Partial SD card SPI mode support.
[qemu/mini2440.git] / hw / mips_malta.c
blob4d95fbfbffed429a9431fd61f448a68e7ce3c3c9
1 /*
2 * QEMU Malta board support
4 * Copyright (c) 2006 Aurelien Jarno
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "hw.h"
26 #include "pc.h"
27 #include "net.h"
28 #include "boards.h"
29 #include "smbus.h"
30 #include "mips.h"
31 #include "pci.h"
32 #include "qemu-char.h"
33 #include "sysemu.h"
34 #include "audio/audio.h"
35 #include "boards.h"
37 #ifdef TARGET_WORDS_BIGENDIAN
38 #define BIOS_FILENAME "mips_bios.bin"
39 #else
40 #define BIOS_FILENAME "mipsel_bios.bin"
41 #endif
43 #ifdef TARGET_MIPS64
44 #define PHYS_TO_VIRT(x) ((x) | ~0x7fffffffULL)
45 #else
46 #define PHYS_TO_VIRT(x) ((x) | ~0x7fffffffU)
47 #endif
49 #define ENVP_ADDR (int32_t)0x80002000
50 #define VIRT_TO_PHYS_ADDEND (-((int64_t)(int32_t)0x80000000))
52 #define ENVP_NB_ENTRIES 16
53 #define ENVP_ENTRY_SIZE 256
55 extern FILE *logfile;
57 typedef struct {
58 uint32_t leds;
59 uint32_t brk;
60 uint32_t gpout;
61 uint32_t i2cin;
62 uint32_t i2coe;
63 uint32_t i2cout;
64 uint32_t i2csel;
65 CharDriverState *display;
66 char display_text[9];
67 SerialState *uart;
68 } MaltaFPGAState;
70 static PITState *pit;
72 static struct _loaderparams {
73 int ram_size;
74 const char *kernel_filename;
75 const char *kernel_cmdline;
76 const char *initrd_filename;
77 } loaderparams;
79 /* Malta FPGA */
80 static void malta_fpga_update_display(void *opaque)
82 char leds_text[9];
83 int i;
84 MaltaFPGAState *s = opaque;
86 for (i = 7 ; i >= 0 ; i--) {
87 if (s->leds & (1 << i))
88 leds_text[i] = '#';
89 else
90 leds_text[i] = ' ';
92 leds_text[8] = '\0';
94 qemu_chr_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
95 qemu_chr_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
99 * EEPROM 24C01 / 24C02 emulation.
101 * Emulation for serial EEPROMs:
102 * 24C01 - 1024 bit (128 x 8)
103 * 24C02 - 2048 bit (256 x 8)
105 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
108 //~ #define DEBUG
110 #if defined(DEBUG)
111 # define logout(fmt, args...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ##args)
112 #else
113 # define logout(fmt, args...) ((void)0)
114 #endif
116 struct _eeprom24c0x_t {
117 uint8_t tick;
118 uint8_t address;
119 uint8_t command;
120 uint8_t ack;
121 uint8_t scl;
122 uint8_t sda;
123 uint8_t data;
124 //~ uint16_t size;
125 uint8_t contents[256];
128 typedef struct _eeprom24c0x_t eeprom24c0x_t;
130 static eeprom24c0x_t eeprom = {
131 contents: {
132 /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
133 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
134 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
135 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
136 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
137 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
138 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
139 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
140 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
141 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
142 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
143 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
144 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
145 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
146 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
147 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
151 static uint8_t eeprom24c0x_read()
153 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
154 eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
155 return eeprom.sda;
158 static void eeprom24c0x_write(int scl, int sda)
160 if (eeprom.scl && scl && (eeprom.sda != sda)) {
