2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #if !defined(CONFIG_SOFTMMU)
35 #include <sys/ucontext.h>
38 int tb_invalidated_flag
;
41 //#define DEBUG_SIGNAL
43 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_M68K) || \
45 /* XXX: unify with i386 target */
46 void cpu_loop_exit(void)
48 longjmp(env
->jmp_env
, 1);
51 #if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
55 /* exit the current TB from a signal handler. The host registers are
56 restored in a state compatible with the CPU emulator
58 void cpu_resume_from_signal(CPUState
*env1
, void *puc
)
60 #if !defined(CONFIG_SOFTMMU)
61 struct ucontext
*uc
= puc
;
66 /* XXX: restore cpu registers saved in host registers */
68 #if !defined(CONFIG_SOFTMMU)
70 /* XXX: use siglongjmp ? */
71 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
74 longjmp(env
->jmp_env
, 1);
78 static TranslationBlock
*tb_find_slow(target_ulong pc
,
82 TranslationBlock
*tb
, **ptb1
;
85 target_ulong phys_pc
, phys_page1
, phys_page2
, virt_page2
;
90 tb_invalidated_flag
= 0;
92 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
94 /* find translated block using physical mappings */
95 phys_pc
= get_phys_addr_code(env
, pc
);
96 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
98 h
= tb_phys_hash_func(phys_pc
);
99 ptb1
= &tb_phys_hash
[h
];
105 tb
->page_addr
[0] == phys_page1
&&
106 tb
->cs_base
== cs_base
&&
107 tb
->flags
== flags
) {
108 /* check next page if needed */
109 if (tb
->page_addr
[1] != -1) {
110 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
112 phys_page2
= get_phys_addr_code(env
, virt_page2
);
113 if (tb
->page_addr
[1] == phys_page2
)
119 ptb1
= &tb
->phys_hash_next
;
122 /* if no translated code available, then translate it now */
125 /* flush must be done */
127 /* cannot fail at this point */
129 /* don't forget to invalidate previous TB info */
130 tb_invalidated_flag
= 1;
132 tc_ptr
= code_gen_ptr
;
134 tb
->cs_base
= cs_base
;
136 cpu_gen_code(env
, tb
, CODE_GEN_MAX_SIZE
, &code_gen_size
);
137 code_gen_ptr
= (void *)(((unsigned long)code_gen_ptr
+ code_gen_size
+ CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
139 /* check next page if needed */
140 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
142 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
143 phys_page2
= get_phys_addr_code(env
, virt_page2
);
145 tb_link_phys(tb
, phys_pc
, phys_page2
);
148 /* we add the TB in the virtual pc hash table */
149 env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
150 spin_unlock(&tb_lock
);
154 static inline TranslationBlock
*tb_find_fast(void)
156 TranslationBlock
*tb
;
157 target_ulong cs_base
, pc
;
160 /* we record a subset of the CPU state. It will
161 always be the same before a given translated block
163 #if defined(TARGET_I386)
165 flags
|= (env
->eflags
& (IOPL_MASK
| TF_MASK
| VM_MASK
));
166 cs_base
= env
->segs
[R_CS
].base
;
167 pc
= cs_base
+ env
->eip
;
168 #elif defined(TARGET_ARM)
169 flags
= env
->thumb
| (env
->vfp
.vec_len
<< 1)
170 | (env
->vfp
.vec_stride
<< 4);
171 if ((env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
)
173 if (env
->vfp
.xregs
[ARM_VFP_FPEXC
] & (1 << 30))
177 #elif defined(TARGET_SPARC)
178 #ifdef TARGET_SPARC64
179 // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
