3 ** File: fmopl.c -- software implementation of FM sound generator
5 ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
17 /* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
19 * This library is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU Lesser General Public
21 * License as published by the Free Software Foundation; either
22 * version 2.1 of the License, or (at your option) any later version.
24 * This library is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 * Lesser General Public License for more details.
29 * You should have received a copy of the GNU Lesser General Public
30 * License along with this library; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
34 #define INLINE __inline
42 //#include "driver.h" /* use M.A.M.E. */
46 #define PI 3.14159265358979323846
49 /* -------------------- for debug --------------------- */
50 /* #define OPL_OUTPUT_LOG */
52 static FILE *opl_dbg_fp
= NULL
;
53 static FM_OPL
*opl_dbg_opl
[16];
54 static int opl_dbg_maxchip
,opl_dbg_chip
;
57 /* -------------------- preliminary define section --------------------- */
58 /* attack/decay rate time rate */
59 #define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */
60 #define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */
62 #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
64 #define FREQ_BITS 24 /* frequency turn */
66 /* counter bits = 20 , octerve 7 */
67 #define FREQ_RATE (1<<(FREQ_BITS-20))
68 #define TL_BITS (FREQ_BITS+2)
70 /* final output shift , limit minimum and maximum */
71 #define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */
72 #define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
73 #define OPL_MINOUT (-0x8000<<OPL_OUTSB)
75 /* -------------------- quality selection --------------------- */
78 /* used static memory = SIN_ENT * 4 (byte) */
81 /* output level entries (envelope,sinwave) */
82 /* envelope counter lower bits */
84 /* envelope output entries */
86 /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
87 /* used static memory = EG_ENT*4 (byte) */
89 #define EG_OFF ((2*EG_ENT)<<ENV_BITS) /* OFF */
91 #define EG_DST (EG_ENT<<ENV_BITS) /* DECAY START */
93 #define EG_AST 0 /* ATTACK START */
95 #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */
97 /* LFO table entries */
99 #define VIB_SHIFT (32-9)
101 #define AMS_SHIFT (32-9)
105 /* -------------------- local defines , macros --------------------- */
107 /* register number to channel number , slot offset */
112 #define ENV_MOD_RR 0x00
113 #define ENV_MOD_DR 0x01
114 #define ENV_MOD_AR 0x02
116 /* -------------------- tables --------------------- */
117 static const int slot_array
[32]=
119 0, 2, 4, 1, 3, 5,-1,-1,
120 6, 8,10, 7, 9,11,-1,-1,
121 12,14,16,13,15,17,-1,-1,
122 -1,-1,-1,-1,-1,-1,-1,-1
125 /* key scale level */
126 /* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
127 #define DV (EG_STEP/2)
128 static const UINT32 KSL_TABLE
[8*16]=
131 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
132 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
133 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
134 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
136 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
137 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
138 0.000/DV
, 0.750/DV
, 1.125/DV
, 1.500/DV
,
139 1.875/DV
, 2.250/DV
, 2.625/DV
, 3.000/DV
,
141 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
142 0.000/DV
, 1.125/DV
, 1.875/DV
, 2.625/DV
,
143 3.000/DV
, 3.750/DV
, 4.125/DV
, 4.500/DV
,
144 4.875/DV
, 5.250/DV
, 5.625/DV
, 6.000/DV
,
146 0.000/DV
, 0.000/DV
, 0.000/DV
, 1.875/DV
,
147 3.000/DV
, 4.125/DV
, 4.875/DV
, 5.625/DV
,
148 6.000/DV
, 6.750/DV
, 7.125/DV
, 7.500/DV
,
149 7.875/DV
, 8.250/DV
, 8.625/DV
, 9.000/DV
,
151 0.000/DV
, 0.000/DV
, 3.000/DV
, 4.875/DV
,
152 6.000/DV
, 7.125/DV
, 7.875/DV
, 8.625/DV
,
153 9.000/DV
, 9.750/DV
,10.125/DV
,10.500/DV
,
154 10.875/DV
,11.250/DV
,11.625/DV
,12.000/DV
,
156 0.000/DV
, 3.000/DV
, 6.000/DV
, 7.875/DV
,
157 9.000/DV
,10.125/DV
,10.875/DV
,11.625/DV
