix) {
3122 len = sizeof(uaddr);
3123 addr = (struct sockaddr *)&uaddr;
3124 } else
3125 #endif
3127 len = sizeof(saddr);
3128 addr = (struct sockaddr *)&saddr;
3130 fd = accept(s->listen_fd, addr, &len);
3131 if (fd < 0 && errno != EINTR) {
3132 return;
3133 } else if (fd >= 0) {
3134 if (s->do_telnetopt)
3135 tcp_chr_telnet_init(fd);
3136 break;
3139 socket_set_nonblock(fd);
3140 if (s->do_nodelay)
3141 socket_set_nodelay(fd);
3142 s->fd = fd;
3143 qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
3144 tcp_chr_connect(chr);
3147 static void tcp_chr_close(CharDriverState *chr)
3149 TCPCharDriver *s = chr->opaque;
3150 if (s->fd >= 0)
3151 closesocket(s->fd);
3152 if (s->listen_fd >= 0)
3153 closesocket(s->listen_fd);
3154 qemu_free(s);
3157 static CharDriverState *qemu_chr_open_tcp(const char *host_str,
3158 int is_telnet,
3159 int is_unix)
3161 CharDriverState *chr = NULL;
3162 TCPCharDriver *s = NULL;
3163 int fd = -1, ret, err, val;
3164 int is_listen = 0;
3165 int is_waitconnect = 1;
3166 int do_nodelay = 0;
3167 const char *ptr;
3168 struct sockaddr_in saddr;
3169 #ifndef _WIN32
3170 struct sockaddr_un uaddr;
3171 #endif
3172 struct sockaddr *addr;
3173 socklen_t addrlen;
3175 #ifndef _WIN32
3176 if (is_unix) {
3177 addr = (struct sockaddr *)&uaddr;
3178 addrlen = sizeof(uaddr);
3179 if (parse_unix_path(&uaddr, host_str) < 0)
3180 goto fail;
3181 } else
3182 #endif
3184 addr = (struct sockaddr *)&saddr;
3185 addrlen = sizeof(saddr);
3186 if (parse_host_port(&saddr, host_str) < 0)
3187 goto fail;
3190 ptr = host_str;
3191 while((ptr = strchr(ptr,','))) {
3192 ptr++;
3193 if (!strncmp(ptr,"server",6)) {
3194 is_listen = 1;
3195 } else if (!strncmp(ptr,"nowait",6)) {
3196 is_waitconnect = 0;
3197 } else if (!strncmp(ptr,"nodelay",6)) {
3198 do_nodelay = 1;
3199 } else {
3200 printf("Unknown option: %s\n", ptr);
3201 goto fail;
3204 if (!is_listen)
3205 is_waitconnect = 0;
3207 chr = qemu_mallocz(sizeof(CharDriverState));
3208 if (!chr)
3209 goto fail;
3210 s = qemu_mallocz(sizeof(TCPCharDriver));
3211 if (!s)
3212 goto fail;
3214 #ifndef _WIN32
3215 if (is_unix)
3216 fd = socket(PF_UNIX, SOCK_STREAM, 0);
3217 else
3218 #endif
3219 fd = socket(PF_INET, SOCK_STREAM, 0);
3221 if (fd < 0)
3222 goto fail;
3224 if (!is_waitconnect)
3225 socket_set_nonblock(fd);
3227 s->connected = 0;
3228 s->fd = -1;
3229 s->listen_fd = -1;
3230 s->is_unix = is_unix;
3231 s->do_nodelay = do_nodelay && !is_unix;
3233 chr->opaque = s;
3234 chr->chr_write = tcp_chr_write;
3235 chr->chr_close = tcp_chr_close;
3237 if (is_listen) {
3238 /* allow fast reuse */
3239 #ifndef _WIN32
3240 if (is_unix) {
3241 char path[109];
3242 strncpy(path, uaddr.sun_path, 108);
3243 path[108] = 0;
3244 unlink(path);
3245 } else
3246 #endif
3248 val = 1;
3249 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3252 ret = bind(fd, addr, addrlen);
3253 if (ret < 0)
3254 goto fail;
3256 ret = listen(fd, 0);
3257 if (ret < 0)
3258 goto fail;
3260 s->listen_fd = fd;
3261 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3262 if (is_telnet)
3263 s->do_telnetopt = 1;
3264 } else {
3265 for(;;) {
3266 ret = connect(fd, addr, addrlen);
3267 if (ret < 0) {
3268 err = socket_error();
3269 if (err == EINTR || err == EWOULDBLOCK) {
3270 } else if (err == EINPROGRESS) {
3271 break;
3272 #ifdef _WIN32
3273 } else if (err == WSAEALREADY) {
3274 break;
3275 #endif
3276 } else {
3277 goto fail;
3279 } else {
3280 s->connected = 1;
3281 break;
3284 s->fd = fd;
3285 socket_set_nodelay(fd);
3286 if (s->connected)
3287 tcp_chr_connect(chr);
3288 else
3289 qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
3292 if (is_listen && is_waitconnect) {
3293 printf("QEMU waiting for connection on: %s\n", host_str);
3294 tcp_chr_accept(chr);
3295 socket_set_nonblock(s->listen_fd);
3298 return chr;
3299 fail:
3300 if (fd >= 0)
3301 closesocket(fd);
3302 qemu_free(s);
3303 qemu_free(chr);
3304 return NULL;
3307 CharDriverState *qemu_chr_open(const char *filename)
3309 const char *p;
3311 if (!strcmp(filename, "vc")) {
3312 return text_console_init(&display_state, 0);
3313 } else if (strstart(filename, "vc:", &p)) {
3314 return text_console_init(&display_state, p);
3315 } else if (!strcmp(filename, "null")) {
3316 return qemu_chr_open_null();
3317 } else
3318 if (strstart(filename, "tcp:", &p)) {
3319 return qemu_chr_open_tcp(p, 0, 0);
3320 } else
3321 if (strstart(filename, "telnet:", &p)) {
3322 return qemu_chr_open_tcp(p, 1, 0);
3323 } else
3324 if (strstart(filename, "udp:", &p)) {
3325 return qemu_chr_open_udp(p);
3326 } else
3327 if (strstart(filename, "mon:", &p)) {
3328 CharDriverState *drv = qemu_chr_open(p);
3329 if (drv) {
3330 drv = qemu_chr_open_mux(drv);
3331 monitor_init(drv, !nographic);
3332 return drv;
3334 printf("Unable to open driver: %s\n", p);
3335 return 0;
3336 } else
3337 #ifndef _WIN32
3338 if (strstart(filename, "unix:", &p)) {
3339 return qemu_chr_open_tcp(p, 0, 1);
3340 } else if (strstart(filename, "file:", &p)) {
3341 return qemu_chr_open_file_out(p);
3342 } else if (strstart(filename, "pipe:", &p)) {
3343 return qemu_chr_open_pipe(p);
3344 } else if (!strcmp(filename, "pty")) {
3345 return qemu_chr_open_pty();
3346 } else if (!strcmp(filename, "stdio")) {
3347 return qemu_chr_open_stdio();
3348 } else
3349 #if defined(__linux__)
3350 if (strstart(filename, "/dev/parport", NULL)) {
3351 return qemu_chr_open_pp(filename);
3352 } else
3353 #endif
3354 #if defined(__linux__) || defined(__sun__)
3355 if (strstart(filename, "/dev/", NULL)) {
3356 return qemu_chr_open_tty(filename);
3357 } else
3358 #endif
3359 #else /* !_WIN32 */
3360 if (strstart(filename, "COM", NULL)) {
3361 return qemu_chr_open_win(filename);
3362 } else
3363 if (strstart(filename, "pipe:", &p)) {
3364 return qemu_chr_open_win_pipe(p);
3365 } else
3366 if (strstart(filename, "con:", NULL)) {
3367 return qemu_chr_open_win_con(filename);
3368 } else
3369 if (strstart(filename, "file:", &p)) {
3370 return qemu_chr_open_win_file_out(p);
3372 #endif
3374 return NULL;
3378 void qemu_chr_close(CharDriverState *chr)
3380 if (chr->chr_close)
3381 chr->chr_close(chr);
3384 /***********************************************************/
3385 /* network device redirectors */
3387 __attribute__ (( unused ))
3388 static void hex_dump(FILE *f, const uint8_t *buf, int size)
3390 int len, i, j, c;
3392 for(i=0;i<size;i+=16) {
3393 len = size - i;
3394 if (len > 16)
3395 len = 16;
3396 fprintf(f, "%08x ", i);
3397 for(j=0;j<16;j++) {
3398 if (j < len)
3399 fprintf(f, " %02x", buf[i+j]);
3400 else
3401 fprintf(f, " ");
3403 fprintf(f, " ");
3404 for(j=0;j<len;j++) {
3405 c = buf[i+j];
3406 if (c < ' ' || c > '~')
3407 c = '.';
3408 fprintf(f, "%c", c);
3410 fprintf(f, "\n");
3414 static int parse_macaddr(uint8_t *macaddr, const char *p)
3416 int i;
3417 for(i = 0; i < 6; i++) {
3418 macaddr[i] = strtol(p, (char **)&p, 16);
3419 if (i == 5) {
3420 if (*p != '\0')
3421 return -1;
3422 } else {
3423 if (*p != ':')
3424 return -1;
3425 p++;
3428 return 0;
3431 static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3433 const char *p, *p1;
3434 int len;
3435 p = *pp;
3436 p1 = strchr(p, sep);
3437 if (!p1)
3438 return -1;
3439 len = p1 - p;
3440 p1++;
3441 if (buf_size > 0) {
3442 if (len > buf_size - 1)
3443 len = buf_size - 1;
3444 memcpy(buf, p, len);
3445 buf[len] = '\0';
3447 *pp = p1;
3448 return 0;
3451 int parse_host_src_port(struct sockaddr_in *haddr,
3452 struct sockaddr_in *saddr,
3453 const char *input_str)
3455 char *str = strdup(input_str);
3456 char *host_str = str;
3457 char *src_str;
3458 char *ptr;
3461 * Chop off any extra arguments at the end of the string which
3462 * would start with a comma, then fill in the src port information
3463 * if it was provided else use the "any address" and "any port".
3465 if ((ptr = strchr(str,',')))
3466 *ptr = '\0';
3468 if ((src_str = strchr(input_str,'@'))) {
3469 *src_str = '\0';
3470 src_str++;
3473 if (parse_host_port(haddr, host_str) < 0)
3474 goto fail;
3476 if (!src_str || *src_str == '\0')
3477 src_str = ":0";
3479 if (parse_host_port(saddr, src_str) < 0)
3480 goto fail;
3482 free(str);
3483 return(0);
3485 fail:
3486 free(str);
3487 return -1;
3490 int parse_host_port(struct sockaddr_in *saddr, const char *str)
3492 char buf[512];
3493 struct hostent *he;
3494 const char *p, *r;
3495 int port;
3497 p = str;
3498 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3499 return -1;
3500 saddr->sin_family = AF_INET;
3501 if (buf[0] == '\0') {
3502 saddr->sin_addr.s_addr = 0;
3503 } else {
3504 if (isdigit(buf[0])) {
3505 if (!inet_aton(buf, &saddr->sin_addr))
3506 return -1;
3507 } else {
3508 if ((he = gethostbyname(buf)) == NULL)
3509 return - 1;
3510 saddr->sin_addr = *(struct in_addr *)he->h_addr;
3513 port = strtol(p, (char **)&r, 0);
3514 if (r == p)
3515 return -1;
3516 saddr->sin_port = htons(port);
3517 return 0;
3520 #ifndef _WIN32
3521 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3523 const char *p;
3524 int len;
3526 len = MIN(108, strlen(str));
3527 p = strchr(str, ',');
3528 if (p)
3529 len = MIN(len, p - str);
3531 memset(uaddr, 0, sizeof(*uaddr));
3533 uaddr->sun_family = AF_UNIX;
3534 memcpy(uaddr->sun_path, str, len);
3536 return 0;
3538 #endif
3540 /* find or alloc a new VLAN */
3541 VLANState *qemu_find_vlan(int id)
3543 VLANState **pvlan, *vlan;
3544 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3545 if (vlan->id == id)
3546 return vlan;
3548 vlan = qemu_mallocz(sizeof(VLANState));
3549 if (!vlan)
3550 return NULL;
3551 vlan->id = id;
3552 vlan->next = NULL;
3553 pvlan = &first_vlan;
3554 while (*pvlan != NULL)
3555 pvlan = &(*pvlan)->next;
3556 *pvlan = vlan;
3557 return vlan;
3560 VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3561 IOReadHandler *fd_read,
3562 IOCanRWHandler *fd_can_read,
3563 void *opaque)
3565 VLANClientState *vc, **pvc;
3566 vc = qemu_mallocz(sizeof(VLANClientState));
3567 if (!vc)
3568 return NULL;
3569 vc->fd_read = fd_read;
3570 vc->fd_can_read = fd_can_read;
3571 vc->opaque = opaque;
3572 vc->vlan = vlan;
3574 vc->next = NULL;
3575 pvc = &vlan->first_client;
3576 while (*pvc != NULL)
3577 pvc = &(*pvc)->next;
3578 *pvc = vc;
3579 return vc;
3582 int qemu_can_send_packet(VLANClientState *vc1)
3584 VLANState *vlan = vc1->vlan;
3585 VLANClientState *vc;
3587 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3588 if (vc != vc1) {
3589 if (vc->fd_can_read && vc->fd_can_read(vc->opaque))
3590 return 1;
3593 return 0;
3596 void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3598 VLANState *vlan = vc1->vlan;
3599 VLANClientState *vc;
3601 #if 0
3602 printf("vlan %d send:\n", vlan->id);
3603 hex_dump(stdout, buf, size);
3604 #endif
3605 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3606 if (vc != vc1) {
3607 vc->fd_read(vc->opaque, buf, size);
3612 #if defined(CONFIG_SLIRP)
3614 /* slirp network adapter */
3616 static int slirp_inited;
3617 static VLANClientState *slirp_vc;
3619 int slirp_can_output(void)
3621 return !slirp_vc || qemu_can_send_packet(slirp_vc);
3624 void slirp_output(const uint8_t *pkt, int pkt_len)
3626 #if 0
3627 printf("slirp output:\n");
3628 hex_dump(stdout, pkt, pkt_len);
3629 #endif
3630 if (!slirp_vc)
3631 return;
3632 qemu_send_packet(slirp_vc, pkt, pkt_len);
3635 static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3637 #if 0
3638 printf("slirp input:\n");
3639 hex_dump(stdout, buf, size);
3640 #endif
3641 slirp_input(buf, size);
3644 static int net_slirp_init(VLANState *vlan)
3646 if (!slirp_inited) {
3647 slirp_inited = 1;
3648 slirp_init();
3650 slirp_vc = qemu_new_vlan_client(vlan,
3651 slirp_receive, NULL, NULL);
3652 snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3653 return 0;
3656 static void net_slirp_redir(const char *redir_str)
3658 int is_udp;
3659 char buf[256], *r;
3660 const char *p;
3661 struct in_addr guest_addr;
3662 int host_port, guest_port;
3664 if (!slirp_inited) {
3665 slirp_inited = 1;
3666 slirp_init();
3669 p = redir_str;
3670 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3671 goto fail;
3672 if (!strcmp(buf, "tcp")) {
3673 is_udp = 0;
3674 } else if (!strcmp(buf, "udp")) {
3675 is_udp = 1;
3676 } else {
3677 goto fail;
3680 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3681 goto fail;
3682 host_port = strtol(buf, &r, 0);
3683 if (r == buf)
3684 goto fail;
3686 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3687 goto fail;
3688 if (buf[0] == '\0') {
3689 pstrcpy(buf, sizeof(buf), "10.0.2.15");
3691 if (!inet_aton(buf, &guest_addr))
3692 goto fail;
3694 guest_port = strtol(p, &r, 0);
3695 if (r == p)
3696 goto fail;
3698 if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3699 fprintf(stderr, "qemu: could not set up redirection\n");
3700 exit(1);
3702 return;
3703 fail:
3704 fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3705 exit(1);
3708 #ifndef _WIN32
3710 char smb_dir[1024];
3712 static void smb_exit(void)
3714 DIR *d;
3715 struct dirent *de;
3716 char filename[1024];
3718 /* erase all the files in the directory */
3719 d = opendir(smb_dir);
3720 for(;;) {
3721 de = readdir(d);
3722 if (!de)
3723 break;
3724 if (strcmp(de->d_name, ".") != 0 &&
3725 strcmp(de->d_name, "..") != 0) {
3726 snprintf(filename, sizeof(filename), "%s/%s",
3727 smb_dir, de->d_name);
3728 unlink(filename);
3731 closedir(d);
3732 rmdir(smb_dir);
3735 /* automatic user mode samba server configuration */
3736 static void net_slirp_smb(const char *exported_dir)
3738 char smb_conf[1024];
3739 char smb_cmdline[1024];
3740 FILE *f;
3742 if (!slirp_inited) {
3743 slirp_inited = 1;
3744 slirp_init();
3747 /* XXX: better tmp dir construction */
3748 snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3749 if (mkdir(smb_dir, 0700) < 0) {
3750 fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3751 exit(1);
3753 snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3755 f = fopen(smb_conf, "w");
3756 if (!f) {
3757 fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3758 exit(1);
3760 fprintf(f,
3761 "[global]\n"
3762 "private dir=%s\n"
3763 "smb ports=0\n"
3764 "socket address=127.0.0.1\n"
3765 "pid directory=%s\n"
3766 "lock directory=%s\n"
3767 "log file=%s/log.smbd\n"
3768 "smb passwd file=%s/smbpasswd\n"
3769 "security = share\n"
3770 "[qemu]\n"
3771 "path=%s\n"
3772 "read only=no\n"
3773 "guest ok=yes\n",
3774 smb_dir,
3775 smb_dir,
3776 smb_dir,
3777 smb_dir,
3778 smb_dir,
3779 exported_dir
3781 fclose(f);
3782 atexit(smb_exit);
3784 snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3785 SMBD_COMMAND, smb_conf);
3787 slirp_add_exec(0, smb_cmdline, 4, 139);
3790 #endif /* !defined(_WIN32) */
3791 void do_info_slirp(void)
3793 slirp_stats();
3796 #endif /* CONFIG_SLIRP */
3798 #if !defined(_WIN32)
3800 typedef struct TAPState {
3801 VLANClientState *vc;
3802 int fd;
3803 char down_script[1024];
3804 } TAPState;
3806 static void tap_receive(void *opaque, const uint8_t *buf, int size)
3808 TAPState *s = opaque;
3809 int ret;
3810 for(;;) {
3811 ret = write(s->fd, buf, size);
3812 if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3813 } else {
3814 break;
3819 static void tap_send(void *opaque)
3821 TAPState *s = opaque;
3822 uint8_t buf[4096];
3823 int size;
3825 #ifdef __sun__
3826 struct strbuf sbuf;
3827 int f = 0;
3828 sbuf.maxlen = sizeof(buf);
3829 sbuf.buf = buf;
3830 size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
3831 #else
3832 size = read(s->fd, buf, sizeof(buf));
3833 #endif
3834 if (size > 0) {
3835 qemu_send_packet(s->vc, buf, size);
3839 /* fd support */
3841 static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3843 TAPState *s;
3845 s = qemu_mallocz(sizeof(TAPState));
3846 if (!s)
3847 return NULL;
3848 s->fd = fd;
3849 s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3850 qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3851 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3852 return s;
3855 #if defined (_BSD) || defined (__FreeBSD_kernel__)
3856 static int tap_open(char *ifname, int ifname_size)
3858 int fd;
3859 char *dev;
3860 struct stat s;
3862 TFR(fd = open("/dev/tap", O_RDWR));
3863 if (fd < 0) {
3864 fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
3865 return -1;
3868 fstat(fd, &s);
3869 dev = devname(s.st_rdev, S_IFCHR);
3870 pstrcpy(ifname, ifname_size, dev);
3872 fcntl(fd, F_SETFL, O_NONBLOCK);
3873 return fd;
3875 #elif defined(__sun__)
3876 #define TUNNEWPPA (('T'<<16) | 0x0001)
3878 * Allocate TAP device, returns opened fd.