180 flags
= (((env
->pstate
& PS_PEF
) >> 1) | ((env
->fprs
& FPRS_FEF
) << 2))
181 | (env
->pstate
& PS_PRIV
) | ((env
->lsu
& (DMMU_E
| IMMU_E
)) >> 2);
183 // FPU enable . MMU enabled . MMU no-fault . Supervisor
184 flags
= (env
->psref
<< 3) | ((env
->mmuregs
[0] & (MMU_E
| MMU_NF
)) << 1)
189 #elif defined(TARGET_PPC)
190 flags
= (msr_pr
<< MSR_PR
) | (msr_fp
<< MSR_FP
) |
191 (msr_se
<< MSR_SE
) | (msr_le
<< MSR_LE
);
194 #elif defined(TARGET_MIPS)
195 flags
= env
->hflags
& (MIPS_HFLAG_TMASK
| MIPS_HFLAG_BMASK
);
198 #elif defined(TARGET_M68K)
199 flags
= (env
->fpcr
& M68K_FPCR_PREC
) /* Bit 6 */
200 | (env
->sr
& SR_S
) /* Bit 13 */
201 | ((env
->macsr
>> 4) & 0xf); /* Bits 0-3 */
204 #elif defined(TARGET_SH4)
205 flags
= env
->sr
& (SR_MD
| SR_RB
);
206 cs_base
= 0; /* XXXXX */
208 #elif defined(TARGET_ALPHA)
213 #error unsupported CPU
215 tb
= env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
216 if (__builtin_expect(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
217 tb
->flags
!= flags
, 0)) {
218 tb
= tb_find_slow(pc
, cs_base
, flags
);
219 /* Note: we do it here to avoid a gcc bug on Mac OS X when
220 doing it in tb_find_slow */
221 if (tb_invalidated_flag
) {
222 /* as some TB could have been invalidated because
223 of memory exceptions while generating the code, we
224 must recompute the hash index here */
232 /* main execution loop */
234 int cpu_exec(CPUState
*env1
)
236 #define DECLARE_HOST_REGS 1
237 #include "hostregs_helper.h"
238 #if defined(TARGET_SPARC)
239 #if defined(reg_REGWPTR)
240 uint32_t *saved_regwptr
;
243 #if defined(__sparc__) && !defined(HOST_SOLARIS)
247 int ret
, interrupt_request
;
248 void (*gen_func
)(void);
249 TranslationBlock
*tb
;
252 #if defined(TARGET_I386)
253 /* handle exit of HALTED state */
254 if (env1
->hflags
& HF_HALTED_MASK
) {
255 /* disable halt condition */
256 if ((env1
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
257 (env1
->eflags
& IF_MASK
)) {
258 env1
->hflags
&= ~HF_HALTED_MASK
;
263 #elif defined(TARGET_PPC)
265 if (env1
->msr
[MSR_EE
] &&
266 (env1
->interrupt_request
& CPU_INTERRUPT_HARD
)) {
272 #elif defined(TARGET_SPARC)
274 if ((env1
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
275 (env1
->psret
!= 0)) {
281 #elif defined(TARGET_ARM)
283 /* An interrupt wakes the CPU even if the I and F CPSR bits are
284 set. We use EXITTB to silently wake CPU without causing an
286 if (env1
->interrupt_request
&
287 (CPU_INTERRUPT_FIQ
| CPU_INTERRUPT_HARD
| CPU_INTERRUPT_EXITTB
)) {
293 #elif defined(TARGET_MIPS)
295 if (env1
->interrupt_request
&
296 (CPU_INTERRUPT_HARD
| CPU_INTERRUPT_TIMER
)) {
302 #elif defined(TARGET_ALPHA) || defined(TARGET_M68K)
304 if (env1
->interrupt_request
& CPU_INTERRUPT_HARD
) {
312 cpu_single_env
= env1
;
314 /* first we save global registers */
315 #define SAVE_HOST_REGS 1
316 #include "hostregs_helper.h"
318 #if defined(__sparc__) && !defined(HOST_SOLARIS)
319 /* we also save i7 because longjmp may not restore it */
320 asm volatile ("mov %%i7, %0" : "=r" (saved_i7
));
323 #if defined(TARGET_I386)
325 /* put eflags in CPU temporary format */
326 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
327 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
328 CC_OP
= CC_OP_EFLAGS
;