161 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
162 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
163 if (!sda) {
164 eeprom.tick = 1;
165 eeprom.command = 0;
167 } else if (eeprom.tick == 0 && !eeprom.ack) {
168 /* Waiting for start. */
169 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
170 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
171 } else if (!eeprom.scl && scl) {
172 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
173 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
174 if (eeprom.ack) {
175 logout("\ti2c ack bit = 0\n");
176 sda = 0;
177 eeprom.ack = 0;
178 } else if (eeprom.sda == sda) {
179 uint8_t bit = (sda != 0);
180 logout("\ti2c bit = %d\n", bit);
181 if (eeprom.tick < 9) {
182 eeprom.command <<= 1;
183 eeprom.command += bit;
184 eeprom.tick++;
185 if (eeprom.tick == 9) {
186 logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
187 eeprom.ack = 1;
189 } else if (eeprom.tick < 17) {
190 if (eeprom.command & 1) {
191 sda = ((eeprom.data & 0x80) != 0);
193 eeprom.address <<= 1;
194 eeprom.address += bit;
195 eeprom.tick++;
196 eeprom.data <<= 1;
197 if (eeprom.tick == 17) {
198 eeprom.data = eeprom.contents[eeprom.address];
199 logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
200 eeprom.ack = 1;
201 eeprom.tick = 0;
203 } else if (eeprom.tick >= 17) {
204 sda = 0;
206 } else {
207 logout("\tsda changed with raising scl\n");
209 } else {
210 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
212 eeprom.scl = scl;
213 eeprom.sda = sda;
216 static uint32_t malta_fpga_readl(void *opaque, target_phys_addr_t addr)
218 MaltaFPGAState *s = opaque;
219 uint32_t val = 0;
220 uint32_t saddr;
222 saddr = (addr & 0xfffff);
224 switch (saddr) {
226 /* SWITCH Register */
227 case 0x00200:
228 val = 0x00000000; /* All switches closed */
229 break;
231 /* STATUS Register */
232 case 0x00208:
233 #ifdef TARGET_WORDS_BIGENDIAN
234 val = 0x00000012;
235 #else
236 val = 0x00000010;
237 #endif
238 break;
240 /* JMPRS Register */
241 case 0x00210:
242 val = 0x00;
243 break;
245 /* LEDBAR Register */
246 case 0x00408:
247 val = s->leds;
248 break;
250 /* BRKRES Register */
251 case 0x00508:
252 val = s->brk;
253 break;
255 /* UART Registers are handled directly by the serial device */
257 /* GPOUT Register */
258 case 0x00a00:
259 val = s->gpout;
260 break;
262 /* XXX: implement a real I2C controller */
264 /* GPINP Register */
265 case 0x00a08:
266 /* IN = OUT until a real I2C control is implemented */
267 if (s->i2csel)
268 val = s->i2cout;
269 else
270 val = 0x00;
271 break;
273 /* I2CINP Register */
274 case 0x00b00:
275 val = ((s->i2cin & ~1) | eeprom24c0x_read());
276 break;
278 /* I2COE Register */
279 case 0x00b08:
280 val = s->i2coe;
281 break;
283 /* I2COUT Register */
284 case 0x00b10:
285 val = s->i2cout;
286 break;
288 /* I2CSEL Register */
289 case 0x00b18:
290 val = s->i2csel;
291 break;
293 default:
294 #if 0
295 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
296 addr);
297 #endif
298 break;
300 return val;
303 static void malta_fpga_writel(void *opaque, target_phys_addr_t addr,
304 uint32_t val)
306 MaltaFPGAState *s = opaque;
307 uint32_t saddr;
309 saddr = (addr & 0xfffff);
311 switch (saddr) {
313 /* SWITCH Register */
314 case 0x00200:
315 break;
317 /* JMPRS Register */
318 case 0x00210:
319 break;
321 /* LEDBAR Register */
322 /* XXX: implement a 8-LED array */
323 case 0x00408:
324 s->leds = val & 0xff;
325 break;
327 /* ASCIIWORD Register */
328 case 0x00410:
329 snprintf(s->display_text, 9, "%08X", val);
330 malta_fpga_update_display(s);
331 break;
333 /* ASCIIPOS0 to ASCIIPOS7 Registers */
334 case 0x00418:
335 case 0x00420:
336 case 0x00428:
337 case 0x00430:
338 case 0x00438:
339 case 0x00440:
340 case 0x00448:
341 case 0x00450:
342 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
343 malta_fpga_update_display(s);
344 break;
346 /* SOFTRES Register */
347 case 0x00500:
348 if (val == 0x42)
349 qemu_system_reset_request ();
350 break;
352 /* BRKRES Register */
353 case 0x00508:
354 s->brk = val & 0xff;
355 break;
357 /* UART Registers are handled directly by the serial device */
359 /* GPOUT Register */
360 case 0x00a00:
361 s->gpout = val & 0xff;
362 break;
364 /* I2COE Register */
365 case 0x00b08:
366 s->i2coe = val & 0x03;
367 break;
369 /* I2COUT Register */
370 case 0x00b10:
371 eeprom24c0x_write(val & 0x02, val & 0x01);
372 s->i2cout = val;
373 break;
375 /* I2CSEL Register */
376 case 0x00b18:
377 s->i2csel = val & 0x01;
378 break;
380 default:
381 #if 0
382 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
383 addr);
384 #endif
385 break;
389 static CPUReadMemoryFunc *malta_fpga_read[] = {
390 malta_fpga_readl,
391 malta_fpga_readl,
392 malta_fpga_readl
395 static CPUWriteMemoryFunc *malta_fpga_write[] = {
396 malta_fpga_writel,
397 malta_fpga_writel,
398 malta_fpga_writel
401 static void malta_fpga_reset(void *opaque)
403 MaltaFPGAState *s = opaque;
405 s->leds = 0x00;
406 s->brk = 0x0a;
407 s->gpout = 0x00;
408 s->i2cin = 0x3;
409 s->i2coe = 0x0;
410 s->i2cout = 0x3;
411 s->i2csel = 0x1;
413 s->display_text[8] = '\0';
414 snprintf(s->display_text, 9, " ");
415 malta_fpga_update_display(s);
418 static MaltaFPGAState *malta_fpga_init(target_phys_addr_t base, CPUState *env)
420 MaltaFPGAState *s;
421 CharDriverState *uart_chr;
422 int malta;
424 s = (MaltaFPGAState *)qemu_mallocz(sizeof(MaltaFPGAState));
426 malta = cpu_register_io_memory(0, malta_fpga_read,
427 malta_fpga_write, s);
429 cpu_register_physical_memory(base, 0x900, malta);
430 cpu_register_physical_memory(base + 0xa00, 0x100000 - 0xa00, malta);
432 s->display = qemu_chr_open("vc");
433 qemu_chr_printf(s->display, "\e[HMalta LEDBAR\r\n");
434 qemu_chr_printf(s->display, "+--------+\r\n");
435 qemu_chr_printf(s->display, "+ +\r\n");
436 qemu_chr_printf(s->display, "+--------+\r\n");
437 qemu_chr_printf(s->display, "\n");
438 qemu_chr_printf(s->display, "Malta ASCII\r\n");
439 qemu_chr_printf(s->display, "+--------+\r\n");
440 qemu_chr_printf(s->display, "+ +\r\n");
441 qemu_chr_printf(s->display, "+--------+\r\n");
443 uart_chr = qemu_chr_open("vc");
444 qemu_chr_printf(uart_chr, "CBUS UART\r\n");
445 s->uart = serial_mm_init(base + 0x900, 3, env->irq[2], uart_chr, 1);
447 malta_fpga_reset(s);
448 qemu_register_reset(malta_fpga_reset, s);
450 return s;
453 /* Audio support */
454 #ifdef HAS_AUDIO
455 static void audio_init (PCIBus *pci_bus)
457 struct soundhw *c;
458 int audio_enabled = 0;
460 for (c = soundhw; !audio_enabled && c->name; ++c) {
461 audio_enabled = c->enabled;
464 if (audio_enabled) {
465 AudioState *s;
467 s = AUD_init ();
468 if (s) {
469 for (c = soundhw; c->name; ++c) {
470 if (c->enabled)
471 c->init.init_pci (pci_bus, s);
476 #endif
478 /* Network support */
479 static void network_init (PCIBus *pci_bus)
481 int i;
482 NICInfo *nd;
484 for(i = 0; i < nb_nics; i++) {
485 nd = &nd_table[i];
486 if (!nd->model) {
487 nd->model = "pcnet";
489 if (i == 0 && strcmp(nd->model, "pcnet") == 0) {
490 /* The malta board has a PCNet card using PCI SLOT 11 */
491 pci_nic_init(pci_bus, nd, 88);
492 } else {
493 pci_nic_init(pci_bus, nd, -1);
498 /* ROM and pseudo bootloader
500 The following code implements a very very simple bootloader. It first
501 loads the registers a0 to a3 to the values expected by the OS, and
502 then jump at the kernel address.
