Partial SD card SPI mode support.
[qemu/mini2440.git] / hw / slavio_timer.c
bloba81b34ff59c879d41c0ea5089f271c2e8ebf95cd
1 /*
2 * QEMU Sparc SLAVIO timer controller emulation
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "sun4m.h"
26 #include "qemu-timer.h"
28 //#define DEBUG_TIMER
30 #ifdef DEBUG_TIMER
31 #define DPRINTF(fmt, args...) \
32 do { printf("TIMER: " fmt , ##args); } while (0)
33 #else
34 #define DPRINTF(fmt, args...)
35 #endif
38 * Registers of hardware timer in sun4m.
40 * This is the timer/counter part of chip STP2001 (Slave I/O), also
41 * produced as NCR89C105. See
42 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
44 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
45 * are zero. Bit 31 is 1 when count has been reached.
47 * Per-CPU timers interrupt local CPU, system timer uses normal
48 * interrupt routing.
52 #define MAX_CPUS 16
54 typedef struct SLAVIO_TIMERState {
55 qemu_irq irq;
56 ptimer_state *timer;
57 uint32_t count, counthigh, reached;
58 uint64_t limit;
59 // processor only
60 int running;
61 struct SLAVIO_TIMERState *master;
62 int slave_index;
63 // system only
64 struct SLAVIO_TIMERState *slave[MAX_CPUS];
65 uint32_t slave_mode;
66 } SLAVIO_TIMERState;
68 #define TIMER_MAXADDR 0x1f
69 #define SYS_TIMER_SIZE 0x14
70 #define CPU_TIMER_SIZE 0x10
72 static int slavio_timer_is_user(SLAVIO_TIMERState *s)
74 return s->master && (s->master->slave_mode & (1 << s->slave_index));
77 // Update count, set irq, update expire_time
78 // Convert from ptimer countdown units
79 static void slavio_timer_get_out(SLAVIO_TIMERState *s)
81 uint64_t count;
83 count = s->limit - (ptimer_get_count(s->timer) << 9);
84 DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", s->limit, s->counthigh,
85 s->count);
86 s->count = count & 0xfffffe00;
87 s->counthigh = count >> 32;
90 // timer callback
91 static void slavio_timer_irq(void *opaque)
93 SLAVIO_TIMERState *s = opaque;
95 slavio_timer_get_out(s);
96 DPRINTF("callback: count %x%08x\n", s->counthigh, s->count);
97 if (!slavio_timer_is_user(s)) {
98 s->reached = 0x80000000;
99 qemu_irq_raise(s->irq);
103 static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
105 SLAVIO_TIMERState *s = opaque;
106 uint32_t saddr, ret;
108 saddr = (addr & TIMER_MAXADDR) >> 2;
109 switch (saddr) {
110 case 0:
111 // read limit (system counter mode) or read most signifying
112 // part of counter (user mode)
113 if (slavio_timer_is_user(s)) {
114 // read user timer MSW
115 slavio_timer_get_out(s);
116 ret = s->counthigh;
117 } else {
118 // read limit
119 // clear irq
120 qemu_irq_lower(s->irq);
121 s->reached = 0;
122 ret = s->limit & 0x7fffffff;
124 break;
125 case 1:
126 // read counter and reached bit (system mode) or read lsbits
127 // of counter (user mode)
128 slavio_timer_get_out(s);
129 if (slavio_timer_is_user(s)) // read user timer LSW
130 ret = s->count & 0xfffffe00;
131 else // read limit
132 ret = (s->count & 0x7ffffe00) | s->reached;
133 break;
134 case 3:
135 // only available in processor counter/timer
136 // read start/stop status
137 ret = s->running;
138 break;
139 case 4:
140 // only available in system counter
141 // read user/system mode
142 ret = s->slave_mode;
143 break;
144 default:
145 DPRINTF("invalid read address " TARGET_FMT_plx "\n", addr);
146 ret = 0;
147 break;
149 DPRINTF("read " TARGET_FMT_plx " = %08x\n", addr, ret);
151 return ret;
154 static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
156 SLAVIO_TIMERState *s = opaque;
157 uint32_t saddr;
158 int reload = 0;
160 DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val);
161 saddr = (addr & TIMER_MAXADDR) >> 2;
162 switch (saddr) {
163 case 0:
164 if (slavio_timer_is_user(s)) {
165 // set user counter MSW, reset counter
166 qemu_irq_lower(s->irq);
167 s->limit = 0x7ffffffffffffe00ULL;
168 DPRINTF("processor %d user timer reset\n", s->slave_index);
169 ptimer_set_limit(s->timer, s->limit >> 9, 1);
170 } else {
171 // set limit, reset counter
172 qemu_irq_lower(s->irq);
173 s->limit = val & 0x7ffffe00ULL;
174 if (!s->limit)
175 s->limit = 0x7ffffe00ULL;
176 ptimer_set_limit(s->timer, s->limit >> 9, 1);
178 break;
179 case 1:
180 if (slavio_timer_is_user(s)) {
181 // set user counter LSW, reset counter
182 qemu_irq_lower(s->irq);
183 s->limit = 0x7ffffffffffffe00ULL;