,
158 12.000/DV
,12.750/DV
,13.125/DV
,13.500/DV
,
159 13.875/DV
,14.250/DV
,14.625/DV
,15.000/DV
,
161 0.000/DV
, 6.000/DV
, 9.000/DV
,10.875/DV
,
162 12.000/DV
,13.125/DV
,13.875/DV
,14.625/DV
,
163 15.000/DV
,15.750/DV
,16.125/DV
,16.500/DV
,
164 16.875/DV
,17.250/DV
,17.625/DV
,18.000/DV
,
166 0.000/DV
, 9.000/DV
,12.000/DV
,13.875/DV
,
167 15.000/DV
,16.125/DV
,16.875/DV
,17.625/DV
,
168 18.000/DV
,18.750/DV
,19.125/DV
,19.500/DV
,
169 19.875/DV
,20.250/DV
,20.625/DV
,21.000/DV
173 /* sustain lebel table (3db per step) */
174 /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
175 #define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
176 static const INT32 SL_TABLE
[16]={
177 SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
178 SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
182 #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
183 /* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */
184 /* TL_TABLE[ 0 to TL_MAX ] : plus section */
185 /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
186 static INT32
*TL_TABLE
;
188 /* pointers to TL_TABLE with sinwave output offset */
189 static INT32
**SIN_TABLE
;
192 static INT32
*AMS_TABLE
;
193 static INT32
*VIB_TABLE
;
195 /* envelope output curve table */
196 /* attack + decay + OFF */
197 static INT32 ENV_CURVE
[2*EG_ENT
+1];
201 static const UINT32 MUL_TABLE
[16]= {
202 /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
203 0.50*ML
, 1.00*ML
, 2.00*ML
, 3.00*ML
, 4.00*ML
, 5.00*ML
, 6.00*ML
, 7.00*ML
,
204 8.00*ML
, 9.00*ML
,10.00*ML
,10.00*ML
,12.00*ML
,12.00*ML
,15.00*ML
,15.00*ML
208 /* dummy attack / decay rate ( when rate == 0 ) */
209 static INT32 RATE_0
[16]=
210 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
212 /* -------------------- static state --------------------- */
214 /* lock level of common table */
215 static int num_lock
= 0;
218 static void *cur_chip
= NULL
; /* current chip point */
219 /* currenct chip state */
220 /* static OPLSAMPLE *bufL,*bufR; */
223 OPL_SLOT
*SLOT7_1
,*SLOT7_2
,*SLOT8_1
,*SLOT8_2
;
225 static INT32 outd
[1];
230 static INT32 amsIncr
;
231 static INT32 vibIncr
;
232 static INT32 feedback2
; /* connect for SLOT 2 */
234 /* log output level */
235 #define LOG_ERR 3 /* ERROR */
236 #define LOG_WAR 2 /* WARNING */
237 #define LOG_INF 1 /* INFORMATION */
239 //#define LOG_LEVEL LOG_INF
240 #define LOG_LEVEL LOG_ERR
242 //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
245 /* --------------------- subroutines --------------------- */
247 INLINE
int Limit( int val
, int max
, int min
) {
250 else if ( val
< min
)
256 /* status set and IRQ handling */
257 INLINE
void OPL_STATUS_SET(FM_OPL
*OPL
,int flag
)
259 /* set status flag */
261 if(!(OPL
->status
& 0x80))
263 if(OPL
->status
& OPL
->statusmask
)
266 /* callback user interrupt handler (IRQ is OFF to ON) */
267 if(OPL
->IRQHandler
) (OPL
->IRQHandler
)(OPL
->IRQParam
,1);
272 /* status reset and IRQ handling */
273 INLINE
void OPL_STATUS_RESET(FM_OPL
*OPL
,int flag
)
275 /* reset status flag */
277 if((OPL
->status
& 0x80))
279 if (!(OPL
->status
& OPL
->statusmask
) )
282 /* callback user interrupt handler (IRQ is ON to OFF) */
283 if(OPL
->IRQHandler
) (OPL
->IRQHandler
)(OPL
->IRQParam
,0);
289 INLINE
void OPL_STATUSMASK_SET(FM_OPL
*OPL
,int flag
)
291 OPL
->statusmask
= flag
;
292 /* IRQ handling check */
293 OPL_STATUS_SET(OPL
,0);
294 OPL_STATUS_RESET(OPL
,0);
297 /* ----- key on ----- */
298 INLINE
void OPL_KEYON(OPL_SLOT
*SLOT
)
300 /* sin wave restart */
303 SLOT
->evm
= ENV_MOD_AR
;
304 SLOT
->evs
= SLOT
->evsa
;
308 /* ----- key off ----- */
309 INLINE
void OPL_KEYOFF(OPL_SLOT
*SLOT
)
311 if( SLOT
->evm
> ENV_MOD_RR
)
313 /* set envelope counter from envleope output */
314 SLOT
->evm
= ENV_MOD_RR
;
315 if( !(SLOT
->evc
&EG_DST
) )
316 //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
319 SLOT
->evs
= SLOT
->evsr
;
323 /* ---------- calcrate Envelope Generator & Phase Generator ---------- */
324 /* return : envelope output */
325 INLINE UINT32
OPL_CALC_SLOT( OPL_SLOT
*SLOT