3879 * Stores dev name in the first arg(must be large enough).
3881 int tap_alloc(char *dev)
3883 int tap_fd, if_fd, ppa = -1;
3884 static int ip_fd = 0;
3885 char *ptr;
3887 static int arp_fd = 0;
3888 int ip_muxid, arp_muxid;
3889 struct strioctl strioc_if, strioc_ppa;
3890 int link_type = I_PLINK;;
3891 struct lifreq ifr;
3892 char actual_name[32] = "";
3894 memset(&ifr, 0x0, sizeof(ifr));
3896 if( *dev ){
3897 ptr = dev;
3898 while( *ptr && !isdigit((int)*ptr) ) ptr++;
3899 ppa = atoi(ptr);
3902 /* Check if IP device was opened */
3903 if( ip_fd )
3904 close(ip_fd);
3906 TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
3907 if (ip_fd < 0) {
3908 syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
3909 return -1;
3912 TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
3913 if (tap_fd < 0) {
3914 syslog(LOG_ERR, "Can't open /dev/tap");
3915 return -1;
3918 /* Assign a new PPA and get its unit number. */
3919 strioc_ppa.ic_cmd = TUNNEWPPA;
3920 strioc_ppa.ic_timout = 0;
3921 strioc_ppa.ic_len = sizeof(ppa);
3922 strioc_ppa.ic_dp = (char *)&ppa;
3923 if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
3924 syslog (LOG_ERR, "Can't assign new interface");
3926 TFR(if_fd = open("/dev/tap", O_RDWR, 0));
3927 if (if_fd < 0) {
3928 syslog(LOG_ERR, "Can't open /dev/tap (2)");
3929 return -1;
3931 if(ioctl(if_fd, I_PUSH, "ip") < 0){
3932 syslog(LOG_ERR, "Can't push IP module");
3933 return -1;
3936 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
3937 syslog(LOG_ERR, "Can't get flags\n");
3939 snprintf (actual_name, 32, "tap%d", ppa);
3940 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3942 ifr.lifr_ppa = ppa;
3943 /* Assign ppa according to the unit number returned by tun device */
3945 if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
3946 syslog (LOG_ERR, "Can't set PPA %d", ppa);
3947 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
3948 syslog (LOG_ERR, "Can't get flags\n");
3949 /* Push arp module to if_fd */
3950 if (ioctl (if_fd, I_PUSH, "arp") < 0)
3951 syslog (LOG_ERR, "Can't push ARP module (2)");
3953 /* Push arp module to ip_fd */
3954 if (ioctl (ip_fd, I_POP, NULL) < 0)
3955 syslog (LOG_ERR, "I_POP failed\n");
3956 if (ioctl (ip_fd, I_PUSH, "arp") < 0)
3957 syslog (LOG_ERR, "Can't push ARP module (3)\n");
3958 /* Open arp_fd */
3959 TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
3960 if (arp_fd < 0)
3961 syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
3963 /* Set ifname to arp */
3964 strioc_if.ic_cmd = SIOCSLIFNAME;
3965 strioc_if.ic_timout = 0;
3966 strioc_if.ic_len = sizeof(ifr);
3967 strioc_if.ic_dp = (char *)&ifr;
3968 if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
3969 syslog (LOG_ERR, "Can't set ifname to arp\n");
3972 if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
3973 syslog(LOG_ERR, "Can't link TAP device to IP");
3974 return -1;
3977 if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
3978 syslog (LOG_ERR, "Can't link TAP device to ARP");
3980 close (if_fd);
3982 memset(&ifr, 0x0, sizeof(ifr));
3983 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3984 ifr.lifr_ip_muxid = ip_muxid;
3985 ifr.lifr_arp_muxid = arp_muxid;
3987 if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
3989 ioctl (ip_fd, I_PUNLINK , arp_muxid);
3990 ioctl (ip_fd, I_PUNLINK, ip_muxid);
3991 syslog (LOG_ERR, "Can't set multiplexor id");
3994 sprintf(dev, "tap%d", ppa);
3995 return tap_fd;
3998 static int tap_open(char *ifname, int ifname_size)
4000 char dev[10]="";
4001 int fd;
4002 if( (fd = tap_alloc(dev)) < 0 ){
4003 fprintf(stderr, "Cannot allocate TAP device\n");
4004 return -1;
4006 pstrcpy(ifname, ifname_size, dev);
4007 fcntl(fd, F_SETFL, O_NONBLOCK);
4008 return fd;
4010 #else
4011 static int tap_open(char *ifname, int ifname_size)
4013 struct ifreq ifr;
4014 int fd, ret;
4016 TFR(fd = open("/dev/net/tun", O_RDWR));
4017 if (fd < 0) {
4018 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
4019 return -1;
4021 memset(&ifr, 0, sizeof(ifr));
4022 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
4023 if (ifname[0] != '\0')
4024 pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
4025 else
4026 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
4027 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
4028 if (ret != 0) {
4029 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
4030 close(fd);
4031 return -1;
4033 pstrcpy(ifname, ifname_size, ifr.ifr_name);
4034 fcntl(fd, F_SETFL, O_NONBLOCK);
4035 return fd;
4037 #endif
4039 static int launch_script(const char *setup_script, const char *ifname, int fd)
4041 int pid, status;
4042 char *args[3];
4043 char **parg;
4045 /* try to launch network script */
4046 pid = fork();
4047 if (pid >= 0) {
4048 if (pid == 0) {
4049 int open_max = sysconf (_SC_OPEN_MAX), i;
4050 for (i = 0; i < open_max; i++)
4051 if (i != STDIN_FILENO &&
4052 i != STDOUT_FILENO &&
4053 i != STDERR_FILENO &&
4054 i != fd)
4055 close(i);
4057 parg = args;
4058 *parg++ = (char *)setup_script;
4059 *parg++ = (char *)ifname;
4060 *parg++ = NULL;
4061 execv(setup_script, args);
4062 _exit(1);
4064 while (waitpid(pid, &status, 0) != pid);
4065 if (!WIFEXITED(status) ||
4066 WEXITSTATUS(status) != 0) {
4067 fprintf(stderr, "%s: could not launch network script\n",
4068 setup_script);
4069 return -1;
4072 return 0;
4075 static int net_tap_init(VLANState *vlan, const char *ifname1,
4076 const char *setup_script, const char *down_script)
4078 TAPState *s;
4079 int fd;
4080 char ifname[128];
4082 if (ifname1 != NULL)
4083 pstrcpy(ifname, sizeof(ifname), ifname1);
4084 else
4085 ifname[0] = '\0';
4086 TFR(fd = tap_open(ifname, sizeof(ifname)));
4087 if (fd < 0)
4088 return -1;
4090 if (!setup_script || !strcmp(setup_script, "no"))
4091 setup_script = "";
4092 if (setup_script[0] != '\0') {
4093 if (launch_script(setup_script, ifname, fd))
4094 return -1;
4096 s = net_tap_fd_init(vlan, fd);
4097 if (!s)
4098 return -1;
4099 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4100 "tap: ifname=%s setup_script=%s", ifname, setup_script);
4101 if (down_script && strcmp(down_script, "no"))
4102 snprintf(s->down_script, sizeof(s->down_script), "%s", down_script);
4103 return 0;
4106 #endif /* !_WIN32 */
4108 /* network connection */
4109 typedef struct NetSocketState {
4110 VLANClientState *vc;
4111 int fd;
4112 int state; /* 0 = getting length, 1 = getting data */
4113 int index;
4114 int packet_len;
4115 uint8_t buf[4096];
4116 struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
4117 } NetSocketState;
4119 typedef struct NetSocketListenState {
4120 VLANState *vlan;
4121 int fd;
4122 } NetSocketListenState;
4124 /* XXX: we consider we can send the whole packet without blocking */
4125 static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
4127 NetSocketState *s = opaque;
4128 uint32_t len;
4129 len = htonl(size);
4131 send_all(s->fd, (const uint8_t *)&len, sizeof(len));
4132 send_all(s->fd, buf, size);
4135 static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
4137 NetSocketState *s = opaque;
4138 sendto(s->fd, buf, size, 0,
4139 (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
4142 static void net_socket_send(void *opaque)
4144 NetSocketState *s = opaque;
4145 int l, size, err;
4146 uint8_t buf1[4096];
4147 const uint8_t *buf;
4149 size = recv(s->fd, buf1, sizeof(buf1), 0);
4150 if (size < 0) {
4151 err = socket_error();
4152 if (err != EWOULDBLOCK)
4153 goto eoc;
4154 } else if (size == 0) {
4155 /* end of connection */
4156 eoc:
4157 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4158 closesocket(s->fd);
4159 return;
4161 buf = buf1;
4162 while (size > 0) {
4163 /* reassemble a packet from the network */
4164 switch(s->state) {
4165 case 0:
4166 l = 4 - s->index;
4167 if (l > size)
4168 l = size;
4169 memcpy(s->buf + s->index, buf, l);
4170 buf += l;
4171 size -= l;
4172 s->index += l;
4173 if (s->index == 4) {
4174 /* got length */
4175 s->packet_len = ntohl(*(uint32_t *)s->buf);
4176 s->index = 0;
4177 s->state = 1;
4179 break;
4180 case 1:
4181 l = s->packet_len - s->index;
4182 if (l > size)
4183 l = size;
4184 memcpy(s->buf + s->index, buf, l);
4185 s->index += l;
4186 buf += l;
4187 size -= l;
4188 if (s->index >= s->packet_len) {
4189 qemu_send_packet(s->vc, s->buf, s->packet_len);
4190 s->index = 0;
4191 s->state = 0;
4193 break;
4198 static void net_socket_send_dgram(void *opaque)
4200 NetSocketState *s = opaque;
4201 int size;
4203 size = recv(s->fd, s->buf, sizeof(s->buf), 0);
4204 if (size < 0)
4205 return;
4206 if (size == 0) {
4207 /* end of connection */
4208 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4209 return;
4211 qemu_send_packet(s->vc, s->buf, size);
4214 static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
4216 struct ip_mreq imr;
4217 int fd;
4218 int val, ret;
4219 if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
4220 fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
4221 inet_ntoa(mcastaddr->sin_addr),
4222 (int)ntohl(mcastaddr->sin_addr.s_addr));
4223 return -1;
4226 fd = socket(PF_INET, SOCK_DGRAM, 0);
4227 if (fd < 0) {
4228 perror("socket(PF_INET, SOCK_DGRAM)");
4229 return -1;
4232 val = 1;
4233 ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
4234 (const char *)&val, sizeof(val));
4235 if (ret < 0) {
4236 perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
4237 goto fail;
4240 ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
4241 if (ret < 0) {
4242 perror("bind");
4243 goto fail;
4246 /* Add host to multicast group */
4247 imr.imr_multiaddr = mcastaddr->sin_addr;
4248 imr.imr_interface.s_addr = htonl(INADDR_ANY);
4250 ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
4251 (const char *)&imr, sizeof(struct ip_mreq));
4252 if (ret < 0) {
4253 perror("setsockopt(IP_ADD_MEMBERSHIP)");
4254 goto fail;
4257 /* Force mcast msgs to loopback (eg. several QEMUs in same host */
4258 val = 1;
4259 ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
4260 (const char *)&val, sizeof(val));
4261 if (ret < 0) {
4262 perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
4263 goto fail;
4266 socket_set_nonblock(fd);
4267 return fd;
4268 fail:
4269 if (fd >= 0)
4270 closesocket(fd);
4271 return -1;
4274 static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
4275 int is_connected)
4277 struct sockaddr_in saddr;
4278 int newfd;
4279 socklen_t saddr_len;
4280 NetSocketState *s;
4282 /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
4283 * Because this may be "shared" socket from a "master" process, datagrams would be recv()
4284 * by ONLY ONE process: we must "clone" this dgram socket --jjo
4287 if (is_connected) {
4288 if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
4289 /* must be bound */
4290 if (saddr.sin_addr.s_addr==0) {
4291 fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
4292 fd);
4293 return NULL;
4295 /* clone dgram socket */
4296 newfd = net_socket_mcast_create(&saddr);
4297 if (newfd < 0) {
4298 /* error already reported by net_socket_mcast_create() */
4299 close(fd);
4300 return NULL;
4302 /* clone newfd to fd, close newfd */
4303 dup2(newfd, fd);
4304 close(newfd);
4306 } else {
4307 fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
4308 fd, strerror(errno));
4309 return NULL;
4313 s = qemu_mallocz(sizeof(NetSocketState));
4314 if (!s)
4315 return NULL;
4316 s->fd = fd;
4318 s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
4319 qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
4321 /* mcast: save bound address as dst */
4322 if (is_connected) s->dgram_dst=saddr;
4324 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4325 "socket: fd=%d (%s mcast=%s:%d)",
4326 fd, is_connected? "cloned" : "",
4327 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4328 return s;
4331 static void net_socket_connect(void *opaque)
4333 NetSocketState *s = opaque;
4334 qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
4337 static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
4338 int is_connected)
4340 NetSocketState *s;
4341 s = qemu_mallocz(sizeof(NetSocketState));
4342 if (!s)
4343 return NULL;
4344 s->fd = fd;
4345 s->vc = qemu_new_vlan_client(vlan,
4346 net_socket_receive, NULL, s);
4347 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4348 "socket: fd=%d", fd);
4349 if (is_connected) {
4350 net_socket_connect(s);
4351 } else {
4352 qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
4354 return s;
4357 static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
4358 int is_connected)
4360 int so_type=-1, optlen=sizeof(so_type);
4362 if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type, &optlen)< 0) {
4363 fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
4364 return NULL;
4366 switch(so_type) {
4367 case SOCK_DGRAM:
4368 return net_socket_fd_init_dgram(vlan, fd, is_connected);
4369 case SOCK_STREAM:
4370 return net_socket_fd_init_stream(vlan, fd, is_connected);
4371 default:
4372 /* who knows ... this could be a eg. a pty, do warn and continue as stream */
4373 fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
4374 return net_socket_fd_init_stream(vlan, fd, is_connected);
4376 return NULL;
4379 static void net_socket_accept(void *opaque)
4381 NetSocketListenState *s = opaque;
4382 NetSocketState *s1;
4383 struct sockaddr_in saddr;
4384 socklen_t len;
4385 int fd;
4387 for(;;) {
4388 len = sizeof(saddr);
4389 fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
4390 if (fd < 0 && errno != EINTR) {
4391 return;
4392 } else if (fd >= 0) {
4393 break;
4396 s1 = net_socket_fd_init(s->vlan, fd, 1);
4397 if (!s1) {
4398 closesocket(fd);
4399 } else {
4400 snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
4401 "socket: connection from %s:%d",
4402 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4406 static int net_socket_listen_init(VLANState *vlan, const char *host_str)
4408 NetSocketListenState *s;
4409 int fd, val, ret;
4410 struct sockaddr_in saddr;
4412 if (parse_host_port(&saddr, host_str) < 0)
4413 return -1;
4415 s = qemu_mallocz(sizeof(NetSocketListenState));
4416 if (!s)
4417 return -1;
4419 fd = socket(PF_INET, SOCK_STREAM, 0);
4420 if (fd < 0) {
4421 perror("socket");
4422 return -1;
4424 socket_set_nonblock(fd);
4426 /* allow fast reuse */
4427 val = 1;
4428 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4430 ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4431 if (ret < 0) {
4432 perror("bind");
4433 return -1;
4435 ret = listen(fd, 0);
4436 if (ret < 0) {
4437 perror("listen");
4438 return -1;
4440 s->vlan = vlan;
4441 s->fd = fd;
4442 qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
4443 return 0;
4446 static int net_socket_connect_init(VLANState *vlan, const char *host_str)
4448 NetSocketState *s;
4449 int fd, connected, ret, err;
4450 struct sockaddr_in saddr;
4452 if (parse_host_port(&saddr, host_str) < 0)
4453 return -1;
4455 fd = socket(PF_INET, SOCK_STREAM, 0);
4456 if (fd < 0) {
4457 perror("socket");
4458 return -1;
4460 socket_set_nonblock(fd);
4462 connected = 0;
4463 for(;;) {
4464 ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4465 if (ret < 0) {
4466 err = socket_error();
4467 if (err == EINTR || err == EWOULDBLOCK) {
4468 } else if (err == EINPROGRESS) {
4469 break;
4470 #ifdef _WIN32
4471 } else if (err == WSAEALREADY) {
4472 break;
4473 #endif
4474 } else {
4475 perror("connect");
4476 closesocket(fd);
4477 return -1;
4479 } else {
4480 connected = 1;
4481 break;
4484 s = net_socket_fd_init(vlan, fd, connected);
4485 if (!s)
4486 return -1;
4487 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4488 "socket: connect to %s:%d",
4489 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4490 return 0;
4493 static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4495 NetSocketState *s;
4496 int fd;
4497 struct sockaddr_in saddr;
4499 if (parse_host_port(&saddr, host_str) < 0)
4500 return -1;
4503 fd = net_socket_mcast_create(&saddr);
4504 if (fd < 0)
4505 return -1;
4507 s = net_socket_fd_init(vlan, fd, 0);
4508 if (!s)
4509 return -1;
4511 s->dgram_dst = saddr;
4513 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4514 "socket: mcast=%s:%d",
4515 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4516 return 0;
4520 static int get_param_value(char *buf, int buf_size,
4521 const char *tag, const char *str)
4523 const char *p;
4524 char *q;
4525 char option[128];
4527 p = str;
4528 for(;;) {
4529 q = option;
4530 while (*p != '\0' && *p != '=') {
4531 if ((q - option) < sizeof(option) - 1)
4532 *q++ = *p;
4533 p++;
4535 *q = '\0';
4536 if (*p != '=')
4537 break;
4538 p++;
4539 if (!strcmp(tag, option)) {
4540 q = buf;
4541 while (*p != '\0' && *p != ',') {
