2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #define WIN32_LEAN_AND_MEAN
25 #include <sys/types.h>
38 #include "qemu-common.h"
41 #if defined(CONFIG_USER_ONLY)
45 //#define DEBUG_TB_INVALIDATE
48 //#define DEBUG_UNASSIGNED
50 /* make various TB consistency checks */
51 //#define DEBUG_TB_CHECK
52 //#define DEBUG_TLB_CHECK
54 //#define DEBUG_IOPORT
55 //#define DEBUG_SUBPAGE
57 #if !defined(CONFIG_USER_ONLY)
58 /* TB consistency checks only implemented for usermode emulation. */
62 #define SMC_BITMAP_USE_THRESHOLD 10
64 #define MMAP_AREA_START 0x00000000
65 #define MMAP_AREA_END 0xa8000000
67 #if defined(TARGET_SPARC64)
68 #define TARGET_PHYS_ADDR_SPACE_BITS 41
69 #elif defined(TARGET_SPARC)
70 #define TARGET_PHYS_ADDR_SPACE_BITS 36
71 #elif defined(TARGET_ALPHA)
72 #define TARGET_PHYS_ADDR_SPACE_BITS 42
73 #define TARGET_VIRT_ADDR_SPACE_BITS 42
74 #elif defined(TARGET_PPC64)
75 #define TARGET_PHYS_ADDR_SPACE_BITS 42
76 #elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
77 #define TARGET_PHYS_ADDR_SPACE_BITS 42
78 #elif defined(TARGET_I386) && !defined(USE_KQEMU)
79 #define TARGET_PHYS_ADDR_SPACE_BITS 36
81 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
82 #define TARGET_PHYS_ADDR_SPACE_BITS 32
85 TranslationBlock
*tbs
;
86 int code_gen_max_blocks
;
87 TranslationBlock
*tb_phys_hash
[CODE_GEN_PHYS_HASH_SIZE
];
89 /* any access to the tbs or the page table must use this lock */
90 spinlock_t tb_lock
= SPIN_LOCK_UNLOCKED
;
92 #if defined(__arm__) || defined(__sparc_v9__)
93 /* The prologue must be reachable with a direct jump. ARM and Sparc64
94 have limited branch ranges (possibly also PPC) so place it in a
95 section close to code segment. */
96 #define code_gen_section \
97 __attribute__((__section__(".gen_code"))) \
98 __attribute__((aligned (32)))
100 #define code_gen_section \
101 __attribute__((aligned (32)))
104 uint8_t code_gen_prologue
[1024] code_gen_section
;
105 uint8_t *code_gen_buffer
;
106 unsigned long code_gen_buffer_size
;
107 /* threshold to flush the translated code buffer */
108 unsigned long code_gen_buffer_max_size
;
109 uint8_t *code_gen_ptr
;
111 #if !defined(CONFIG_USER_ONLY)
112 ram_addr_t phys_ram_size
;
114 uint8_t *phys_ram_base
;
115 uint8_t *phys_ram_dirty
;
116 static ram_addr_t phys_ram_alloc_offset
= 0;
120 /* current CPU in the current thread. It is only valid inside
122 CPUState
*cpu_single_env
;
123 /* 0 = Do not count executed instructions.
124 1 = Precise instruction counting.
125 2 = Adaptive rate instruction counting. */
127 /* Current instruction counter. While executing translated code this may
128 include some instructions that have not yet been executed. */
131 typedef struct PageDesc
{
132 /* list of TBs intersecting this ram page */
133 TranslationBlock
*first_tb
;
134 /* in order to optimize self modifying code, we count the number
135 of lookups we do to a given page to use a bitmap */
136 unsigned int code_write_count
;
137 uint8_t *code_bitmap
;
138 #if defined(CONFIG_USER_ONLY)
143 typedef struct PhysPageDesc
{
144 /* offset in host memory of the page + io_index in the low bits */
145 ram_addr_t phys_offset
;
149 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
150 /* XXX: this is a temporary hack for alpha target.
151 * In the future, this is to be replaced by a multi-level table
152 * to actually be able to handle the complete 64 bits address space.
154 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
156 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
159 #define L1_SIZE (1 << L1_BITS)
160 #define L2_SIZE (1 << L2_BITS)
162 unsigned long qemu_real_host_page_size
;
163 unsigned long qemu_host_page_bits
;
164 unsigned long qemu_host_page_size
;
165 unsigned long qemu_host_page_mask
;
167 /* XXX: for system emulation, it could just be an array */
168 static PageDesc
*l1_map
[L1_SIZE
];
169 PhysPageDesc
**l1_phys_map
;
171 #if !defined(CONFIG_USER_ONLY)
172 static void io_mem_init(void);
174 /* io memory support */
175 CPUWriteMemoryFunc
*io_mem_write
[IO_MEM_NB_ENTRIES
][4];
176 CPUReadMemoryFunc
*io_mem_read
[IO_MEM_NB_ENTRIES
][4];
177 void *io_mem_opaque
[IO_MEM_NB_ENTRIES
];
178 static int io_mem_nb
;
179 static int io_mem_watch
;
183 char *logfilename
= "/tmp/qemu.log";
186 static int log_append
= 0;
189 static int tlb_flush_count
;
190 static int tb_flush_count
;
191 static int tb_phys_invalidate_count
;
193 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
194 typedef struct subpage_t
{
195 target_phys_addr_t base
;
196 CPUReadMemoryFunc
**mem_read
[TARGET_PAGE_SIZE
][4];
197 CPUWriteMemoryFunc
**mem_write
[TARGET_PAGE_SIZE
][4];
198 void *opaque
[TARGET_PAGE_SIZE
][2][4];
202 static void map_exec(void *addr
, long size
)
205 VirtualProtect(addr
, size
,
206 PAGE_EXECUTE_READWRITE
, &old_protect
);
210 static void map_exec(void *addr
, long size
)
212 unsigned long start
, end
, page_size
;
214 page_size
= getpagesize();
215 start
= (unsigned long)addr
;
216 start
&= ~(page_size
- 1);
218 end
= (unsigned long)addr
+ size
;
219 end
+= page_size
- 1;
220 end
&= ~(page_size
- 1);
222 mprotect((void *)start
, end
- start
,
223 PROT_READ
| PROT_WRITE
| PROT_EXEC
);
227 static void page_init(void)
229 /* NOTE: we can always suppose that qemu_host_page_size >=
233 SYSTEM_INFO system_info
;
236 GetSystemInfo(&system_info
);
237 qemu_real_host_page_size
= system_info
.dwPageSize
;
240 qemu_real_host_page_size
= getpagesize();
242 if (qemu_host_page_size
== 0)
243 qemu_host_page_size
= qemu_real_host_page_size
;
244 if (qemu_host_page_size
< TARGET_PAGE_SIZE
)
245 qemu_host_page_size
= TARGET_PAGE_SIZE
;
246 qemu_host_page_bits
= 0;
247 while ((1 << qemu_host_page_bits
) < qemu_host_page_size
)
248 qemu_host_page_bits
++;
249 qemu_host_page_mask
= ~(qemu_host_page_size
- 1);
250 l1_phys_map
= qemu_vmalloc(L1_SIZE
* sizeof(void *));
251 memset(l1_phys_map
, 0, L1_SIZE
* sizeof(void *));
253 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
255 long long startaddr
, endaddr
;
260 last_brk
= (unsigned long)sbrk(0);
261 f
= fopen("/proc/self/maps", "r");
264 n
= fscanf (f
, "%llx-%llx %*[^\n]\n", &startaddr
, &endaddr
);
266 startaddr
= MIN(startaddr
,
267 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS
) - 1);
268 endaddr
= MIN(endaddr
,
269 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS
) - 1);
270 page_set_flags(startaddr
& TARGET_PAGE_MASK
,
271 TARGET_PAGE_ALIGN(endaddr
),
282 static inline PageDesc
*page_find_alloc(target_ulong index
)
286 #if TARGET_LONG_BITS > 32
287 /* Host memory outside guest VM. For 32-bit targets we have already
288 excluded high addresses. */
289 if (index
> ((target_ulong
)L2_SIZE
* L1_SIZE
))
292 lp
= &l1_map
[index
>> L2_BITS
];
295 /* allocate if not found */
296 #if defined(CONFIG_USER_ONLY)
298 size_t len
= sizeof(PageDesc
) * L2_SIZE
;
299 /* Don't use qemu_malloc because it may recurse. */
300 p
= mmap(0, len
, PROT_READ
| PROT_WRITE
,
301 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
304 if (addr
== (target_ulong
)addr
) {
305 page_set_flags(addr
& TARGET_PAGE_MASK
,
306 TARGET_PAGE_ALIGN(addr
+ len
),
310 p
= qemu_mallocz(sizeof(PageDesc
) * L2_SIZE
);
314 return p
+ (index
& (L2_SIZE
- 1));
317 static inline PageDesc
*page_find(target_ulong index
)
321 p
= l1_map
[index
>> L2_BITS
];
324 return p
+ (index
& (L2_SIZE
- 1));
327 static PhysPageDesc
*phys_page_find_alloc(target_phys_addr_t index
, int alloc
)
332 p
= (void **)l1_phys_map
;
333 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
335 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
336 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
338 lp
= p
+ ((index
>> (L1_BITS
+ L2_BITS
)) & (L1_SIZE
- 1));
341 /* allocate if not found */
344 p
= qemu_vmalloc(sizeof(void *) * L1_SIZE
);
345 memset(p
, 0, sizeof(void *) * L1_SIZE
);
349 lp
= p
+ ((index
>> L2_BITS
) & (L1_SIZE
- 1));
353 /* allocate if not found */
356 pd
= qemu_vmalloc(sizeof(PhysPageDesc
) * L2_SIZE
);
358 for (i
= 0; i
< L2_SIZE
; i
++)
359 pd
[i
].phys_offset
= IO_MEM_UNASSIGNED
;
361 return ((PhysPageDesc
*)pd
) + (index
& (L2_SIZE
- 1));
364 static inline PhysPageDesc
*phys_page_find(target_phys_addr_t index
)
366 return phys_page_find_alloc(index
, 0);
369 #if !defined(CONFIG_USER_ONLY)
370 static void tlb_protect_code(ram_addr_t ram_addr
);
371 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
373 #define mmap_lock() do { } while(0)
374 #define mmap_unlock() do { } while(0)
377 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
379 #if defined(CONFIG_USER_ONLY)
380 /* Currently it is not recommanded to allocate big chunks of data in
381 user mode. It will change when a dedicated libc will be used */
382 #define USE_STATIC_CODE_GEN_BUFFER
385 #ifdef USE_STATIC_CODE_GEN_BUFFER
386 static uint8_t static_code_gen_buffer
[DEFAULT_CODE_GEN_BUFFER_SIZE
];
389 static void code_gen_alloc(unsigned long tb_size
)
391 #ifdef USE_STATIC_CODE_GEN_BUFFER
392 code_gen_buffer
= static_code_gen_buffer
;
393 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
394 map_exec(code_gen_buffer
, code_gen_buffer_size
);
396 code_gen_buffer_size