329 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
330 #elif defined(TARGET_ARM)
331 #elif defined(TARGET_SPARC)
332 #if defined(reg_REGWPTR)
333 saved_regwptr
= REGWPTR
;
335 #elif defined(TARGET_PPC)
336 #elif defined(TARGET_M68K)
337 env
->cc_op
= CC_OP_FLAGS
;
338 env
->cc_dest
= env
->sr
& 0xf;
339 env
->cc_x
= (env
->sr
>> 4) & 1;
340 #elif defined(TARGET_MIPS)
341 #elif defined(TARGET_SH4)
343 #elif defined(TARGET_ALPHA)
346 #error unsupported target CPU
348 env
->exception_index
= -1;
350 /* prepare setjmp context for exception handling */
352 if (setjmp(env
->jmp_env
) == 0) {
353 env
->current_tb
= NULL
;
354 /* if an exception is pending, we execute it here */
355 if (env
->exception_index
>= 0) {
356 if (env
->exception_index
>= EXCP_INTERRUPT
) {
357 /* exit request from the cpu execution loop */
358 ret
= env
->exception_index
;
360 } else if (env
->user_mode_only
) {
361 /* if user mode only, we simulate a fake exception
362 which will be handled outside the cpu execution
364 #if defined(TARGET_I386)
365 do_interrupt_user(env
->exception_index
,
366 env
->exception_is_int
,
368 env
->exception_next_eip
);
370 ret
= env
->exception_index
;
373 #if defined(TARGET_I386)
374 /* simulate a real cpu exception. On i386, it can
375 trigger new exceptions, but we do not handle
376 double or triple faults yet. */
377 do_interrupt(env
->exception_index
,
378 env
->exception_is_int
,
380 env
->exception_next_eip
, 0);
381 /* successfully delivered */
382 env
->old_exception
= -1;
383 #elif defined(TARGET_PPC)
385 #elif defined(TARGET_MIPS)
387 #elif defined(TARGET_SPARC)
388 do_interrupt(env
->exception_index
);
389 #elif defined(TARGET_ARM)
391 #elif defined(TARGET_SH4)
393 #elif defined(TARGET_ALPHA)
395 #elif defined(TARGET_M68K)
399 env
->exception_index
= -1;
402 if (kqemu_is_ok(env
) && env
->interrupt_request
== 0) {
404 env
->eflags
= env
->eflags
| cc_table
[CC_OP
].compute_all() | (DF
& DF_MASK
);
405 ret
= kqemu_cpu_exec(env
);
406 /* put eflags in CPU temporary format */
407 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
408 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
409 CC_OP
= CC_OP_EFLAGS
;
410 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
413 longjmp(env
->jmp_env
, 1);
414 } else if (ret
== 2) {
415 /* softmmu execution needed */
417 if (env
->interrupt_request
!= 0) {
418 /* hardware interrupt will be executed just after */
420 /* otherwise, we restart */
421 longjmp(env
->jmp_env
, 1);
427 T0
= 0; /* force lookup of first TB */
429 #if defined(__sparc__) && !defined(HOST_SOLARIS)
430 /* g1 can be modified by some libc? functions */
433 interrupt_request
= env
->interrupt_request
;
434 if (__builtin_expect(interrupt_request
, 0)) {
435 if (interrupt_request
& CPU_INTERRUPT_DEBUG
) {
436 env
->interrupt_request
&= ~CPU_INTERRUPT_DEBUG
;
437 env
->exception_index
= EXCP_DEBUG
;
440 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
441 defined(TARGET_PPC) || defined(TARGET_ALPHA)
442 if (interrupt_request
& CPU_INTERRUPT_HALT
) {
443 env
->interrupt_request
&= ~CPU_INTERRUPT_HALT
;
445 env
->exception_index
= EXCP_HLT
;
449 #if defined(TARGET_I386)
450 if ((interrupt_request
& CPU_INTERRUPT_SMI
) &&
451 !(env
->hflags
& HF_SMM_MASK
)) {
452 env
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