4542 if ((q - buf) < buf_size - 1)
4543 *q++ = *p;
4544 p++;
4546 *q = '\0';
4547 return q - buf;
4548 } else {
4549 while (*p != '\0' && *p != ',') {
4550 p++;
4553 if (*p != ',')
4554 break;
4555 p++;
4557 return 0;
4560 static int net_client_init(const char *str)
4562 const char *p;
4563 char *q;
4564 char device[64];
4565 char buf[1024];
4566 int vlan_id, ret;
4567 VLANState *vlan;
4569 p = str;
4570 q = device;
4571 while (*p != '\0' && *p != ',') {
4572 if ((q - device) < sizeof(device) - 1)
4573 *q++ = *p;
4574 p++;
4576 *q = '\0';
4577 if (*p == ',')
4578 p++;
4579 vlan_id = 0;
4580 if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4581 vlan_id = strtol(buf, NULL, 0);
4583 vlan = qemu_find_vlan(vlan_id);
4584 if (!vlan) {
4585 fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4586 return -1;
4588 if (!strcmp(device, "nic")) {
4589 NICInfo *nd;
4590 uint8_t *macaddr;
4592 if (nb_nics >= MAX_NICS) {
4593 fprintf(stderr, "Too Many NICs\n");
4594 return -1;
4596 nd = &nd_table[nb_nics];
4597 macaddr = nd->macaddr;
4598 macaddr[0] = 0x52;
4599 macaddr[1] = 0x54;
4600 macaddr[2] = 0x00;
4601 macaddr[3] = 0x12;
4602 macaddr[4] = 0x34;
4603 macaddr[5] = 0x56 + nb_nics;
4605 if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4606 if (parse_macaddr(macaddr, buf) < 0) {
4607 fprintf(stderr, "invalid syntax for ethernet address\n");
4608 return -1;
4611 if (get_param_value(buf, sizeof(buf), "model", p)) {
4612 nd->model = strdup(buf);
4614 nd->vlan = vlan;
4615 nb_nics++;
4616 vlan->nb_guest_devs++;
4617 ret = 0;
4618 } else
4619 if (!strcmp(device, "none")) {
4620 /* does nothing. It is needed to signal that no network cards
4621 are wanted */
4622 ret = 0;
4623 } else
4624 #ifdef CONFIG_SLIRP
4625 if (!strcmp(device, "user")) {
4626 if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4627 pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4629 vlan->nb_host_devs++;
4630 ret = net_slirp_init(vlan);
4631 } else
4632 #endif
4633 #ifdef _WIN32
4634 if (!strcmp(device, "tap")) {
4635 char ifname[64];
4636 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4637 fprintf(stderr, "tap: no interface name\n");
4638 return -1;
4640 vlan->nb_host_devs++;
4641 ret = tap_win32_init(vlan, ifname);
4642 } else
4643 #else
4644 if (!strcmp(device, "tap")) {
4645 char ifname[64];
4646 char setup_script[1024], down_script[1024];
4647 int fd;
4648 vlan->nb_host_devs++;
4649 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4650 fd = strtol(buf, NULL, 0);
4651 ret = -1;
4652 if (net_tap_fd_init(vlan, fd))
4653 ret = 0;
4654 } else {
4655 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4656 ifname[0] = '\0';
4658 if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4659 pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4661 if (get_param_value(down_script, sizeof(down_script), "downscript", p) == 0) {
4662 pstrcpy(down_script, sizeof(down_script), DEFAULT_NETWORK_DOWN_SCRIPT);
4664 ret = net_tap_init(vlan, ifname, setup_script, down_script);
4666 } else
4667 #endif
4668 if (!strcmp(device, "socket")) {
4669 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4670 int fd;
4671 fd = strtol(buf, NULL, 0);
4672 ret = -1;
4673 if (net_socket_fd_init(vlan, fd, 1))
4674 ret = 0;
4675 } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4676 ret = net_socket_listen_init(vlan, buf);
4677 } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4678 ret = net_socket_connect_init(vlan, buf);
4679 } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4680 ret = net_socket_mcast_init(vlan, buf);
4681 } else {
4682 fprintf(stderr, "Unknown socket options: %s\n", p);
4683 return -1;
4685 vlan->nb_host_devs++;
4686 } else
4688 fprintf(stderr, "Unknown network device: %s\n", device);
4689 return -1;
4691 if (ret < 0) {
4692 fprintf(stderr, "Could not initialize device '%s'\n", device);
4695 return ret;
4698 void do_info_network(void)
4700 VLANState *vlan;
4701 VLANClientState *vc;
4703 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4704 term_printf("VLAN %d devices:\n", vlan->id);
4705 for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4706 term_printf(" %s\n", vc->info_str);
4710 /***********************************************************/
4711 /* USB devices */
4713 static USBPort *used_usb_ports;
4714 static USBPort *free_usb_ports;
4716 /* ??? Maybe change this to register a hub to keep track of the topology. */
4717 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
4718 usb_attachfn attach)
4720 port->opaque = opaque;
4721 port->index = index;
4722 port->attach = attach;
4723 port->next = free_usb_ports;
4724 free_usb_ports = port;
4727 static int usb_device_add(const char *devname)
4729 const char *p;
4730 USBDevice *dev;
4731 USBPort *port;
4733 if (!free_usb_ports)
4734 return -1;
4736 if (strstart(devname, "host:", &p)) {
4737 dev = usb_host_device_open(p);
4738 } else if (!strcmp(devname, "mouse")) {
4739 dev = usb_mouse_init();
4740 } else if (!strcmp(devname, "tablet")) {
4741 dev = usb_tablet_init();
4742 } else if (!strcmp(devname, "keyboard")) {
4743 dev = usb_keyboard_init();
4744 } else if (strstart(devname, "disk:", &p)) {
4745 dev = usb_msd_init(p);
4746 } else if (!strcmp(devname, "wacom-tablet")) {
4747 dev = usb_wacom_init();
4748 } else {
4749 return -1;
4751 if (!dev)
4752 return -1;
4754 /* Find a USB port to add the device to. */
4755 port = free_usb_ports;
4756 if (!port->next) {
4757 USBDevice *hub;
4759 /* Create a new hub and chain it on. */
4760 free_usb_ports = NULL;
4761 port->next = used_usb_ports;
4762 used_usb_ports = port;
4764 hub = usb_hub_init(VM_USB_HUB_SIZE);
4765 usb_attach(port, hub);
4766 port = free_usb_ports;
4769 free_usb_ports = port->next;
4770 port->next = used_usb_ports;
4771 used_usb_ports = port;
4772 usb_attach(port, dev);
4773 return 0;
4776 static int usb_device_del(const char *devname)
4778 USBPort *port;
4779 USBPort **lastp;
4780 USBDevice *dev;
4781 int bus_num, addr;
4782 const char *p;
4784 if (!used_usb_ports)
4785 return -1;
4787 p = strchr(devname, '.');
4788 if (!p)
4789 return -1;
4790 bus_num = strtoul(devname, NULL, 0);
4791 addr = strtoul(p + 1, NULL, 0);
4792 if (bus_num != 0)
4793 return -1;
4795 lastp = &used_usb_ports;
4796 port = used_usb_ports;
4797 while (port && port->dev->addr != addr) {
4798 lastp = &port->next;
4799 port = port->next;
4802 if (!port)
4803 return -1;
4805 dev = port->dev;
4806 *lastp = port->next;
4807 usb_attach(port, NULL);
4808 dev->handle_destroy(dev);
4809 port->next = free_usb_ports;
4810 free_usb_ports = port;
4811 return 0;
4814 void do_usb_add(const char *devname)
4816 int ret;
4817 ret = usb_device_add(devname);
4818 if (ret < 0)
4819 term_printf("Could not add USB device '%s'\n", devname);
4822 void do_usb_del(const char *devname)
4824 int ret;
4825 ret = usb_device_del(devname);
4826 if (ret < 0)
4827 term_printf("Could not remove USB device '%s'\n", devname);
4830 void usb_info(void)
4832 USBDevice *dev;
4833 USBPort *port;
4834 const char *speed_str;
4836 if (!usb_enabled) {
4837 term_printf("USB support not enabled\n");
4838 return;
4841 for (port = used_usb_ports; port; port = port->next) {
4842 dev = port->dev;
4843 if (!dev)
4844 continue;
4845 switch(dev->speed) {
4846 case USB_SPEED_LOW:
4847 speed_str = "1.5";
4848 break;
4849 case USB_SPEED_FULL:
4850 speed_str = "12";
4851 break;
4852 case USB_SPEED_HIGH:
4853 speed_str = "480";
4854 break;
4855 default:
4856 speed_str = "?";
4857 break;
4859 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
4860 0, dev->addr, speed_str, dev->devname);
4864 /***********************************************************/
4865 /* PCMCIA/Cardbus */
4867 static struct pcmcia_socket_entry_s {
4868 struct pcmcia_socket_s *socket;
4869 struct pcmcia_socket_entry_s *next;
4870 } *pcmcia_sockets = 0;
4872 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
4874 struct pcmcia_socket_entry_s *entry;
4876 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
4877 entry->socket = socket;
4878 entry->next = pcmcia_sockets;
4879 pcmcia_sockets = entry;
4882 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
4884 struct pcmcia_socket_entry_s *entry, **ptr;
4886 ptr = &pcmcia_sockets;
4887 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
4888 if (entry->socket == socket) {
4889 *ptr = entry->next;
4890 qemu_free(entry);
4894 void pcmcia_info(void)
4896 struct pcmcia_socket_entry_s *iter;
4897 if (!pcmcia_sockets)
4898 term_printf("No PCMCIA sockets\n");
4900 for (iter = pcmcia_sockets; iter; iter = iter->next)
4901 term_printf("%s: %s\n", iter->socket->slot_string,
4902 iter->socket->attached ? iter->socket->card_string :
4903 "Empty");
4906 /***********************************************************/
4907 /* dumb display */
4909 static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
4913 static void dumb_resize(DisplayState *ds, int w, int h)
4917 static void dumb_refresh(DisplayState *ds)
4919 #if defined(CONFIG_SDL)
4920 vga_hw_update();
4921 #endif
4924 static void dumb_display_init(DisplayState *ds)
4926 ds->data = NULL;
4927 ds->linesize = 0;
4928 ds->depth = 0;
4929 ds->dpy_update = dumb_update;
4930 ds->dpy_resize = dumb_resize;
4931 ds->dpy_refresh = dumb_refresh;
4934 /***********************************************************/
4935 /* I/O handling */
4937 #define MAX_IO_HANDLERS 64
4939 typedef struct IOHandlerRecord {
4940 int fd;
4941 IOCanRWHandler *fd_read_poll;
4942 IOHandler *fd_read;
4943 IOHandler *fd_write;
4944 int deleted;
4945 void *opaque;
4946 /* temporary data */
4947 struct pollfd *ufd;
4948 struct IOHandlerRecord *next;
4949 } IOHandlerRecord;
4951 static IOHandlerRecord *first_io_handler;
4953 /* XXX: fd_read_poll should be suppressed, but an API change is
4954 necessary in the character devices to suppress fd_can_read(). */
4955 int qemu_set_fd_handler2(int fd,
4956 IOCanRWHandler *fd_read_poll,
4957 IOHandler *fd_read,
4958 IOHandler *fd_write,
4959 void *opaque)
4961 IOHandlerRecord **pioh, *ioh;
4963 if (!fd_read && !fd_write) {
4964 pioh = &first_io_handler;
4965 for(;;) {
4966 ioh = *pioh;
4967 if (ioh == NULL)
4968 break;
4969 if (ioh->fd == fd) {
4970 ioh->deleted = 1;
4971 break;
4973 pioh = &ioh->next;
4975 } else {
4976 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4977 if (ioh->fd == fd)
4978 goto found;
4980 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
4981 if (!ioh)
4982 return -1;
4983 ioh->next = first_io_handler;
4984 first_io_handler = ioh;
4985 found:
4986 ioh->fd = fd;
4987 ioh->fd_read_poll = fd_read_poll;
4988 ioh->fd_read = fd_read;
4989 ioh->fd_write = fd_write;
4990 ioh->opaque = opaque;
4991 ioh->deleted = 0;
4993 return 0;
4996 int qemu_set_fd_handler(int fd,
4997 IOHandler *fd_read,
4998 IOHandler *fd_write,
4999 void *opaque)
5001 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
5004 /***********************************************************/
5005 /* Polling handling */
5007 typedef struct PollingEntry {
5008 PollingFunc *func;
5009 void *opaque;
5010 struct PollingEntry *next;
5011 } PollingEntry;
5013 static PollingEntry *first_polling_entry;
5015 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
5017 PollingEntry **ppe, *pe;
5018 pe = qemu_mallocz(sizeof(PollingEntry));
5019 if (!pe)
5020 return -1;
5021 pe->func = func;
5022 pe->opaque = opaque;
5023 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
5024 *ppe = pe;
5025 return 0;
5028 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
5030 PollingEntry **ppe, *pe;
5031 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
5032 pe = *ppe;
5033 if (pe->func == func && pe->opaque == opaque) {
5034 *ppe = pe->next;
5035 qemu_free(pe);
5036 break;
5041 #ifdef _WIN32
5042 /***********************************************************/
5043 /* Wait objects support */
5044 typedef struct WaitObjects {
5045 int num;
5046 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
5047 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
5048 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
5049 } WaitObjects;
5051 static WaitObjects wait_objects = {0};
5053 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5055 WaitObjects *w = &wait_objects;
5057 if (w->num >= MAXIMUM_WAIT_OBJECTS)
5058 return -1;
5059 w->events[w->num] = handle;
5060 w->func[w->num] = func;
5061 w->opaque[w->num] = opaque;
5062 w->num++;
5063 return 0;
5066 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5068 int i, found;
5069 WaitObjects *w = &wait_objects;
5071 found = 0;
5072 for (i = 0; i < w->num; i++) {
5073 if (w->events[i] == handle)
5074 found = 1;
5075 if (found) {
5076 w->events[i] = w->events[i + 1];
5077 w->func[i] = w->func[i + 1];
5078 w->opaque[i] = w->opaque[i + 1];
5081 if (found)
5082 w->num--;
5084 #endif
5086 /***********************************************************/
5087 /* savevm/loadvm support */
5089 #define IO_BUF_SIZE 32768
5091 struct QEMUFile {
5092 FILE *outfile;
5093 BlockDriverState *bs;
5094 int is_file;
5095 int is_writable;
5096 int64_t base_offset;
5097 int64_t buf_offset; /* start of buffer when writing, end of buffer
5098 when reading */
5099 int buf_index;
5100 int buf_size; /* 0 when writing */
5101 uint8_t buf[IO_BUF_SIZE];
5104 QEMUFile *qemu_fopen(const char *filename, const char *mode)
5106 QEMUFile *f;
5108 f = qemu_mallocz(sizeof(QEMUFile));
5109 if (!f)
5110 return NULL;
5111 if (!strcmp(mode, "wb")) {
5112 f->is_writable = 1;
5113 } else if (!strcmp(mode, "rb")) {
5114 f->is_writable = 0;
5115 } else {
5116 goto fail;
5118 f->outfile = fopen(filename, mode);
5119 if (!f->outfile)
5120 goto fail;
5121 f->is_file = 1;
5122 return f;
5123 fail:
5124 if (f->outfile)
5125 fclose(f->outfile);
5126 qemu_free(f);
5127 return NULL;
5130 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
5132 QEMUFile *f;
5134 f = qemu_mallocz(sizeof(QEMUFile));
5135 if (!f)
5136 return NULL;
5137 f->is_file = 0;
5138 f->bs = bs;
5139 f->is_writable = is_writable;
5140 f->base_offset = offset;
5141 return f;
5144 void qemu_fflush(QEMUFile *f)
5146 if (!f->is_writable)
5147 return;
5148 if (f->buf_index > 0) {
5149 if (f->is_file) {
5150 fseek(f->outfile, f->buf_offset, SEEK_SET);
5151 fwrite(f->buf, 1, f->buf_index, f->outfile);
5152 } else {
5153 bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
5154 f->buf, f->buf_index);
5156 f->buf_offset += f->buf_index;
5157 f->buf_index = 0;
5161 static void qemu_fill_buffer(QEMUFile *f)
5163 int len;
5165 if (f->is_writable)
5166 return;
5167 if (f->is_file) {
5168 fseek(f->outfile, f->buf_offset, SEEK_SET);
5169 len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
5170 if (len < 0)
5171 len = 0;
5172 } else {
5173 len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
5174 f->buf, IO_BUF_SIZE);
5175 if (len < 0)
5176 len = 0;
5178 f->buf_index = 0;
5179 f->buf_size = len;
5180 f->buf_offset += len;
5183 void qemu_fclose(QEMUFile *f)
5185 if (f->is_writable)
5186 qemu_fflush(f);
5187 if (f->is_file) {
5188 fclose(f->outfile);
5190 qemu_free(f);
5193 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
5195 int l;
5196 while (size > 0) {
5197 l = IO_BUF_SIZE - f->buf_index;
5198 if (l > size)
5199 l = size;
5200 memcpy(f->buf + f->buf_index, buf, l);
5201 f->buf_index += l;
5202 buf += l;
5203 size -= l;
5204 if (f->buf_index >= IO_BUF_SIZE)
5205 qemu_fflush(f);
5209 void qemu_put_byte(QEMUFile *f, int v)
5211 f->buf[f->buf_index++] = v;
5212 if (f->buf_index >= IO_BUF_SIZE)
5213 qemu_fflush(f);
5216 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
5218 int size, l;
5220 size = size1;
5221 while (size > 0) {
5222 l = f->buf_size - f->buf_index;
5223 if (l == 0) {
5224 qemu_fill_buffer(f);
5225 l = f->buf_size - f->buf_index;
5226 if (l == 0)
5227 break;
5229 if (l > size)
5230 l = size;
5231 memcpy(buf, f->buf + f->buf_index, l);
5232 f->buf_index += l;
5233 buf += l;
5234 size -= l;
5236 return size1 - size;
5239 int qemu_get_byte(QEMUFile *f)
5241 if (f->buf_index >= f->buf_size) {
5242 qemu_fill_buffer(f);
5243 if (f->buf_index >= f->buf_size)
5244 return 0;
5246 return f->buf[f->buf_index++];
5249 int64_t qemu_ftell(QEMUFile *f)
5251 return f->buf_offset - f->buf_size + f->buf_index;
5254 int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
5256 if (whence == SEEK_SET) {
5257 /* nothing to do */
5258 } else if (whence == SEEK_CUR) {
5259 pos += qemu_ftell(f);
5260 } else {
5261 /* SEEK_END not supported */
5262 return -1;
5264 if (f->is_writable) {
5265 qemu_fflush(f);
5266 f->buf_offset = pos;
5267 } else {
5268 f->buf_offset = pos;
5269 f->buf_index = 0;
5270 f->buf_size = 0;
5272 return pos;