= tb_size
;
397 if (code_gen_buffer_size
== 0) {
398 #if defined(CONFIG_USER_ONLY)
399 /* in user mode, phys_ram_size is not meaningful */
400 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
402 /* XXX: needs ajustments */
403 code_gen_buffer_size
= (int)(phys_ram_size
/ 4);
406 if (code_gen_buffer_size
< MIN_CODE_GEN_BUFFER_SIZE
)
407 code_gen_buffer_size
= MIN_CODE_GEN_BUFFER_SIZE
;
408 /* The code gen buffer location may have constraints depending on
409 the host cpu and OS */
410 #if defined(__linux__)
415 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
416 #if defined(__x86_64__)
418 /* Cannot map more than that */
419 if (code_gen_buffer_size
> (800 * 1024 * 1024))
420 code_gen_buffer_size
= (800 * 1024 * 1024);
421 #elif defined(__sparc_v9__)
422 // Map the buffer below 2G, so we can use direct calls and branches
424 start
= (void *) 0x60000000UL
;
425 if (code_gen_buffer_size
> (512 * 1024 * 1024))
426 code_gen_buffer_size
= (512 * 1024 * 1024);
428 code_gen_buffer
= mmap(start
, code_gen_buffer_size
,
429 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
431 if (code_gen_buffer
== MAP_FAILED
) {
432 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
437 code_gen_buffer
= qemu_malloc(code_gen_buffer_size
);
438 if (!code_gen_buffer
) {
439 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
442 map_exec(code_gen_buffer
, code_gen_buffer_size
);
444 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
445 map_exec(code_gen_prologue
, sizeof(code_gen_prologue
));
446 code_gen_buffer_max_size
= code_gen_buffer_size
-
447 code_gen_max_block_size();
448 code_gen_max_blocks
= code_gen_buffer_size
/ CODE_GEN_AVG_BLOCK_SIZE
;
449 tbs
= qemu_malloc(code_gen_max_blocks
* sizeof(TranslationBlock
));
452 /* Must be called before using the QEMU cpus. 'tb_size' is the size
453 (in bytes) allocated to the translation buffer. Zero means default
455 void cpu_exec_init_all(unsigned long tb_size
)
458 code_gen_alloc(tb_size
);
459 code_gen_ptr
= code_gen_buffer
;
461 #if !defined(CONFIG_USER_ONLY)
466 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
468 #define CPU_COMMON_SAVE_VERSION 1
470 static void cpu_common_save(QEMUFile
*f
, void *opaque
)
472 CPUState
*env
= opaque
;
474 qemu_put_be32s(f
, &env
->halted
);
475 qemu_put_be32s(f
, &env
->interrupt_request
);
478 static int cpu_common_load(QEMUFile
*f
, void *opaque
, int version_id
)
480 CPUState
*env
= opaque
;
482 if (version_id
!= CPU_COMMON_SAVE_VERSION
)
485 qemu_get_be32s(f
, &env
->halted
);
486 qemu_get_be32s(f
, &env
->interrupt_request
);
493 void cpu_exec_init(CPUState
*env
)
498 env
->next_cpu
= NULL
;
501 while (*penv
!= NULL
) {
502 penv
= (CPUState
**)&(*penv
)->next_cpu
;
505 env
->cpu_index
= cpu_index
;
506 env
->nb_watchpoints
= 0;
508 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
509 register_savevm("cpu_common", cpu_index
, CPU_COMMON_SAVE_VERSION
,
510 cpu_common_save
, cpu_common_load
, env
);
511 register_savevm("cpu", cpu_index
, CPU_SAVE_VERSION
,
512 cpu_save
, cpu_load
, env
);
516 static inline void invalidate_page_bitmap(PageDesc
*p
)
518 if (p
->code_bitmap
) {
519 qemu_free(p
->code_bitmap
);
520 p
->code_bitmap
= NULL
;
522 p
->code_write_count
= 0;
525 /* set to NULL all the 'first_tb' fields in all PageDescs */
526 static void page_flush_tb(void)
531 for(i
= 0; i
< L1_SIZE
; i
++) {
534 for(j
= 0; j
< L2_SIZE
; j
++) {
536 invalidate_page_bitmap(p
);
543 /* flush all the translation blocks */
544 /* XXX: tb_flush is currently not thread safe */
545 void tb_flush(CPUState
*env1
)
548 #if defined(DEBUG_FLUSH)
549 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
550 (unsigned long)(code_gen_ptr
- code_gen_buffer
),
552 ((unsigned long)(code_gen_ptr
- code_gen_buffer
)) / nb_tbs
: 0);
554 if ((unsigned long)(code_gen_ptr
- code_gen_buffer
) > code_gen_buffer_size
)
555 cpu_abort(env1
, "Internal error: code buffer overflow\n");
559 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
560 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
563 memset (tb_phys_hash
, 0, CODE_GEN_PHYS_HASH_SIZE
* sizeof (void *));
566 code_gen_ptr
= code_gen_buffer
;
567 /* XXX: flush processor icache at this point if cache flush is
572 #ifdef DEBUG_TB_CHECK
574 static void tb_invalidate_check(target_ulong address
)
576 TranslationBlock
*tb
;
578 address
&= TARGET_PAGE_MASK
;
579 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
580 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
581 if (!(address
+ TARGET_PAGE_SIZE
<= tb
->pc
||
582 address
>= tb
->pc
+ tb
->size
)) {
583 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
584 address
, (long)tb
->pc
, tb
->size
);
590 /* verify that all the pages have correct rights for code */
591 static void tb_page_check(void)
593 TranslationBlock
*tb
;
594 int i
, flags1
, flags2
;
596 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
597 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
598 flags1
= page_get_flags(tb
->pc
);
599 flags2
= page_get_flags(tb
->pc
+ tb
->size
- 1);
600 if ((flags1
& PAGE_WRITE
) || (flags2
& PAGE_WRITE
)) {
601 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
602 (long)tb
->pc
, tb
->size
, flags1
, flags2
);
608 void tb_jmp_check(TranslationBlock
*tb
)
610 TranslationBlock
*tb1
;
613 /* suppress any remaining jumps to this TB */
617 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
620 tb1
= tb1
->jmp_next
[n1
];
622 /* check end of list */
624 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb
);
630 /* invalidate one TB */
631 static inline void tb_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
,
634 TranslationBlock
*tb1
;
638 *ptb
= *(TranslationBlock
**)((char *)tb1
+ next_offset
);
641 ptb
= (TranslationBlock
**)((char *)tb1
+ next_offset
);
645 static inline void tb_page_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
647 TranslationBlock
*tb1
;
653 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
655 *ptb
= tb1
->page_next
[n1
];
658 ptb
= &tb1
->page_next
[n1
];
662 static inline void tb_jmp_remove(TranslationBlock
*tb
, int n
)
664 TranslationBlock
*tb1
, **ptb
;
667 ptb
= &tb
->jmp_next
[n
];
670 /* find tb(n) in circular list */
674 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
675 if (n1
== n
&& tb1
== tb
)
678 ptb
= &tb1
->jmp_first
;
680 ptb
= &tb1
->jmp_next
[n1
];
683 /* now we can suppress tb(n) from the list */
684 *ptb
= tb
->jmp_next
[n
];
686 tb
->jmp_next
[n
] = NULL
;
690 /* reset the jump entry 'n' of a TB so that it is not chained to
692 static inline void tb_reset_jump(TranslationBlock
*tb
, int n
)
694 tb_set_jmp_target(tb
, n
, (unsigned long)(tb
->tc_ptr
+ tb
->tb_next_offset
[n
]));
697 void tb_phys_invalidate(TranslationBlock
*tb
, target_ulong page_addr
)
702 target_phys_addr_t phys_pc
;
703 TranslationBlock
*tb1
, *tb2
;
705 /* remove the TB from the hash list */
706 phys_pc
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
707 h
= tb_phys_hash_func(phys_pc
);
708 tb_remove(&tb_phys_hash
[h
], tb
,
709 offsetof(TranslationBlock
, phys_hash_next
));
711 /* remove the TB from the page list */
712 if (tb
->page_addr
[0] != page_addr
) {
713 p
= page_find(tb
->page_addr
[0] >> TARGET_PAGE_BITS
);
714 tb_page_remove(&p
->first_tb
, tb
);
715 invalidate_page_bitmap(p
);
717 if (tb
->page_addr
[1] != -1 && tb
->page_addr
[1] != page_addr
) {
718 p
= page_find(tb
->page_addr
[1] >> TARGET_PAGE_BITS
);
719 tb_page_remove(&p
->first_tb
, tb
);
720 invalidate_page_bitmap(p
);
723 tb_invalidated_flag
= 1;
725 /* remove the TB from the hash list */
726 h
= tb_jmp_cache_hash_func(tb
->pc
);
727 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
728 if (env
->tb_jmp_cache
[h
] == tb
)
729 env
->tb_jmp_cache
[h
] = NULL
;
732 /* suppress this TB from the two jump lists */
733 tb_jmp_remove(tb
, 0);
734 tb_jmp_remove(tb
, 1);
736 /* suppress any remaining jumps to this TB */
742 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
743 tb2
= tb1
->jmp_next
[n1
];
744 tb_reset_jump(tb1
, n1
);
745 tb1
->jmp_next
[n1
] = NULL
;
748 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2); /* fail safe */
750 tb_phys_invalidate_count
++;
753 static inline void set_bits(uint8_t *tab
, int start
, int len
)
759 mask
= 0xff << (start
& 7);
760 if ((start
& ~7) == (end
& ~7)) {
762 mask
&= ~(0xff << (end
& 7));
767 start
= (start
+ 8) & ~7;
769 while (start
< end1
) {
774 mask
= ~(0xff << (end
& 7));
780 static void build_page_bitmap(PageDesc
*p
)
782 int n
, tb_start
, tb_end
;
783 TranslationBlock
*tb
;
785 p
->code_bitmap
= qemu_mallocz(TARGET_PAGE_SIZE
/ 8);
792 tb
= (TranslationBlock
*)((long)tb
& ~3);
793 /* NOTE: this is subtle as a TB may span two physical pages */
795 /* NOTE: tb_end may be after the end of the page, but
796 it is not a problem */
797 tb_start
= tb
->pc
& ~TARGET_PAGE_MASK
;
798 tb_end
= tb_start
+ tb
->size
;
799 if (tb_end
> TARGET_PAGE_SIZE
)
800 tb_end
= TARGET_PAGE_SIZE
;
803 tb_end
= ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
805 set_bits(p
->code_bitmap
, tb_start
, tb_end
- tb_start
);
806 tb
= tb
->page_next
[n
];