454 #if defined(__sparc__) && !defined(HOST_SOLARIS)
459 } else if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
460 (env
->eflags
& IF_MASK
) &&
461 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
463 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
464 intno
= cpu_get_pic_interrupt(env
);
465 if (loglevel
& CPU_LOG_TB_IN_ASM
) {
466 fprintf(logfile
, "Servicing hardware INT=0x%02x\n", intno
);
468 do_interrupt(intno
, 0, 0, 0, 1);
469 /* ensure that no TB jump will be modified as
470 the program flow was changed */
471 #if defined(__sparc__) && !defined(HOST_SOLARIS)
477 #elif defined(TARGET_PPC)
479 if ((interrupt_request
& CPU_INTERRUPT_RESET
)) {
483 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
484 ppc_hw_interrupt(env
);
485 if (env
->pending_interrupts
== 0)
486 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
487 #if defined(__sparc__) && !defined(HOST_SOLARIS)
493 #elif defined(TARGET_MIPS)
494 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
495 (env
->CP0_Status
& env
->CP0_Cause
& CP0Ca_IP_mask
) &&
496 (env
->CP0_Status
& (1 << CP0St_IE
)) &&
497 !(env
->CP0_Status
& (1 << CP0St_EXL
)) &&
498 !(env
->CP0_Status
& (1 << CP0St_ERL
)) &&
499 !(env
->hflags
& MIPS_HFLAG_DM
)) {
501 env
->exception_index
= EXCP_EXT_INTERRUPT
;
504 #if defined(__sparc__) && !defined(HOST_SOLARIS)
510 #elif defined(TARGET_SPARC)
511 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
513 int pil
= env
->interrupt_index
& 15;
514 int type
= env
->interrupt_index
& 0xf0;
516 if (((type
== TT_EXTINT
) &&
517 (pil
== 15 || pil
> env
->psrpil
)) ||
519 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
520 do_interrupt(env
->interrupt_index
);
521 env
->interrupt_index
= 0;
522 #if defined(__sparc__) && !defined(HOST_SOLARIS)
528 } else if (interrupt_request
& CPU_INTERRUPT_TIMER
) {
529 //do_interrupt(0, 0, 0, 0, 0);
530 env
->interrupt_request
&= ~CPU_INTERRUPT_TIMER
;
532 #elif defined(TARGET_ARM)
533 if (interrupt_request
& CPU_INTERRUPT_FIQ
534 && !(env
->uncached_cpsr
& CPSR_F
)) {
535 env
->exception_index
= EXCP_FIQ
;
538 if (interrupt_request
& CPU_INTERRUPT_HARD
539 && !(env
->uncached_cpsr
& CPSR_I
)) {
540 env
->exception_index
= EXCP_IRQ
;
543 #elif defined(TARGET_SH4)
545 #elif defined(TARGET_ALPHA)
546 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
549 #elif defined(TARGET_M68K)
550 if (interrupt_request
& CPU_INTERRUPT_HARD
551 && ((env
->sr
& SR_I
) >> SR_I_SHIFT
)
552 < env
->pending_level
) {
553 /* Real hardware gets the interrupt vector via an
554 IACK cycle at this point. Current emulated
555 hardware doesn't rely on this, so we
556 provide/save the vector when the interrupt is
558 env
->exception_index
= env
->pending_vector
;
562 /* Don't use the cached interupt_request value,
563 do_interrupt may have updated the EXITTB flag. */
564 if (env
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
565 env
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
566 /* ensure that no TB jump will be modified as
567 the program flow was changed */
568 #if defined(__sparc__) && !defined(HOST_SOLARIS)
574 if (interrupt_request
& CPU_INTERRUPT_EXIT
) {
575 env
->interrupt_request
&= ~CPU_INTERRUPT_EXIT
;
576 env
->exception_index
= EXCP_INTERRUPT
;