504 The bootloader should pass the locations of the kernel arguments and
505 environment variables tables. Those tables contain the 32-bit address
506 of NULL terminated strings. The environment variables table should be
507 terminated by a NULL address.
509 For a simpler implementation, the number of kernel arguments is fixed
510 to two (the name of the kernel and the command line), and the two
511 tables are actually the same one.
513 The registers a0 to a3 should contain the following values:
514 a0 - number of kernel arguments
515 a1 - 32-bit address of the kernel arguments table
516 a2 - 32-bit address of the environment variables table
517 a3 - RAM size in bytes
520 static void write_bootloader (CPUState *env, unsigned long bios_offset, int64_t kernel_entry)
522 uint32_t *p;
524 /* Small bootloader */
525 p = (uint32_t *) (phys_ram_base + bios_offset);
526 stl_raw(p++, 0x0bf00160); /* j 0x1fc00580 */
527 stl_raw(p++, 0x00000000); /* nop */
529 /* YAMON service vector */
530 stl_raw(phys_ram_base + bios_offset + 0x500, 0xbfc00580); /* start: */
531 stl_raw(phys_ram_base + bios_offset + 0x504, 0xbfc0083c); /* print_count: */
532 stl_raw(phys_ram_base + bios_offset + 0x520, 0xbfc00580); /* start: */
533 stl_raw(phys_ram_base + bios_offset + 0x52c, 0xbfc00800); /* flush_cache: */
534 stl_raw(phys_ram_base + bios_offset + 0x534, 0xbfc00808); /* print: */
535 stl_raw(phys_ram_base + bios_offset + 0x538, 0xbfc00800); /* reg_cpu_isr: */
536 stl_raw(phys_ram_base + bios_offset + 0x53c, 0xbfc00800); /* unred_cpu_isr: */
537 stl_raw(phys_ram_base + bios_offset + 0x540, 0xbfc00800); /* reg_ic_isr: */
538 stl_raw(phys_ram_base + bios_offset + 0x544, 0xbfc00800); /* unred_ic_isr: */
539 stl_raw(phys_ram_base + bios_offset + 0x548, 0xbfc00800); /* reg_esr: */
540 stl_raw(phys_ram_base + bios_offset + 0x54c, 0xbfc00800); /* unreg_esr: */
541 stl_raw(phys_ram_base + bios_offset + 0x550, 0xbfc00800); /* getchar: */
542 stl_raw(phys_ram_base + bios_offset + 0x554, 0xbfc00800); /* syscon_read: */
545 /* Second part of the bootloader */
546 p = (uint32_t *) (phys_ram_base + bios_offset + 0x580);
547 stl_raw(p++, 0x24040002); /* addiu a0, zero, 2 */
548 stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
549 stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
550 stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
551 stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
552 stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
553 stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
554 stl_raw(p++, 0x3c070000 | (loaderparams.ram_size >> 16)); /* lui a3, high(ram_size) */
555 stl_raw(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff)); /* ori a3, a3, low(ram_size) */
557 /* Load BAR registers as done by YAMON */
558 stl_raw(p++, 0x3c09b400); /* lui t1, 0xb400 */
560 #ifdef TARGET_WORDS_BIGENDIAN
561 stl_raw(p++, 0x3c08df00); /* lui t0, 0xdf00 */
562 #else
563 stl_raw(p++, 0x340800df); /* ori t0, r0, 0x00df */
564 #endif
565 stl_raw(p++, 0xad280068); /* sw t0, 0x0068(t1) */
567 stl_raw(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
569 #ifdef TARGET_WORDS_BIGENDIAN
570 stl_raw(p++, 0x3c08c000); /* lui t0, 0xc000 */
571 #else
572 stl_raw(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
573 #endif
574 stl_raw(p++, 0xad280048); /* sw t0, 0x0048(t1) */