5275 void qemu_put_be16(QEMUFile *f, unsigned int v)
5277 qemu_put_byte(f, v >> 8);
5278 qemu_put_byte(f, v);
5281 void qemu_put_be32(QEMUFile *f, unsigned int v)
5283 qemu_put_byte(f, v >> 24);
5284 qemu_put_byte(f, v >> 16);
5285 qemu_put_byte(f, v >> 8);
5286 qemu_put_byte(f, v);
5289 void qemu_put_be64(QEMUFile *f, uint64_t v)
5291 qemu_put_be32(f, v >> 32);
5292 qemu_put_be32(f, v);
5295 unsigned int qemu_get_be16(QEMUFile *f)
5297 unsigned int v;
5298 v = qemu_get_byte(f) << 8;
5299 v |= qemu_get_byte(f);
5300 return v;
5303 unsigned int qemu_get_be32(QEMUFile *f)
5305 unsigned int v;
5306 v = qemu_get_byte(f) << 24;
5307 v |= qemu_get_byte(f) << 16;
5308 v |= qemu_get_byte(f) << 8;
5309 v |= qemu_get_byte(f);
5310 return v;
5313 uint64_t qemu_get_be64(QEMUFile *f)
5315 uint64_t v;
5316 v = (uint64_t)qemu_get_be32(f) << 32;
5317 v |= qemu_get_be32(f);
5318 return v;
5321 typedef struct SaveStateEntry {
5322 char idstr[256];
5323 int instance_id;
5324 int version_id;
5325 SaveStateHandler *save_state;
5326 LoadStateHandler *load_state;
5327 void *opaque;
5328 struct SaveStateEntry *next;
5329 } SaveStateEntry;
5331 static SaveStateEntry *first_se;
5333 int register_savevm(const char *idstr,
5334 int instance_id,
5335 int version_id,
5336 SaveStateHandler *save_state,
5337 LoadStateHandler *load_state,
5338 void *opaque)
5340 SaveStateEntry *se, **pse;
5342 se = qemu_malloc(sizeof(SaveStateEntry));
5343 if (!se)
5344 return -1;
5345 pstrcpy(se->idstr, sizeof(se->idstr), idstr);
5346 se->instance_id = instance_id;
5347 se->version_id = version_id;
5348 se->save_state = save_state;
5349 se->load_state = load_state;
5350 se->opaque = opaque;
5351 se->next = NULL;
5353 /* add at the end of list */
5354 pse = &first_se;
5355 while (*pse != NULL)
5356 pse = &(*pse)->next;
5357 *pse = se;
5358 return 0;
5361 #define QEMU_VM_FILE_MAGIC 0x5145564d
5362 #define QEMU_VM_FILE_VERSION 0x00000002
5364 static int qemu_savevm_state(QEMUFile *f)
5366 SaveStateEntry *se;
5367 int len, ret;
5368 int64_t cur_pos, len_pos, total_len_pos;
5370 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
5371 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
5372 total_len_pos = qemu_ftell(f);
5373 qemu_put_be64(f, 0); /* total size */
5375 for(se = first_se; se != NULL; se = se->next) {
5376 /* ID string */
5377 len = strlen(se->idstr);
5378 qemu_put_byte(f, len);
5379 qemu_put_buffer(f, se->idstr, len);
5381 qemu_put_be32(f, se->instance_id);
5382 qemu_put_be32(f, se->version_id);
5384 /* record size: filled later */
5385 len_pos = qemu_ftell(f);
5386 qemu_put_be32(f, 0);
5387 se->save_state(f, se->opaque);
5389 /* fill record size */
5390 cur_pos = qemu_ftell(f);
5391 len = cur_pos - len_pos - 4;
5392 qemu_fseek(f, len_pos, SEEK_SET);
5393 qemu_put_be32(f, len);
5394 qemu_fseek(f, cur_pos, SEEK_SET);
5396 cur_pos = qemu_ftell(f);
5397 qemu_fseek(f, total_len_pos, SEEK_SET);
5398 qemu_put_be64(f, cur_pos - total_len_pos - 8);
5399 qemu_fseek(f, cur_pos, SEEK_SET);
5401 ret = 0;
5402 return ret;
5405 static SaveStateEntry *find_se(const char *idstr, int instance_id)
5407 SaveStateEntry *se;
5409 for(se = first_se; se != NULL; se = se->next) {
5410 if (!strcmp(se->idstr, idstr) &&
5411 instance_id == se->instance_id)
5412 return se;
5414 return NULL;
5417 static int qemu_loadvm_state(QEMUFile *f)
5419 SaveStateEntry *se;
5420 int len, ret, instance_id, record_len, version_id;
5421 int64_t total_len, end_pos, cur_pos;
5422 unsigned int v;
5423 char idstr[256];
5425 v = qemu_get_be32(f);
5426 if (v != QEMU_VM_FILE_MAGIC)
5427 goto fail;
5428 v = qemu_get_be32(f);
5429 if (v != QEMU_VM_FILE_VERSION) {
5430 fail:
5431 ret = -1;
5432 goto the_end;
5434 total_len = qemu_get_be64(f);
5435 end_pos = total_len + qemu_ftell(f);
5436 for(;;) {
5437 if (qemu_ftell(f) >= end_pos)
5438 break;
5439 len = qemu_get_byte(f);
5440 qemu_get_buffer(f, idstr, len);
5441 idstr[len] = '\0';
5442 instance_id = qemu_get_be32(f);
5443 version_id = qemu_get_be32(f);
5444 record_len = qemu_get_be32(f);
5445 #if 0
5446 printf("idstr=%s instance=0x%x version=%d len=%d\n",
5447 idstr, instance_id, version_id, record_len);
5448 #endif
5449 cur_pos = qemu_ftell(f);
5450 se = find_se(idstr, instance_id);
5451 if (!se) {
5452 fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
5453 instance_id, idstr);
5454 } else {
5455 ret = se->load_state(f, se->opaque, version_id);
5456 if (ret < 0) {
5457 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
5458 instance_id, idstr);
5461 /* always seek to exact end of record */
5462 qemu_fseek(f, cur_pos + record_len, SEEK_SET);
5464 ret = 0;
5465 the_end:
5466 return ret;
5469 /* device can contain snapshots */
5470 static int bdrv_can_snapshot(BlockDriverState *bs)
5472 return (bs &&
5473 !bdrv_is_removable(bs) &&
5474 !bdrv_is_read_only(bs));
5477 /* device must be snapshots in order to have a reliable snapshot */
5478 static int bdrv_has_snapshot(BlockDriverState *bs)
5480 return (bs &&
5481 !bdrv_is_removable(bs) &&
5482 !bdrv_is_read_only(bs));
5485 static BlockDriverState *get_bs_snapshots(void)
5487 BlockDriverState *bs;
5488 int i;
5490 if (bs_snapshots)
5491 return bs_snapshots;
5492 for(i = 0; i <= MAX_DISKS; i++) {
5493 bs = bs_table[i];
5494 if (bdrv_can_snapshot(bs))
5495 goto ok;
5497 return NULL;
5499 bs_snapshots = bs;
5500 return bs;
5503 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
5504 const char *name)
5506 QEMUSnapshotInfo *sn_tab, *sn;
5507 int nb_sns, i, ret;
5509 ret = -ENOENT;
5510 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5511 if (nb_sns < 0)
5512 return ret;
5513 for(i = 0; i < nb_sns; i++) {
5514 sn = &sn_tab[i];
5515 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
5516 *sn_info = *sn;
5517 ret = 0;
5518 break;
5521 qemu_free(sn_tab);
5522 return ret;
5525 void do_savevm(const char *name)
5527 BlockDriverState *bs, *bs1;
5528 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
5529 int must_delete, ret, i;
5530 BlockDriverInfo bdi1, *bdi = &bdi1;
5531 QEMUFile *f;
5532 int saved_vm_running;
5533 #ifdef _WIN32
5534 struct _timeb tb;
5535 #else
5536 struct timeval tv;
5537 #endif
5539 bs = get_bs_snapshots();
5540 if (!bs) {
5541 term_printf("No block device can accept snapshots\n");
5542 return;
5545 /* ??? Should this occur after vm_stop? */
5546 qemu_aio_flush();
5548 saved_vm_running = vm_running;
5549 vm_stop(0);
5551 must_delete = 0;
5552 if (name) {
5553 ret = bdrv_snapshot_find(bs, old_sn, name);
5554 if (ret >= 0) {
5555 must_delete = 1;
5558 memset(sn, 0, sizeof(*sn));
5559 if (must_delete) {
5560 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
5561 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
5562 } else {
5563 if (name)
5564 pstrcpy(sn->name, sizeof(sn->name), name);
5567 /* fill auxiliary fields */
5568 #ifdef _WIN32
5569 _ftime(&tb);
5570 sn->date_sec = tb.time;
5571 sn->date_nsec = tb.millitm * 1000000;
5572 #else
5573 gettimeofday(&tv, NULL);
5574 sn->date_sec = tv.tv_sec;
5575 sn->date_nsec = tv.tv_usec * 1000;
5576 #endif
5577 sn->vm_clock_nsec = qemu_get_clock(vm_clock);
5579 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5580 term_printf("Device %s does not support VM state snapshots\n",
5581 bdrv_get_device_name(bs));
5582 goto the_end;
5585 /* save the VM state */
5586 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
5587 if (!f) {
5588 term_printf("Could not open VM state file\n");
5589 goto the_end;
5591 ret = qemu_savevm_state(f);
5592 sn->vm_state_size = qemu_ftell(f);
5593 qemu_fclose(f);
5594 if (ret < 0) {
5595 term_printf("Error %d while writing VM\n", ret);
5596 goto the_end;
5599 /* create the snapshots */
5601 for(i = 0; i < MAX_DISKS; i++) {
5602 bs1 = bs_table[i];
5603 if (bdrv_has_snapshot(bs1)) {
5604 if (must_delete) {
5605 ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
5606 if (ret < 0) {
5607 term_printf("Error while deleting snapshot on '%s'\n",
5608 bdrv_get_device_name(bs1));
5611 ret = bdrv_snapshot_create(bs1, sn);
5612 if (ret < 0) {
5613 term_printf("Error while creating snapshot on '%s'\n",
5614 bdrv_get_device_name(bs1));
5619 the_end:
5620 if (saved_vm_running)
5621 vm_start();
5624 void do_loadvm(const char *name)
5626 BlockDriverState *bs, *bs1;
5627 BlockDriverInfo bdi1, *bdi = &bdi1;
5628 QEMUFile *f;
5629 int i, ret;
5630 int saved_vm_running;
5632 bs = get_bs_snapshots();
5633 if (!bs) {
5634 term_printf("No block device supports snapshots\n");
5635 return;
5638 /* Flush all IO requests so they don't interfere with the new state. */
5639 qemu_aio_flush();
5641 saved_vm_running = vm_running;
5642 vm_stop(0);
5644 for(i = 0; i <= MAX_DISKS; i++) {
5645 bs1 = bs_table[i];
5646 if (bdrv_has_snapshot(bs1)) {
5647 ret = bdrv_snapshot_goto(bs1, name);
5648 if (ret < 0) {
5649 if (bs != bs1)
5650 term_printf("Warning: ");
5651 switch(ret) {
5652 case -ENOTSUP:
5653 term_printf("Snapshots not supported on device '%s'\n",
5654 bdrv_get_device_name(bs1));
5655 break;
5656 case -ENOENT:
5657 term_printf("Could not find snapshot '%s' on device '%s'\n",
5658 name, bdrv_get_device_name(bs1));
5659 break;
5660 default:
5661 term_printf("Error %d while activating snapshot on '%s'\n",
5662 ret, bdrv_get_device_name(bs1));
5663 break;
5665 /* fatal on snapshot block device */
5666 if (bs == bs1)
5667 goto the_end;
5672 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5673 term_printf("Device %s does not support VM state snapshots\n",
5674 bdrv_get_device_name(bs));
5675 return;
5678 /* restore the VM state */
5679 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
5680 if (!f) {
5681 term_printf("Could not open VM state file\n");
5682 goto the_end;
5684 ret = qemu_loadvm_state(f);
5685 qemu_fclose(f);
5686 if (ret < 0) {
5687 term_printf("Error %d while loading VM state\n", ret);
5689 the_end:
5690 if (saved_vm_running)
5691 vm_start();
5694 void do_delvm(const char *name)
5696 BlockDriverState *bs, *bs1;
5697 int i, ret;
5699 bs = get_bs_snapshots();
5700 if (!bs) {
5701 term_printf("No block device supports snapshots\n");
5702 return;
5705 for(i = 0; i <= MAX_DISKS; i++) {
5706 bs1 = bs_table[i];
5707 if (bdrv_has_snapshot(bs1)) {
5708 ret = bdrv_snapshot_delete(bs1, name);
5709 if (ret < 0) {
5710 if (ret == -ENOTSUP)
5711 term_printf("Snapshots not supported on device '%s'\n",
5712 bdrv_get_device_name(bs1));
5713 else
5714 term_printf("Error %d while deleting snapshot on '%s'\n",
5715 ret, bdrv_get_device_name(bs1));
5721 void do_info_snapshots(void)
5723 BlockDriverState *bs, *bs1;
5724 QEMUSnapshotInfo *sn_tab, *sn;
5725 int nb_sns, i;
5726 char buf[256];
5728 bs = get_bs_snapshots();
5729 if (!bs) {
5730 term_printf("No available block device supports snapshots\n");
5731 return;
5733 term_printf("Snapshot devices:");
5734 for(i = 0; i <= MAX_DISKS; i++) {
5735 bs1 = bs_table[i];
5736 if (bdrv_has_snapshot(bs1)) {
5737 if (bs == bs1)
5738 term_printf(" %s", bdrv_get_device_name(bs1));
5741 term_printf("\n");
5743 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5744 if (nb_sns < 0) {
5745 term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
5746 return;
5748 term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
5749 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
5750 for(i = 0; i < nb_sns; i++) {
5751 sn = &sn_tab[i];
5752 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
5754 qemu_free(sn_tab);
5757 /***********************************************************/
5758 /* cpu save/restore */
5760 #if defined(TARGET_I386)
5762 static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
5764 qemu_put_be32(f, dt->selector);
5765 qemu_put_betl(f, dt->base);
5766 qemu_put_be32(f, dt->limit);
5767 qemu_put_be32(f, dt->flags);
5770 static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
5772 dt->selector = qemu_get_be32(f);
5773 dt->base = qemu_get_betl(f);
5774 dt->limit = qemu_get_be32(f);
5775 dt->flags = qemu_get_be32(f);
5778 void cpu_save(QEMUFile *f, void *opaque)
5780 CPUState *env = opaque;
5781 uint16_t fptag, fpus, fpuc, fpregs_format;
5782 uint32_t hflags;
5783 int i;
5785 for(i = 0; i < CPU_NB_REGS; i++)
5786 qemu_put_betls(f, &env->regs[i]);
5787 qemu_put_betls(f, &env->eip);
5788 qemu_put_betls(f, &env->eflags);
5789 hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
5790 qemu_put_be32s(f, &hflags);
5792 /* FPU */
5793 fpuc = env->fpuc;
5794 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
5795 fptag = 0;
5796 for(i = 0; i < 8; i++) {
5797 fptag |= ((!env->fptags[i]) << i);
5800 qemu_put_be16s(f, &fpuc);
5801 qemu_put_be16s(f, &fpus);
5802 qemu_put_be16s(f, &fptag);
5804 #ifdef USE_X86LDOUBLE
5805 fpregs_format = 0;
5806 #else
5807 fpregs_format = 1;
5808 #endif
5809 qemu_put_be16s(f, &fpregs_format);
5811 for(i = 0; i < 8; i++) {
5812 #ifdef USE_X86LDOUBLE
5814 uint64_t mant;
5815 uint16_t exp;
5816 /* we save the real CPU data (in case of MMX usage only 'mant'
5817 contains the MMX register */
5818 cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
5819 qemu_put_be64(f, mant);
5820 qemu_put_be16(f, exp);
5822 #else
5823 /* if we use doubles for float emulation, we save the doubles to
5824 avoid losing information in case of MMX usage. It can give
5825 problems if the image is restored on a CPU where long
5826 doubles are used instead. */
5827 qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
5828 #endif
5831 for(i = 0; i < 6; i++)
5832 cpu_put_seg(f, &env->segs[i]);
5833 cpu_put_seg(f, &env->ldt);
5834 cpu_put_seg(f, &env->tr);
5835 cpu_put_seg(f, &env->gdt);
5836 cpu_put_seg(f, &env->idt);
5838 qemu_put_be32s(f, &env->sysenter_cs);
5839 qemu_put_be32s(f, &env->sysenter_esp);
5840 qemu_put_be32s(f, &env->sysenter_eip);
5842 qemu_put_betls(f, &env->cr[0]);
5843 qemu_put_betls(f, &env->cr[2]);
5844 qemu_put_betls(f, &env->cr[3]);
5845 qemu_put_betls(f, &env->cr[4]);
5847 for(i = 0; i < 8; i++)
5848 qemu_put_betls(f, &env->dr[i]);
5850 /* MMU */
5851 qemu_put_be32s(f, &env->a20_mask);
5853 /* XMM */
5854 qemu_put_be32s(f, &env->mxcsr);
5855 for(i = 0; i < CPU_NB_REGS; i++) {
5856 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5857 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5860 #ifdef TARGET_X86_64
5861 qemu_put_be64s(f, &env->efer);
5862 qemu_put_be64s(f, &env->star);
5863 qemu_put_be64s(f, &env->lstar);
5864 qemu_put_be64s(f, &env->cstar);
5865 qemu_put_be64s(f, &env->fmask);
5866 qemu_put_be64s(f, &env->kernelgsbase);
5867 #endif
5868 qemu_put_be32s(f, &env->smbase);
5871 #ifdef USE_X86LDOUBLE
5872 /* XXX: add that in a FPU generic layer */
5873 union x86_longdouble {
5874 uint64_t mant;
5875 uint16_t exp;
5878 #define MANTD1(fp) (fp & ((1LL << 52) - 1))
5879 #define EXPBIAS1 1023
5880 #define EXPD1(fp) ((fp >> 52) & 0x7FF)
5881 #define SIGND1(fp) ((fp >> 32) & 0x80000000)
5883 static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
5885 int e;
5886 /* mantissa */
5887 p->mant = (MANTD1(temp) << 11) | (1LL << 63);
5888 /* exponent + sign */
5889 e = EXPD1(temp) - EXPBIAS1 + 16383;
5890 e |= SIGND1(temp) >> 16;
5891 p->exp = e;
5893 #endif
5895 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5897 CPUState *env = opaque;
5898 int i, guess_mmx;
5899 uint32_t hflags;
5900 uint16_t fpus, fpuc, fptag, fpregs_format;
5902 if (version_id != 3 && version_id != 4)
5903 return -EINVAL;
5904 for(i = 0; i < CPU_NB_REGS; i++)
5905 qemu_get_betls(f, &env->regs[i]);
5906 qemu_get_betls(f, &env->eip);
5907 qemu_get_betls(f, &env->eflags);
5908 qemu_get_be32s(f, &hflags);
5910 qemu_get_be16s(f, &fpuc);
5911 qemu_get_be16s(f, &fpus);
5912 qemu_get_be16s(f, &fptag);
5913 qemu_get_be16s(f, &fpregs_format);
5915 /* NOTE: we cannot always restore the FPU state if the image come
5916 from a host with a different 'USE_X86LDOUBLE' define. We guess
5917 if we are in an MMX state to restore correctly in that case. */
5918 guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
5919 for(i = 0; i < 8; i++) {
5920 uint64_t mant;
5921 uint16_t exp;
5923 switch(fpregs_format) {
5924 case 0:
5925 mant = qemu_get_be64(f);
5926 exp = qemu_get_be16(f);
5927 #ifdef USE_X86LDOUBLE
5928 env->fpregs[i].d = cpu_set_fp80(mant, exp);
5929 #else
5930 /* difficult case */
5931 if (guess_mmx)
5932 env->fpregs[i].mmx.MMX_Q(0) = mant;
5933 else
5934 env->fpregs[i].d = cpu_set_fp80(mant, exp);
5935 #endif
5936 break;
5937 case 1:
5938 mant = qemu_get_be64(f);
5939 #ifdef USE_X86LDOUBLE
5941 union x86_longdouble *p;
5942 /* difficult case */
5943 p = (void *)&env->fpregs[i];
5944 if (guess_mmx) {
5945 p->mant = mant;
5946 p->exp = 0xffff;
5947 } else {
5948 fp64_to_fp80(p, mant);
5951 #else
5952 env->fpregs[i].mmx.MMX_Q(0) = mant;
5953 #endif
5954 break;