581 if ((loglevel
& CPU_LOG_TB_CPU
)) {
582 #if defined(TARGET_I386)
583 /* restore flags in standard format */
585 env
->regs
[R_EAX
] = EAX
;
588 env
->regs
[R_EBX
] = EBX
;
591 env
->regs
[R_ECX
] = ECX
;
594 env
->regs
[R_EDX
] = EDX
;
597 env
->regs
[R_ESI
] = ESI
;
600 env
->regs
[R_EDI
] = EDI
;
603 env
->regs
[R_EBP
] = EBP
;
606 env
->regs
[R_ESP
] = ESP
;
608 env
->eflags
= env
->eflags
| cc_table
[CC_OP
].compute_all() | (DF
& DF_MASK
);
609 cpu_dump_state(env
, logfile
, fprintf
, X86_DUMP_CCOP
);
610 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
611 #elif defined(TARGET_ARM)
612 cpu_dump_state(env
, logfile
, fprintf
, 0);
613 #elif defined(TARGET_SPARC)
614 REGWPTR
= env
->regbase
+ (env
->cwp
* 16);
615 env
->regwptr
= REGWPTR
;
616 cpu_dump_state(env
, logfile
, fprintf
, 0);
617 #elif defined(TARGET_PPC)
618 cpu_dump_state(env
, logfile
, fprintf
, 0);
619 #elif defined(TARGET_M68K)
620 cpu_m68k_flush_flags(env
, env
->cc_op
);
621 env
->cc_op
= CC_OP_FLAGS
;
622 env
->sr
= (env
->sr
& 0xffe0)
623 | env
->cc_dest
| (env
->cc_x
<< 4);
624 cpu_dump_state(env
, logfile
, fprintf
, 0);
625 #elif defined(TARGET_MIPS)
626 cpu_dump_state(env
, logfile
, fprintf
, 0);
627 #elif defined(TARGET_SH4)
628 cpu_dump_state(env
, logfile
, fprintf
, 0);
629 #elif defined(TARGET_ALPHA)
630 cpu_dump_state(env
, logfile
, fprintf
, 0);
632 #error unsupported target CPU
638 if ((loglevel
& CPU_LOG_EXEC
)) {
639 fprintf(logfile
, "Trace 0x%08lx [" TARGET_FMT_lx
"] %s\n",
640 (long)tb
->tc_ptr
, tb
->pc
,
641 lookup_symbol(tb
->pc
));
644 #if defined(__sparc__) && !defined(HOST_SOLARIS)
647 /* see if we can patch the calling TB. When the TB
648 spans two pages, we cannot safely do a direct
653 (env
->kqemu_enabled
!= 2) &&
655 tb
->page_addr
[1] == -1
656 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
657 && (tb
->cflags
& CF_CODE_COPY
) ==
658 (((TranslationBlock
*)(T0
& ~3))->cflags
& CF_CODE_COPY
)
662 tb_add_jump((TranslationBlock
*)(long)(T0
& ~3), T0
& 3, tb
);
663 #if defined(USE_CODE_COPY)
664 /* propagates the FP use info */
665 ((TranslationBlock
*)(T0
& ~3))->cflags
|=
666 (tb
->cflags
& CF_FP_USED
);
668 spin_unlock(&tb_lock
);
672 env
->current_tb
= tb
;
673 /* execute the generated code */
674 gen_func
= (void *)tc_ptr
;
675 #if defined(__sparc__)
676 __asm__
__volatile__("call %0\n\t"
680 : "i0", "i1", "i2", "i3", "i4", "i5",
681 "o0", "o1", "o2", "o3", "o4", "o5",
682 "l0", "l1", "l2", "l3", "l4", "l5",
684 #elif defined(__arm__)
685 asm volatile ("mov pc, %0\n\t"
686 ".global exec_loop\n\t"
690 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
691 #elif defined(TARGET_I386) && defined(USE_CODE_COPY)
693 if (!(tb
->cflags
& CF_CODE_COPY
)) {
694 if ((tb
->cflags
& CF_FP_USED
) && env
->native_fp_regs
) {
695 save_native_fp_state(env
);
699 if ((tb
->cflags
& CF_FP_USED
) && !env
->native_fp_regs
) {
700 restore_native_fp_state(env
);
702 /* we work with native eflags */
703 CC_SRC
= cc_table
[CC_OP
].compute_all();
704 CC_OP
= CC_OP_EFLAGS
;
705 asm(".globl exec_loop\n"
710 " fs movl %11, %%eax\n"
711 " andl $0x400, %%eax\n"
712 " fs orl %8, %%eax\n"
715 " fs movl %%esp, %12\n"
716 " fs movl %0, %%eax\n"
717 " fs movl %1, %%ecx\n"
718 " fs movl %2, %%edx\n"
719 " fs movl %3, %%ebx\n"
720 " fs movl %4, %%esp\n"