810 TranslationBlock
*tb_gen_code(CPUState
*env
,
811 target_ulong pc
, target_ulong cs_base
,
812 int flags
, int cflags
)
814 TranslationBlock
*tb
;
816 target_ulong phys_pc
, phys_page2
, virt_page2
;
819 phys_pc
= get_phys_addr_code(env
, pc
);
822 /* flush must be done */
824 /* cannot fail at this point */
826 /* Don't forget to invalidate previous TB info. */
827 tb_invalidated_flag
= 1;
829 tc_ptr
= code_gen_ptr
;
831 tb
->cs_base
= cs_base
;
834 cpu_gen_code(env
, tb
, &code_gen_size
);
835 code_gen_ptr
= (void *)(((unsigned long)code_gen_ptr
+ code_gen_size
+ CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
837 /* check next page if needed */
838 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
840 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
841 phys_page2
= get_phys_addr_code(env
, virt_page2
);
843 tb_link_phys(tb
, phys_pc
, phys_page2
);
847 /* invalidate all TBs which intersect with the target physical page
848 starting in range [start;end[. NOTE: start and end must refer to
849 the same physical page. 'is_cpu_write_access' should be true if called
850 from a real cpu write access: the virtual CPU will exit the current
851 TB if code is modified inside this TB. */
852 void tb_invalidate_phys_page_range(target_phys_addr_t start
, target_phys_addr_t end
,
853 int is_cpu_write_access
)
855 int n
, current_tb_modified
, current_tb_not_found
, current_flags
;
856 CPUState
*env
= cpu_single_env
;
858 TranslationBlock
*tb
, *tb_next
, *current_tb
, *saved_tb
;
859 target_ulong tb_start
, tb_end
;
860 target_ulong current_pc
, current_cs_base
;
862 p
= page_find(start
>> TARGET_PAGE_BITS
);
865 if (!p
->code_bitmap
&&
866 ++p
->code_write_count
>= SMC_BITMAP_USE_THRESHOLD
&&
867 is_cpu_write_access
) {
868 /* build code bitmap */
869 build_page_bitmap(p
);
872 /* we remove all the TBs in the range [start, end[ */
873 /* XXX: see if in some cases it could be faster to invalidate all the code */
874 current_tb_not_found
= is_cpu_write_access
;
875 current_tb_modified
= 0;
876 current_tb
= NULL
; /* avoid warning */
877 current_pc
= 0; /* avoid warning */
878 current_cs_base
= 0; /* avoid warning */
879 current_flags
= 0; /* avoid warning */
883 tb
= (TranslationBlock
*)((long)tb
& ~3);
884 tb_next
= tb
->page_next
[n
];
885 /* NOTE: this is subtle as a TB may span two physical pages */
887 /* NOTE: tb_end may be after the end of the page, but
888 it is not a problem */
889 tb_start
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
890 tb_end
= tb_start
+ tb
->size
;
892 tb_start
= tb
->page_addr
[1];
893 tb_end
= tb_start
+ ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
895 if (!(tb_end
<= start
|| tb_start
>= end
)) {
896 #ifdef TARGET_HAS_PRECISE_SMC
897 if (current_tb_not_found
) {
898 current_tb_not_found
= 0;
900 if (env
->mem_io_pc
) {
901 /* now we have a real cpu fault */
902 current_tb
= tb_find_pc(env
->mem_io_pc
);
905 if (current_tb
== tb
&&
906 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
907 /* If we are modifying the current TB, we must stop
908 its execution. We could be more precise by checking
909 that the modification is after the current PC, but it
910 would require a specialized function to partially
911 restore the CPU state */
913 current_tb_modified
= 1;
914 cpu_restore_state(current_tb
, env
,
915 env
->mem_io_pc
, NULL
);
916 #if defined(TARGET_I386)
917 current_flags
= env
->hflags
;
918 current_flags
|= (env
->eflags
& (IOPL_MASK
| TF_MASK
| VM_MASK
));
919 current_cs_base
= (target_ulong
)env
->segs
[R_CS
].base
;
920 current_pc
= current_cs_base
+ env
->eip
;
922 #error unsupported CPU
925 #endif /* TARGET_HAS_PRECISE_SMC */
926 /* we need to do that to handle the case where a signal
927 occurs while doing tb_phys_invalidate() */
930 saved_tb
= env
->current_tb
;
931 env
->current_tb
= NULL
;
933 tb_phys_invalidate(tb
, -1);
935 env
->current_tb
= saved_tb
;
936 if (env
->interrupt_request
&& env
->current_tb
)
937 cpu_interrupt(env
, env
->interrupt_request
);
942 #if !defined(CONFIG_USER_ONLY)
943 /* if no code remaining, no need to continue to use slow writes */
945 invalidate_page_bitmap(p
);
946 if (is_cpu_write_access
) {
947 tlb_unprotect_code_phys(env
, start
, env
->mem_io_vaddr
);
951 #ifdef TARGET_HAS_PRECISE_SMC
952 if (current_tb_modified
) {
953 /* we generate a block containing just the instruction
954 modifying the memory. It will ensure that it cannot modify
956 env
->current_tb
= NULL
;
957 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
958 cpu_resume_from_signal(env
, NULL
);
963 /* len must be <= 8 and start must be a multiple of len */
964 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start
, int len
)
971 fprintf(logfile
, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
972 cpu_single_env
->mem_io_vaddr
, len
,
974 cpu_single_env
->eip
+ (long)cpu_single_env
->segs
[R_CS
].base
);
978 p
= page_find(start
>> TARGET_PAGE_BITS
);
981 if (p
->code_bitmap
) {
982 offset
= start
& ~TARGET_PAGE_MASK
;
983 b
= p
->code_bitmap
[offset
>> 3] >> (offset
& 7);
984 if (b
& ((1 << len
) - 1))
988 tb_invalidate_phys_page_range(start
, start
+ len
, 1);
992 #if !defined(CONFIG_SOFTMMU)
993 static void tb_invalidate_phys_page(target_phys_addr_t addr
,
994 unsigned long pc
, void *puc
)
996 int n
, current_flags
, current_tb_modified
;
997 target_ulong current_pc
, current_cs_base
;
999 TranslationBlock
*tb
, *current_tb
;
1000 #ifdef TARGET_HAS_PRECISE_SMC
1001 CPUState
*env
= cpu_single_env
;
1004 addr
&= TARGET_PAGE_MASK
;
1005 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1009 current_tb_modified
= 0;
1011 current_pc
= 0; /* avoid warning */
1012 current_cs_base
= 0; /* avoid warning */
1013 current_flags
= 0; /* avoid warning */
1014 #ifdef TARGET_HAS_PRECISE_SMC
1015 if (tb
&& pc
!= 0) {
1016 current_tb
= tb_find_pc(pc
);
1019 while (tb
!= NULL
) {
1021 tb
= (TranslationBlock
*)((long)tb
& ~3);
1022 #ifdef TARGET_HAS_PRECISE_SMC
1023 if (current_tb
== tb
&&
1024 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1025 /* If we are modifying the current TB, we must stop
1026 its execution. We could be more precise by checking
1027 that the modification is after the current PC, but it
1028 would require a specialized function to partially
1029 restore the CPU state */
1031 current_tb_modified
= 1;
1032 cpu_restore_state(current_tb
, env
, pc
, puc
);
1033 #if defined(TARGET_I386)
1034 current_flags
= env
->hflags
;
1035 current_flags
|= (env
->eflags
& (IOPL_MASK
| TF_MASK
| VM_MASK
));
1036 current_cs_base
= (target_ulong
)env
->segs
[R_CS
].base
;
1037 current_pc
= current_cs_base
+ env
->eip
;
1039 #error unsupported CPU
1042 #endif /* TARGET_HAS_PRECISE_SMC */
1043 tb_phys_invalidate(tb
, addr
);
1044 tb
= tb
->page_next
[n
];
1047 #ifdef TARGET_HAS_PRECISE_SMC
1048 if (current_tb_modified
) {
1049 /* we generate a block containing just the instruction
1050 modifying the memory. It will ensure that it cannot modify
1052 env
->current_tb
= NULL
;
1053 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1054 cpu_resume_from_signal(env
, puc
);
1060 /* add the tb in the target page and protect it if necessary */
1061 static inline void tb_alloc_page(TranslationBlock
*tb
,
1062 unsigned int n
, target_ulong page_addr
)
1065 TranslationBlock
*last_first_tb
;
1067 tb
->page_addr
[n
] = page_addr
;
1068 p
= page_find_alloc(page_addr
>> TARGET_PAGE_BITS
);
1069 tb
->page_next
[n
] = p
->first_tb
;
1070 last_first_tb
= p
->first_tb
;
1071 p
->first_tb
= (TranslationBlock
*)((long)tb
| n
);
1072 invalidate_page_bitmap(p
);
1074 #if defined(TARGET_HAS_SMC) || 1
1076 #if defined(CONFIG_USER_ONLY)
1077 if (p
->flags
& PAGE_WRITE
) {
1082 /* force the host page as non writable (writes will have a
1083 page fault + mprotect overhead) */
1084 page_addr
&= qemu_host_page_mask
;
1086 for(addr
= page_addr
; addr
< page_addr
+ qemu_host_page_size
;
1087 addr
+= TARGET_PAGE_SIZE
) {
1089 p2
= page_find (addr
>> TARGET_PAGE_BITS
);
1093 p2
->flags
&= ~PAGE_WRITE
;
1094 page_get_flags(addr
);
1096 mprotect(g2h(page_addr
), qemu_host_page_size
,
1097 (prot
& PAGE_BITS
) & ~PAGE_WRITE
);
1098 #ifdef DEBUG_TB_INVALIDATE
1099 printf("protecting code page: 0x" TARGET_FMT_lx
"\n",
1104 /* if some code is already present, then the pages are already
1105 protected. So we handle the case where only the first TB is
1106 allocated in a physical page */
1107 if (!last_first_tb
) {
1108 tlb_protect_code(page_addr
);
1112 #endif /* TARGET_HAS_SMC */
1115 /* Allocate a new translation block. Flush the translation buffer if
1116 too many translation blocks or too much generated code. */
1117 TranslationBlock
*tb_alloc(target_ulong pc
)
1119 TranslationBlock
*tb
;
1121 if (nb_tbs
>= code_gen_max_blocks
||
1122 (code_gen_ptr
- code_gen_buffer
) >= code_gen_buffer_max_size
)
1124 tb
= &tbs
[nb_tbs
++];
1130 void tb_free(TranslationBlock
*tb
)
1132 /* In practice this is mostly used for single use temporary TB
1133 Ignore the hard cases and just back up if this TB happens to
1134 be the last one generated. */
1135 if (nb_tbs
> 0 && tb
== &tbs