5955 default:
5956 return -EINVAL;
5960 env->fpuc = fpuc;
5961 /* XXX: restore FPU round state */
5962 env->fpstt = (fpus >> 11) & 7;
5963 env->fpus = fpus & ~0x3800;
5964 fptag ^= 0xff;
5965 for(i = 0; i < 8; i++) {
5966 env->fptags[i] = (fptag >> i) & 1;
5969 for(i = 0; i < 6; i++)
5970 cpu_get_seg(f, &env->segs[i]);
5971 cpu_get_seg(f, &env->ldt);
5972 cpu_get_seg(f, &env->tr);
5973 cpu_get_seg(f, &env->gdt);
5974 cpu_get_seg(f, &env->idt);
5976 qemu_get_be32s(f, &env->sysenter_cs);
5977 qemu_get_be32s(f, &env->sysenter_esp);
5978 qemu_get_be32s(f, &env->sysenter_eip);
5980 qemu_get_betls(f, &env->cr[0]);
5981 qemu_get_betls(f, &env->cr[2]);
5982 qemu_get_betls(f, &env->cr[3]);
5983 qemu_get_betls(f, &env->cr[4]);
5985 for(i = 0; i < 8; i++)
5986 qemu_get_betls(f, &env->dr[i]);
5988 /* MMU */
5989 qemu_get_be32s(f, &env->a20_mask);
5991 qemu_get_be32s(f, &env->mxcsr);
5992 for(i = 0; i < CPU_NB_REGS; i++) {
5993 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5994 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5997 #ifdef TARGET_X86_64
5998 qemu_get_be64s(f, &env->efer);
5999 qemu_get_be64s(f, &env->star);
6000 qemu_get_be64s(f, &env->lstar);
6001 qemu_get_be64s(f, &env->cstar);
6002 qemu_get_be64s(f, &env->fmask);
6003 qemu_get_be64s(f, &env->kernelgsbase);
6004 #endif
6005 if (version_id >= 4)
6006 qemu_get_be32s(f, &env->smbase);
6008 /* XXX: compute hflags from scratch, except for CPL and IIF */
6009 env->hflags = hflags;
6010 tlb_flush(env, 1);
6011 return 0;
6014 #elif defined(TARGET_PPC)
6015 void cpu_save(QEMUFile *f, void *opaque)
6019 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6021 return 0;
6024 #elif defined(TARGET_MIPS)
6025 void cpu_save(QEMUFile *f, void *opaque)
6029 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6031 return 0;
6034 #elif defined(TARGET_SPARC)
6035 void cpu_save(QEMUFile *f, void *opaque)
6037 CPUState *env = opaque;
6038 int i;
6039 uint32_t tmp;
6041 for(i = 0; i < 8; i++)
6042 qemu_put_betls(f, &env->gregs[i]);
6043 for(i = 0; i < NWINDOWS * 16; i++)
6044 qemu_put_betls(f, &env->regbase[i]);
6046 /* FPU */
6047 for(i = 0; i < TARGET_FPREGS; i++) {
6048 union {
6049 float32 f;
6050 uint32_t i;
6051 } u;
6052 u.f = env->fpr[i];
6053 qemu_put_be32(f, u.i);
6056 qemu_put_betls(f, &env->pc);
6057 qemu_put_betls(f, &env->npc);
6058 qemu_put_betls(f, &env->y);
6059 tmp = GET_PSR(env);
6060 qemu_put_be32(f, tmp);
6061 qemu_put_betls(f, &env->fsr);
6062 qemu_put_betls(f, &env->tbr);
6063 #ifndef TARGET_SPARC64
6064 qemu_put_be32s(f, &env->wim);
6065 /* MMU */
6066 for(i = 0; i < 16; i++)
6067 qemu_put_be32s(f, &env->mmuregs[i]);
6068 #endif
6071 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6073 CPUState *env = opaque;
6074 int i;
6075 uint32_t tmp;
6077 for(i = 0; i < 8; i++)
6078 qemu_get_betls(f, &env->gregs[i]);
6079 for(i = 0; i < NWINDOWS * 16; i++)
6080 qemu_get_betls(f, &env->regbase[i]);
6082 /* FPU */
6083 for(i = 0; i < TARGET_FPREGS; i++) {
6084 union {
6085 float32 f;
6086 uint32_t i;
6087 } u;
6088 u.i = qemu_get_be32(f);
6089 env->fpr[i] = u.f;
6092 qemu_get_betls(f, &env->pc);
6093 qemu_get_betls(f, &env->npc);
6094 qemu_get_betls(f, &env->y);
6095 tmp = qemu_get_be32(f);
6096 env->cwp = 0; /* needed to ensure that the wrapping registers are
6097 correctly updated */
6098 PUT_PSR(env, tmp);
6099 qemu_get_betls(f, &env->fsr);
6100 qemu_get_betls(f, &env->tbr);
6101 #ifndef TARGET_SPARC64
6102 qemu_get_be32s(f, &env->wim);
6103 /* MMU */
6104 for(i = 0; i < 16; i++)
6105 qemu_get_be32s(f, &env->mmuregs[i]);
6106 #endif
6107 tlb_flush(env, 1);
6108 return 0;
6111 #elif defined(TARGET_ARM)
6113 void cpu_save(QEMUFile *f, void *opaque)
6115 int i;
6116 CPUARMState *env = (CPUARMState *)opaque;
6118 for (i = 0; i < 16; i++) {
6119 qemu_put_be32(f, env->regs[i]);
6121 qemu_put_be32(f, cpsr_read(env));
6122 qemu_put_be32(f, env->spsr);
6123 for (i = 0; i < 6; i++) {
6124 qemu_put_be32(f, env->banked_spsr[i]);
6125 qemu_put_be32(f, env->banked_r13[i]);
6126 qemu_put_be32(f, env->banked_r14[i]);
6128 for (i = 0; i < 5; i++) {
6129 qemu_put_be32(f, env->usr_regs[i]);
6130 qemu_put_be32(f, env->fiq_regs[i]);
6132 qemu_put_be32(f, env->cp15.c0_cpuid);
6133 qemu_put_be32(f, env->cp15.c0_cachetype);
6134 qemu_put_be32(f, env->cp15.c1_sys);
6135 qemu_put_be32(f, env->cp15.c1_coproc);
6136 qemu_put_be32(f, env->cp15.c1_xscaleauxcr);
6137 qemu_put_be32(f, env->cp15.c2_base0);
6138 qemu_put_be32(f, env->cp15.c2_base1);
6139 qemu_put_be32(f, env->cp15.c2_mask);
6140 qemu_put_be32(f, env->cp15.c2_data);
6141 qemu_put_be32(f, env->cp15.c2_insn);
6142 qemu_put_be32(f, env->cp15.c3);
6143 qemu_put_be32(f, env->cp15.c5_insn);
6144 qemu_put_be32(f, env->cp15.c5_data);
6145 for (i = 0; i < 8; i++) {
6146 qemu_put_be32(f, env->cp15.c6_region[i]);
6148 qemu_put_be32(f, env->cp15.c6_insn);
6149 qemu_put_be32(f, env->cp15.c6_data);
6150 qemu_put_be32(f, env->cp15.c9_insn);
6151 qemu_put_be32(f, env->cp15.c9_data);
6152 qemu_put_be32(f, env->cp15.c13_fcse);
6153 qemu_put_be32(f, env->cp15.c13_context);
6154 qemu_put_be32(f, env->cp15.c13_tls1);
6155 qemu_put_be32(f, env->cp15.c13_tls2);
6156 qemu_put_be32(f, env->cp15.c13_tls3);
6157 qemu_put_be32(f, env->cp15.c15_cpar);
6159 qemu_put_be32(f, env->features);
6161 if (arm_feature(env, ARM_FEATURE_VFP)) {
6162 for (i = 0; i < 16; i++) {
6163 CPU_DoubleU u;
6164 u.d = env->vfp.regs[i];
6165 qemu_put_be32(f, u.l.upper);
6166 qemu_put_be32(f, u.l.lower);
6168 for (i = 0; i < 16; i++) {
6169 qemu_put_be32(f, env->vfp.xregs[i]);
6172 /* TODO: Should use proper FPSCR access functions. */
6173 qemu_put_be32(f, env->vfp.vec_len);
6174 qemu_put_be32(f, env->vfp.vec_stride);
6176 if (arm_feature(env, ARM_FEATURE_VFP3)) {
6177 for (i = 16; i < 32; i++) {
6178 CPU_DoubleU u;
6179 u.d = env->vfp.regs[i];
6180 qemu_put_be32(f, u.l.upper);
6181 qemu_put_be32(f, u.l.lower);
6186 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6187 for (i = 0; i < 16; i++) {
6188 qemu_put_be64(f, env->iwmmxt.regs[i]);
6190 for (i = 0; i < 16; i++) {
6191 qemu_put_be32(f, env->iwmmxt.cregs[i]);
6195 if (arm_feature(env, ARM_FEATURE_M)) {
6196 qemu_put_be32(f, env->v7m.other_sp);
6197 qemu_put_be32(f, env->v7m.vecbase);
6198 qemu_put_be32(f, env->v7m.basepri);
6199 qemu_put_be32(f, env->v7m.control);
6200 qemu_put_be32(f, env->v7m.current_sp);
6201 qemu_put_be32(f, env->v7m.exception);
6205 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6207 CPUARMState *env = (CPUARMState *)opaque;
6208 int i;
6210 if (version_id != ARM_CPU_SAVE_VERSION)
6211 return -EINVAL;
6213 for (i = 0; i < 16; i++) {
6214 env->regs[i] = qemu_get_be32(f);
6216 cpsr_write(env, qemu_get_be32(f), 0xffffffff);
6217 env->spsr = qemu_get_be32(f);
6218 for (i = 0; i < 6; i++) {
6219 env->banked_spsr[i] = qemu_get_be32(f);
6220 env->banked_r13[i] = qemu_get_be32(f);
6221 env->banked_r14[i] = qemu_get_be32(f);
6223 for (i = 0; i < 5; i++) {
6224 env->usr_regs[i] = qemu_get_be32(f);
6225 env->fiq_regs[i] = qemu_get_be32(f);
6227 env->cp15.c0_cpuid = qemu_get_be32(f);
6228 env->cp15.c0_cachetype = qemu_get_be32(f);
6229 env->cp15.c1_sys = qemu_get_be32(f);
6230 env->cp15.c1_coproc = qemu_get_be32(f);
6231 env->cp15.c1_xscaleauxcr = qemu_get_be32(f);
6232 env->cp15.c2_base0 = qemu_get_be32(f);
6233 env->cp15.c2_base1 = qemu_get_be32(f);
6234 env->cp15.c2_mask = qemu_get_be32(f);
6235 env->cp15.c2_data = qemu_get_be32(f);
6236 env->cp15.c2_insn = qemu_get_be32(f);
6237 env->cp15.c3 = qemu_get_be32(f);
6238 env->cp15.c5_insn = qemu_get_be32(f);
6239 env->cp15.c5_data = qemu_get_be32(f);
6240 for (i = 0; i < 8; i++) {
6241 env->cp15.c6_region[i] = qemu_get_be32(f);
6243 env->cp15.c6_insn = qemu_get_be32(f);
6244 env->cp15.c6_data = qemu_get_be32(f);
6245 env->cp15.c9_insn = qemu_get_be32(f);
6246 env->cp15.c9_data = qemu_get_be32(f);
6247 env->cp15.c13_fcse = qemu_get_be32(f);
6248 env->cp15.c13_context = qemu_get_be32(f);
6249 env->cp15.c13_tls1 = qemu_get_be32(f);
6250 env->cp15.c13_tls2 = qemu_get_be32(f);
6251 env->cp15.c13_tls3 = qemu_get_be32(f);
6252 env->cp15.c15_cpar = qemu_get_be32(f);
6254 env->features = qemu_get_be32(f);
6256 if (arm_feature(env, ARM_FEATURE_VFP)) {
6257 for (i = 0; i < 16; i++) {
6258 CPU_DoubleU u;
6259 u.l.upper = qemu_get_be32(f);
6260 u.l.lower = qemu_get_be32(f);
6261 env->vfp.regs[i] = u.d;
6263 for (i = 0; i < 16; i++) {
6264 env->vfp.xregs[i] = qemu_get_be32(f);
6267 /* TODO: Should use proper FPSCR access functions. */
6268 env->vfp.vec_len = qemu_get_be32(f);
6269 env->vfp.vec_stride = qemu_get_be32(f);
6271 if (arm_feature(env, ARM_FEATURE_VFP3)) {
6272 for (i = 0; i < 16; i++) {
6273 CPU_DoubleU u;
6274 u.l.upper = qemu_get_be32(f);
6275 u.l.lower = qemu_get_be32(f);
6276 env->vfp.regs[i] = u.d;
6281 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6282 for (i = 0; i < 16; i++) {
6283 env->iwmmxt.regs[i] = qemu_get_be64(f);
6285 for (i = 0; i < 16; i++) {
6286 env->iwmmxt.cregs[i] = qemu_get_be32(f);
6290 if (arm_feature(env, ARM_FEATURE_M)) {
6291 env->v7m.other_sp = qemu_get_be32(f);
6292 env->v7m.vecbase = qemu_get_be32(f);
6293 env->v7m.basepri = qemu_get_be32(f);
6294 env->v7m.control = qemu_get_be32(f);
6295 env->v7m.current_sp = qemu_get_be32(f);
6296 env->v7m.exception = qemu_get_be32(f);
6299 return 0;
6302 #else
6304 //#warning No CPU save/restore functions
6306 #endif
6308 /***********************************************************/
6309 /* ram save/restore */
6311 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
6313 int v;
6315 v = qemu_get_byte(f);
6316 switch(v) {
6317 case 0:
6318 if (qemu_get_buffer(f, buf, len) != len)
6319 return -EIO;
6320 break;
6321 case 1:
6322 v = qemu_get_byte(f);
6323 memset(buf, v, len);
6324 break;
6325 default:
6326 return -EINVAL;
6328 return 0;
6331 static int ram_load_v1(QEMUFile *f, void *opaque)
6333 int i, ret;
6335 if (qemu_get_be32(f) != phys_ram_size)
6336 return -EINVAL;
6337 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
6338 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
6339 if (ret)
6340 return ret;
6342 return 0;
6345 #define BDRV_HASH_BLOCK_SIZE 1024
6346 #define IOBUF_SIZE 4096
6347 #define RAM_CBLOCK_MAGIC 0xfabe
6349 typedef struct RamCompressState {
6350 z_stream zstream;
6351 QEMUFile *f;
6352 uint8_t buf[IOBUF_SIZE];
6353 } RamCompressState;
6355 static int ram_compress_open(RamCompressState *s, QEMUFile *f)
6357 int ret;
6358 memset(s, 0, sizeof(*s));
6359 s->f = f;
6360 ret = deflateInit2(&s->zstream, 1,
6361 Z_DEFLATED, 15,
6362 9, Z_DEFAULT_STRATEGY);
6363 if (ret != Z_OK)
6364 return -1;
6365 s->zstream.avail_out = IOBUF_SIZE;
6366 s->zstream.next_out = s->buf;
6367 return 0;
6370 static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
6372 qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
6373 qemu_put_be16(s->f, len);
6374 qemu_put_buffer(s->f, buf, len);
6377 static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
6379 int ret;
6381 s->zstream.avail_in = len;
6382 s->zstream.next_in = (uint8_t *)buf;
6383 while (s->zstream.avail_in > 0) {
6384 ret = deflate(&s->zstream, Z_NO_FLUSH);
6385 if (ret != Z_OK)
6386 return -1;
6387 if (s->zstream.avail_out == 0) {
6388 ram_put_cblock(s, s->buf, IOBUF_SIZE);
6389 s->zstream.avail_out = IOBUF_SIZE;
6390 s->zstream.next_out = s->buf;
6393 return 0;
6396 static void ram_compress_close(RamCompressState *s)
6398 int len, ret;
6400 /* compress last bytes */
6401 for(;;) {
6402 ret = deflate(&s->zstream, Z_FINISH);
6403 if (ret == Z_OK || ret == Z_STREAM_END) {
6404 len = IOBUF_SIZE - s->zstream.avail_out;
6405 if (len > 0) {
6406 ram_put_cblock(s, s->buf, len);
6408 s->zstream.avail_out = IOBUF_SIZE;
6409 s->zstream.next_out = s->buf;
6410 if (ret == Z_STREAM_END)
6411 break;
6412 } else {
6413 goto fail;
6416 fail:
6417 deflateEnd(&s->zstream);
6420 typedef struct RamDecompressState {
6421 z_stream zstream;
6422 QEMUFile *f;
6423 uint8_t buf[IOBUF_SIZE];
6424 } RamDecompressState;
6426 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
6428 int ret;
6429 memset(s, 0, sizeof(*s));
6430 s->f = f;
6431 ret = inflateInit(&s->zstream);
6432 if (ret != Z_OK)
6433 return -1;
6434 return 0;
6437 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
6439 int ret, clen;
6441 s->zstream.avail_out = len;
6442 s->zstream.next_out = buf;
6443 while (s->zstream.avail_out > 0) {
6444 if (s->zstream.avail_in == 0) {
6445 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
6446 return -1;
6447 clen = qemu_get_be16(s->f);
6448 if (clen > IOBUF_SIZE)
6449 return -1;
6450 qemu_get_buffer(s->f, s->buf, clen);
6451 s->zstream.avail_in = clen;
6452 s->zstream.next_in = s->buf;
6454 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
6455 if (ret != Z_OK && ret != Z_STREAM_END) {
6456 return -1;
6459 return 0;
6462 static void ram_decompress_close(RamDecompressState *s)
6464 inflateEnd(&s->zstream);
6467 static void ram_save(QEMUFile *f, void *opaque)
6469 int i;
6470 RamCompressState s1, *s = &s1;
6471 uint8_t buf[10];
6473 qemu_put_be32(f, phys_ram_size);
6474 if (ram_compress_open(s, f) < 0)
6475 return;
6476 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6477 #if 0
6478 if (tight_savevm_enabled) {
6479 int64_t sector_num;
6480 int j;
6482 /* find if the memory block is available on a virtual
6483 block device */
6484 sector_num = -1;
6485 for(j = 0; j < MAX_DISKS; j++) {
6486 if (bs_table[j]) {
6487 sector_num = bdrv_hash_find(bs_table[j],
6488 phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6489 if (sector_num >= 0)
6490 break;
6493 if (j == MAX_DISKS)
6494 goto normal_compress;
6495 buf[0] = 1;
6496 buf[1] = j;
6497 cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
6498 ram_compress_buf(s, buf, 10);
6499 } else
6500 #endif
6502 // normal_compress:
6503 buf[0] = 0;
6504 ram_compress_buf(s, buf, 1);
6505 ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6508 ram_compress_close(s);
6511 static int ram_load(QEMUFile *f, void *opaque, int version_id)
6513 RamDecompressState s1, *s = &s1;
6514 uint8_t buf[10];
6515 int i;
6517 if (version_id == 1)
6518 return ram_load_v1(f, opaque);
6519 if (version_id != 2)
6520 return -EINVAL;
6521 if (qemu_get_be32(f) != phys_ram_size)
6522 return -EINVAL;
6523 if (ram_decompress_open(s, f) < 0)
6524 return -EINVAL;
6525 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6526 if (ram_decompress_buf(s, buf, 1) < 0) {
6527 fprintf(stderr, "Error while reading ram block header\n");
6528 goto error;
6530 if (buf[0] == 0) {
6531 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
6532 fprintf(stderr, "Error while reading ram block address=0x%08x", i);
6533 goto error;
6535 } else
6536 #if 0
6537 if (buf[0] == 1) {
6538 int bs_index;
6539 int64_t sector_num;
6541 ram_decompress_buf(s, buf + 1, 9);
6542 bs_index = buf[1];
6543 sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
6544 if (bs_index >= MAX_DISKS || bs_table[bs_index] == NULL) {
6545 fprintf(stderr, "Invalid block device index %d\n", bs_index);
6546 goto error;
6548 if (bdrv_read(bs_table[bs_index], sector_num, phys_ram_base + i,
6549 BDRV_HASH_BLOCK_SIZE / 512) < 0) {
6550 fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
6551 bs_index, sector_num);
6552 goto error;
6554 } else
6555 #endif
6557 error:
6558 printf("Error block header\n");
6559 return -EINVAL;
6562 ram_decompress_close(s);
6563 return 0;
6566 /***********************************************************/
6567 /* bottom halves (can be seen as timers which expire ASAP) */
6569 struct QEMUBH {
6570 QEMUBHFunc *cb;
6571 void *opaque;
6572 int scheduled;
6573 QEMUBH *next;
6576 static QEMUBH *first_bh = NULL;
6578 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
6580 QEMUBH *bh;
6581 bh = qemu_mallocz(sizeof(QEMUBH));
6582 if (!bh)
6583 return NULL;
6584 bh->cb = cb;
6585 bh->opaque = opaque;
6586 return bh;
6589 int qemu_bh_poll(void)
6591 QEMUBH *bh, **pbh;
6592 int ret;
6594 ret = 0;
6595 for(;;) {
6596 pbh = &first_bh;
6597 bh = *pbh;
6598 if (!bh)
6599 break;
6600 ret = 1;
6601 *pbh = bh->next;
6602 bh->scheduled = 0;
6603 bh->cb(bh->opaque);
6605 return ret;
6608 void qemu_bh_schedule(QEMUBH *bh)
6610 CPUState *env = cpu_single_env;
6611 if (bh->scheduled)
6612 return;
6613 bh->scheduled = 1;
6614 bh->next = first_bh;
6615 first_bh = bh;
6617 /* stop the currently executing CPU to execute the BH ASAP */
6618 if (env) {
6619 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
6623 void qemu_bh_cancel(QEMUBH *bh)
6625 QEMUBH **pbh;
6626 if (bh->scheduled) {
6627 pbh = &first_bh;
6628 while (*pbh != bh)
6629 pbh = &(*pbh)->next;
6630 *pbh = bh->next;
6631 bh->scheduled = 0;
6635 void qemu_bh_delete(QEMUBH *bh)