)
327 /* calcrate envelope generator */
328 if( (SLOT
->evc
+=SLOT
->evs
) >= SLOT
->eve
)
331 case ENV_MOD_AR
: /* ATTACK -> DECAY1 */
333 SLOT
->evm
= ENV_MOD_DR
;
335 SLOT
->eve
= SLOT
->SL
;
336 SLOT
->evs
= SLOT
->evsd
;
338 case ENV_MOD_DR
: /* DECAY -> SL or RR */
339 SLOT
->evc
= SLOT
->SL
;
347 SLOT
->evm
= ENV_MOD_RR
;
348 SLOT
->evs
= SLOT
->evsr
;
351 case ENV_MOD_RR
: /* RR -> OFF */
353 SLOT
->eve
= EG_OFF
+1;
358 /* calcrate envelope */
359 return SLOT
->TLL
+ENV_CURVE
[SLOT
->evc
>>ENV_BITS
]+(SLOT
->ams
? ams
: 0);
362 /* set algorythm connection */
363 static void set_algorythm( OPL_CH
*CH
)
365 INT32
*carrier
= &outd
[0];
366 CH
->connect1
= CH
->CON
? carrier
: &feedback2
;
367 CH
->connect2
= carrier
;
370 /* ---------- frequency counter for operater update ---------- */
371 INLINE
void CALC_FCSLOT(OPL_CH
*CH
,OPL_SLOT
*SLOT
)
375 /* frequency step counter */
376 SLOT
->Incr
= CH
->fc
* SLOT
->mul
;
377 ksr
= CH
->kcode
>> SLOT
->KSR
;
379 if( SLOT
->ksr
!= ksr
)
382 /* attack , decay rate recalcration */
383 SLOT
->evsa
= SLOT
->AR
[ksr
];
384 SLOT
->evsd
= SLOT
->DR
[ksr
];
385 SLOT
->evsr
= SLOT
->RR
[ksr
];
387 SLOT
->TLL
= SLOT
->TL
+ (CH
->ksl_base
>>SLOT
->ksl
);
390 /* set multi,am,vib,EG-TYP,KSR,mul */
391 INLINE
void set_mul(FM_OPL
*OPL
,int slot
,int v
)
393 OPL_CH
*CH
= &OPL
->P_CH
[slot
/2];
394 OPL_SLOT
*SLOT
= &CH
->SLOT
[slot
&1];
396 SLOT
->mul
= MUL_TABLE
[v
&0x0f];
397 SLOT
->KSR
= (v
&0x10) ? 0 : 2;
398 SLOT
->eg_typ
= (v
&0x20)>>5;
399 SLOT
->vib
= (v
&0x40);
400 SLOT
->ams
= (v
&0x80);
401 CALC_FCSLOT(CH
,SLOT
);
405 INLINE
void set_ksl_tl(FM_OPL
*OPL
,int slot
,int v
)
407 OPL_CH
*CH
= &OPL
->P_CH
[slot
/2];
408 OPL_SLOT
*SLOT
= &CH
->SLOT
[slot
&1];
409 int ksl
= v
>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
411 SLOT
->ksl
= ksl
? 3-ksl
: 31;
412 SLOT
->TL
= (v
&0x3f)*(0.75/EG_STEP
); /* 0.75db step */
414 if( !(OPL
->mode
&0x80) )
415 { /* not CSM latch total level */
416 SLOT
->TLL
= SLOT
->TL
+ (CH
->ksl_base
>>SLOT
->ksl
);
420 /* set attack rate & decay rate */
421 INLINE
void set_ar_dr(FM_OPL
*OPL
,int slot
,int v
)
423 OPL_CH
*CH
= &OPL
->P_CH
[slot
/2];
424 OPL_SLOT
*SLOT
= &CH
->SLOT
[slot
&1];
428 SLOT
->AR
= ar
? &OPL
->AR_TABLE
[ar
<<2] : RATE_0
;
429 SLOT
->evsa
= SLOT
->AR
[SLOT
->ksr
];
430 if( SLOT
->evm
== ENV_MOD_AR
) SLOT
->evs
= SLOT
->evsa
;
432 SLOT
->DR
= dr
? &OPL
->DR_TABLE
[dr
<<2] : RATE_0
;
433 SLOT
->evsd
= SLOT
->DR
[SLOT
->ksr
];
434 if( SLOT
->evm
== ENV_MOD_DR
) SLOT
->evs
= SLOT
->evsd
;
437 /* set sustain level & release rate */
438 INLINE
void set_sl_rr(FM_OPL
*OPL
,int slot
,int v
)
440 OPL_CH
*CH
= &OPL
->P_CH
[slot
/2];
441 OPL_SLOT
*SLOT
= &CH
->SLOT
[slot
&1];
445 SLOT
->SL
= SL_TABLE
[sl
];
446 if( SLOT
->evm
== ENV_MOD_DR
) SLOT
->eve
= SLOT
->SL
;
447 SLOT
->RR
= &OPL
->DR_TABLE
[rr
<<2];
448 SLOT
->evsr
= SLOT
->RR
[SLOT
->ksr
];
449 if( SLOT
->evm
== ENV_MOD_RR
) SLOT
->evs
= SLOT
->evsr
;
452 /* operator output calcrator */
453 #define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
454 /* ---------- calcrate one of channel ---------- */
455 INLINE
void OPL_CALC_CH( OPL_CH
*CH
)
462 SLOT
= &CH
->SLOT
[SLOT1
];
463 env_out
=OPL_CALC_SLOT(SLOT
);
464 if( env_out
< EG_ENT
-1 )
467 if(SLOT
->vib
) SLOT
->Cnt
+= (SLOT
->Incr
*vib
/VIB_RATE
);
468 else SLOT
->Cnt
+= SLOT
->Incr
;
472 int feedback1
= (CH
->op1_out
[0]+CH
->op1_out
[1])>>CH
->FB
;
473 CH
->op1_out
[1] = CH
->op1_out
[0];
474 *CH
->connect1
+= CH
->op1_out
[0] = OP_OUT(SLOT
,env_out
,feedback1
);
478 *CH
->connect1
+= OP_OUT(SLOT
,env_out
,0);
482 CH
->op1_out
[1] = CH
->op1_out
[0];
486 SLOT
= &CH
->SLOT
[SLOT2
];
487 env_out
=OPL_CALC_SLOT(SLOT
);
488 if( env_out
< EG_ENT
-1 )
491 if(SLOT
->vib
) SLOT
->Cnt
+= (SLOT
->Incr
*vib
/VIB_RATE
);
492 else SLOT
->Cnt
+= SLOT
->Incr
;
494 outd
[0] += OP_OUT(SLOT
,env_out
, feedback2
);
498 /* ---------- calcrate rythm block ---------- */
499 #define WHITE_NOISE_db 6.0
500 INLINE
void OPL_CALC_RH( OPL_CH
*CH
)
502 UINT32 env_tam
,env_sd
,env_top
,env_hh
;
503 int whitenoise