[nb_tbs
- 1]) {
1136 code_gen_ptr
= tb
->tc_ptr
;
1141 /* add a new TB and link it to the physical page tables. phys_page2 is
1142 (-1) to indicate that only one page contains the TB. */
1143 void tb_link_phys(TranslationBlock
*tb
,
1144 target_ulong phys_pc
, target_ulong phys_page2
)
1147 TranslationBlock
**ptb
;
1149 /* Grab the mmap lock to stop another thread invalidating this TB
1150 before we are done. */
1152 /* add in the physical hash table */
1153 h
= tb_phys_hash_func(phys_pc
);
1154 ptb
= &tb_phys_hash
[h
];
1155 tb
->phys_hash_next
= *ptb
;
1158 /* add in the page list */
1159 tb_alloc_page(tb
, 0, phys_pc
& TARGET_PAGE_MASK
);
1160 if (phys_page2
!= -1)
1161 tb_alloc_page(tb
, 1, phys_page2
);
1163 tb
->page_addr
[1] = -1;
1165 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2);
1166 tb
->jmp_next
[0] = NULL
;
1167 tb
->jmp_next
[1] = NULL
;
1169 /* init original jump addresses */
1170 if (tb
->tb_next_offset
[0] != 0xffff)
1171 tb_reset_jump(tb
, 0);
1172 if (tb
->tb_next_offset
[1] != 0xffff)
1173 tb_reset_jump(tb
, 1);
1175 #ifdef DEBUG_TB_CHECK
1181 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1182 tb[1].tc_ptr. Return NULL if not found */
1183 TranslationBlock
*tb_find_pc(unsigned long tc_ptr
)
1185 int m_min
, m_max
, m
;
1187 TranslationBlock
*tb
;
1191 if (tc_ptr
< (unsigned long)code_gen_buffer
||
1192 tc_ptr
>= (unsigned long)code_gen_ptr
)
1194 /* binary search (cf Knuth) */
1197 while (m_min
<= m_max
) {
1198 m
= (m_min
+ m_max
) >> 1;
1200 v
= (unsigned long)tb
->tc_ptr
;
1203 else if (tc_ptr
< v
) {
1212 static void tb_reset_jump_recursive(TranslationBlock
*tb
);
1214 static inline void tb_reset_jump_recursive2(TranslationBlock
*tb
, int n
)
1216 TranslationBlock
*tb1
, *tb_next
, **ptb
;
1219 tb1
= tb
->jmp_next
[n
];
1221 /* find head of list */
1224 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1227 tb1
= tb1
->jmp_next
[n1
];
1229 /* we are now sure now that tb jumps to tb1 */
1232 /* remove tb from the jmp_first list */
1233 ptb
= &tb_next
->jmp_first
;
1237 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1238 if (n1
== n
&& tb1
== tb
)
1240 ptb
= &tb1
->jmp_next
[n1
];
1242 *ptb
= tb
->jmp_next
[n
];
1243 tb
->jmp_next
[n
] = NULL
;
1245 /* suppress the jump to next tb in generated code */
1246 tb_reset_jump(tb
, n
);
1248 /* suppress jumps in the tb on which we could have jumped */
1249 tb_reset_jump_recursive(tb_next
);
1253 static void tb_reset_jump_recursive(TranslationBlock
*tb
)
1255 tb_reset_jump_recursive2(tb
, 0);
1256 tb_reset_jump_recursive2(tb
, 1);
1259 #if defined(TARGET_HAS_ICE)
1260 static void breakpoint_invalidate(CPUState
*env
, target_ulong pc
)
1262 target_phys_addr_t addr
;
1264 ram_addr_t ram_addr
;
1267 addr
= cpu_get_phys_page_debug(env
, pc
);
1268 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
1270 pd
= IO_MEM_UNASSIGNED
;
1272 pd
= p
->phys_offset
;
1274 ram_addr
= (pd
& TARGET_PAGE_MASK
) | (pc
& ~TARGET_PAGE_MASK
);
1275 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1279 /* Add a watchpoint. */
1280 int cpu_watchpoint_insert(CPUState
*env
, target_ulong addr
, int type
)
1284 for (i
= 0; i
< env
->nb_watchpoints
; i
++) {
1285 if (addr
== env
->watchpoint
[i
].vaddr
)
1288 if (env
->nb_watchpoints
>= MAX_WATCHPOINTS
)
1291 i
= env
->nb_watchpoints
++;
1292 env
->watchpoint
[i
].vaddr
= addr
;
1293 env
->watchpoint
[i
].type
= type
;
1294 tlb_flush_page(env
, addr
);
1295 /* FIXME: This flush is needed because of the hack to make memory ops
1296 terminate the TB. It can be removed once the proper IO trap and
1297 re-execute bits are in. */
1302 /* Remove a watchpoint. */
1303 int cpu_watchpoint_remove(CPUState
*env
, target_ulong addr
)
1307 for (i
= 0; i
< env
->nb_watchpoints
; i
++) {
1308 if (addr
== env
->watchpoint
[i
].vaddr
) {
1309 env
->nb_watchpoints
--;
1310 env
->watchpoint
[i
] = env
->watchpoint
[env
->nb_watchpoints
];
1311 tlb_flush_page(env
, addr
);
1318 /* Remove all watchpoints. */
1319 void cpu_watchpoint_remove_all(CPUState
*env
) {
1322 for (i
= 0; i
< env
->nb_watchpoints
; i
++) {
1323 tlb_flush_page(env
, env
->watchpoint
[i
].vaddr
);
1325 env
->nb_watchpoints
= 0;
1328 /* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
1329 breakpoint is reached */
1330 int cpu_breakpoint_insert(CPUState
*env
, target_ulong pc
)
1332 #if defined(TARGET_HAS_ICE)
1335 for(i
= 0; i
< env
->nb_breakpoints
; i
++) {
1336 if (env
->breakpoints
[i
] == pc
)
1340 if (env
->nb_breakpoints
>= MAX_BREAKPOINTS
)
1342 env
->breakpoints
[env
->nb_breakpoints
++] = pc
;
1344 breakpoint_invalidate(env
, pc
);
1351 /* remove all breakpoints */
1352 void cpu_breakpoint_remove_all(CPUState
*env
) {
1353 #if defined(TARGET_HAS_ICE)
1355 for(i
= 0; i
< env
->nb_breakpoints
; i
++) {
1356 breakpoint_invalidate(env
, env
->breakpoints
[i
]);
1358 env
->nb_breakpoints
= 0;
1362 /* remove a breakpoint */
1363 int cpu_breakpoint_remove(CPUState
*env
, target_ulong pc
)
1365 #if defined(TARGET_HAS_ICE)
1367 for(i
= 0; i
< env
->nb_breakpoints
; i
++) {
1368 if (env
->breakpoints
[i
] == pc
)
1373 env
->nb_breakpoints
--;
1374 if (i
< env
->nb_breakpoints
)
1375 env
->breakpoints
[i
] = env
->breakpoints
[env
->nb_breakpoints
];
1377 breakpoint_invalidate(env
, pc
);
1384 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1385 CPU loop after each instruction */
1386 void cpu_single_step(CPUState
*env
, int enabled
)
1388 #if defined(TARGET_HAS_ICE)
1389 if (env
->singlestep_enabled
!= enabled
) {
1390 env
->singlestep_enabled
= enabled
;
1391 /* must flush all the translated code to avoid inconsistancies */
1392 /* XXX: only flush what is necessary */
1398 /* enable or disable low levels log */
1399 void cpu_set_log(int log_flags
)
1401 loglevel
= log_flags
;
1402 if (loglevel
&& !logfile
) {
1403 logfile
= fopen(logfilename
, log_append
? "a" : "w");
1405 perror(logfilename
);
1408 #if !defined(CONFIG_SOFTMMU)
1409 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1411 static uint8_t logfile_buf
[4096];
1412 setvbuf(logfile
, logfile_buf
, _IOLBF
, sizeof(logfile_buf
));
1415 setvbuf(logfile
, NULL
, _IOLBF
, 0);
1419 if (!loglevel
&& logfile
) {
1425 void cpu_set_log_filename(const char *filename
)
1427 logfilename
= strdup(filename
);
1432 cpu_set_log(loglevel
);
1435 /* mask must never be zero, except for A20 change call */
1436 void cpu_interrupt(CPUState
*env
, int mask
)
1438 #if !defined(USE_NPTL)
1439 TranslationBlock
*tb
;
1440 static spinlock_t interrupt_lock
= SPIN_LOCK_UNLOCKED
;
1444 old_mask
= env
->interrupt_request
;
1445 /* FIXME: This is probably not threadsafe. A different thread could
1446 be in the middle of a read-modify-write operation. */
1447 env
->interrupt_request
|= mask
;
1448 #if defined(USE_NPTL)
1449 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1450 problem and hope the cpu will stop of its own accord. For userspace
1451 emulation this often isn't actually as bad as it sounds. Often
1452 signals are used primarily to interrupt blocking syscalls. */
1455 env
->icount_decr
.u16
.high
= 0xffff;
1456 #ifndef CONFIG_USER_ONLY
1457 /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means
1458 an async event happened and we need to process it. */
1460 && (mask
& ~(old_mask
| CPU_INTERRUPT_EXIT
)) != 0) {
1461 cpu_abort(env
, "Raised interrupt while not in I/O function");
1465 tb
= env
->current_tb
;
1466 /* if the cpu is currently executing code, we must unlink it and
1467 all the potentially executing TB */
1468 if (tb
&& !testandset(&interrupt_lock
)) {
1469 env
->current_tb
= NULL
;
1470 tb_reset_jump_recursive(tb
);
1471 resetlock(&interrupt_lock
);
1477 void cpu_reset_interrupt(CPUState
*env
, int mask
)
1479 env
->interrupt_request
&= ~mask
;
1482 CPULogItem cpu_log_items
[] = {
1483 { CPU_LOG_TB_OUT_ASM
, "out_asm",
1484 "show generated host assembly code for each compiled TB" },
1485 { CPU_LOG_TB_IN_ASM
, "in_asm",
1486 "show target assembly code for each compiled TB" },
1487 { CPU_LOG_TB_OP
, "op",
1488 "show micro ops for each compiled TB" },
1489 { CPU_LOG_TB_OP_OPT
, "op_opt",
1492 "before eflags optimization and "
1494 "after liveness analysis" },
1495 { CPU_LOG_INT
, "int",
1496 "show interrupts/exceptions in short format" },
1497 { CPU_LOG_EXEC
, "exec",
1498 "show trace before each executed TB (lots of logs)" },
1499 { CPU_LOG_TB_CPU
, "cpu",
1500 "show CPU state before block translation" },
1502 { CPU_LOG_PCALL
, "pcall",
1503 "show protected mode far calls/returns/exceptions" },
1506 { CPU_LOG_IOPORT
, "ioport",
1507 "show all i/o ports accesses" },
1512 static int cmp1(const char *s1
, int n
, const char *s2
)
1514 if (strlen(s2
) != n
)
1516 return memcmp(s1
, s2
, n
) == 0;
1519 /* takes a comma separated list of log masks. Return 0 if error. */
1520 int cpu_str_to_log_mask(const char *str
)
1529 p1
= strchr(p
, ',');
1532 if(cmp1(p
,p1
-p
,"all")) {
1533 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1537 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1538 if (cmp1(p
, p1
- p
, item
->name
))
1552 void cpu_abort(CPUState
*env
, const char *fmt
, ...)