6637 qemu_bh_cancel(bh);
6638 qemu_free(bh);
6641 /***********************************************************/
6642 /* machine registration */
6644 QEMUMachine *first_machine = NULL;
6646 int qemu_register_machine(QEMUMachine *m)
6648 QEMUMachine **pm;
6649 pm = &first_machine;
6650 while (*pm != NULL)
6651 pm = &(*pm)->next;
6652 m->next = NULL;
6653 *pm = m;
6654 return 0;
6657 static QEMUMachine *find_machine(const char *name)
6659 QEMUMachine *m;
6661 for(m = first_machine; m != NULL; m = m->next) {
6662 if (!strcmp(m->name, name))
6663 return m;
6665 return NULL;
6668 /***********************************************************/
6669 /* main execution loop */
6671 static void gui_update(void *opaque)
6673 DisplayState *ds = opaque;
6674 ds->dpy_refresh(ds);
6675 qemu_mod_timer(ds->gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
6678 struct vm_change_state_entry {
6679 VMChangeStateHandler *cb;
6680 void *opaque;
6681 LIST_ENTRY (vm_change_state_entry) entries;
6684 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
6686 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
6687 void *opaque)
6689 VMChangeStateEntry *e;
6691 e = qemu_mallocz(sizeof (*e));
6692 if (!e)
6693 return NULL;
6695 e->cb = cb;
6696 e->opaque = opaque;
6697 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
6698 return e;
6701 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
6703 LIST_REMOVE (e, entries);
6704 qemu_free (e);
6707 static void vm_state_notify(int running)
6709 VMChangeStateEntry *e;
6711 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
6712 e->cb(e->opaque, running);
6716 /* XXX: support several handlers */
6717 static VMStopHandler *vm_stop_cb;
6718 static void *vm_stop_opaque;
6720 int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
6722 vm_stop_cb = cb;
6723 vm_stop_opaque = opaque;
6724 return 0;
6727 void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
6729 vm_stop_cb = NULL;
6732 void vm_start(void)
6734 if (!vm_running) {
6735 cpu_enable_ticks();
6736 vm_running = 1;
6737 vm_state_notify(1);
6738 qemu_rearm_alarm_timer(alarm_timer);
6742 void vm_stop(int reason)
6744 if (vm_running) {
6745 cpu_disable_ticks();
6746 vm_running = 0;
6747 if (reason != 0) {
6748 if (vm_stop_cb) {
6749 vm_stop_cb(vm_stop_opaque, reason);
6752 vm_state_notify(0);
6756 /* reset/shutdown handler */
6758 typedef struct QEMUResetEntry {
6759 QEMUResetHandler *func;
6760 void *opaque;
6761 struct QEMUResetEntry *next;
6762 } QEMUResetEntry;
6764 static QEMUResetEntry *first_reset_entry;
6765 static int reset_requested;
6766 static int shutdown_requested;
6767 static int powerdown_requested;
6769 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
6771 QEMUResetEntry **pre, *re;
6773 pre = &first_reset_entry;
6774 while (*pre != NULL)
6775 pre = &(*pre)->next;
6776 re = qemu_mallocz(sizeof(QEMUResetEntry));
6777 re->func = func;
6778 re->opaque = opaque;
6779 re->next = NULL;
6780 *pre = re;
6783 static void qemu_system_reset(void)
6785 QEMUResetEntry *re;
6787 /* reset all devices */
6788 for(re = first_reset_entry; re != NULL; re = re->next) {
6789 re->func(re->opaque);
6793 void qemu_system_reset_request(void)
6795 if (no_reboot) {
6796 shutdown_requested = 1;
6797 } else {
6798 reset_requested = 1;
6800 if (cpu_single_env)
6801 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6804 void qemu_system_shutdown_request(void)
6806 shutdown_requested = 1;
6807 if (cpu_single_env)
6808 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6811 void qemu_system_powerdown_request(void)
6813 powerdown_requested = 1;
6814 if (cpu_single_env)
6815 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6818 void main_loop_wait(int timeout)
6820 IOHandlerRecord *ioh;
6821 fd_set rfds, wfds, xfds;
6822 int ret, nfds;
6823 #ifdef _WIN32
6824 int ret2, i;
6825 #endif
6826 struct timeval tv;
6827 PollingEntry *pe;
6830 /* XXX: need to suppress polling by better using win32 events */
6831 ret = 0;
6832 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
6833 ret |= pe->func(pe->opaque);
6835 #ifdef _WIN32
6836 if (ret == 0) {
6837 int err;
6838 WaitObjects *w = &wait_objects;
6840 ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
6841 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
6842 if (w->func[ret - WAIT_OBJECT_0])
6843 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
6845 /* Check for additional signaled events */
6846 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
6848 /* Check if event is signaled */
6849 ret2 = WaitForSingleObject(w->events[i], 0);
6850 if(ret2 == WAIT_OBJECT_0) {
6851 if (w->func[i])
6852 w->func[i](w->opaque[i]);
6853 } else if (ret2 == WAIT_TIMEOUT) {
6854 } else {
6855 err = GetLastError();
6856 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
6859 } else if (ret == WAIT_TIMEOUT) {
6860 } else {
6861 err = GetLastError();
6862 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
6865 #endif
6866 /* poll any events */
6867 /* XXX: separate device handlers from system ones */
6868 nfds = -1;
6869 FD_ZERO(&rfds);
6870 FD_ZERO(&wfds);
6871 FD_ZERO(&xfds);
6872 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6873 if (ioh->deleted)
6874 continue;
6875 if (ioh->fd_read &&
6876 (!ioh->fd_read_poll ||
6877 ioh->fd_read_poll(ioh->opaque) != 0)) {
6878 FD_SET(ioh->fd, &rfds);
6879 if (ioh->fd > nfds)
6880 nfds = ioh->fd;
6882 if (ioh->fd_write) {
6883 FD_SET(ioh->fd, &wfds);
6884 if (ioh->fd > nfds)
6885 nfds = ioh->fd;
6889 tv.tv_sec = 0;
6890 #ifdef _WIN32
6891 tv.tv_usec = 0;
6892 #else
6893 tv.tv_usec = timeout * 1000;
6894 #endif
6895 #if defined(CONFIG_SLIRP)
6896 if (slirp_inited) {
6897 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
6899 #endif
6900 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
6901 if (ret > 0) {
6902 IOHandlerRecord **pioh;
6904 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6905 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
6906 ioh->fd_read(ioh->opaque);
6908 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
6909 ioh->fd_write(ioh->opaque);
6913 /* remove deleted IO handlers */
6914 pioh = &first_io_handler;
6915 while (*pioh) {
6916 ioh = *pioh;
6917 if (ioh->deleted) {
6918 *pioh = ioh->next;
6919 qemu_free(ioh);
6920 } else
6921 pioh = &ioh->next;
6924 #if defined(CONFIG_SLIRP)
6925 if (slirp_inited) {
6926 if (ret < 0) {
6927 FD_ZERO(&rfds);
6928 FD_ZERO(&wfds);
6929 FD_ZERO(&xfds);
6931 slirp_select_poll(&rfds, &wfds, &xfds);
6933 #endif
6934 qemu_aio_poll();
6936 if (vm_running) {
6937 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
6938 qemu_get_clock(vm_clock));
6939 /* run dma transfers, if any */
6940 DMA_run();
6943 /* real time timers */
6944 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
6945 qemu_get_clock(rt_clock));
6947 /* Check bottom-halves last in case any of the earlier events triggered
6948 them. */
6949 qemu_bh_poll();
6953 static CPUState *cur_cpu;
6955 static int main_loop(void)
6957 int ret, timeout;
6958 #ifdef CONFIG_PROFILER
6959 int64_t ti;
6960 #endif
6961 CPUState *env;
6963 cur_cpu = first_cpu;
6964 for(;;) {
6965 if (vm_running) {
6967 env = cur_cpu;
6968 for(;;) {
6969 /* get next cpu */
6970 env = env->next_cpu;
6971 if (!env)
6972 env = first_cpu;
6973 #ifdef CONFIG_PROFILER
6974 ti = profile_getclock();
6975 #endif
6976 ret = cpu_exec(env);
6977 #ifdef CONFIG_PROFILER
6978 qemu_time += profile_getclock() - ti;
6979 #endif
6980 if (ret == EXCP_HLT) {
6981 /* Give the next CPU a chance to run. */
6982 cur_cpu = env;
6983 continue;
6985 if (ret != EXCP_HALTED)
6986 break;
6987 /* all CPUs are halted ? */
6988 if (env == cur_cpu)
6989 break;
6991 cur_cpu = env;
6993 if (shutdown_requested) {
6994 ret = EXCP_INTERRUPT;
6995 break;
6997 if (reset_requested) {
6998 reset_requested = 0;
6999 qemu_system_reset();
7000 ret = EXCP_INTERRUPT;
7002 if (powerdown_requested) {
7003 powerdown_requested = 0;
7004 qemu_system_powerdown();
7005 ret = EXCP_INTERRUPT;
7007 if (ret == EXCP_DEBUG) {
7008 vm_stop(EXCP_DEBUG);
7010 /* If all cpus are halted then wait until the next IRQ */
7011 /* XXX: use timeout computed from timers */
7012 if (ret == EXCP_HALTED)
7013 timeout = 10;
7014 else
7015 timeout = 0;
7016 } else {
7017 timeout = 10;
7019 #ifdef CONFIG_PROFILER
7020 ti = profile_getclock();
7021 #endif
7022 main_loop_wait(timeout);
7023 #ifdef CONFIG_PROFILER
7024 dev_time += profile_getclock() - ti;
7025 #endif
7027 cpu_disable_ticks();
7028 return ret;
7031 static void help(int exitcode)
7033 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2007 Fabrice Bellard\n"
7034 "usage: %s [options] [disk_image]\n"
7035 "\n"
7036 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
7037 "\n"
7038 "Standard options:\n"
7039 "-M machine select emulated machine (-M ? for list)\n"
7040 "-cpu cpu select CPU (-cpu ? for list)\n"
7041 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
7042 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
7043 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
7044 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
7045 "-mtdblock file use 'file' as on-board Flash memory image\n"
7046 "-sd file use 'file' as SecureDigital card image\n"
7047 "-pflash file use 'file' as a parallel flash image\n"
7048 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
7049 "-snapshot write to temporary files instead of disk image files\n"
7050 #ifdef CONFIG_SDL
7051 "-no-frame open SDL window without a frame and window decorations\n"
7052 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
7053 "-no-quit disable SDL window close capability\n"
7054 #endif
7055 #ifdef TARGET_I386
7056 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
7057 #endif
7058 "-m megs set virtual RAM size to megs MB [default=%d]\n"
7059 "-smp n set the number of CPUs to 'n' [default=1]\n"
7060 "-nographic disable graphical output and redirect serial I/Os to console\n"
7061 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n"
7062 #ifndef _WIN32
7063 "-k language use keyboard layout (for example \"fr\" for French)\n"
7064 #endif
7065 #ifdef HAS_AUDIO
7066 "-audio-help print list of audio drivers and their options\n"
7067 "-soundhw c1,... enable audio support\n"
7068 " and only specified sound cards (comma separated list)\n"
7069 " use -soundhw ? to get the list of supported cards\n"
7070 " use -soundhw all to enable all of them\n"
7071 #endif
7072 "-localtime set the real time clock to local time [default=utc]\n"
7073 "-full-screen start in full screen\n"
7074 #ifdef TARGET_I386
7075 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
7076 #endif
7077 "-usb enable the USB driver (will be the default soon)\n"
7078 "-usbdevice name add the host or guest USB device 'name'\n"
7079 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
7080 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
7081 #endif
7082 "-name string set the name of the guest\n"
7083 "\n"
7084 "Network options:\n"
7085 "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
7086 " create a new Network Interface Card and connect it to VLAN 'n'\n"
7087 #ifdef CONFIG_SLIRP
7088 "-net user[,vlan=n][,hostname=host]\n"
7089 " connect the user mode network stack to VLAN 'n' and send\n"
7090 " hostname 'host' to DHCP clients\n"
7091 #endif
7092 #ifdef _WIN32
7093 "-net tap[,vlan=n],ifname=name\n"
7094 " connect the host TAP network interface to VLAN 'n'\n"
7095 #else
7096 "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
7097 " connect the host TAP network interface to VLAN 'n' and use the\n"
7098 " network scripts 'file' (default=%s)\n"
7099 " and 'dfile' (default=%s);\n"
7100 " use '[down]script=no' to disable script execution;\n"
7101 " use 'fd=h' to connect to an already opened TAP interface\n"
7102 #endif
7103 "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
7104 " connect the vlan 'n' to another VLAN using a socket connection\n"
7105 "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
7106 " connect the vlan 'n' to multicast maddr and port\n"
7107 "-net none use it alone to have zero network devices; if no -net option\n"
7108 " is provided, the default is '-net nic -net user'\n"
7109 "\n"
7110 #ifdef CONFIG_SLIRP
7111 "-tftp dir allow tftp access to files in dir [-net user]\n"
7112 "-bootp file advertise file in BOOTP replies\n"
7113 #ifndef _WIN32
7114 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
7115 #endif
7116 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
7117 " redirect TCP or UDP connections from host to guest [-net user]\n"
7118 #endif
7119 "\n"
7120 "Linux boot specific:\n"
7121 "-kernel bzImage use 'bzImage' as kernel image\n"
7122 "-append cmdline use 'cmdline' as kernel command line\n"
7123 "-initrd file use 'file' as initial ram disk\n"
7124 "\n"
7125 "Debug/Expert options:\n"
7126 "-monitor dev redirect the monitor to char device 'dev'\n"
7127 "-serial dev redirect the serial port to char device 'dev'\n"
7128 "-parallel dev redirect the parallel port to char device 'dev'\n"
7129 "-pidfile file Write PID to 'file'\n"
7130 "-S freeze CPU at startup (use 'c' to start execution)\n"
7131 "-s wait gdb connection to port\n"
7132 "-p port set gdb connection port [default=%s]\n"
7133 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
7134 "-hdachs c,h,s[,t] force hard disk 0 physical geometry and the optional BIOS\n"
7135 " translation (t=none or lba) (usually qemu can guess them)\n"
7136 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
7137 #ifdef USE_KQEMU
7138 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
7139 "-no-kqemu disable KQEMU kernel module usage\n"
7140 #endif
7141 #ifdef TARGET_I386
7142 "-std-vga simulate a standard VGA card with VESA Bochs Extensions\n"
7143 " (default is CL-GD5446 PCI VGA)\n"
7144 "-no-acpi disable ACPI\n"
7145 #endif
7146 "-no-reboot exit instead of rebooting\n"
7147 "-loadvm file start right away with a saved state (loadvm in monitor)\n"
7148 "-vnc display start a VNC server on display\n"
7149 #ifndef _WIN32
7150 "-daemonize daemonize QEMU after initializing\n"
7151 #endif
7152 "-option-rom rom load a file, rom, into the option ROM space\n"
7153 #ifdef TARGET_SPARC
7154 "-prom-env variable=value set OpenBIOS nvram variables\n"
7155 #endif
7156 "-clock force the use of the given methods for timer alarm.\n"
7157 " To see what timers are available use -clock help\n"
7158 "\n"
7159 "During emulation, the following keys are useful:\n"
7160 "ctrl-alt-f toggle full screen\n"
7161 "ctrl-alt-n switch to virtual console 'n'\n"
7162 "ctrl-alt toggle mouse and keyboard grab\n"
7163 "\n"
7164 "When using -nographic, press 'ctrl-a h' to get some help.\n"
7166 "qemu",
7167 DEFAULT_RAM_SIZE,
7168 #ifndef _WIN32
7169 DEFAULT_NETWORK_SCRIPT,
7170 DEFAULT_NETWORK_DOWN_SCRIPT,
7171 #endif
7172 DEFAULT_GDBSTUB_PORT,
7173 "/tmp/qemu.log");
7174 exit(exitcode);
7177 #define HAS_ARG 0x0001
7179 enum {
7180 QEMU_OPTION_h,
7182 QEMU_OPTION_M,
7183 QEMU_OPTION_cpu,
7184 QEMU_OPTION_fda,
7185 QEMU_OPTION_fdb,
7186 QEMU_OPTION_hda,
7187 QEMU_OPTION_hdb,
7188 QEMU_OPTION_hdc,
7189 QEMU_OPTION_hdd,
7190 QEMU_OPTION_cdrom,
7191 QEMU_OPTION_mtdblock,
7192 QEMU_OPTION_sd,
7193 QEMU_OPTION_pflash,
7194 QEMU_OPTION_boot,
7195 QEMU_OPTION_snapshot,
7196 #ifdef TARGET_I386
7197 QEMU_OPTION_no_fd_bootchk,
7198 #endif
7199 QEMU_OPTION_m,
7200 QEMU_OPTION_nographic,
7201 QEMU_OPTION_portrait,
7202 #ifdef HAS_AUDIO
7203 QEMU_OPTION_audio_help,
7204 QEMU_OPTION_soundhw,
7205 #endif
7207 QEMU_OPTION_net,
7208 QEMU_OPTION_tftp,
7209 QEMU_OPTION_bootp,
7210 QEMU_OPTION_smb,
7211 QEMU_OPTION_redir,
7213 QEMU_OPTION_kernel,
7214 QEMU_OPTION_append,
7215 QEMU_OPTION_initrd,
7217 QEMU_OPTION_S,
7218 QEMU_OPTION_s,
7219 QEMU_OPTION_p,
7220 QEMU_OPTION_d,
7221 QEMU_OPTION_hdachs,
7222 QEMU_OPTION_L,
7223 QEMU_OPTION_bios,
7224 QEMU_OPTION_no_code_copy,
7225 QEMU_OPTION_k,
7226 QEMU_OPTION_localtime,
7227 QEMU_OPTION_cirrusvga,
7228 QEMU_OPTION_vmsvga,
7229 QEMU_OPTION_g,
7230 QEMU_OPTION_std_vga,
7231 QEMU_OPTION_echr,
7232 QEMU_OPTION_monitor,
7233 QEMU_OPTION_serial,
7234 QEMU_OPTION_parallel,
7235 QEMU_OPTION_loadvm,
7236 QEMU_OPTION_full_screen,
7237 QEMU_OPTION_no_frame,
7238 QEMU_OPTION_alt_grab,
7239 QEMU_OPTION_no_quit,
7240 QEMU_OPTION_pidfile,
7241 QEMU_OPTION_no_kqemu,
7242 QEMU_OPTION_kernel_kqemu,
7243 QEMU_OPTION_win2k_hack,
7244 QEMU_OPTION_usb,
7245 QEMU_OPTION_usbdevice,
7246 QEMU_OPTION_smp,
7247 QEMU_OPTION_vnc,
7248 QEMU_OPTION_no_acpi,
7249 QEMU_OPTION_no_reboot,
7250 QEMU_OPTION_show_cursor,
7251 QEMU_OPTION_daemonize,
7252 QEMU_OPTION_option_rom,
7253 QEMU_OPTION_semihosting,
7254 QEMU_OPTION_name,