575 #ifdef TARGET_WORDS_BIGENDIAN
576 stl_raw(p++, 0x3c084000); /* lui t0, 0x4000 */
577 #else
578 stl_raw(p++, 0x34080040); /* ori t0, r0, 0x0040 */
579 #endif
580 stl_raw(p++, 0xad280050); /* sw t0, 0x0050(t1) */
582 #ifdef TARGET_WORDS_BIGENDIAN
583 stl_raw(p++, 0x3c088000); /* lui t0, 0x8000 */
584 #else
585 stl_raw(p++, 0x34080080); /* ori t0, r0, 0x0080 */
586 #endif
587 stl_raw(p++, 0xad280058); /* sw t0, 0x0058(t1) */
588 #ifdef TARGET_WORDS_BIGENDIAN
589 stl_raw(p++, 0x3c083f00); /* lui t0, 0x3f00 */
590 #else
591 stl_raw(p++, 0x3408003f); /* ori t0, r0, 0x003f */
592 #endif
593 stl_raw(p++, 0xad280060); /* sw t0, 0x0060(t1) */
595 #ifdef TARGET_WORDS_BIGENDIAN
596 stl_raw(p++, 0x3c08c100); /* lui t0, 0xc100 */
597 #else
598 stl_raw(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
599 #endif
600 stl_raw(p++, 0xad280080); /* sw t0, 0x0080(t1) */
601 #ifdef TARGET_WORDS_BIGENDIAN
602 stl_raw(p++, 0x3c085e00); /* lui t0, 0x5e00 */
603 #else
604 stl_raw(p++, 0x3408005e); /* ori t0, r0, 0x005e */
605 #endif
606 stl_raw(p++, 0xad280088); /* sw t0, 0x0088(t1) */
608 /* Jump to kernel code */
609 stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
610 stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
611 stl_raw(p++, 0x03e00008); /* jr ra */
612 stl_raw(p++, 0x00000000); /* nop */
614 /* YAMON subroutines */
615 p = (uint32_t *) (phys_ram_base + bios_offset + 0x800);
616 stl_raw(p++, 0x03e00008); /* jr ra */
617 stl_raw(p++, 0x24020000); /* li v0,0 */
618 /* 808 YAMON print */
619 stl_raw(p++, 0x03e06821); /* move t5,ra */
620 stl_raw(p++, 0x00805821); /* move t3,a0 */
621 stl_raw(p++, 0x00a05021); /* move t2,a1 */
622 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
623 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
624 stl_raw(p++, 0x10800005); /* beqz a0,834 */
625 stl_raw(p++, 0x00000000); /* nop */
626 stl_raw(p++, 0x0ff0021c); /* jal 870 */
627 stl_raw(p++, 0x00000000); /* nop */
628 stl_raw(p++, 0x08000205); /* j 814 */
629 stl_raw(p++, 0x00000000); /* nop */
630 stl_raw(p++, 0x01a00008); /* jr t5 */
631 stl_raw(p++, 0x01602021); /* move a0,t3 */
632 /* 0x83c YAMON print_count */
633 stl_raw(p++, 0x03e06821); /* move t5,ra */
634 stl_raw(p++, 0x00805821); /* move t3,a0 */
635 stl_raw(p++, 0x00a05021); /* move t2,a1 */
636 stl_raw(p++, 0x00c06021); /* move t4,a2 */
637 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
638 stl_raw(p++, 0x0ff0021c); /* jal 870 */
639 stl_raw(p++, 0x00000000); /* nop */
640 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
641 stl_raw(p++, 0x258cffff); /* addiu t4,t4,-1 */
642 stl_raw(p++, 0x1580fffa); /* bnez t4,84c */
643 stl_raw(p++, 0x00000000); /* nop */
644 stl_raw(p++, 0x01a00008); /* jr t5 */
645 stl_raw(p++, 0x01602021); /* move a0,t3 */
646 /* 0x870 */
647 stl_raw(p++, 0x3c08b800); /* lui t0,0xb400 */
648 stl_raw(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
649 stl_raw(p++, 0x91090005); /* lbu t1,5(t0) */
650 stl_raw(p++, 0x00000000); /* nop */
651 stl_raw(p++, 0x31290040); /* andi t1,t1,0x40 */
652 stl_raw(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
653 stl_raw(p++, 0x00000000); /* nop */
654 stl_raw(p++, 0x03e00008); /* jr ra */
655 stl_raw(p++, 0xa1040000); /* sb a0,0(t0) */
659 static void prom_set(int index, const char *string, ...)