1559 fprintf(stderr
, "qemu: fatal: ");
1560 vfprintf(stderr
, fmt
, ap
);
1561 fprintf(stderr
, "\n");
1563 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1565 cpu_dump_state(env
, stderr
, fprintf
, 0);
1568 fprintf(logfile
, "qemu: fatal: ");
1569 vfprintf(logfile
, fmt
, ap2
);
1570 fprintf(logfile
, "\n");
1572 cpu_dump_state(env
, logfile
, fprintf
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1574 cpu_dump_state(env
, logfile
, fprintf
, 0);
1584 CPUState
*cpu_copy(CPUState
*env
)
1586 CPUState
*new_env
= cpu_init(env
->cpu_model_str
);
1587 /* preserve chaining and index */
1588 CPUState
*next_cpu
= new_env
->next_cpu
;
1589 int cpu_index
= new_env
->cpu_index
;
1590 memcpy(new_env
, env
, sizeof(CPUState
));
1591 new_env
->next_cpu
= next_cpu
;
1592 new_env
->cpu_index
= cpu_index
;
1596 #if !defined(CONFIG_USER_ONLY)
1598 static inline void tlb_flush_jmp_cache(CPUState
*env
, target_ulong addr
)
1602 /* Discard jump cache entries for any tb which might potentially
1603 overlap the flushed page. */
1604 i
= tb_jmp_cache_hash_page(addr
- TARGET_PAGE_SIZE
);
1605 memset (&env
->tb_jmp_cache
[i
], 0,
1606 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1608 i
= tb_jmp_cache_hash_page(addr
);
1609 memset (&env
->tb_jmp_cache
[i
], 0,
1610 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1613 /* NOTE: if flush_global is true, also flush global entries (not
1615 void tlb_flush(CPUState
*env
, int flush_global
)
1619 #if defined(DEBUG_TLB)
1620 printf("tlb_flush:\n");
1622 /* must reset current TB so that interrupts cannot modify the
1623 links while we are modifying them */
1624 env
->current_tb
= NULL
;
1626 for(i
= 0; i
< CPU_TLB_SIZE
; i
++) {
1627 env
->tlb_table
[0][i
].addr_read
= -1;
1628 env
->tlb_table
[0][i
].addr_write
= -1;
1629 env
->tlb_table
[0][i
].addr_code
= -1;
1630 env
->tlb_table
[1][i
].addr_read
= -1;
1631 env
->tlb_table
[1][i
].addr_write
= -1;
1632 env
->tlb_table
[1][i
].addr_code
= -1;
1633 #if (NB_MMU_MODES >= 3)
1634 env
->tlb_table
[2][i
].addr_read
= -1;
1635 env
->tlb_table
[2][i
].addr_write
= -1;
1636 env
->tlb_table
[2][i
].addr_code
= -1;
1637 #if (NB_MMU_MODES == 4)
1638 env
->tlb_table
[3][i
].addr_read
= -1;
1639 env
->tlb_table
[3][i
].addr_write
= -1;
1640 env
->tlb_table
[3][i
].addr_code
= -1;
1645 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
1648 if (env
->kqemu_enabled
) {
1649 kqemu_flush(env
, flush_global
);
1655 static inline void tlb_flush_entry(CPUTLBEntry
*tlb_entry
, target_ulong addr
)
1657 if (addr
== (tlb_entry
->addr_read
&
1658 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1659 addr
== (tlb_entry
->addr_write
&
1660 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1661 addr
== (tlb_entry
->addr_code
&
1662 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
1663 tlb_entry
->addr_read
= -1;
1664 tlb_entry
->addr_write
= -1;
1665 tlb_entry
->addr_code
= -1;
1669 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
1673 #if defined(DEBUG_TLB)
1674 printf("tlb_flush_page: " TARGET_FMT_lx
"\n", addr
);
1676 /* must reset current TB so that interrupts cannot modify the
1677 links while we are modifying them */
1678 env
->current_tb
= NULL
;
1680 addr
&= TARGET_PAGE_MASK
;
1681 i
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1682 tlb_flush_entry(&env
->tlb_table
[0][i
], addr
);
1683 tlb_flush_entry(&env
->tlb_table
[1][i
], addr
);
1684 #if (NB_MMU_MODES >= 3)
1685 tlb_flush_entry(&env
->tlb_table
[2][i
], addr
);
1686 #if (NB_MMU_MODES == 4)
1687 tlb_flush_entry(&env
->tlb_table
[3][i
], addr
);
1691 tlb_flush_jmp_cache(env
, addr
);
1694 if (env
->kqemu_enabled
) {
1695 kqemu_flush_page(env
, addr
);
1700 /* update the TLBs so that writes to code in the virtual page 'addr'
1702 static void tlb_protect_code(ram_addr_t ram_addr
)
1704 cpu_physical_memory_reset_dirty(ram_addr
,
1705 ram_addr
+ TARGET_PAGE_SIZE
,
1709 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1710 tested for self modifying code */
1711 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
1714 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] |= CODE_DIRTY_FLAG
;
1717 static inline void tlb_reset_dirty_range(CPUTLBEntry
*tlb_entry
,
1718 unsigned long start
, unsigned long length
)
1721 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
1722 addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) + tlb_entry
->addend
;
1723 if ((addr
- start
) < length
) {
1724 tlb_entry
->addr_write
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) | TLB_NOTDIRTY
;
1729 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
1733 unsigned long length
, start1
;
1737 start
&= TARGET_PAGE_MASK
;
1738 end
= TARGET_PAGE_ALIGN(end
);
1740 length
= end
- start
;
1743 len
= length
>> TARGET_PAGE_BITS
;
1745 /* XXX: should not depend on cpu context */
1747 if (env
->kqemu_enabled
) {
1750 for(i
= 0; i
< len
; i
++) {
1751 kqemu_set_notdirty(env
, addr
);
1752 addr
+= TARGET_PAGE_SIZE
;
1756 mask
= ~dirty_flags
;
1757 p
= phys_ram_dirty
+ (start
>> TARGET_PAGE_BITS
);
1758 for(i
= 0; i
< len
; i
++)
1761 /* we modify the TLB cache so that the dirty bit will be set again
1762 when accessing the range */
1763 start1
= start
+ (unsigned long)phys_ram_base
;
1764 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1765 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1766 tlb_reset_dirty_range(&env
->tlb_table
[0][i
], start1
, length
);
1767 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1768 tlb_reset_dirty_range(&env
->tlb_table
[1][i
], start1
, length
);
1769 #if (NB_MMU_MODES >= 3)
1770 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1771 tlb_reset_dirty_range(&env
->tlb_table
[2][i
], start1
, length
);
1772 #if (NB_MMU_MODES == 4)
1773 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1774 tlb_reset_dirty_range(&env
->tlb_table
[3][i
], start1
, length
);
1780 static inline void tlb_update_dirty(CPUTLBEntry
*tlb_entry
)
1782 ram_addr_t ram_addr
;
1784 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
1785 ram_addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) +
1786 tlb_entry
->addend
- (unsigned long)phys_ram_base
;
1787 if (!cpu_physical_memory_is_dirty(ram_addr
)) {
1788 tlb_entry
->addr_write
|= TLB_NOTDIRTY
;
1793 /* update the TLB according to the current state of the dirty bits */
1794 void cpu_tlb_update_dirty(CPUState
*env
)
1797 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1798 tlb_update_dirty(&env
->tlb_table
[0][i
]);
1799 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1800 tlb_update_dirty(&env
->tlb_table
[1][i
]);
1801 #if (NB_MMU_MODES >= 3)
1802 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1803 tlb_update_dirty(&env
->tlb_table
[2][i
]);
1804 #if (NB_MMU_MODES == 4)
1805 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1806 tlb_update_dirty(&env
->tlb_table
[3][i
]);
1811 static inline void tlb_set_dirty1(CPUTLBEntry
*tlb_entry
, target_ulong vaddr
)
1813 if (tlb_entry
->addr_write
== (vaddr
| TLB_NOTDIRTY
))
1814 tlb_entry
->addr_write
= vaddr
;
1817 /* update the TLB corresponding to virtual page vaddr
1818 so that it is no longer dirty */
1819 static inline void tlb_set_dirty(CPUState
*env
, target_ulong vaddr
)
1823 vaddr
&= TARGET_PAGE_MASK
;
1824 i
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1825 tlb_set_dirty1(&env
->tlb_table
[0][i
], vaddr
);
1826 tlb_set_dirty1(&env
->tlb_table
[1][i
], vaddr
);
1827 #if (NB_MMU_MODES >= 3)
1828 tlb_set_dirty1(&env
->tlb_table
[2][i
], vaddr
);
1829 #if (NB_MMU_MODES == 4)
1830 tlb_set_dirty1(&env
->tlb_table
[3][i
], vaddr
);
1835 /* add a new TLB entry. At most one entry for a given virtual address
1836 is permitted. Return 0 if OK or 2 if the page could not be mapped
1837 (can only happen in non SOFTMMU mode for I/O pages or pages
1838 conflicting with the host address space). */
1839 int tlb_set_page_exec(CPUState
*env
, target_ulong vaddr
,
1840 target_phys_addr_t paddr
, int prot
,
1841 int mmu_idx
, int is_softmmu
)
1846 target_ulong address
;
1847 target_ulong code_address
;
1848 target_phys_addr_t addend
;
1852 target_phys_addr_t iotlb
;
1854 p
= phys_page_find(paddr
>> TARGET_PAGE_BITS
);
1856 pd
= IO_MEM_UNASSIGNED
;
1858 pd
= p
->phys_offset
;
1860 #if defined(DEBUG_TLB)
1861 printf("tlb_set_page: vaddr=" TARGET_FMT_lx
" paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1862 vaddr
, (int)paddr
, prot
, mmu_idx
, is_softmmu
, pd
);
1867 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&& !(pd
& IO_MEM_ROMD
)) {
1868 /* IO memory case (romd handled later) */
1869 address
|= TLB_MMIO
;
1871 addend
= (unsigned long)phys_ram_base
+ (pd
& TARGET_PAGE_MASK
);
1872 if ((pd
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
) {
1874 iotlb
= pd
& TARGET_PAGE_MASK
;
1875 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
)
1876 iotlb
|= IO_MEM_NOTDIRTY
;
1878 iotlb
|= IO_MEM_ROM
;
1880 /* IO handlers are currently passed a phsical address.
1881 It would be nice to pass an offset from the base address
1882 of that region. This would avoid having to special case RAM,
1883 and avoid full address decoding in every device.