= (rand()&1)*(WHITE_NOISE_db
/EG_STEP
);
509 /* BD : same as FM serial mode and output level is large */
512 SLOT
= &CH
[6].SLOT
[SLOT1
];
513 env_out
=OPL_CALC_SLOT(SLOT
);
514 if( env_out
< EG_ENT
-1 )
517 if(SLOT
->vib
) SLOT
->Cnt
+= (SLOT
->Incr
*vib
/VIB_RATE
);
518 else SLOT
->Cnt
+= SLOT
->Incr
;
522 int feedback1
= (CH
[6].op1_out
[0]+CH
[6].op1_out
[1])>>CH
[6].FB
;
523 CH
[6].op1_out
[1] = CH
[6].op1_out
[0];
524 feedback2
= CH
[6].op1_out
[0] = OP_OUT(SLOT
,env_out
,feedback1
);
528 feedback2
= OP_OUT(SLOT
,env_out
,0);
533 CH
[6].op1_out
[1] = CH
[6].op1_out
[0];
534 CH
[6].op1_out
[0] = 0;
537 SLOT
= &CH
[6].SLOT
[SLOT2
];
538 env_out
=OPL_CALC_SLOT(SLOT
);
539 if( env_out
< EG_ENT
-1 )
542 if(SLOT
->vib
) SLOT
->Cnt
+= (SLOT
->Incr
*vib
/VIB_RATE
);
543 else SLOT
->Cnt
+= SLOT
->Incr
;
545 outd
[0] += OP_OUT(SLOT
,env_out
, feedback2
)*2;
548 // SD (17) = mul14[fnum7] + white noise
549 // TAM (15) = mul15[fnum8]
550 // TOP (18) = fnum6(mul18[fnum8]+whitenoise)
551 // HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
552 env_sd
=OPL_CALC_SLOT(SLOT7_2
) + whitenoise
;
553 env_tam
=OPL_CALC_SLOT(SLOT8_1
);
554 env_top
=OPL_CALC_SLOT(SLOT8_2
);
555 env_hh
=OPL_CALC_SLOT(SLOT7_1
) + whitenoise
;
558 if(SLOT7_1
->vib
) SLOT7_1
->Cnt
+= (2*SLOT7_1
->Incr
*vib
/VIB_RATE
);
559 else SLOT7_1
->Cnt
+= 2*SLOT7_1
->Incr
;
560 if(SLOT7_2
->vib
) SLOT7_2
->Cnt
+= ((CH
[7].fc
*8)*vib
/VIB_RATE
);
561 else SLOT7_2
->Cnt
+= (CH
[7].fc
*8);
562 if(SLOT8_1
->vib
) SLOT8_1
->Cnt
+= (SLOT8_1
->Incr
*vib
/VIB_RATE
);
563 else SLOT8_1
->Cnt
+= SLOT8_1
->Incr
;
564 if(SLOT8_2
->vib
) SLOT8_2
->Cnt
+= ((CH
[8].fc
*48)*vib
/VIB_RATE
);
565 else SLOT8_2
->Cnt
+= (CH
[8].fc
*48);
567 tone8
= OP_OUT(SLOT8_2
,whitenoise
,0 );
570 if( env_sd
< EG_ENT
-1 )
571 outd
[0] += OP_OUT(SLOT7_1
,env_sd
, 0)*8;
573 if( env_tam
< EG_ENT
-1 )
574 outd
[0] += OP_OUT(SLOT8_1
,env_tam
, 0)*2;
576 if( env_top
< EG_ENT
-1 )
577 outd
[0] += OP_OUT(SLOT7_2
,env_top
,tone8
)*2;
579 if( env_hh
< EG_ENT
-1 )
580 outd
[0] += OP_OUT(SLOT7_2
,env_hh
,tone8
)*2;
583 /* ----------- initialize time tabls ----------- */
584 static void init_timetables( FM_OPL
*OPL
, int ARRATE
, int DRRATE
)
589 /* make attack rate & decay rate tables */
590 for (i
= 0;i
< 4;i
++) OPL
->AR_TABLE
[i
] = OPL
->DR_TABLE
[i
] = 0;
591 for (i
= 4;i
<= 60;i
++){
592 rate
= OPL
->freqbase
; /* frequency rate */
593 if( i
< 60 ) rate
*= 1.0+(i
&3)*0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
594 rate
*= 1<<((i
>>2)-1); /* b2-5 : shift bit */
595 rate
*= (double)(EG_ENT
<<ENV_BITS
);
596 OPL
->AR_TABLE
[i
] = rate
/ ARRATE
;
597 OPL
->DR_TABLE
[i
] = rate
/ DRRATE
;
599 for (i
= 60;i
< 76;i
++)
601 OPL
->AR_TABLE
[i
] = EG_AED
-1;
602 OPL
->DR_TABLE
[i
] = OPL
->DR_TABLE
[60];
605 for (i
= 0;i
< 64 ;i
++){ /* make for overflow area */
606 LOG(LOG_WAR
,("rate %2d , ar %f ms , dr %f ms \n",i
,
607 ((double)(EG_ENT
<<ENV_BITS
) / OPL
->AR_TABLE
[i
]) * (1000.0 / OPL
->rate
),
608 ((double)(EG_ENT
<<ENV_BITS
) / OPL
->DR_TABLE
[i
]) * (1000.0 / OPL
->rate
) ));
613 /* ---------- generic table initialize ---------- */
614 static int OPLOpenTable( void )
621 /* allocate dynamic tables */
622 if( (TL_TABLE
= malloc(TL_MAX
*2*sizeof(INT32
))) == NULL
)
624 if( (SIN_TABLE
= malloc(SIN_ENT
*4 *sizeof(INT32
*))) == NULL
)
629 if( (AMS_TABLE
= malloc(AMS_ENT
*2 *sizeof(INT32
))) == NULL
)
635 if( (VIB_TABLE
= malloc(VIB_ENT
*2 *sizeof(INT32
))) == NULL
)
642 /* make total level table */
643 for (t
= 0;t
< EG_ENT
-1 ;t
++){
644 rate
= ((1<<TL_BITS
)-1)/pow(10,EG_STEP
*t
/20); /* dB -> voltage */
645 TL_TABLE
[ t
] = (int)rate
;
646 TL_TABLE
[TL_MAX
+t
] = -TL_TABLE
[t
];
647 /* LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
649 /* fill volume off area */
650 for ( t
= EG_ENT
-1; t
< TL_MAX
;t
++){
651 TL_TABLE
[t
] = TL_TABLE
[TL_MAX
+t
] = 0;
654 /* make sinwave table (total level offet) */
655 /* degree 0 = degree 180 = off */
656 SIN_TABLE
[0] = SIN_TABLE
[SIN_ENT
/2] = &TL_TABLE
[EG_ENT
-1];
657 for (s
= 1;s
<= SIN_ENT
/4;s
++){
658 pom