184 DPRINTF("processor %d user timer reset\n", s->slave_index);
185 ptimer_set_limit(s->timer, s->limit >> 9, 1);
186 } else
187 DPRINTF("not user timer\n");
188 break;
189 case 2:
190 // set limit without resetting counter
191 s->limit = val & 0x7ffffe00ULL;
192 if (!s->limit)
193 s->limit = 0x7ffffe00ULL;
194 ptimer_set_limit(s->timer, s->limit >> 9, reload);
195 break;
196 case 3:
197 if (slavio_timer_is_user(s)) {
198 // start/stop user counter
199 if ((val & 1) && !s->running) {
200 DPRINTF("processor %d user timer started\n", s->slave_index);
201 ptimer_run(s->timer, 0);
202 s->running = 1;
203 } else if (!(val & 1) && s->running) {
204 DPRINTF("processor %d user timer stopped\n", s->slave_index);
205 ptimer_stop(s->timer);
206 s->running = 0;
209 break;
210 case 4:
211 if (s->master == NULL) {
212 unsigned int i;
214 for (i = 0; i < MAX_CPUS; i++) {
215 if (val & (1 << i)) {
216 qemu_irq_lower(s->slave[i]->irq);
217 s->slave[i]->limit = -1ULL;
219 if ((val & (1 << i)) != (s->slave_mode & (1 << i))) {
220 ptimer_stop(s->slave[i]->timer);
221 ptimer_set_limit(s->slave[i]->timer, s->slave[i]->limit >> 9, 1);
222 DPRINTF("processor %d timer changed\n", s->slave[i]->slave_index);
223 ptimer_run(s->slave[i]->timer, 0);
226 s->slave_mode = val & ((1 << MAX_CPUS) - 1);
227 } else
228 DPRINTF("not system timer\n");
229 break;
230 default:
231 DPRINTF("invalid write address " TARGET_FMT_plx "\n", addr);
232 break;
236 static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
237 slavio_timer_mem_readl,
238 slavio_timer_mem_readl,
239 slavio_timer_mem_readl,
242 static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
243 slavio_timer_mem_writel,
244 slavio_timer_mem_writel,
245 slavio_timer_mem_writel,
248 static void slavio_timer_save(QEMUFile *f, void *opaque)
250 SLAVIO_TIMERState *s = opaque;
252 qemu_put_be64s(f, &s->limit);
253 qemu_put_be32s(f, &s->count);
254 qemu_put_be32s(f, &s->counthigh);
255 qemu_put_be32(f, 0); // Was irq
256 qemu_put_be32s(f, &s->reached);
257 qemu_put_be32s(f, &s->running);
258 qemu_put_be32s(f, 0); // Was mode
259 qemu_put_ptimer(f, s->timer);
262 static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
264 SLAVIO_TIMERState *s = opaque;
265 uint32_t tmp;
267 if (version_id != 2)
268 return -EINVAL;
270 qemu_get_be64s(f, &s->limit);
271 qemu_get_be32s(f, &s->count);
272 qemu_get_be32s(f, &s->counthigh);
273 qemu_get_be32s(f, &tmp); // Was irq
274 qemu_get_be32s(f, &s->reached);
275 qemu_get_be32s(f, &s->running);
276 qemu_get_be32s(f, &tmp); // Was mode
277 qemu_get_ptimer(f, s->timer);
279 return 0;
282 static void slavio_timer_reset(void *opaque)
284 SLAVIO_TIMERState *s = opaque;
286 if (slavio_timer_is_user(s))
287 s->limit = 0x7ffffffffffffe00ULL;
288 else
289 s->limit = 0x7ffffe00ULL;
290 s->count = 0;
291 s->reached = 0;
292 ptimer_set_limit(s->timer, s->limit >> 9, 1);
293 ptimer_run(s->timer, 0);
294 s->running = 1;
295 qemu_irq_lower(s->irq);
298 static SLAVIO_TIMERState *slavio_timer_init(target_phys_addr_t addr,
299 qemu_irq irq,
300 SLAVIO_TIMERState *master,
301 int slave_index)
303 int slavio_timer_io_memory;
304 SLAVIO_TIMERState *s;
305 QEMUBH *bh;
307 s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
308 if (!s)
309 return s;
310 s->irq = irq;
311 s->master = master;
312 s->slave_index = slave_index;
313 bh = qemu_bh_new(slavio_timer_irq, s);
314 s->timer = ptimer_init(bh);
315 ptimer_set_period(s->timer, 500ULL);
317 slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
318 slavio_timer_mem_write, s);
319 if (master)
320 cpu_register_physical_memory(addr, CPU_TIMER_SIZE, slavio_timer_io_memory);
321 else
322 cpu_register_physical_memory(addr, SYS_TIMER_SIZE, slavio_timer_io_memory);
323 register_savevm("slavio_timer", addr, 2, slavio_timer_save, slavio_timer_load, s);
324 qemu_register_reset(slavio_timer_reset, s);
325 slavio_timer_reset(s);
327 return s;
330 void slavio_timer_init_all(target_phys_addr_t base, qemu_irq master_irq,
331 qemu_irq *cpu_irqs)
333 SLAVIO_TIMERState *master;
334 unsigned int i;
336 master = slavio_timer_init(base + 0x10000ULL, master_irq, NULL, 0);
338 for (i = 0; i < MAX_CPUS; i++) {
339 master->slave[i] = slavio_timer_init(base + (target_phys_addr_t)
340 (i * TARGET_PAGE_SIZE),
341 cpu_irqs[i], master, i);