661 va_list ap;
662 int32_t *p;
663 int32_t table_addr;
664 char *s;
666 if (index >= ENVP_NB_ENTRIES)
667 return;
669 p = (int32_t *) (phys_ram_base + ENVP_ADDR + VIRT_TO_PHYS_ADDEND);
670 p += index;
672 if (string == NULL) {
673 stl_raw(p, 0);
674 return;
677 table_addr = ENVP_ADDR + sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
678 s = (char *) (phys_ram_base + VIRT_TO_PHYS_ADDEND + table_addr);
680 stl_raw(p, table_addr);
682 va_start(ap, string);
683 vsnprintf (s, ENVP_ENTRY_SIZE, string, ap);
684 va_end(ap);
687 /* Kernel */
688 static int64_t load_kernel (CPUState *env)
690 int64_t kernel_entry, kernel_low, kernel_high;
691 int index = 0;
692 long initrd_size;
693 ram_addr_t initrd_offset;
695 if (load_elf(loaderparams.kernel_filename, VIRT_TO_PHYS_ADDEND,
696 &kernel_entry, &kernel_low, &kernel_high) < 0) {
697 fprintf(stderr, "qemu: could not load kernel '%s'\n",
698 loaderparams.kernel_filename);
699 exit(1);
702 /* load initrd */
703 initrd_size = 0;
704 initrd_offset = 0;
705 if (loaderparams.initrd_filename) {
706 initrd_size = get_image_size (loaderparams.initrd_filename);
707 if (initrd_size > 0) {
708 initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
709 if (initrd_offset + initrd_size > ram_size) {
710 fprintf(stderr,
711 "qemu: memory too small for initial ram disk '%s'\n",
712 loaderparams.initrd_filename);
713 exit(1);
715 initrd_size = load_image(loaderparams.initrd_filename,
716 phys_ram_base + initrd_offset);
718 if (initrd_size == (target_ulong) -1) {
719 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
720 loaderparams.initrd_filename);
721 exit(1);
725 /* Store command line. */
726 prom_set(index++, loaderparams.kernel_filename);
727 if (initrd_size > 0)
728 prom_set(index++, "rd_start=0x" TARGET_FMT_lx " rd_size=%li %s",
729 PHYS_TO_VIRT(initrd_offset), initrd_size,
730 loaderparams.kernel_cmdline);
731 else
732 prom_set(index++, loaderparams.kernel_cmdline);
734 /* Setup minimum environment variables */
735 prom_set(index++, "memsize");
736 prom_set(index++, "%i", loaderparams.ram_size);
737 prom_set(index++, "modetty0");
738 prom_set(index++, "38400n8r");
739 prom_set(index++, NULL);
741 return kernel_entry;
744 static void main_cpu_reset(void *opaque)
746 CPUState *env = opaque;
747 cpu_reset(env);
749 /* The bootload does not need to be rewritten as it is located in a
750 read only location. The kernel location and the arguments table
751 location does not change. */
752 if (loaderparams.kernel_filename) {
753 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
754 load_kernel (env);
758 static
759 void mips_malta_init (int ram_size, int vga_ram_size,
760 const char *boot_device, DisplayState *ds,
761 const char *kernel_filename, const char *kernel_cmdline,
762 const char *initrd_filename, const char *cpu_model)
764 char buf[1024];
765 unsigned long bios_offset;
766 int64_t kernel_entry;
767 PCIBus *pci_bus;
768 CPUState *env;
769 RTCState *rtc_state;
770 /* fdctrl_t *floppy_controller; */
771 MaltaFPGAState *malta_fpga;
772 int ret;
773 qemu_irq *i8259;
774 int piix4_devfn;
775 uint8_t *eeprom_buf;
776 i2c_bus *smbus;
777 int i;
779 /* init CPUs */
780 if (cpu_model == NULL) {
781 #ifdef TARGET_MIPS64
782 cpu_model = "20Kc";
783 #else
784 cpu_model = "24Kf";
785 #endif
787 env = cpu_init(cpu_model);
788 if (!env) {
789 fprintf(stderr, "Unable to find CPU definition\n");
790 exit(1);
792 register_savevm("cpu", 0, 3, cpu_save, cpu_load, env);
793 qemu_register_reset(main_cpu_reset, env);
795 /* allocate RAM */