= sin(2*PI
*s
/SIN_ENT
); /* sin */
659 pom
= 20*log10(1/pom
); /* decibel */
660 j
= pom
/ EG_STEP
; /* TL_TABLE steps */
662 /* degree 0 - 90 , degree 180 - 90 : plus section */
663 SIN_TABLE
[ s
] = SIN_TABLE
[SIN_ENT
/2-s
] = &TL_TABLE
[j
];
664 /* degree 180 - 270 , degree 360 - 270 : minus section */
665 SIN_TABLE
[SIN_ENT
/2+s
] = SIN_TABLE
[SIN_ENT
-s
] = &TL_TABLE
[TL_MAX
+j
];
666 /* LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
668 for (s
= 0;s
< SIN_ENT
;s
++)
670 SIN_TABLE
[SIN_ENT
*1+s
] = s
<(SIN_ENT
/2) ? SIN_TABLE
[s
] : &TL_TABLE
[EG_ENT
];
671 SIN_TABLE
[SIN_ENT
*2+s
] = SIN_TABLE
[s
% (SIN_ENT
/2)];
672 SIN_TABLE
[SIN_ENT
*3+s
] = (s
/(SIN_ENT
/4))&1 ? &TL_TABLE
[EG_ENT
] : SIN_TABLE
[SIN_ENT
*2+s
];
675 /* envelope counter -> envelope output table */
676 for (i
=0; i
<EG_ENT
; i
++)
679 pom
= pow( ((double)(EG_ENT
-1-i
)/EG_ENT
) , 8 ) * EG_ENT
;
680 /* if( pom >= EG_ENT ) pom = EG_ENT-1; */
681 ENV_CURVE
[i
] = (int)pom
;
682 /* DECAY ,RELEASE curve */
683 ENV_CURVE
[(EG_DST
>>ENV_BITS
)+i
]= i
;
686 ENV_CURVE
[EG_OFF
>>ENV_BITS
]= EG_ENT
-1;
687 /* make LFO ams table */
688 for (i
=0; i
<AMS_ENT
; i
++)
690 pom
= (1.0+sin(2*PI
*i
/AMS_ENT
))/2; /* sin */
691 AMS_TABLE
[i
] = (1.0/EG_STEP
)*pom
; /* 1dB */
692 AMS_TABLE
[AMS_ENT
+i
] = (4.8/EG_STEP
)*pom
; /* 4.8dB */
694 /* make LFO vibrate table */
695 for (i
=0; i
<VIB_ENT
; i
++)
697 /* 100cent = 1seminote = 6% ?? */
698 pom
= (double)VIB_RATE
*0.06*sin(2*PI
*i
/VIB_ENT
); /* +-100sect step */
699 VIB_TABLE
[i
] = VIB_RATE
+ (pom
*0.07); /* +- 7cent */
700 VIB_TABLE
[VIB_ENT
+i
] = VIB_RATE
+ (pom
*0.14); /* +-14cent */
701 /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
707 static void OPLCloseTable( void )
715 /* CSM Key Controll */
716 INLINE
void CSMKeyControll(OPL_CH
*CH
)
718 OPL_SLOT
*slot1
= &CH
->SLOT
[SLOT1
];
719 OPL_SLOT
*slot2
= &CH
->SLOT
[SLOT2
];
723 /* total level latch */
724 slot1
->TLL
= slot1
->TL
+ (CH
->ksl_base
>>slot1
->ksl
);
725 slot1
->TLL
= slot1
->TL
+ (CH
->ksl_base
>>slot1
->ksl
);
727 CH
->op1_out
[0] = CH
->op1_out
[1] = 0;
732 /* ---------- opl initialize ---------- */
733 static void OPL_initalize(FM_OPL
*OPL
)
738 OPL
->freqbase
= (OPL
->rate
) ? ((double)OPL
->clock
/ OPL
->rate
) / 72 : 0;
739 /* Timer base time */
740 OPL
->TimerBase
= 1.0/((double)OPL
->clock
/ 72.0 );
741 /* make time tables */
742 init_timetables( OPL
, OPL_ARRATE
, OPL_DRRATE
);
743 /* make fnumber -> increment counter table */
744 for( fn
=0 ; fn
< 1024 ; fn
++ )
746 OPL
->FN_TABLE
[fn
] = OPL
->freqbase
* fn
* FREQ_RATE
* (1<<7) / 2;
749 OPL
->amsIncr
= OPL
->rate
? (double)AMS_ENT
*(1<<AMS_SHIFT
) / OPL
->rate
* 3.7 * ((double)OPL
->clock
/3600000) : 0;
750 OPL
->vibIncr
= OPL
->rate
? (double)VIB_ENT
*(1<<VIB_SHIFT
) / OPL
->rate
* 6.4 * ((double)OPL
->clock
/3600000) : 0;
753 /* ---------- write a OPL registers ---------- */
754 static void OPLWriteReg(FM_OPL
*OPL
, int r
, int v
)
762 case 0x00: /* 00-1f:controll */
766 /* wave selector enable */
767 if(OPL
->type
&OPL_TYPE_WAVESEL
)
769 OPL
->wavesel
= v
&0x20;
772 /* preset compatible mode */
774 for(c
=0;c
<OPL
->max_ch
;c
++)
776 OPL
->P_CH
[c
].SLOT
[SLOT1
].wavetable
= &SIN_TABLE
[0];
777 OPL
->P_CH
[c
].SLOT
[SLOT2
].wavetable
= &SIN_TABLE
[0];
782 case 0x02: /* Timer 1 */
783 OPL
->T
[0] = (256-v
)*4;
785 case 0x03: /* Timer 2 */
786 OPL
->T
[1] = (256-v
)*16;
788 case 0x04: /* IRQ clear / mask and Timer enable */
790 { /* IRQ flag clear */
791 OPL_STATUS_RESET(OPL
,0x7f);
794 { /* set IRQ mask ,timer enable*/
796 UINT8 st2
= (v
>>1)&1;
797 /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
798 OPL_STATUS_RESET(OPL
,v
&0x78);
799 OPL_STATUSMASK_SET(OPL
,((~v
)&0x78)|0x01);
801 if(OPL
->st
[1] != st2
)
803 double interval
= st2
? (double)OPL
->T
[1]*OPL
->TimerBase
: 0.0;
805 if (OPL
->TimerHandler
) (OPL
->TimerHandler
)(OPL
->TimerParam
+1,interval
);
808 if(OPL
->st
[0] != st1
)
810 double interval
= st1
? (double)OPL
->T
[0]*OPL
->TimerBase
: 0.0;
812 if (OPL
->TimerHandler
) (OPL
->TimerHandler
)(OPL
->TimerParam