7255 QEMU_OPTION_prom_env,
7256 QEMU_OPTION_old_param,
7257 QEMU_OPTION_clock,
7258 QEMU_OPTION_startdate,
7261 typedef struct QEMUOption {
7262 const char *name;
7263 int flags;
7264 int index;
7265 } QEMUOption;
7267 const QEMUOption qemu_options[] = {
7268 { "h", 0, QEMU_OPTION_h },
7269 { "help", 0, QEMU_OPTION_h },
7271 { "M", HAS_ARG, QEMU_OPTION_M },
7272 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
7273 { "fda", HAS_ARG, QEMU_OPTION_fda },
7274 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
7275 { "hda", HAS_ARG, QEMU_OPTION_hda },
7276 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
7277 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
7278 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
7279 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
7280 { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
7281 { "sd", HAS_ARG, QEMU_OPTION_sd },
7282 { "pflash", HAS_ARG, QEMU_OPTION_pflash },
7283 { "boot", HAS_ARG, QEMU_OPTION_boot },
7284 { "snapshot", 0, QEMU_OPTION_snapshot },
7285 #ifdef TARGET_I386
7286 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
7287 #endif
7288 { "m", HAS_ARG, QEMU_OPTION_m },
7289 { "nographic", 0, QEMU_OPTION_nographic },
7290 { "portrait", 0, QEMU_OPTION_portrait },
7291 { "k", HAS_ARG, QEMU_OPTION_k },
7292 #ifdef HAS_AUDIO
7293 { "audio-help", 0, QEMU_OPTION_audio_help },
7294 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
7295 #endif
7297 { "net", HAS_ARG, QEMU_OPTION_net},
7298 #ifdef CONFIG_SLIRP
7299 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
7300 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
7301 #ifndef _WIN32
7302 { "smb", HAS_ARG, QEMU_OPTION_smb },
7303 #endif
7304 { "redir", HAS_ARG, QEMU_OPTION_redir },
7305 #endif
7307 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
7308 { "append", HAS_ARG, QEMU_OPTION_append },
7309 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
7311 { "S", 0, QEMU_OPTION_S },
7312 { "s", 0, QEMU_OPTION_s },
7313 { "p", HAS_ARG, QEMU_OPTION_p },
7314 { "d", HAS_ARG, QEMU_OPTION_d },
7315 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
7316 { "L", HAS_ARG, QEMU_OPTION_L },
7317 { "bios", HAS_ARG, QEMU_OPTION_bios },
7318 { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
7319 #ifdef USE_KQEMU
7320 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
7321 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
7322 #endif
7323 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
7324 { "g", 1, QEMU_OPTION_g },
7325 #endif
7326 { "localtime", 0, QEMU_OPTION_localtime },
7327 { "std-vga", 0, QEMU_OPTION_std_vga },
7328 { "echr", HAS_ARG, QEMU_OPTION_echr },
7329 { "monitor", HAS_ARG, QEMU_OPTION_monitor },
7330 { "serial", HAS_ARG, QEMU_OPTION_serial },
7331 { "parallel", HAS_ARG, QEMU_OPTION_parallel },
7332 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
7333 { "full-screen", 0, QEMU_OPTION_full_screen },
7334 #ifdef CONFIG_SDL
7335 { "no-frame", 0, QEMU_OPTION_no_frame },
7336 { "alt-grab", 0, QEMU_OPTION_alt_grab },
7337 { "no-quit", 0, QEMU_OPTION_no_quit },
7338 #endif
7339 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
7340 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
7341 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
7342 { "smp", HAS_ARG, QEMU_OPTION_smp },
7343 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
7345 /* temporary options */
7346 { "usb", 0, QEMU_OPTION_usb },
7347 { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
7348 { "vmwarevga", 0, QEMU_OPTION_vmsvga },
7349 { "no-acpi", 0, QEMU_OPTION_no_acpi },
7350 { "no-reboot", 0, QEMU_OPTION_no_reboot },
7351 { "show-cursor", 0, QEMU_OPTION_show_cursor },
7352 { "daemonize", 0, QEMU_OPTION_daemonize },
7353 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
7354 #if defined(TARGET_ARM) || defined(TARGET_M68K)
7355 { "semihosting", 0, QEMU_OPTION_semihosting },
7356 #endif
7357 { "name", HAS_ARG, QEMU_OPTION_name },
7358 #if defined(TARGET_SPARC)
7359 { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
7360 #endif
7361 #if defined(TARGET_ARM)
7362 { "old-param", 0, QEMU_OPTION_old_param },
7363 #endif
7364 { "clock", HAS_ARG, QEMU_OPTION_clock },
7365 { "startdate", HAS_ARG, QEMU_OPTION_startdate },
7366 { NULL },
7369 /* password input */
7371 int qemu_key_check(BlockDriverState *bs, const char *name)
7373 char password[256];
7374 int i;
7376 if (!bdrv_is_encrypted(bs))
7377 return 0;
7379 term_printf("%s is encrypted.\n", name);
7380 for(i = 0; i < 3; i++) {
7381 monitor_readline("Password: ", 1, password, sizeof(password));
7382 if (bdrv_set_key(bs, password) == 0)
7383 return 0;
7384 term_printf("invalid password\n");
7386 return -EPERM;
7389 static BlockDriverState *get_bdrv(int index)
7391 BlockDriverState *bs;
7393 if (index < 4) {
7394 bs = bs_table[index];
7395 } else if (index < 6) {
7396 bs = fd_table[index - 4];
7397 } else {
7398 bs = NULL;
7400 return bs;
7403 static void read_passwords(void)
7405 BlockDriverState *bs;
7406 int i;
7408 for(i = 0; i < 6; i++) {
7409 bs = get_bdrv(i);
7410 if (bs)
7411 qemu_key_check(bs, bdrv_get_device_name(bs));
7415 /* XXX: currently we cannot use simultaneously different CPUs */
7416 static void register_machines(void)
7418 #if defined(TARGET_I386)
7419 qemu_register_machine(&pc_machine);
7420 qemu_register_machine(&isapc_machine);
7421 #elif defined(TARGET_PPC)
7422 qemu_register_machine(&heathrow_machine);
7423 qemu_register_machine(&core99_machine);
7424 qemu_register_machine(&prep_machine);
7425 qemu_register_machine(&ref405ep_machine);
7426 qemu_register_machine(&taihu_machine);
7427 #elif defined(TARGET_MIPS)
7428 qemu_register_machine(&mips_machine);
7429 qemu_register_machine(&mips_malta_machine);
7430 qemu_register_machine(&mips_pica61_machine);
7431 qemu_register_machine(&mips_mipssim_machine);
7432 #elif defined(TARGET_SPARC)
7433 #ifdef TARGET_SPARC64
7434 qemu_register_machine(&sun4u_machine);
7435 #else
7436 qemu_register_machine(&ss5_machine);
7437 qemu_register_machine(&ss10_machine);
7438 qemu_register_machine(&ss600mp_machine);
7439 #endif
7440 #elif defined(TARGET_ARM)
7441 qemu_register_machine(&integratorcp_machine);
7442 qemu_register_machine(&versatilepb_machine);
7443 qemu_register_machine(&versatileab_machine);
7444 qemu_register_machine(&realview_machine);
7445 qemu_register_machine(&akitapda_machine);
7446 qemu_register_machine(&spitzpda_machine);
7447 qemu_register_machine(&borzoipda_machine);
7448 qemu_register_machine(&terrierpda_machine);
7449 qemu_register_machine(&palmte_machine);
7450 qemu_register_machine(&lm3s811evb_machine);
7451 qemu_register_machine(&lm3s6965evb_machine);
7452 qemu_register_machine(&connex_machine);
7453 #elif defined(TARGET_SH4)
7454 qemu_register_machine(&shix_machine);
7455 qemu_register_machine(&r2d_machine);
7456 #elif defined(TARGET_ALPHA)
7457 /* XXX: TODO */
7458 #elif defined(TARGET_M68K)
7459 qemu_register_machine(&mcf5208evb_machine);
7460 qemu_register_machine(&an5206_machine);
7461 qemu_register_machine(&dummy_m68k_machine);
7462 #elif defined(TARGET_CRIS)
7463 qemu_register_machine(&bareetraxfs_machine);
7464 #else
7465 #error unsupported CPU
7466 #endif
7469 #ifdef HAS_AUDIO
7470 struct soundhw soundhw[] = {
7471 #ifdef HAS_AUDIO_CHOICE
7472 #ifdef TARGET_I386
7474 "pcspk",
7475 "PC speaker",
7478 { .init_isa = pcspk_audio_init }
7480 #endif
7482 "sb16",
7483 "Creative Sound Blaster 16",
7486 { .init_isa = SB16_init }
7489 #ifdef CONFIG_ADLIB
7491 "adlib",
7492 #ifdef HAS_YMF262
7493 "Yamaha YMF262 (OPL3)",
7494 #else
7495 "Yamaha YM3812 (OPL2)",
7496 #endif
7499 { .init_isa = Adlib_init }
7501 #endif
7503 #ifdef CONFIG_GUS
7505 "gus",
7506 "Gravis Ultrasound GF1",
7509 { .init_isa = GUS_init }
7511 #endif
7514 "es1370",
7515 "ENSONIQ AudioPCI ES1370",
7518 { .init_pci = es1370_init }
7520 #endif
7522 { NULL, NULL, 0, 0, { NULL } }
7525 static void select_soundhw (const char *optarg)
7527 struct soundhw *c;
7529 if (*optarg == '?') {
7530 show_valid_cards:
7532 printf ("Valid sound card names (comma separated):\n");
7533 for (c = soundhw; c->name; ++c) {
7534 printf ("%-11s %s\n", c->name, c->descr);
7536 printf ("\n-soundhw all will enable all of the above\n");
7537 exit (*optarg != '?');
7539 else {
7540 size_t l;
7541 const char *p;
7542 char *e;
7543 int bad_card = 0;
7545 if (!strcmp (optarg, "all")) {
7546 for (c = soundhw; c->name; ++c) {
7547 c->enabled = 1;
7549 return;
7552 p = optarg;
7553 while (*p) {
7554 e = strchr (p, ',');
7555 l = !e ? strlen (p) : (size_t) (e - p);
7557 for (c = soundhw; c->name; ++c) {
7558 if (!strncmp (c->name, p, l)) {
7559 c->enabled = 1;
7560 break;
7564 if (!c->name) {
7565 if (l > 80) {
7566 fprintf (stderr,
7567 "Unknown sound card name (too big to show)\n");
7569 else {
7570 fprintf (stderr, "Unknown sound card name `%.*s'\n",
7571 (int) l, p);
7573 bad_card = 1;
7575 p += l + (e != NULL);
7578 if (bad_card)
7579 goto show_valid_cards;
7582 #endif
7584 #ifdef _WIN32
7585 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
7587 exit(STATUS_CONTROL_C_EXIT);
7588 return TRUE;
7590 #endif
7592 #define MAX_NET_CLIENTS 32
7594 int main(int argc, char **argv)
7596 #ifdef CONFIG_GDBSTUB
7597 int use_gdbstub;
7598 const char *gdbstub_port;
7599 #endif
7600 uint32_t boot_devices_bitmap = 0;
7601 int i, cdrom_index, pflash_index;
7602 int snapshot, linux_boot, net_boot;
7603 const char *initrd_filename;
7604 const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
7605 const char *pflash_filename[MAX_PFLASH];
7606 const char *sd_filename;
7607 const char *mtd_filename;
7608 const char *kernel_filename, *kernel_cmdline;
7609 const char *boot_devices = "";
7610 DisplayState *ds = &display_state;
7611 int cyls, heads, secs, translation;
7612 char net_clients[MAX_NET_CLIENTS][256];
7613 int nb_net_clients;
7614 int optind;
7615 const char *r, *optarg;
7616 CharDriverState *monitor_hd;
7617 char monitor_device[128];
7618 char serial_devices[MAX_SERIAL_PORTS][128];
7619 int serial_device_index;
7620 char parallel_devices[MAX_PARALLEL_PORTS][128];
7621 int parallel_device_index;
7622 const char *loadvm = NULL;
7623 QEMUMachine *machine;
7624 const char *cpu_model;
7625 char usb_devices[MAX_USB_CMDLINE][128];
7626 int usb_devices_index;
7627 int fds[2];
7628 const char *pid_file = NULL;
7629 VLANState *vlan;
7631 LIST_INIT (&vm_change_state_head);
7632 #ifndef _WIN32
7634 struct sigaction act;
7635 sigfillset(&act.sa_mask);
7636 act.sa_flags = 0;
7637 act.sa_handler = SIG_IGN;
7638 sigaction(SIGPIPE, &act, NULL);
7640 #else
7641 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
7642 /* Note: cpu_interrupt() is currently not SMP safe, so we force
7643 QEMU to run on a single CPU */
7645 HANDLE h;
7646 DWORD mask, smask;
7647 int i;
7648 h = GetCurrentProcess();
7649 if (GetProcessAffinityMask(h, &mask, &smask)) {
7650 for(i = 0; i < 32; i++) {
7651 if (mask & (1 << i))
7652 break;
7654 if (i != 32) {
7655 mask = 1 << i;
7656 SetProcessAffinityMask(h, mask);
7660 #endif
7662 register_machines();
7663 machine = first_machine;
7664 cpu_model = NULL;
7665 initrd_filename = NULL;
7666 for(i = 0; i < MAX_FD; i++)
7667 fd_filename[i] = NULL;
7668 for(i = 0; i < MAX_DISKS; i++)
7669 hd_filename[i] = NULL;
7670 for(i = 0; i < MAX_PFLASH; i++)
7671 pflash_filename[i] = NULL;
7672 pflash_index = 0;
7673 sd_filename = NULL;
7674 mtd_filename = NULL;
7675 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
7676 vga_ram_size = VGA_RAM_SIZE;
7677 #ifdef CONFIG_GDBSTUB
7678 use_gdbstub = 0;
7679 gdbstub_port = DEFAULT_GDBSTUB_PORT;
7680 #endif
7681 snapshot = 0;
7682 nographic = 0;
7683 kernel_filename = NULL;
7684 kernel_cmdline = "";
7685 #ifdef TARGET_PPC
7686 cdrom_index = 1;
7687 #else
7688 cdrom_index = 2;
7689 #endif
7690 cyls = heads = secs = 0;
7691 translation = BIOS_ATA_TRANSLATION_AUTO;
7692 pstrcpy(monitor_device, sizeof(monitor_device), "vc");
7694 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "vc");
7695 for(i = 1; i < MAX_SERIAL_PORTS; i++)
7696 serial_devices[i][0] = '\0';
7697 serial_device_index = 0;
7699 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "vc");
7700 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
7701 parallel_devices[i][0] = '\0';
7702 parallel_device_index = 0;
7704 usb_devices_index = 0;
7706 nb_net_clients = 0;
7708 nb_nics = 0;
7709 /* default mac address of the first network interface */
7711 optind = 1;
7712 for(;;) {
7713 if (optind >= argc)
7714 break;
7715 r = argv[optind];
7716 if (r[0] != '-') {
7717 hd_filename[0] = argv[optind++];
7718 } else {
7719 const QEMUOption *popt;
7721 optind++;
7722 /* Treat --foo the same as -foo. */
7723 if (r[1] == '-')
7724 r++;
7725 popt = qemu_options;
7726 for(;;) {
7727 if (!popt->name) {
7728 fprintf(stderr, "%s: invalid option -- '%s'\n",
7729 argv[0], r);
7730 exit(1);
7732 if (!strcmp(popt->name, r + 1))
7733 break;
7734 popt++;
7736 if (popt->flags & HAS_ARG) {
7737 if (optind >= argc) {
7738 fprintf(stderr, "%s: option '%s' requires an argument\n",
7739 argv[0], r);
7740 exit(1);
7742 optarg = argv[optind++];
7743 } else {
7744 optarg = NULL;
7747 switch(popt->index) {
7748 case QEMU_OPTION_M:
7749 machine = find_machine(optarg);
7750 if (!machine) {
7751 QEMUMachine *m;
7752 printf("Supported machines are:\n");
7753 for(m = first_machine; m != NULL; m = m->next) {
7754 printf("%-10s %s%s\n",
7755 m->name, m->desc,
7756 m == first_machine ? " (default)" : "");
7758 exit(*optarg != '?');
7760 break;
7761 case QEMU_OPTION_cpu:
7762 /* hw initialization will check this */
7763 if (*optarg == '?') {
7764 /* XXX: implement xxx_cpu_list for targets that still miss it */
7765 #if defined(cpu_list)
7766 cpu_list(stdout, &fprintf);
7767 #endif
7768 exit(0);
7769 } else {
7770 cpu_model = optarg;
7772 break;
7773 case QEMU_OPTION_initrd:
7774 initrd_filename = optarg;
7775 break;
7776 case QEMU_OPTION_hda:
7777 case QEMU_OPTION_hdb:
7778 case QEMU_OPTION_hdc:
7779 case QEMU_OPTION_hdd:
7781 int hd_index;
7782 hd_index = popt->index - QEMU_OPTION_hda;
7783 hd_filename[hd_index] = optarg;
7784 if (hd_index == cdrom_index)
7785 cdrom_index = -1;
7787 break;
7788 case QEMU_OPTION_mtdblock:
7789 mtd_filename = optarg;
7790 break;
7791 case QEMU_OPTION_sd:
7792 sd_filename = optarg;
7793 break;
7794 case QEMU_OPTION_pflash:
7795 if (pflash_index >= MAX_PFLASH) {
7796 fprintf(stderr, "qemu: too many parallel flash images\n");
7797 exit(1);
7799 pflash_filename[pflash_index++] = optarg;
7800 break;
7801 case QEMU_OPTION_snapshot:
7802 snapshot = 1;
7803 break;
7804 case QEMU_OPTION_hdachs:
7806 const char *p;
7807 p = optarg;
7808 cyls = strtol(p, (char **)&p, 0);
7809 if (cyls < 1 || cyls > 16383)
7810 goto chs_fail;
7811 if (*p != ',')
7812 goto chs_fail;
7813 p++;
7814 heads = strtol(p, (char **)&p, 0);
7815 if (heads < 1 || heads > 16)
7816 goto chs_fail;
7817 if (*p != ',')
7818 goto chs_fail;
7819 p++;
7820 secs = strtol(p, (char **)&p, 0);
7821 if (secs < 1 || secs > 63)
7822 goto chs_fail;
7823 if (*p == ',') {
7824 p++;
7825 if (!strcmp(p, "none"))
7826 translation = BIOS_ATA_TRANSLATION_NONE;
7827 else if (!strcmp(p, "lba"))
7828 translation = BIOS_ATA_TRANSLATION_LBA;
7829 else if (!strcmp(p, "auto"))
7830 translation = BIOS_ATA_TRANSLATION_AUTO;
7831 else
7832 goto chs_fail;
7833 } else if (*p != '\0') {
7834 chs_fail:
7835 fprintf(stderr, "qemu: invalid physical CHS format\n");
7836 exit(1);
7839 break;
7840 case QEMU_OPTION_nographic:
7841 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "stdio");
7842 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "null");
7843 pstrcpy(monitor_device, sizeof(monitor_device), "stdio");
7844 nographic = 1;
7845 break;
7846 case QEMU_OPTION_portrait:
7847 graphic_rotate = 1;
7848 break;
7849 case QEMU_OPTION_kernel:
7850 kernel_filename = optarg;
7851 break;
7852 case QEMU_OPTION_append:
7853 kernel_cmdline = optarg;
7854 break;
7855 case QEMU_OPTION_cdrom:
7856 if (cdrom_index >= 0) {
7857 hd_filename[cdrom_index] = optarg;
7859 break;
7860 case QEMU_OPTION_boot:
7861 boot_devices = optarg;
7862 /* We just do some generic consistency checks */
7864 /* Could easily be extended to 64 devices if needed */
7865 const unsigned char *p;
7867 boot_devices_bitmap = 0;
7868 for (p = boot_devices; *p != '\0'; p++) {
7869 /* Allowed boot devices are:
7870 * a b : floppy disk drives
7871 * c ... f : IDE disk drives
7872 * g ... m : machine implementation dependant drives
7873 * n ... p : network devices
7874 * It's up to each machine implementation to check
7875 * if the given boot devices match the actual hardware
7876 * implementation and firmware features.