721 " fs movl %5, %%ebp\n"
722 " fs movl %6, %%esi\n"
723 " fs movl %7, %%edi\n"
726 " fs movl %%esp, %4\n"
727 " fs movl %12, %%esp\n"
728 " fs movl %%eax, %0\n"
729 " fs movl %%ecx, %1\n"
730 " fs movl %%edx, %2\n"
731 " fs movl %%ebx, %3\n"
732 " fs movl %%ebp, %5\n"
733 " fs movl %%esi, %6\n"
734 " fs movl %%edi, %7\n"
737 " movl %%eax, %%ecx\n"
738 " andl $0x400, %%ecx\n"
740 " andl $0x8d5, %%eax\n"
741 " fs movl %%eax, %8\n"
743 " subl %%ecx, %%eax\n"
744 " fs movl %%eax, %11\n"
745 " fs movl %9, %%ebx\n" /* get T0 value */
748 : "m" (*(uint8_t *)offsetof(CPUState
, regs
[0])),
749 "m" (*(uint8_t *)offsetof(CPUState
, regs
[1])),
750 "m" (*(uint8_t *)offsetof(CPUState
, regs
[2])),
751 "m" (*(uint8_t *)offsetof(CPUState
, regs
[3])),
752 "m" (*(uint8_t *)offsetof(CPUState
, regs
[4])),
753 "m" (*(uint8_t *)offsetof(CPUState
, regs
[5])),
754 "m" (*(uint8_t *)offsetof(CPUState
, regs
[6])),
755 "m" (*(uint8_t *)offsetof(CPUState
, regs
[7])),
756 "m" (*(uint8_t *)offsetof(CPUState
, cc_src
)),
757 "m" (*(uint8_t *)offsetof(CPUState
, tmp0
)),
759 "m" (*(uint8_t *)offsetof(CPUState
, df
)),
760 "m" (*(uint8_t *)offsetof(CPUState
, saved_esp
))
765 #elif defined(__ia64)
772 fp
.gp
= code_gen_buffer
+ 2 * (1 << 20);
773 (*(void (*)(void)) &fp
)();
777 env
->current_tb
= NULL
;
778 /* reset soft MMU for next block (it can currently
779 only be set by a memory fault) */
780 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
781 if (env
->hflags
& HF_SOFTMMU_MASK
) {
782 env
->hflags
&= ~HF_SOFTMMU_MASK
;
783 /* do not allow linking to another block */
787 #if defined(USE_KQEMU)
788 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
789 if (kqemu_is_ok(env
) &&
790 (cpu_get_time_fast() - env
->last_io_time
) >= MIN_CYCLE_BEFORE_SWITCH
) {
801 #if defined(TARGET_I386)
802 #if defined(USE_CODE_COPY)
803 if (env
->native_fp_regs
) {
804 save_native_fp_state(env
);
807 /* restore flags in standard format */
808 env
->eflags
= env
->eflags
| cc_table
[CC_OP
].compute_all() | (DF
& DF_MASK
);
809 #elif defined(TARGET_ARM)
810 /* XXX: Save/restore host fpu exception state?. */
811 #elif defined(TARGET_SPARC)
812 #if defined(reg_REGWPTR)
813 REGWPTR
= saved_regwptr
;
815 #elif defined(TARGET_PPC)
816 #elif defined(TARGET_M68K)
817 cpu_m68k_flush_flags(env
, env
->cc_op
);
818 env
->cc_op
= CC_OP_FLAGS
;
819 env
->sr
= (env
->sr
& 0xffe0)
820 | env
->cc_dest
| (env
->cc_x
<< 4);
821 #elif defined(TARGET_MIPS)
822 #elif defined(TARGET_SH4)
823 #elif defined(TARGET_ALPHA)
826 #error unsupported target CPU
829 /* restore global registers */
830 #if defined(__sparc__) && !defined(HOST_SOLARIS)
831 asm volatile ("mov %0, %%i7" : : "r" (saved_i7
));
833 #include "hostregs_helper.h"
835 /* fail safe : never use cpu_single_env outside cpu_exec() */
836 cpu_single_env
= NULL
;
840 /* must only be called from the generated code as an exception can be
842 void tb_invalidate_page_range(target_ulong start
, target_ulong end
)
844 /* XXX: cannot enable it yet because it yields to MMU exception
845 where NIP != read address on PowerPC */
847 target_ulong phys_addr
;
848 phys_addr
= get_phys_addr_code(env
, start
);
849 tb_invalidate_phys_page_range(phys_addr
, phys_addr
+ end
- start
, 0);
853 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