+0,interval
);
817 case 0x06: /* Key Board OUT */
818 if(OPL
->type
&OPL_TYPE_KEYBOARD
)
820 if(OPL
->keyboardhandler_w
)
821 OPL
->keyboardhandler_w(OPL
->keyboard_param
,v
);
823 LOG(LOG_WAR
,("OPL:write unmapped KEYBOARD port\n"));
826 case 0x07: /* DELTA-T controll : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */
827 if(OPL
->type
&OPL_TYPE_ADPCM
)
828 YM_DELTAT_ADPCM_Write(OPL
->deltat
,r
-0x07,v
);
830 case 0x08: /* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */
832 v
&=0x1f; /* for DELTA-T unit */
833 case 0x09: /* START ADD */
835 case 0x0b: /* STOP ADD */
837 case 0x0d: /* PRESCALE */
839 case 0x0f: /* ADPCM data */
840 case 0x10: /* DELTA-N */
841 case 0x11: /* DELTA-N */
842 case 0x12: /* EG-CTRL */
843 if(OPL
->type
&OPL_TYPE_ADPCM
)
844 YM_DELTAT_ADPCM_Write(OPL
->deltat
,r
-0x07,v
);
847 case 0x15: /* DAC data */
849 case 0x17: /* SHIFT */
851 case 0x18: /* I/O CTRL (Direction) */
852 if(OPL
->type
&OPL_TYPE_IO
)
853 OPL
->portDirection
= v
&0x0f;
855 case 0x19: /* I/O DATA */
856 if(OPL
->type
&OPL_TYPE_IO
)
859 if(OPL
->porthandler_w
)
860 OPL
->porthandler_w(OPL
->port_param
,v
&OPL
->portDirection
);
863 case 0x1a: /* PCM data */
869 case 0x20: /* am,vib,ksr,eg type,mul */
870 slot
= slot_array
[r
&0x1f];
871 if(slot
== -1) return;
875 slot
= slot_array
[r
&0x1f];
876 if(slot
== -1) return;
877 set_ksl_tl(OPL
,slot
,v
);
880 slot
= slot_array
[r
&0x1f];
881 if(slot
== -1) return;
882 set_ar_dr(OPL
,slot
,v
);
885 slot
= slot_array
[r
&0x1f];
886 if(slot
== -1) return;
887 set_sl_rr(OPL
,slot
,v
);
893 /* amsep,vibdep,r,bd,sd,tom,tc,hh */
895 UINT8 rkey
= OPL
->rythm
^v
;
896 OPL
->ams_table
= &AMS_TABLE
[v
&0x80 ? AMS_ENT
: 0];
897 OPL
->vib_table
= &VIB_TABLE
[v
&0x40 ? VIB_ENT
: 0];
902 usrintf_showmessage("OPL Rythm mode select");
909 OPL
->P_CH
[6].op1_out
[0] = OPL
->P_CH
[6].op1_out
[1] = 0;
910 OPL_KEYON(&OPL
->P_CH
[6].SLOT
[SLOT1
]);
911 OPL_KEYON(&OPL
->P_CH
[6].SLOT
[SLOT2
]);
915 OPL_KEYOFF(&OPL
->P_CH
[6].SLOT
[SLOT1
]);
916 OPL_KEYOFF(&OPL
->P_CH
[6].SLOT
[SLOT2
]);
922 if(v
&0x08) OPL_KEYON(&OPL
->P_CH
[7].SLOT
[SLOT2
]);
923 else OPL_KEYOFF(&OPL
->P_CH
[7].SLOT
[SLOT2
]);
924 }/* TAM key on/off */
927 if(v
&0x04) OPL_KEYON(&OPL
->P_CH
[8].SLOT
[SLOT1
]);
928 else OPL_KEYOFF(&OPL
->P_CH
[8].SLOT
[SLOT1
]);
930 /* TOP-CY key on/off */
933 if(v
&0x02) OPL_KEYON(&OPL
->P_CH
[8].SLOT
[SLOT2
]);
934 else OPL_KEYOFF(&OPL
->P_CH
[8].SLOT
[SLOT2
]);
939 if(v
&0x01) OPL_KEYON(&OPL
->P_CH
[7].SLOT
[SLOT1
]);
940 else OPL_KEYOFF(&OPL
->P_CH
[7].SLOT
[SLOT1
]);
946 /* keyon,block,fnum */
947 if( (r
&0x0f) > 8) return;
948 CH
= &OPL
->P_CH
[r
&0x0f];
951 block_fnum
= (CH
->block_fnum
&0x1f00) | v
;
955 int keyon
= (v
>>5)&1;
956 block_fnum
= ((v
&0x1f)<<8) | (CH
->block_fnum
&0xff);
957 if(CH
->keyon
!= keyon
)
959 if( (CH
->keyon
=keyon
) )
961 CH
->op1_out
[0] = CH
->op1_out
[1] = 0;
962 OPL_KEYON(&CH
->SLOT
[SLOT1
]);
963 OPL_KEYON(&CH
->SLOT
[SLOT2
]);
967 OPL_KEYOFF(&CH
->SLOT
[SLOT1
]);
968 OPL_KEYOFF(&CH
->SLOT
[SLOT2
]);
973 if(CH
->block_fnum
!= block_fnum
)
975 int blockRv
= 7-(block_fnum
>>10);
976 int fnum
= block_fnum
&0x3ff;
977 CH
->block_fnum
= block_fnum
;
979 CH
->ksl_base
= KSL_TABLE
[block_fnum
>>6];
980 CH
->fc
= OPL
->FN_TABLE
[fnum
]>>blockRv
;
981 CH
->kcode
= CH
->block_fnum
>>9;
982 if( (OPL
->mode
&0x40) && CH
->block_fnum
&0x100) CH
->kcode
|=1;
983 CALC_FCSLOT(CH
,&CH
->SLOT
[SLOT1
]);
984 CALC_FCSLOT(CH
,&CH
->SLOT
[SLOT2
]);
989 if( (r
&0x0f) > 8) return;
990 CH
= &OPL
->P_CH
[r
&0x0f];
992 int feedback
= (v
>>1)&7;
993 CH
->FB
= feedback
? (8+1) - feedback
: 0;
998 case 0xe0: /* wave type */
999 slot
= slot_array
[r
&0x1f];
1000 if(slot
== -1) return;
1001 CH
= &OPL
->P_CH
[slot
/2];
1004 /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
1005 CH
->SLOT
[slot
&1].wavetable
= &SIN_TABLE
[(v
&0x03)*SIN_ENT
];
1011 /* lock/unlock for common table */
1012 static int OPL_LockTable(void)
1015 if(num_lock
>1) return 0;
1018 /* allocate total level table (128kb space) */
1019 if( !OPLOpenTable() )