1884 We can't use the high bits of pd for this because
1885 IO_MEM_ROMD uses these as a ram address. */
1886 iotlb
= (pd
& ~TARGET_PAGE_MASK
) + paddr
;
1889 code_address
= address
;
1890 /* Make accesses to pages with watchpoints go via the
1891 watchpoint trap routines. */
1892 for (i
= 0; i
< env
->nb_watchpoints
; i
++) {
1893 if (vaddr
== (env
->watchpoint
[i
].vaddr
& TARGET_PAGE_MASK
)) {
1894 iotlb
= io_mem_watch
+ paddr
;
1895 /* TODO: The memory case can be optimized by not trapping
1896 reads of pages with a write breakpoint. */
1897 address
|= TLB_MMIO
;
1901 index
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1902 env
->iotlb
[mmu_idx
][index
] = iotlb
- vaddr
;
1903 te
= &env
->tlb_table
[mmu_idx
][index
];
1904 te
->addend
= addend
- vaddr
;
1905 if (prot
& PAGE_READ
) {
1906 te
->addr_read
= address
;
1911 if (prot
& PAGE_EXEC
) {
1912 te
->addr_code
= code_address
;
1916 if (prot
& PAGE_WRITE
) {
1917 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_ROM
||
1918 (pd
& IO_MEM_ROMD
)) {
1919 /* Write access calls the I/O callback. */
1920 te
->addr_write
= address
| TLB_MMIO
;
1921 } else if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
&&
1922 !cpu_physical_memory_is_dirty(pd
)) {
1923 te
->addr_write
= address
| TLB_NOTDIRTY
;
1925 te
->addr_write
= address
;
1928 te
->addr_write
= -1;
1935 void tlb_flush(CPUState
*env
, int flush_global
)
1939 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
1943 int tlb_set_page_exec(CPUState
*env
, target_ulong vaddr
,
1944 target_phys_addr_t paddr
, int prot
,
1945 int mmu_idx
, int is_softmmu
)
1950 /* dump memory mappings */
1951 void page_dump(FILE *f
)
1953 unsigned long start
, end
;
1954 int i
, j
, prot
, prot1
;
1957 fprintf(f
, "%-8s %-8s %-8s %s\n",
1958 "start", "end", "size", "prot");
1962 for(i
= 0; i
<= L1_SIZE
; i
++) {
1967 for(j
= 0;j
< L2_SIZE
; j
++) {
1972 if (prot1
!= prot
) {
1973 end
= (i
<< (32 - L1_BITS
)) | (j
<< TARGET_PAGE_BITS
);
1975 fprintf(f
, "%08lx-%08lx %08lx %c%c%c\n",
1976 start
, end
, end
- start
,
1977 prot
& PAGE_READ
? 'r' : '-',
1978 prot
& PAGE_WRITE
? 'w' : '-',
1979 prot
& PAGE_EXEC
? 'x' : '-');
1993 int page_get_flags(target_ulong address
)
1997 p
= page_find(address
>> TARGET_PAGE_BITS
);
2003 /* modify the flags of a page and invalidate the code if
2004 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2005 depending on PAGE_WRITE */
2006 void page_set_flags(target_ulong start
, target_ulong end
, int flags
)
2011 /* mmap_lock should already be held. */
2012 start
= start
& TARGET_PAGE_MASK
;
2013 end
= TARGET_PAGE_ALIGN(end
);
2014 if (flags
& PAGE_WRITE
)
2015 flags
|= PAGE_WRITE_ORG
;
2016 for(addr
= start
; addr
< end
; addr
+= TARGET_PAGE_SIZE
) {
2017 p
= page_find_alloc(addr
>> TARGET_PAGE_BITS
);
2018 /* We may be called for host regions that are outside guest
2022 /* if the write protection is set, then we invalidate the code
2024 if (!(p
->flags
& PAGE_WRITE
) &&
2025 (flags
& PAGE_WRITE
) &&
2027 tb_invalidate_phys_page(addr
, 0, NULL
);
2033 int page_check_range(target_ulong start
, target_ulong len
, int flags
)
2039 end
= TARGET_PAGE_ALIGN(start
+len
); /* must do before we loose bits in the next step */
2040 start
= start
& TARGET_PAGE_MASK
;
2043 /* we've wrapped around */
2045 for(addr
= start
; addr
< end
; addr
+= TARGET_PAGE_SIZE
) {
2046 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2049 if( !(p
->flags
& PAGE_VALID
) )
2052 if ((flags
& PAGE_READ
) && !(p
->flags
& PAGE_READ
))
2054 if (flags
& PAGE_WRITE
) {
2055 if (!(p
->flags
& PAGE_WRITE_ORG
))
2057 /* unprotect the page if it was put read-only because it
2058 contains translated code */
2059 if (!(p
->flags
& PAGE_WRITE
)) {
2060 if (!page_unprotect(addr
, 0, NULL
))
2069 /* called from signal handler: invalidate the code and unprotect the
2070 page. Return TRUE if the fault was succesfully handled. */
2071 int page_unprotect(target_ulong address
, unsigned long pc
, void *puc
)
2073 unsigned int page_index
, prot
, pindex
;
2075 target_ulong host_start
, host_end
, addr
;
2077 /* Technically this isn't safe inside a signal handler. However we
2078 know this only ever happens in a synchronous SEGV handler, so in
2079 practice it seems to be ok. */
2082 host_start
= address
& qemu_host_page_mask
;
2083 page_index
= host_start
>> TARGET_PAGE_BITS
;
2084 p1
= page_find(page_index
);
2089 host_end
= host_start
+ qemu_host_page_size
;
2092 for(addr
= host_start
;addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
2096 /* if the page was really writable, then we change its
2097 protection back to writable */
2098 if (prot
& PAGE_WRITE_ORG
) {
2099 pindex
= (address
- host_start
) >> TARGET_PAGE_BITS
;
2100 if (!(p1
[pindex
].flags
& PAGE_WRITE
)) {
2101 mprotect((void *)g2h(host_start
), qemu_host_page_size
,
2102 (prot
& PAGE_BITS
) | PAGE_WRITE
);
2103 p1
[pindex
].flags
|= PAGE_WRITE
;
2104 /* and since the content will be modified, we must invalidate
2105 the corresponding translated code. */
2106 tb_invalidate_phys_page(address
, pc
, puc
);
2107 #ifdef DEBUG_TB_CHECK
2108 tb_invalidate_check(address
);
2118 static inline void tlb_set_dirty(CPUState
*env
,
2119 unsigned long addr
, target_ulong vaddr
)
2122 #endif /* defined(CONFIG_USER_ONLY) */
2124 #if !defined(CONFIG_USER_ONLY)
2125 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2127 static void *subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2128 ram_addr_t orig_memory
);
2129 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2132 if (addr > start_addr) \
2135 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2136 if (start_addr2 > 0) \
2140 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2141 end_addr2 = TARGET_PAGE_SIZE - 1; \
2143 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2144 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2149 /* register physical memory. 'size' must be a multiple of the target
2150 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2152 void cpu_register_physical_memory(target_phys_addr_t start_addr
,
2154 ram_addr_t phys_offset
)
2156 target_phys_addr_t addr
, end_addr
;
2159 ram_addr_t orig_size
= size
;
2163 /* XXX: should not depend on cpu context */
2165 if (env
->kqemu_enabled
) {
2166 kqemu_set_phys_mem(start_addr
, size
, phys_offset
);
2169 size
= (size
+ TARGET_PAGE_SIZE
- 1) & TARGET_PAGE_MASK
;
2170 end_addr
= start_addr
+ (target_phys_addr_t
)size
;
2171 for(addr
= start_addr
; addr
!= end_addr
; addr
+= TARGET_PAGE_SIZE
) {
2172 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2173 if (p
&& p
->phys_offset
!= IO_MEM_UNASSIGNED
) {
2174 ram_addr_t orig_memory
= p
->phys_offset
;
2175 target_phys_addr_t start_addr2
, end_addr2
;
2176 int need_subpage
= 0;
2178 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
, end_addr2
,
2180 if (need_subpage
|| phys_offset
& IO_MEM_SUBWIDTH
) {
2181 if (!(orig_memory
& IO_MEM_SUBPAGE
)) {
2182 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2183 &p
->phys_offset
, orig_memory
);
2185 subpage
= io_mem_opaque
[(orig_memory
& ~TARGET_PAGE_MASK
)
2188 subpage_register(subpage
, start_addr2
, end_addr2
, phys_offset
);
2190 p
->phys_offset
= phys_offset
;
2191 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2192 (phys_offset
& IO_MEM_ROMD
))
2193 phys_offset
+= TARGET_PAGE_SIZE
;
2196 p
= phys_page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
2197 p
->phys_offset
= phys_offset
;
2198 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2199 (phys_offset
& IO_MEM_ROMD
))
2200 phys_offset
+= TARGET_PAGE_SIZE
;
2202 target_phys_addr_t start_addr2
, end_addr2
;
2203 int need_subpage
= 0;
2205 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
,
2206 end_addr2
, need_subpage
);
2208 if (need_subpage
|| phys_offset
& IO_MEM_SUBWIDTH
) {
2209 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2210 &p
->phys_offset
, IO_MEM_UNASSIGNED
);
2211 subpage_register(subpage
, start_addr2
, end_addr2
,
2218 /* since each CPU stores ram addresses in its TLB cache, we must
2219 reset the modified entries */
2221 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2226 /* XXX: temporary until new memory mapping API */
2227 ram_addr_t
cpu_get_physical_page_desc(target_phys_addr_t addr
)
2231 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2233 return IO_MEM_UNASSIGNED
;
2234 return p
->phys_offset
;
2237 /* XXX: better than nothing */
2238 ram_addr_t
qemu_ram_alloc(ram_addr_t size
)
2241 if ((phys_ram_alloc_offset
+ size
) > phys_ram_size
) {
2242 fprintf(stderr
, "Not enough memory (requested_size = %" PRIu64
", max memory = %" PRIu64
"\n",
2243 (uint64_t)size
, (uint64_t)phys_ram_size
);
2246 addr
= phys_ram_alloc_offset
;
2247 phys_ram_alloc_offset
= TARGET_PAGE_ALIGN(phys_ram_alloc_offset
+ size
);
2251 void qemu_ram_free(ram_addr_t addr
)
2255 static uint32_t unassigned_mem_readb(void *opaque
, target_phys_addr_t addr
)
2257 #ifdef DEBUG_UNASSIGNED
2258 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2261 do_unassigned_access(addr
, 0, 0, 0);
2262 #elif defined(TARGET_CRIS)
2263 do_unassigned_access(addr
, 0, 0, 0);
2268 static void unassigned_mem_writeb(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2270 #ifdef DEBUG_UNASSIGNED
2271 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2274 do_unassigned_access(addr
, 1, 0, 0);
2275 #elif defined(TARGET_CRIS)
2276 do_unassigned_access(addr
, 1, 0, 0);
2280 static CPUReadMemoryFunc
*unassigned_mem_read
[3] = {
2281 unassigned_mem_readb
,
2282 unassigned_mem_readb
,
2283 unassigned_mem_readb
,
2286 static CPUWriteMemoryFunc
*unassigned_mem_write
[3] = {
2287 unassigned_mem_writeb
,
2288 unassigned_mem_writeb
,
2289 unassigned_mem_writeb
,
2292 static void notdirty_mem_writeb(void *opaque
, target_phys_addr_t ram_addr
,
2296 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2297 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2298 #if !defined(CONFIG_USER_ONLY)
2299 tb_invalidate_phys_page_fast(ram_addr
, 1);
2300 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2303 stb_p(phys_ram_base
+ ram_addr
, val
);
2305 if (cpu_single_env
->kqemu_enabled
&&
2306 (dirty_flags
& KQEMU_MODIFY_PAGE_MASK
) != KQEMU_MODIFY_PAGE_MASK
)
2307 kqemu_modify_page(cpu_single_env
, ram_addr
);
2309 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2310 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2311 /* we remove the notdirty callback only if the code has been
2313 if (dirty_flags
== 0xff)
2314 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2317 static void notdirty_mem_writew(void *opaque