796 cpu_register_physical_memory(0, ram_size, IO_MEM_RAM);
798 /* Map the bios at two physical locations, as on the real board */
799 bios_offset = ram_size + vga_ram_size;
800 cpu_register_physical_memory(0x1e000000LL,
801 BIOS_SIZE, bios_offset | IO_MEM_ROM);
802 cpu_register_physical_memory(0x1fc00000LL,
803 BIOS_SIZE, bios_offset | IO_MEM_ROM);
805 /* FPGA */
806 malta_fpga = malta_fpga_init(0x1f000000LL, env);
808 /* Load a BIOS image unless a kernel image has been specified. */
809 if (!kernel_filename) {
810 if (bios_name == NULL)
811 bios_name = BIOS_FILENAME;
812 snprintf(buf, sizeof(buf), "%s/%s", bios_dir, bios_name);
813 ret = load_image(buf, phys_ram_base + bios_offset);
814 if (ret < 0 || ret > BIOS_SIZE) {
815 fprintf(stderr,
816 "qemu: Could not load MIPS bios '%s', and no -kernel argument was specified\n",
817 buf);
818 exit(1);
820 /* In little endian mode the 32bit words in the bios are swapped,
821 a neat trick which allows bi-endian firmware. */
822 #ifndef TARGET_WORDS_BIGENDIAN
824 uint32_t *addr;
825 for (addr = (uint32_t *)(phys_ram_base + bios_offset);
826 addr < (uint32_t *)(phys_ram_base + bios_offset + ret);
827 addr++) {
828 *addr = bswap32(*addr);
831 #endif
834 /* If a kernel image has been specified, write a small bootloader
835 to the flash location. */
836 if (kernel_filename) {
837 loaderparams.ram_size = ram_size;
838 loaderparams.kernel_filename = kernel_filename;
839 loaderparams.kernel_cmdline = kernel_cmdline;
840 loaderparams.initrd_filename = initrd_filename;
841 kernel_entry = load_kernel(env);
842 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
843 write_bootloader(env, bios_offset, kernel_entry);
846 /* Board ID = 0x420 (Malta Board with CoreLV)
847 XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
848 map to the board ID. */
849 stl_raw(phys_ram_base + bios_offset + 0x10, 0x00000420);
851 /* Init internal devices */
852 cpu_mips_irq_init_cpu(env);
853 cpu_mips_clock_init(env);
854 cpu_mips_irqctrl_init();
856 /* Interrupt controller */
857 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
858 i8259 = i8259_init(env->irq[2]);
860 /* Northbridge */
861 pci_bus = pci_gt64120_init(i8259);
863 /* Southbridge */
864 piix4_devfn = piix4_init(pci_bus, 80);
865 pci_piix4_ide_init(pci_bus, bs_table, piix4_devfn + 1, i8259);
866 usb_uhci_piix4_init(pci_bus, piix4_devfn + 2);
867 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100);
868 eeprom_buf = qemu_mallocz(8 * 256); /* XXX: make this persistent */
869 for (i = 0; i < 8; i++) {
870 /* TODO: Populate SPD eeprom data. */
871 smbus_eeprom_device_init(smbus, 0x50 + i, eeprom_buf + (i * 256));
873 pit = pit_init(0x40, i8259[0]);
874 DMA_init(0);
876 /* Super I/O */
877 i8042_init(i8259[1], i8259[12], 0x60);
878 rtc_state = rtc_init(0x70, i8259[8]);
879 if (serial_hds[0])
880 serial_init(0x3f8, i8259[4], serial_hds[0]);
881 if (serial_hds[1])
882 serial_init(0x2f8, i8259[3], serial_hds[1]);
883 if (parallel_hds[0])
884 parallel_init(0x378, i8259[7], parallel_hds[0]);
885 /* XXX: The floppy controller does not work correctly, something is
886 probably wrong.
887 floppy_controller = fdctrl_init(i8259[6], 2, 0, 0x3f0, fd_table); */
889 /* Sound card */
890 #ifdef HAS_AUDIO
891 audio_init(pci_bus);
892 #endif
894 /* Network card */
895 network_init(pci_bus);
897 /* Optional PCI video card */
898 pci_cirrus_vga_init(pci_bus, ds, phys_ram_base + ram_size,
899 ram_size, vga_ram_size);
902 QEMUMachine mips_malta_machine = {
903 "malta",
904 "MIPS Malta Core LV",
905 mips_malta_init,