1027 static void OPL_UnLockTable(void)
1029 if(num_lock
) num_lock
--;
1030 if(num_lock
) return;
1036 #if (BUILD_YM3812 || BUILD_YM3526)
1037 /*******************************************************************************/
1038 /* YM3812 local section */
1039 /*******************************************************************************/
1041 /* ---------- update one of chip ----------- */
1042 void YM3812UpdateOne(FM_OPL
*OPL
, INT16
*buffer
, int length
)
1046 OPLSAMPLE
*buf
= buffer
;
1047 UINT32 amsCnt
= OPL
->amsCnt
;
1048 UINT32 vibCnt
= OPL
->vibCnt
;
1049 UINT8 rythm
= OPL
->rythm
&0x20;
1052 if( (void *)OPL
!= cur_chip
){
1053 cur_chip
= (void *)OPL
;
1054 /* channel pointers */
1058 SLOT7_1
= &S_CH
[7].SLOT
[SLOT1
];
1059 SLOT7_2
= &S_CH
[7].SLOT
[SLOT2
];
1060 SLOT8_1
= &S_CH
[8].SLOT
[SLOT1
];
1061 SLOT8_2
= &S_CH
[8].SLOT
[SLOT2
];
1063 amsIncr
= OPL
->amsIncr
;
1064 vibIncr
= OPL
->vibIncr
;
1065 ams_table
= OPL
->ams_table
;
1066 vib_table
= OPL
->vib_table
;
1068 R_CH
= rythm
? &S_CH
[6] : E_CH
;
1069 for( i
=0; i
< length
; i
++ )
1071 /* channel A channel B channel C */
1073 ams
= ams_table
[(amsCnt
+=amsIncr
)>>AMS_SHIFT
];
1074 vib
= vib_table
[(vibCnt
+=vibIncr
)>>VIB_SHIFT
];
1077 for(CH
=S_CH
; CH
< R_CH
; CH
++)
1083 data
= Limit( outd
[0] , OPL_MAXOUT
, OPL_MINOUT
);
1084 /* store to sound buffer */
1085 buf
[i
] = data
>> OPL_OUTSB
;
1088 OPL
->amsCnt
= amsCnt
;
1089 OPL
->vibCnt
= vibCnt
;
1090 #ifdef OPL_OUTPUT_LOG
1093 for(opl_dbg_chip
=0;opl_dbg_chip
<opl_dbg_maxchip
;opl_dbg_chip
++)
1094 if( opl_dbg_opl
[opl_dbg_chip
] == OPL
) break;
1095 fprintf(opl_dbg_fp
,"%c%c%c",0x20+opl_dbg_chip
,length
&0xff,length
/256);
1099 #endif /* (BUILD_YM3812 || BUILD_YM3526) */
1103 void Y8950UpdateOne(FM_OPL
*OPL
, INT16
*buffer
, int length
)
1107 OPLSAMPLE
*buf
= buffer
;
1108 UINT32 amsCnt
= OPL
->amsCnt
;
1109 UINT32 vibCnt
= OPL
->vibCnt
;
1110 UINT8 rythm
= OPL
->rythm
&0x20;
1112 YM_DELTAT
*DELTAT
= OPL
->deltat
;
1114 /* setup DELTA-T unit */
1115 YM_DELTAT_DECODE_PRESET(DELTAT
);
1117 if( (void *)OPL
!= cur_chip
){
1118 cur_chip
= (void *)OPL
;
1119 /* channel pointers */
1123 SLOT7_1
= &S_CH
[7].SLOT
[SLOT1
];
1124 SLOT7_2
= &S_CH
[7].SLOT
[SLOT2
];
1125 SLOT8_1
= &S_CH
[8].SLOT
[SLOT1
];
1126 SLOT8_2
= &S_CH
[8].SLOT
[SLOT2
];
1128 amsIncr
= OPL
->amsIncr
;
1129 vibIncr
= OPL
->vibIncr
;
1130 ams_table
= OPL
->ams_table
;
1131 vib_table
= OPL
->vib_table
;
1133 R_CH
= rythm
? &S_CH
[6] : E_CH
;
1134 for( i
=0; i
< length
; i
++ )
1136 /* channel A channel B channel C */
1138 ams
= ams_table
[(amsCnt
+=amsIncr
)>>AMS_SHIFT
];
1139 vib
= vib_table
[(vibCnt
+=vibIncr
)>>VIB_SHIFT
];
1142 if( DELTAT
->portstate
)
1143 YM_DELTAT_ADPCM_CALC(DELTAT
);
1145 for(CH
=S_CH
; CH
< R_CH
; CH
++)
1151 data
= Limit( outd
[0] , OPL_MAXOUT
, OPL_MINOUT
);
1152 /* store to sound buffer */
1153 buf
[i
] = data
>> OPL_OUTSB
;
1155 OPL
->amsCnt
= amsCnt
;
1156 OPL
->vibCnt
= vibCnt
;
1157 /* deltaT START flag */
1158 if( !DELTAT
->portstate
)
1159 OPL
->status
&= 0xfe;
1163 /* ---------- reset one of chip ---------- */
1164 void OPLResetChip(FM_OPL
*OPL
)
1170 OPL
->mode
= 0; /* normal mode */
1171 OPL_STATUS_RESET(OPL
,0x7f);
1172 /* reset with register write */
1173 OPLWriteReg(OPL
,0x01,0); /* wabesel disable */
1174 OPLWriteReg(OPL
,0x02,0); /* Timer1 */
1175 OPLWriteReg(OPL
,0x03,0); /* Timer2 */
1176 OPLWriteReg(OPL
,0x04,0); /* IRQ mask clear */
1177 for(i
= 0xff ; i
>= 0x20 ; i
-- ) OPLWriteReg(OPL
,i
,0);
1178 /* reset OPerator paramater */
1179 for( c
= 0 ; c
< OPL
->max_ch
; c
++ )
1181 OPL_CH
*CH
= &OPL
->P_CH
[c
];
1182 /* OPL->P_CH[c].PAN = OPN_CENTER; */
1183 for(s
= 0 ; s
< 2 ; s
++ )
1186 CH
->SLOT
[s
].wavetable
= &SIN_TABLE
[0];
1187 /* CH->SLOT[s].evm = ENV_MOD_RR; */
1188 CH
->SLOT
[s
].evc
= EG_OFF
;
1189 CH
->SLOT
[s
].eve
= EG_OFF
+1;
1190 CH
->SLOT
[s
].evs
= 0;
1194 if(OPL
->type
&OPL_TYPE_ADPCM
)
1196 YM_DELTAT
*DELTAT
= OPL
->deltat
;
1198 DELTAT
->freqbase
= OPL
->freqbase
;
1199 DELTAT
->output_pointer
= outd
;
1200 DELTAT
->portshift
= 5;
1201 DELTAT