, target_phys_addr_t ram_addr
,
2321 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2322 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2323 #if !defined(CONFIG_USER_ONLY)
2324 tb_invalidate_phys_page_fast(ram_addr
, 2);
2325 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2328 stw_p(phys_ram_base
+ ram_addr
, val
);
2330 if (cpu_single_env
->kqemu_enabled
&&
2331 (dirty_flags
& KQEMU_MODIFY_PAGE_MASK
) != KQEMU_MODIFY_PAGE_MASK
)
2332 kqemu_modify_page(cpu_single_env
, ram_addr
);
2334 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2335 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2336 /* we remove the notdirty callback only if the code has been
2338 if (dirty_flags
== 0xff)
2339 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2342 static void notdirty_mem_writel(void *opaque
, target_phys_addr_t ram_addr
,
2346 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2347 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2348 #if !defined(CONFIG_USER_ONLY)
2349 tb_invalidate_phys_page_fast(ram_addr
, 4);
2350 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2353 stl_p(phys_ram_base
+ ram_addr
, val
);
2355 if (cpu_single_env
->kqemu_enabled
&&
2356 (dirty_flags
& KQEMU_MODIFY_PAGE_MASK
) != KQEMU_MODIFY_PAGE_MASK
)
2357 kqemu_modify_page(cpu_single_env
, ram_addr
);
2359 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2360 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2361 /* we remove the notdirty callback only if the code has been
2363 if (dirty_flags
== 0xff)
2364 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2367 static CPUReadMemoryFunc
*error_mem_read
[3] = {
2368 NULL
, /* never used */
2369 NULL
, /* never used */
2370 NULL
, /* never used */
2373 static CPUWriteMemoryFunc
*notdirty_mem_write
[3] = {
2374 notdirty_mem_writeb
,
2375 notdirty_mem_writew
,
2376 notdirty_mem_writel
,
2379 /* Generate a debug exception if a watchpoint has been hit. */
2380 static void check_watchpoint(int offset
, int flags
)
2382 CPUState
*env
= cpu_single_env
;
2386 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2387 for (i
= 0; i
< env
->nb_watchpoints
; i
++) {
2388 if (vaddr
== env
->watchpoint
[i
].vaddr
2389 && (env
->watchpoint
[i
].type
& flags
)) {
2390 env
->watchpoint_hit
= i
+ 1;
2391 cpu_interrupt(env
, CPU_INTERRUPT_DEBUG
);
2397 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2398 so these check for a hit then pass through to the normal out-of-line
2400 static uint32_t watch_mem_readb(void *opaque
, target_phys_addr_t addr
)
2402 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, PAGE_READ
);
2403 return ldub_phys(addr
);
2406 static uint32_t watch_mem_readw(void *opaque
, target_phys_addr_t addr
)
2408 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, PAGE_READ
);
2409 return lduw_phys(addr
);
2412 static uint32_t watch_mem_readl(void *opaque
, target_phys_addr_t addr
)
2414 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, PAGE_READ
);
2415 return ldl_phys(addr
);
2418 static void watch_mem_writeb(void *opaque
, target_phys_addr_t addr
,
2421 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, PAGE_WRITE
);
2422 stb_phys(addr
, val
);
2425 static void watch_mem_writew(void *opaque
, target_phys_addr_t addr
,
2428 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, PAGE_WRITE
);
2429 stw_phys(addr
, val
);
2432 static void watch_mem_writel(void *opaque
, target_phys_addr_t addr
,
2435 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, PAGE_WRITE
);
2436 stl_phys(addr
, val
);
2439 static CPUReadMemoryFunc
*watch_mem_read
[3] = {
2445 static CPUWriteMemoryFunc
*watch_mem_write
[3] = {
2451 static inline uint32_t subpage_readlen (subpage_t
*mmio
, target_phys_addr_t addr
,
2457 idx
= SUBPAGE_IDX(addr
- mmio
->base
);
2458 #if defined(DEBUG_SUBPAGE)
2459 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d\n", __func__
,
2460 mmio
, len
, addr
, idx
);
2462 ret
= (**mmio
->mem_read
[idx
][len
])(mmio
->opaque
[idx
][0][len
], addr
);
2467 static inline void subpage_writelen (subpage_t
*mmio
, target_phys_addr_t addr
,
2468 uint32_t value
, unsigned int len
)
2472 idx
= SUBPAGE_IDX(addr
- mmio
->base
);
2473 #if defined(DEBUG_SUBPAGE)
2474 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d value %08x\n", __func__
,
2475 mmio
, len
, addr
, idx
, value
);
2477 (**mmio
->mem_write
[idx
][len
])(mmio
->opaque
[idx
][1][len
], addr
, value
);
2480 static uint32_t subpage_readb (void *opaque
, target_phys_addr_t addr
)
2482 #if defined(DEBUG_SUBPAGE)
2483 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2486 return subpage_readlen(opaque
, addr
, 0);
2489 static void subpage_writeb (void *opaque
, target_phys_addr_t addr
,
2492 #if defined(DEBUG_SUBPAGE)
2493 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2495 subpage_writelen(opaque
, addr
, value
, 0);
2498 static uint32_t subpage_readw (void *opaque
, target_phys_addr_t addr
)
2500 #if defined(DEBUG_SUBPAGE)
2501 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2504 return subpage_readlen(opaque
, addr
, 1);
2507 static void subpage_writew (void *opaque
, target_phys_addr_t addr
,
2510 #if defined(DEBUG_SUBPAGE)
2511 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2513 subpage_writelen(opaque
, addr
, value
, 1);
2516 static uint32_t subpage_readl (void *opaque
, target_phys_addr_t addr
)
2518 #if defined(DEBUG_SUBPAGE)
2519 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2522 return subpage_readlen(opaque
, addr
, 2);
2525 static void subpage_writel (void *opaque
,
2526 target_phys_addr_t addr
, uint32_t value
)
2528 #if defined(DEBUG_SUBPAGE)
2529 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2531 subpage_writelen(opaque
, addr
, value
, 2);
2534 static CPUReadMemoryFunc
*subpage_read
[] = {
2540 static CPUWriteMemoryFunc
*subpage_write
[] = {
2546 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2552 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2554 idx
= SUBPAGE_IDX(start
);
2555 eidx
= SUBPAGE_IDX(end
);
2556 #if defined(DEBUG_SUBPAGE)
2557 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__
,
2558 mmio
, start
, end
, idx
, eidx
, memory
);
2560 memory
>>= IO_MEM_SHIFT
;
2561 for (; idx
<= eidx
; idx
++) {
2562 for (i
= 0; i
< 4; i
++) {
2563 if (io_mem_read
[memory
][i
]) {
2564 mmio
->mem_read
[idx
][i
] = &io_mem_read
[memory
][i
];
2565 mmio
->opaque
[idx
][0][i
] = io_mem_opaque
[memory
];
2567 if (io_mem_write
[memory
][i
]) {
2568 mmio
->mem_write
[idx
][i
] = &io_mem_write
[memory
][i
];
2569 mmio
->opaque
[idx
][1][i
] = io_mem_opaque
[memory
];
2577 static void *subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2578 ram_addr_t orig_memory
)
2583 mmio
= qemu_mallocz(sizeof(subpage_t
));
2586 subpage_memory
= cpu_register_io_memory(0, subpage_read
, subpage_write
, mmio
);
2587 #if defined(DEBUG_SUBPAGE)
2588 printf("%s: %p base " TARGET_FMT_plx
" len %08x %d\n", __func__
,
2589 mmio
, base
, TARGET_PAGE_SIZE
, subpage_memory
);
2591 *phys
= subpage_memory
| IO_MEM_SUBPAGE
;
2592 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
- 1, orig_memory
);
2598 static void io_mem_init(void)
2600 cpu_register_io_memory(IO_MEM_ROM
>> IO_MEM_SHIFT
, error_mem_read
, unassigned_mem_write
, NULL
);
2601 cpu_register_io_memory(IO_MEM_UNASSIGNED
>> IO_MEM_SHIFT
, unassigned_mem_read
, unassigned_mem_write
, NULL
);
2602 cpu_register_io_memory(IO_MEM_NOTDIRTY
>> IO_MEM_SHIFT
, error_mem_read
, notdirty_mem_write
, NULL
);
2605 io_mem_watch
= cpu_register_io_memory(0, watch_mem_read
,
2606 watch_mem_write
, NULL
);
2607 /* alloc dirty bits array */
2608 phys_ram_dirty
= qemu_vmalloc(phys_ram_size
>> TARGET_PAGE_BITS
);
2609 memset(phys_ram_dirty
, 0xff, phys_ram_size
>> TARGET_PAGE_BITS
);
2612 /* mem_read and mem_write are arrays of functions containing the
2613 function to access byte (index 0), word (index 1) and dword (index
2614 2). Functions can be omitted with a NULL function pointer. The
2615 registered functions may be modified dynamically later.
2616 If io_index is non zero, the corresponding io zone is
2617 modified. If it is zero, a new io zone is allocated. The return
2618 value can be used with cpu_register_physical_memory(). (-1) is
2619 returned if error. */
2620 int cpu_register_io_memory(int io_index
,
2621 CPUReadMemoryFunc
**mem_read
,
2622 CPUWriteMemoryFunc
**mem_write
,
2625 int i
, subwidth
= 0;
2627 if (io_index
<= 0) {
2628 if (io_mem_nb
>= IO_MEM_NB_ENTRIES
)
2630 io_index
= io_mem_nb
++;
2632 if (io_index
>= IO_MEM_NB_ENTRIES
)
2636 for(i
= 0;i
< 3; i
++) {
2637 if (!mem_read
[i
] || !mem_write
[i
])
2638 subwidth
= IO_MEM_SUBWIDTH
;
2639 io_mem_read
[io_index
][i
] = mem_read
[i
];
2640 io_mem_write
[io_index
][i
] = mem_write
[i
];
2642 io_mem_opaque
[io_index
] = opaque
;
2643 return (io_index
<< IO_MEM_SHIFT
) | subwidth
;
2646 CPUWriteMemoryFunc
**cpu_get_io_memory_write(int io_index
)
2648 return io_mem_write
[io_index
>> IO_MEM_SHIFT
];
2651 CPUReadMemoryFunc
**cpu_get_io_memory_read(int io_index
)
2653 return io_mem_read
[io_index
>> IO_MEM_SHIFT
];
2656 #endif /* !defined(CONFIG_USER_ONLY) */
2658 /* physical memory access (slow version, mainly for debug) */
2659 #if defined(CONFIG_USER_ONLY)
2660 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
2661 int len
, int is_write
)
2668 page
= addr
& TARGET_PAGE_MASK
;
2669 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2672 flags
= page_get_flags(page
);
2673 if (!(flags
& PAGE_VALID
))
2676 if (!(flags
& PAGE_WRITE
))
2678 /* XXX: this code should not depend on lock_user */
2679 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2680 /* FIXME - should this return an error rather than just fail? */
2683 unlock_user(p
, addr
, l
);
2685 if (!(flags
& PAGE_READ
))
2687 /* XXX: this code should not depend on lock_user */
2688 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2689 /* FIXME - should this return an error rather than just fail? */
2692 unlock_user(p
, addr
, 0);
2701 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
2702 int len
, int is_write
)
2707 target_phys_addr_t page
;
2712 page
= addr
& TARGET_PAGE_MASK
;
2713 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2716 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
2718 pd
= IO_MEM_UNASSIGNED
;
2720 pd
= p
->phys_offset
;
2724 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
2725 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
2726 /* XXX: could force cpu_single_env to NULL to avoid
2728 if (l
>= 4 && ((addr
& 3) == 0)) {
2729 /* 32 bit write access */
2731 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