855 void cpu_x86_load_seg(CPUX86State
*s
, int seg_reg
, int selector
)
857 CPUX86State
*saved_env
;
861 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
863 cpu_x86_load_seg_cache(env
, seg_reg
, selector
,
864 (selector
<< 4), 0xffff, 0);
866 load_seg(seg_reg
, selector
);
871 void cpu_x86_fsave(CPUX86State
*s
, uint8_t *ptr
, int data32
)
873 CPUX86State
*saved_env
;
878 helper_fsave((target_ulong
)ptr
, data32
);
883 void cpu_x86_frstor(CPUX86State
*s
, uint8_t *ptr
, int data32
)
885 CPUX86State
*saved_env
;
890 helper_frstor((target_ulong
)ptr
, data32
);
895 #endif /* TARGET_I386 */
897 #if !defined(CONFIG_SOFTMMU)
899 #if defined(TARGET_I386)
901 /* 'pc' is the host PC at which the exception was raised. 'address' is
902 the effective address of the memory exception. 'is_write' is 1 if a
903 write caused the exception and otherwise 0'. 'old_set' is the
904 signal set which should be restored */
905 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
906 int is_write
, sigset_t
*old_set
,
909 TranslationBlock
*tb
;
913 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
914 #if defined(DEBUG_SIGNAL)
915 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
916 pc
, address
, is_write
, *(unsigned long *)old_set
);
918 /* XXX: locking issue */
919 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
923 /* see if it is an MMU fault */
924 ret
= cpu_x86_handle_mmu_fault(env
, address
, is_write
,
925 ((env
->hflags
& HF_CPL_MASK
) == 3), 0);
927 return 0; /* not an MMU fault */
929 return 1; /* the MMU fault was handled without causing real CPU fault */
930 /* now we have a real cpu fault */
933 /* the PC is inside the translated code. It means that we have
934 a virtual CPU fault */
935 cpu_restore_state(tb
, env
, pc
, puc
);
939 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
940 env
->eip
, env
->cr
[2], env
->error_code
);
942 /* we restore the process signal mask as the sigreturn should
943 do it (XXX: use sigsetjmp) */
944 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
945 raise_exception_err(env
->exception_index
, env
->error_code
);
947 /* activate soft MMU for this block */
948 env
->hflags
|= HF_SOFTMMU_MASK
;
949 cpu_resume_from_signal(env
, puc
);
951 /* never comes here */
955 #elif defined(TARGET_ARM)
956 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
957 int is_write
, sigset_t
*old_set
,
960 TranslationBlock
*tb
;
964 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
965 #if defined(DEBUG_SIGNAL)
966 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
967 pc
, address
, is_write
, *(unsigned long *)old_set
);
969 /* XXX: locking issue */
970 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
973 /* see if it is an MMU fault */
974 ret
= cpu_arm_handle_mmu_fault(env
, address
, is_write
, 1, 0);
976 return 0; /* not an MMU fault */
978 return 1; /* the MMU fault was handled without causing real CPU fault */
979 /* now we have a real cpu fault */
982 /* the PC is inside the translated code. It means that we have
983 a virtual CPU fault */
984 cpu_restore_state(tb
, env
, pc
, puc
);
986 /* we restore the process signal mask as the sigreturn should
987 do it (XXX: use sigsetjmp) */
988 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