->output_range
= DELTAT_MIXING_LEVEL
<<TL_BITS
;
1202 YM_DELTAT_ADPCM_Reset(DELTAT
,0);
1207 /* ---------- Create one of vietual YM3812 ---------- */
1208 /* 'rate' is sampling rate and 'bufsiz' is the size of the */
1209 FM_OPL
*OPLCreate(int type
, int clock
, int rate
)
1214 int max_ch
= 9; /* normaly 9 channels */
1216 if( OPL_LockTable() ==-1) return NULL
;
1217 /* allocate OPL state space */
1218 state_size
= sizeof(FM_OPL
);
1219 state_size
+= sizeof(OPL_CH
)*max_ch
;
1221 if(type
&OPL_TYPE_ADPCM
) state_size
+= sizeof(YM_DELTAT
);
1223 /* allocate memory block */
1224 ptr
= malloc(state_size
);
1225 if(ptr
==NULL
) return NULL
;
1227 memset(ptr
,0,state_size
);
1228 OPL
= (FM_OPL
*)ptr
; ptr
+=sizeof(FM_OPL
);
1229 OPL
->P_CH
= (OPL_CH
*)ptr
; ptr
+=sizeof(OPL_CH
)*max_ch
;
1231 if(type
&OPL_TYPE_ADPCM
) OPL
->deltat
= (YM_DELTAT
*)ptr
; ptr
+=sizeof(YM_DELTAT
);
1233 /* set channel state pointer */
1237 OPL
->max_ch
= max_ch
;
1238 /* init grobal tables */
1242 #ifdef OPL_OUTPUT_LOG
1245 opl_dbg_fp
= fopen("opllog.opl","wb");
1246 opl_dbg_maxchip
= 0;
1250 opl_dbg_opl
[opl_dbg_maxchip
] = OPL
;
1251 fprintf(opl_dbg_fp
,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip
,
1255 (clock
/0x10000)&0xff,
1256 (clock
/0x1000000)&0xff);
1263 /* ---------- Destroy one of vietual YM3812 ---------- */
1264 void OPLDestroy(FM_OPL
*OPL
)
1266 #ifdef OPL_OUTPUT_LOG
1277 /* ---------- Option handlers ---------- */
1279 void OPLSetTimerHandler(FM_OPL
*OPL
,OPL_TIMERHANDLER TimerHandler
,int channelOffset
)
1281 OPL
->TimerHandler
= TimerHandler
;
1282 OPL
->TimerParam
= channelOffset
;
1284 void OPLSetIRQHandler(FM_OPL
*OPL
,OPL_IRQHANDLER IRQHandler
,int param
)
1286 OPL
->IRQHandler
= IRQHandler
;
1287 OPL
->IRQParam
= param
;
1289 void OPLSetUpdateHandler(FM_OPL
*OPL
,OPL_UPDATEHANDLER UpdateHandler
,int param
)
1291 OPL
->UpdateHandler
= UpdateHandler
;
1292 OPL
->UpdateParam
= param
;
1295 void OPLSetPortHandler(FM_OPL
*OPL
,OPL_PORTHANDLER_W PortHandler_w
,OPL_PORTHANDLER_R PortHandler_r
,int param
)
1297 OPL
->porthandler_w
= PortHandler_w
;
1298 OPL
->porthandler_r
= PortHandler_r
;
1299 OPL
->port_param
= param
;
1302 void OPLSetKeyboardHandler(FM_OPL
*OPL
,OPL_PORTHANDLER_W KeyboardHandler_w
,OPL_PORTHANDLER_R KeyboardHandler_r
,int param
)
1304 OPL
->keyboardhandler_w
= KeyboardHandler_w
;
1305 OPL
->keyboardhandler_r
= KeyboardHandler_r
;
1306 OPL
->keyboard_param
= param
;
1309 /* ---------- YM3812 I/O interface ---------- */
1310 int OPLWrite(FM_OPL
*OPL
,int a
,int v
)
1313 { /* address port */
1314 OPL
->address
= v
& 0xff;
1318 if(OPL
->UpdateHandler
) OPL
->UpdateHandler(OPL
->UpdateParam
,0);
1319 #ifdef OPL_OUTPUT_LOG
1322 for(opl_dbg_chip
=0;opl_dbg_chip
<opl_dbg_maxchip
;opl_dbg_chip
++)
1323 if( opl_dbg_opl
[opl_dbg_chip
] == OPL
) break;
1324 fprintf(opl_dbg_fp
,"%c%c%c",0x10+opl_dbg_chip
,OPL
->address
,v
);
1327 OPLWriteReg(OPL
,OPL
->address
,v
);
1329 return OPL
->status
>>7;
1332 unsigned char OPLRead(FM_OPL
*OPL
,int a
)
1336 return OPL
->status
& (OPL
->statusmask
|0x80);
1339 switch(OPL
->address
)
1341 case 0x05: /* KeyBoard IN */
1342 if(OPL
->type
&OPL_TYPE_KEYBOARD
)
1344 if(OPL
->keyboardhandler_r
)
1345 return OPL
->keyboardhandler_r(OPL
->keyboard_param
);
1347 LOG(LOG_WAR
,("OPL:read unmapped KEYBOARD port\n"));
1351 case 0x0f: /* ADPCM-DATA */
1354 case 0x19: /* I/O DATA */
1355 if(OPL
->type
&OPL_TYPE_IO
)
1357 if(OPL
->porthandler_r
)
1358 return OPL
->porthandler_r(OPL
->port_param
);
1360 LOG(LOG_WAR
,("OPL:read unmapped I/O port\n"));
1363 case 0x1a: /* PCM-DATA */
1369 int OPLTimerOver(FM_OPL
*OPL
,int c
)
1373 OPL_STATUS_SET(OPL
,0x20);
1377 OPL_STATUS_SET(OPL
,0x40);
1378 /* CSM mode key,TL controll */
1379 if( OPL
->mode
& 0x80 )
1380 { /* CSM mode total level latch and auto key on */
1382 if(OPL
->UpdateHandler
) OPL
->UpdateHandler(OPL
->UpdateParam
,0);
1384 CSMKeyControll( &OPL
->P_CH
[ch
] );
1388 if (OPL
->TimerHandler
) (OPL
->TimerHandler
)(OPL
->TimerParam
+c
,(double)OPL
->T
[c
]*OPL
->TimerBase
);
1389 return OPL
->status
>>7;