2733 } else if (l
>= 2 && ((addr
& 1) == 0)) {
2734 /* 16 bit write access */
2736 io_mem_write
[io_index
][1](io_mem_opaque
[io_index
], addr
, val
);
2739 /* 8 bit write access */
2741 io_mem_write
[io_index
][0](io_mem_opaque
[io_index
], addr
, val
);
2745 unsigned long addr1
;
2746 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
2748 ptr
= phys_ram_base
+ addr1
;
2749 memcpy(ptr
, buf
, l
);
2750 if (!cpu_physical_memory_is_dirty(addr1
)) {
2751 /* invalidate code */
2752 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
2754 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
2755 (0xff & ~CODE_DIRTY_FLAG
);
2759 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
2760 !(pd
& IO_MEM_ROMD
)) {
2762 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
2763 if (l
>= 4 && ((addr
& 3) == 0)) {
2764 /* 32 bit read access */
2765 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
2768 } else if (l
>= 2 && ((addr
& 1) == 0)) {
2769 /* 16 bit read access */
2770 val
= io_mem_read
[io_index
][1](io_mem_opaque
[io_index
], addr
);
2774 /* 8 bit read access */
2775 val
= io_mem_read
[io_index
][0](io_mem_opaque
[io_index
], addr
);
2781 ptr
= phys_ram_base
+ (pd
& TARGET_PAGE_MASK
) +
2782 (addr
& ~TARGET_PAGE_MASK
);
2783 memcpy(buf
, ptr
, l
);
2792 /* used for ROM loading : can write in RAM and ROM */
2793 void cpu_physical_memory_write_rom(target_phys_addr_t addr
,
2794 const uint8_t *buf
, int len
)
2798 target_phys_addr_t page
;
2803 page
= addr
& TARGET_PAGE_MASK
;
2804 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2807 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
2809 pd
= IO_MEM_UNASSIGNED
;
2811 pd
= p
->phys_offset
;
2814 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
&&
2815 (pd
& ~TARGET_PAGE_MASK
) != IO_MEM_ROM
&&
2816 !(pd
& IO_MEM_ROMD
)) {
2819 unsigned long addr1
;
2820 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
2822 ptr
= phys_ram_base
+ addr1
;
2823 memcpy(ptr
, buf
, l
);
2832 /* warning: addr must be aligned */
2833 uint32_t ldl_phys(target_phys_addr_t addr
)
2841 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2843 pd
= IO_MEM_UNASSIGNED
;
2845 pd
= p
->phys_offset
;
2848 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
2849 !(pd
& IO_MEM_ROMD
)) {
2851 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
2852 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
2855 ptr
= phys_ram_base
+ (pd
& TARGET_PAGE_MASK
) +
2856 (addr
& ~TARGET_PAGE_MASK
);
2862 /* warning: addr must be aligned */
2863 uint64_t ldq_phys(target_phys_addr_t addr
)
2871 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2873 pd
= IO_MEM_UNASSIGNED
;
2875 pd
= p
->phys_offset
;
2878 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
2879 !(pd
& IO_MEM_ROMD
)) {
2881 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
2882 #ifdef TARGET_WORDS_BIGENDIAN
2883 val
= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
) << 32;
2884 val
|= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4);
2886 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
2887 val
|= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4) << 32;
2891 ptr
= phys_ram_base
+ (pd
& TARGET_PAGE_MASK
) +
2892 (addr
& ~TARGET_PAGE_MASK
);
2899 uint32_t ldub_phys(target_phys_addr_t addr
)
2902 cpu_physical_memory_read(addr
, &val
, 1);
2907 uint32_t lduw_phys(target_phys_addr_t addr
)
2910 cpu_physical_memory_read(addr
, (uint8_t *)&val
, 2);
2911 return tswap16(val
);
2914 /* warning: addr must be aligned. The ram page is not masked as dirty
2915 and the code inside is not invalidated. It is useful if the dirty
2916 bits are used to track modified PTEs */
2917 void stl_phys_notdirty(target_phys_addr_t addr
, uint32_t val
)
2924 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2926 pd
= IO_MEM_UNASSIGNED
;
2928 pd
= p
->phys_offset
;
2931 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
2932 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
2933 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
2935 ptr
= phys_ram_base
+ (pd
& TARGET_PAGE_MASK
) +
2936 (addr
& ~TARGET_PAGE_MASK
);
2941 void stq_phys_notdirty(target_phys_addr_t addr
, uint64_t val
)
2948 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2950 pd
= IO_MEM_UNASSIGNED
;
2952 pd
= p
->phys_offset
;
2955 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
2956 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
2957 #ifdef TARGET_WORDS_BIGENDIAN
2958 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
>> 32);
2959 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
);
2961 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
2962 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
>> 32);
2965 ptr
= phys_ram_base
+ (pd
& TARGET_PAGE_MASK
) +
2966 (addr
& ~TARGET_PAGE_MASK
);
2971 /* warning: addr must be aligned */
2972 void stl_phys(target_phys_addr_t addr
, uint32_t val
)
2979 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2981 pd
= IO_MEM_UNASSIGNED
;
2983 pd
= p
->phys_offset
;
2986 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
2987 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
2988 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
2990 unsigned long addr1
;
2991 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
2993 ptr
= phys_ram_base
+ addr1
;
2995 if (!cpu_physical_memory_is_dirty(addr1
)) {
2996 /* invalidate code */
2997 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
2999 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3000 (0xff & ~CODE_DIRTY_FLAG
);
3006 void stb_phys(target_phys_addr_t addr
, uint32_t val
)
3009 cpu_physical_memory_write(addr
, &v
, 1);
3013 void stw_phys(target_phys_addr_t addr
, uint32_t val
)
3015 uint16_t v
= tswap16(val
);
3016 cpu_physical_memory_write(addr
, (const uint8_t *)&v
, 2);
3020 void stq_phys(target_phys_addr_t addr
, uint64_t val
)
3023 cpu_physical_memory_write(addr
, (const uint8_t *)&val
, 8);
3028 /* virtual memory access for debug */
3029 int cpu_memory_rw_debug(CPUState
*env
, target_ulong addr
,
3030 uint8_t *buf
, int len
, int is_write
)
3033 target_phys_addr_t phys_addr
;
3037 page
= addr
& TARGET_PAGE_MASK
;
3038 phys_addr
= cpu_get_phys_page_debug(env
, page
);
3039 /* if no physical page mapped, return an error */
3040 if (phys_addr
== -1)
3042 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3045 cpu_physical_memory_rw(phys_addr
+ (addr
& ~TARGET_PAGE_MASK
),
3054 /* in deterministic execution mode, instructions doing device I/Os
3055 must be at the end of the TB */
3056 void cpu_io_recompile(CPUState
*env
, void *retaddr
)
3058 TranslationBlock
*tb
;
3060 target_ulong pc
, cs_base
;
3063 tb
= tb_find_pc((unsigned long)retaddr
);
3065 cpu_abort(env
, "cpu_io_recompile: could not find TB for pc=%p",
3068 n
= env
->icount_decr
.u16
.low
+ tb
->icount
;
3069 cpu_restore_state(tb
, env
, (unsigned long)retaddr
, NULL
);
3070 /* Calculate how many instructions had been executed before the fault
3072 n
= n
- env
->icount_decr
.u16
.low
;
3073 /* Generate a new TB ending on the I/O insn. */
3075 /* On MIPS and SH, delay slot instructions can only be restarted if
3076 they were already the first instruction in the TB. If this is not
3077 the first instruction in a TB then re-execute the preceding
3079 #if defined(TARGET_MIPS)
3080 if ((env
->hflags
& MIPS_HFLAG_BMASK
) != 0 && n
> 1) {
3081 env
->active_tc
.PC
-= 4;
3082 env
->icount_decr
.u16
.low
++;
3083 env
->hflags
&= ~MIPS_HFLAG_BMASK
;
3085 #elif defined(TARGET_SH4)
3086 if ((env
->flags
& ((DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
))) != 0
3089 env
->icount_decr
.u16
.low
++;
3090 env
->flags
&= ~(DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
);
3093 /* This should never happen. */
3094 if (n
> CF_COUNT_MASK
)
3095 cpu_abort(env
, "TB too big during recompile");
3097 cflags
= n
| CF_LAST_IO
;
3099 cs_base
= tb
->cs_base
;
3101 tb_phys_invalidate(tb
, -1);
3102 /* FIXME: In theory this could raise an exception. In practice
3103 we have already translated the block once so it's probably ok. */
3104 tb_gen_code(env
, pc
, cs_base
, flags
, cflags
);
3105 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3106 the first in the TB) then we end up generating a whole new TB and
3107 repeating the fault, which is horribly inefficient.
3108 Better would be to execute just this insn uncached, or generate a
3110 cpu_resume_from_signal(env
, NULL
);
3113 void dump_exec_info(FILE *f
,
3114 int (*cpu_fprintf
)(FILE *f
, const char *fmt
, ...))
3116 int i
, target_code_size
, max_target_code_size
;
3117 int direct_jmp_count
, direct_jmp2_count
, cross_page
;
3118 TranslationBlock
*tb
;
3120 target_code_size
= 0;
3121 max_target_code_size
= 0;
3123 direct_jmp_count
= 0;
3124 direct_jmp2_count
= 0;
3125 for(i
= 0; i
< nb_tbs
; i
++) {
3127 target_code_size
+= tb
->size
;
3128 if (tb
->size
> max_target_code_size
)
3129 max_target_code_size
= tb
->size
;
3130 if (tb
->page_addr
[1] != -1)
3132 if (tb
->tb_next_offset
[0] != 0xffff) {
3134 if (tb
->tb_next_offset
[1] != 0xffff) {
3135 direct_jmp2_count
++;
3139 /* XXX: avoid using doubles ? */
3140 cpu_fprintf(f
, "Translation buffer state:\n");
3141 cpu_fprintf(f
, "gen code size %ld/%ld\n",
3142 code_gen_ptr
- code_gen_buffer
, code_gen_buffer_max_size
);
3143 cpu_fprintf(f
, "TB count %d/%d\n",
3144 nb_tbs
, code_gen_max_blocks
);
3145 cpu_fprintf(f
, "TB avg target size %d max=%d bytes\n",
3146 nb_tbs
? target_code_size
/ nb_tbs
: 0,
3147 max_target_code_size
);
3148 cpu_fprintf(f
, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3149 nb_tbs
? (code_gen_ptr
- code_gen_buffer
) / nb_tbs
: 0,
3150 target_code_size
? (double) (code_gen_ptr
- code_gen_buffer
) / target_code_size
: 0);
3151 cpu_fprintf(f
, "cross page TB count %d (%d%%)\n",
3153 nb_tbs
? (cross_page
* 100) / nb_tbs
: 0);
3154 cpu_fprintf(f
, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3156 nb_tbs
? (direct_jmp_count
* 100) / nb_tbs
: 0,
3158 nb_tbs
? (direct_jmp2_count
* 100) / nb_tbs
: 0);
3159 cpu_fprintf(f
, "\nStatistics:\n");
3160 cpu_fprintf(f
, "TB flush count %d\n", tb_flush_count
);
3161 cpu_fprintf(f
, "TB invalidate count %d\n", tb_phys_invalidate_count
);
3162 cpu_fprintf(f
, "TLB flush count %d\n", tlb_flush_count
);
3163 tcg_dump_info(f
, cpu_fprintf
);
3166 #if !defined(CONFIG_USER_ONLY)
3168 #define MMUSUFFIX _cmmu
3169 #define GETPC() NULL
3170 #define env cpu_single_env
3171 #define SOFTMMU_CODE_ACCESS
3174 #include "softmmu_template.h"
3177 #include "softmmu_template.h"
3180 #include "softmmu_template.h"
3183 #include "softmmu_template.h"