7878 if (*p < 'a' || *p > 'q') {
7879 fprintf(stderr, "Invalid boot device '%c'\n", *p);
7880 exit(1);
7882 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
7883 fprintf(stderr,
7884 "Boot device '%c' was given twice\n",*p);
7885 exit(1);
7887 boot_devices_bitmap |= 1 << (*p - 'a');
7890 break;
7891 case QEMU_OPTION_fda:
7892 fd_filename[0] = optarg;
7893 break;
7894 case QEMU_OPTION_fdb:
7895 fd_filename[1] = optarg;
7896 break;
7897 #ifdef TARGET_I386
7898 case QEMU_OPTION_no_fd_bootchk:
7899 fd_bootchk = 0;
7900 break;
7901 #endif
7902 case QEMU_OPTION_no_code_copy:
7903 code_copy_enabled = 0;
7904 break;
7905 case QEMU_OPTION_net:
7906 if (nb_net_clients >= MAX_NET_CLIENTS) {
7907 fprintf(stderr, "qemu: too many network clients\n");
7908 exit(1);
7910 pstrcpy(net_clients[nb_net_clients],
7911 sizeof(net_clients[0]),
7912 optarg);
7913 nb_net_clients++;
7914 break;
7915 #ifdef CONFIG_SLIRP
7916 case QEMU_OPTION_tftp:
7917 tftp_prefix = optarg;
7918 break;
7919 case QEMU_OPTION_bootp:
7920 bootp_filename = optarg;
7921 break;
7922 #ifndef _WIN32
7923 case QEMU_OPTION_smb:
7924 net_slirp_smb(optarg);
7925 break;
7926 #endif
7927 case QEMU_OPTION_redir:
7928 net_slirp_redir(optarg);
7929 break;
7930 #endif
7931 #ifdef HAS_AUDIO
7932 case QEMU_OPTION_audio_help:
7933 AUD_help ();
7934 exit (0);
7935 break;
7936 case QEMU_OPTION_soundhw:
7937 select_soundhw (optarg);
7938 break;
7939 #endif
7940 case QEMU_OPTION_h:
7941 help(0);
7942 break;
7943 case QEMU_OPTION_m:
7944 ram_size = atoi(optarg) * 1024 * 1024;
7945 if (ram_size <= 0)
7946 help(1);
7947 if (ram_size > PHYS_RAM_MAX_SIZE) {
7948 fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
7949 PHYS_RAM_MAX_SIZE / (1024 * 1024));
7950 exit(1);
7952 break;
7953 case QEMU_OPTION_d:
7955 int mask;
7956 CPULogItem *item;
7958 mask = cpu_str_to_log_mask(optarg);
7959 if (!mask) {
7960 printf("Log items (comma separated):\n");
7961 for(item = cpu_log_items; item->mask != 0; item++) {
7962 printf("%-10s %s\n", item->name, item->help);
7964 exit(1);
7966 cpu_set_log(mask);
7968 break;
7969 #ifdef CONFIG_GDBSTUB
7970 case QEMU_OPTION_s:
7971 use_gdbstub = 1;
7972 break;
7973 case QEMU_OPTION_p:
7974 gdbstub_port = optarg;
7975 break;
7976 #endif
7977 case QEMU_OPTION_L:
7978 bios_dir = optarg;
7979 break;
7980 case QEMU_OPTION_bios:
7981 bios_name = optarg;
7982 break;
7983 case QEMU_OPTION_S:
7984 autostart = 0;
7985 break;
7986 case QEMU_OPTION_k:
7987 keyboard_layout = optarg;
7988 break;
7989 case QEMU_OPTION_localtime:
7990 rtc_utc = 0;
7991 break;
7992 case QEMU_OPTION_cirrusvga:
7993 cirrus_vga_enabled = 1;
7994 vmsvga_enabled = 0;
7995 break;
7996 case QEMU_OPTION_vmsvga:
7997 cirrus_vga_enabled = 0;
7998 vmsvga_enabled = 1;
7999 break;
8000 case QEMU_OPTION_std_vga:
8001 cirrus_vga_enabled = 0;
8002 vmsvga_enabled = 0;
8003 break;
8004 case QEMU_OPTION_g:
8006 const char *p;
8007 int w, h, depth;
8008 p = optarg;
8009 w = strtol(p, (char **)&p, 10);
8010 if (w <= 0) {
8011 graphic_error:
8012 fprintf(stderr, "qemu: invalid resolution or depth\n");
8013 exit(1);
8015 if (*p != 'x')
8016 goto graphic_error;
8017 p++;
8018 h = strtol(p, (char **)&p, 10);
8019 if (h <= 0)
8020 goto graphic_error;
8021 if (*p == 'x') {
8022 p++;
8023 depth = strtol(p, (char **)&p, 10);
8024 if (depth != 8 && depth != 15 && depth != 16 &&
8025 depth != 24 && depth != 32)
8026 goto graphic_error;
8027 } else if (*p == '\0') {
8028 depth = graphic_depth;
8029 } else {
8030 goto graphic_error;
8033 graphic_width = w;
8034 graphic_height = h;
8035 graphic_depth = depth;
8037 break;
8038 case QEMU_OPTION_echr:
8040 char *r;
8041 term_escape_char = strtol(optarg, &r, 0);
8042 if (r == optarg)
8043 printf("Bad argument to echr\n");
8044 break;
8046 case QEMU_OPTION_monitor:
8047 pstrcpy(monitor_device, sizeof(monitor_device), optarg);
8048 break;
8049 case QEMU_OPTION_serial:
8050 if (serial_device_index >= MAX_SERIAL_PORTS) {
8051 fprintf(stderr, "qemu: too many serial ports\n");
8052 exit(1);
8054 pstrcpy(serial_devices[serial_device_index],
8055 sizeof(serial_devices[0]), optarg);
8056 serial_device_index++;
8057 break;
8058 case QEMU_OPTION_parallel:
8059 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
8060 fprintf(stderr, "qemu: too many parallel ports\n");
8061 exit(1);
8063 pstrcpy(parallel_devices[parallel_device_index],
8064 sizeof(parallel_devices[0]), optarg);
8065 parallel_device_index++;
8066 break;
8067 case QEMU_OPTION_loadvm:
8068 loadvm = optarg;
8069 break;
8070 case QEMU_OPTION_full_screen:
8071 full_screen = 1;
8072 break;
8073 #ifdef CONFIG_SDL
8074 case QEMU_OPTION_no_frame:
8075 no_frame = 1;
8076 break;
8077 case QEMU_OPTION_alt_grab:
8078 alt_grab = 1;
8079 break;
8080 case QEMU_OPTION_no_quit:
8081 no_quit = 1;
8082 break;
8083 #endif
8084 case QEMU_OPTION_pidfile:
8085 pid_file = optarg;
8086 break;
8087 #ifdef TARGET_I386
8088 case QEMU_OPTION_win2k_hack:
8089 win2k_install_hack = 1;
8090 break;
8091 #endif
8092 #ifdef USE_KQEMU
8093 case QEMU_OPTION_no_kqemu:
8094 kqemu_allowed = 0;
8095 break;
8096 case QEMU_OPTION_kernel_kqemu:
8097 kqemu_allowed = 2;
8098 break;
8099 #endif
8100 case QEMU_OPTION_usb:
8101 usb_enabled = 1;
8102 break;
8103 case QEMU_OPTION_usbdevice:
8104 usb_enabled = 1;
8105 if (usb_devices_index >= MAX_USB_CMDLINE) {
8106 fprintf(stderr, "Too many USB devices\n");
8107 exit(1);
8109 pstrcpy(usb_devices[usb_devices_index],
8110 sizeof(usb_devices[usb_devices_index]),
8111 optarg);
8112 usb_devices_index++;
8113 break;
8114 case QEMU_OPTION_smp:
8115 smp_cpus = atoi(optarg);
8116 if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
8117 fprintf(stderr, "Invalid number of CPUs\n");
8118 exit(1);
8120 break;
8121 case QEMU_OPTION_vnc:
8122 vnc_display = optarg;
8123 break;
8124 case QEMU_OPTION_no_acpi:
8125 acpi_enabled = 0;
8126 break;
8127 case QEMU_OPTION_no_reboot:
8128 no_reboot = 1;
8129 break;
8130 case QEMU_OPTION_show_cursor:
8131 cursor_hide = 0;
8132 break;
8133 case QEMU_OPTION_daemonize:
8134 daemonize = 1;
8135 break;
8136 case QEMU_OPTION_option_rom:
8137 if (nb_option_roms >= MAX_OPTION_ROMS) {
8138 fprintf(stderr, "Too many option ROMs\n");
8139 exit(1);
8141 option_rom[nb_option_roms] = optarg;
8142 nb_option_roms++;
8143 break;
8144 case QEMU_OPTION_semihosting:
8145 semihosting_enabled = 1;
8146 break;
8147 case QEMU_OPTION_name:
8148 qemu_name = optarg;
8149 break;
8150 #ifdef TARGET_SPARC
8151 case QEMU_OPTION_prom_env:
8152 if (nb_prom_envs >= MAX_PROM_ENVS) {
8153 fprintf(stderr, "Too many prom variables\n");
8154 exit(1);
8156 prom_envs[nb_prom_envs] = optarg;
8157 nb_prom_envs++;
8158 break;
8159 #endif
8160 #ifdef TARGET_ARM
8161 case QEMU_OPTION_old_param:
8162 old_param = 1;
8163 #endif
8164 case QEMU_OPTION_clock:
8165 configure_alarms(optarg);
8166 break;
8167 case QEMU_OPTION_startdate:
8169 struct tm tm;
8170 if (!strcmp(optarg, "now")) {
8171 rtc_start_date = -1;
8172 } else {
8173 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
8174 &tm.tm_year,
8175 &tm.tm_mon,
8176 &tm.tm_mday,
8177 &tm.tm_hour,
8178 &tm.tm_min,
8179 &tm.tm_sec) == 6) {
8180 /* OK */
8181 } else if (sscanf(optarg, "%d-%d-%d",
8182 &tm.tm_year,
8183 &tm.tm_mon,
8184 &tm.tm_mday) == 3) {
8185 tm.tm_hour = 0;
8186 tm.tm_min = 0;
8187 tm.tm_sec = 0;
8188 } else {
8189 goto date_fail;
8191 tm.tm_year -= 1900;
8192 tm.tm_mon--;
8193 rtc_start_date = mktimegm(&tm);
8194 if (rtc_start_date == -1) {
8195 date_fail:
8196 fprintf(stderr, "Invalid date format. Valid format are:\n"
8197 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
8198 exit(1);
8202 break;
8207 #ifndef _WIN32
8208 if (daemonize && !nographic && vnc_display == NULL) {
8209 fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
8210 daemonize = 0;
8213 if (daemonize) {
8214 pid_t pid;
8216 if (pipe(fds) == -1)
8217 exit(1);
8219 pid = fork();
8220 if (pid > 0) {
8221 uint8_t status;
8222 ssize_t len;
8224 close(fds[1]);
8226 again:
8227 len = read(fds[0], &status, 1);
8228 if (len == -1 && (errno == EINTR))
8229 goto again;
8231 if (len != 1)
8232 exit(1);
8233 else if (status == 1) {
8234 fprintf(stderr, "Could not acquire pidfile\n");
8235 exit(1);
8236 } else
8237 exit(0);
8238 } else if (pid < 0)
8239 exit(1);
8241 setsid();
8243 pid = fork();
8244 if (pid > 0)
8245 exit(0);
8246 else if (pid < 0)
8247 exit(1);
8249 umask(027);
8250 chdir("/");
8252 signal(SIGTSTP, SIG_IGN);
8253 signal(SIGTTOU, SIG_IGN);
8254 signal(SIGTTIN, SIG_IGN);
8256 #endif
8258 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
8259 if (daemonize) {
8260 uint8_t status = 1;
8261 write(fds[1], &status, 1);
8262 } else
8263 fprintf(stderr, "Could not acquire pid file\n");
8264 exit(1);
8267 #ifdef USE_KQEMU
8268 if (smp_cpus > 1)
8269 kqemu_allowed = 0;
8270 #endif
8271 linux_boot = (kernel_filename != NULL);
8272 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
8274 /* XXX: this should not be: some embedded targets just have flash */
8275 if (!linux_boot && net_boot == 0 &&
8276 hd_filename[0] == NULL &&
8277 (cdrom_index >= 0 && hd_filename[cdrom_index] == NULL) &&
8278 fd_filename[0] == NULL &&
8279 pflash_filename[0] == NULL)
8280 help(1);
8282 /* boot to floppy or the default cd if no hard disk defined yet */
8283 if (!boot_devices[0]) {
8284 if (hd_filename[0] != NULL)
8285 boot_devices = "c";
8286 else if (fd_filename[0] != NULL)
8287 boot_devices = "a";
8288 else
8289 boot_devices = "d";
8291 setvbuf(stdout, NULL, _IOLBF, 0);
8293 init_timers();
8294 init_timer_alarm();
8295 qemu_aio_init();
8297 #ifdef _WIN32
8298 socket_init();
8299 #endif
8301 /* init network clients */
8302 if (nb_net_clients == 0) {
8303 /* if no clients, we use a default config */
8304 pstrcpy(net_clients[0], sizeof(net_clients[0]),
8305 "nic");
8306 pstrcpy(net_clients[1], sizeof(net_clients[0]),
8307 "user");
8308 nb_net_clients = 2;
8311 for(i = 0;i < nb_net_clients; i++) {
8312 if (net_client_init(net_clients[i]) < 0)
8313 exit(1);
8315 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8316 if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
8317 continue;
8318 if (vlan->nb_guest_devs == 0) {
8319 fprintf(stderr, "Invalid vlan (%d) with no nics\n", vlan->id);
8320 exit(1);
8322 if (vlan->nb_host_devs == 0)
8323 fprintf(stderr,
8324 "Warning: vlan %d is not connected to host network\n",
8325 vlan->id);
8328 #ifdef TARGET_I386
8329 /* XXX: this should be moved in the PC machine instanciation code */
8330 if (net_boot != 0) {
8331 int netroms = 0;
8332 for (i = 0; i < nb_nics && i < 4; i++) {
8333 const char *model = nd_table[i].model;
8334 char buf[1024];
8335 if (net_boot & (1 << i)) {
8336 if (model == NULL)
8337 model = "ne2k_pci";
8338 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
8339 if (get_image_size(buf) > 0) {
8340 if (nb_option_roms >= MAX_OPTION_ROMS) {
8341 fprintf(stderr, "Too many option ROMs\n");
8342 exit(1);
8344 option_rom[nb_option_roms] = strdup(buf);
8345 nb_option_roms++;
8346 netroms++;
8350 if (netroms == 0) {
8351 fprintf(stderr, "No valid PXE rom found for network device\n");
8352 exit(1);
8355 #endif
8357 /* init the memory */
8358 phys_ram_size = ram_size + vga_ram_size + MAX_BIOS_SIZE;
8360 phys_ram_base = qemu_vmalloc(phys_ram_size);
8361 if (!phys_ram_base) {
8362 fprintf(stderr, "Could not allocate physical memory\n");
8363 exit(1);
8366 /* we always create the cdrom drive, even if no disk is there */
8367 bdrv_init();
8368 if (cdrom_index >= 0) {
8369 bs_table[cdrom_index] = bdrv_new("cdrom");
8370 bdrv_set_type_hint(bs_table[cdrom_index], BDRV_TYPE_CDROM);
8373 /* open the virtual block devices */
8374 for(i = 0; i < MAX_DISKS; i++) {
8375 if (hd_filename[i]) {
8376 if (!bs_table[i]) {
8377 char buf[64];
8378 snprintf(buf, sizeof(buf), "hd%c", i + 'a');
8379 bs_table[i] = bdrv_new(buf);
8381 if (bdrv_open(bs_table[i], hd_filename[i], snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8382 fprintf(stderr, "qemu: could not open hard disk image '%s'\n",
8383 hd_filename[i]);
8384 exit(1);
8386 if (i == 0 && cyls != 0) {
8387 bdrv_set_geometry_hint(bs_table[i], cyls, heads, secs);
8388 bdrv_set_translation_hint(bs_table[i], translation);
8393 /* we always create at least one floppy disk */
8394 fd_table[0] = bdrv_new("fda");
8395 bdrv_set_type_hint(fd_table[0], BDRV_TYPE_FLOPPY);
8397 for(i = 0; i < MAX_FD; i++) {
8398 if (fd_filename[i]) {
8399 if (!fd_table[i]) {
8400 char buf[64];
8401 snprintf(buf, sizeof(buf), "fd%c", i + 'a');
8402 fd_table[i] = bdrv_new(buf);
8403 bdrv_set_type_hint(fd_table[i], BDRV_TYPE_FLOPPY);
8405 if (fd_filename[i][0] != '\0') {
8406 if (bdrv_open(fd_table[i], fd_filename[i],
8407 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8408 fprintf(stderr, "qemu: could not open floppy disk image '%s'\n",
8409 fd_filename[i]);
8410 exit(1);
8416 /* Open the virtual parallel flash block devices */
8417 for(i = 0; i < MAX_PFLASH; i++) {
8418 if (pflash_filename[i]) {
8419 if (!pflash_table[i]) {
8420 char buf[64];
8421 snprintf(buf, sizeof(buf), "fl%c", i + 'a');
8422 pflash_table[i] = bdrv_new(buf);
8424 if (bdrv_open(pflash_table[i], pflash_filename[i],
8425 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8426 fprintf(stderr, "qemu: could not open flash image '%s'\n",
8427 pflash_filename[i]);
8428 exit(1);
8433 sd_bdrv = bdrv_new ("sd");
8434 /* FIXME: This isn't really a floppy, but it's a reasonable
8435 approximation. */
8436 bdrv_set_type_hint(sd_bdrv, BDRV_TYPE_FLOPPY);
8437 if (sd_filename) {
8438 if (bdrv_open(sd_bdrv, sd_filename,
8439 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8440 fprintf(stderr, "qemu: could not open SD card image %s\n",
8441 sd_filename);
8442 } else
8443 qemu_key_check(sd_bdrv, sd_filename);
8446 if (mtd_filename) {
8447 mtd_bdrv = bdrv_new ("mtd");
8448 if (bdrv_open(mtd_bdrv, mtd_filename,
8449 snapshot ? BDRV_O_SNAPSHOT : 0) < 0 ||
8450 qemu_key_check(mtd_bdrv, mtd_filename)) {
8451 fprintf(stderr, "qemu: could not open Flash image %s\n",
8452 mtd_filename);
8453 bdrv_delete(mtd_bdrv);
8454 mtd_bdrv = 0;
8458 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
8459 register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
8461 init_ioports();
8463 /* terminal init */
8464 memset(&display_state, 0, sizeof(display_state));
8465 if (nographic) {
8466 /* nearly nothing to do */
8467 dumb_display_init(ds);
8468 } else if (vnc_display != NULL) {
8469 vnc_display_init(ds);
8470 if (vnc_display_open(ds, vnc_display) < 0)
8471 exit(1);
8472 } else {
8473 #if defined(CONFIG_SDL)
8474 sdl_display_init(ds, full_screen, no_frame);
8475 #elif defined(CONFIG_COCOA)
8476 cocoa_display_init(ds, full_screen);
8477 #else
8478 dumb_display_init(ds);
8479 #endif
8482 /* Maintain compatibility with multiple stdio monitors */
8483 if (!strcmp(monitor_device,"stdio")) {
8484 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
8485 if (!strcmp(serial_devices[i],"mon:stdio")) {
8486 monitor_device[0] = '\0';
8487 break;
8488 } else if (!strcmp(serial_devices[i],"stdio")) {
8489 monitor_device[0] = '\0';
8490 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "mon:stdio");
8491 break;
8495 if (monitor_device[0] != '\0') {
8496 monitor_hd = qemu_chr_open(monitor_device);
8497 if (!monitor_hd) {
8498 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
8499 exit(1);
8501 monitor_init(monitor_hd, !nographic);
8504 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
8505 const char *devname = serial_devices[i];
8506 if (devname[0] != '\0' && strcmp(devname, "none")) {
8507 serial_hds[i] = qemu_chr_open(devname);
8508 if (!serial_hds[i]) {
8509 fprintf(stderr, "qemu: could not open serial device '%s'\n",
8510 devname);
8511 exit(1);
8513 if (strstart(devname, "vc", 0))
8514 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
8518 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
8519 const char *devname = parallel_devices[i];
8520 if (devname[0] != '\0' && strcmp(devname, "none")) {
8521 parallel_hds[i] = qemu_chr_open(devname);
8522 if (!parallel_hds[i]) {
8523 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
8524 devname);
8525 exit(1);
8527 if (strstart(devname, "vc", 0))
8528 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
8532 machine->init(ram_size, vga_ram_size, boot_devices, ds,
8533 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
8535 /* init USB devices */
8536 if (usb_enabled) {
8537 for(i = 0; i < usb_devices_index; i++) {
8538 if (usb_device_add(usb_devices[i]) < 0) {
8539 fprintf(stderr, "Warning: could not add USB device %s\n",
8540 usb_devices[i]);
8545 if (display_state.dpy_refresh) {
8546 display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
8547 qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
8550 #ifdef CONFIG_GDBSTUB
8551 if (use_gdbstub) {
8552 /* XXX: use standard host:port notation and modify options
8553 accordingly. */
8554 if (gdbserver_start(gdbstub_port) < 0) {
8555 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
8556 gdbstub_port);
8557 exit(1);
8560 #endif
8562 if (loadvm)
8563 do_loadvm(loadvm);
8566 /* XXX: simplify init */
8567 read_passwords();
8568 if (autostart) {
8569 vm_start();
8573 if (daemonize) {
8574 uint8_t status = 0;
8575 ssize_t len;
8576 int fd;
8578 again1:
8579 len = write(fds[1], &status, 1);
8580 if (len == -1 && (errno == EINTR))
8581 goto again1;
8583 if (len != 1)
8584 exit(1);
8586 TFR(fd = open("/dev/null", O_RDWR));
8587 if (fd == -1)
8588 exit(1);
8590 dup2(fd, 0);
8591 dup2(fd, 1);
8592 dup2(fd, 2);
8594 close(fd);
8597 main_loop();
8598 quit_timers();
8600 #if !defined(_WIN32)
8601 /* close network clients */
8602 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8603 VLANClientState *vc;
8605 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
8606 if (vc->fd_read == tap_receive) {
8607 char ifname[64];
8608 TAPState *s = vc->opaque;
8610 if (sscanf(vc->info_str, "tap: ifname=%63s ", ifname) == 1 &&
8611 s->down_script[0])
8612 launch_script(s->down_script, ifname, s->fd);
8616 #endif
8617 return 0;