991 #elif defined(TARGET_SPARC)
992 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
993 int is_write
, sigset_t
*old_set
,
996 TranslationBlock
*tb
;
1000 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1001 #if defined(DEBUG_SIGNAL)
1002 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1003 pc
, address
, is_write
, *(unsigned long *)old_set
);
1005 /* XXX: locking issue */
1006 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1009 /* see if it is an MMU fault */
1010 ret
= cpu_sparc_handle_mmu_fault(env
, address
, is_write
, 1, 0);
1012 return 0; /* not an MMU fault */
1014 return 1; /* the MMU fault was handled without causing real CPU fault */
1015 /* now we have a real cpu fault */
1016 tb
= tb_find_pc(pc
);
1018 /* the PC is inside the translated code. It means that we have
1019 a virtual CPU fault */
1020 cpu_restore_state(tb
, env
, pc
, puc
);
1022 /* we restore the process signal mask as the sigreturn should
1023 do it (XXX: use sigsetjmp) */
1024 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1027 #elif defined (TARGET_PPC)
1028 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1029 int is_write
, sigset_t
*old_set
,
1032 TranslationBlock
*tb
;
1036 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1037 #if defined(DEBUG_SIGNAL)
1038 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1039 pc
, address
, is_write
, *(unsigned long *)old_set
);
1041 /* XXX: locking issue */
1042 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1046 /* see if it is an MMU fault */
1047 ret
= cpu_ppc_handle_mmu_fault(env
, address
, is_write
, msr_pr
, 0);
1049 return 0; /* not an MMU fault */
1051 return 1; /* the MMU fault was handled without causing real CPU fault */
1053 /* now we have a real cpu fault */
1054 tb
= tb_find_pc(pc
);
1056 /* the PC is inside the translated code. It means that we have
1057 a virtual CPU fault */
1058 cpu_restore_state(tb
, env
, pc
, puc
);
1062 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1063 env
->nip
, env
->error_code
, tb
);
1065 /* we restore the process signal mask as the sigreturn should
1066 do it (XXX: use sigsetjmp) */
1067 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1068 do_raise_exception_err(env
->exception_index
, env
->error_code
);
1070 /* activate soft MMU for this block */
1071 cpu_resume_from_signal(env
, puc
);
1073 /* never comes here */
1077 #elif defined(TARGET_M68K)
1078 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1079 int is_write
, sigset_t
*old_set
,
1082 TranslationBlock
*tb
;
1086 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1087 #if defined(DEBUG_SIGNAL)
1088 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1089 pc
, address
, is_write
, *(unsigned long *)old_set
);
1091 /* XXX: locking issue */
1092 if (is_write
&& page_unprotect(address
, pc
, puc
)) {
1095 /* see if it is an MMU fault */
1096 ret
= cpu_m68k_handle_mmu_fault(env
, address
, is_write
, 1, 0);
1098 return 0; /* not an MMU fault */
1100 return 1; /* the MMU fault was handled without causing real CPU fault */
1101 /* now we have a real cpu fault */
1102 tb
= tb_find_pc(pc
);
1104 /* the PC is inside the translated code. It means that we have
1105 a virtual CPU fault */
1106 cpu_restore_state(tb
, env
, pc
, puc
);
1108 /* we restore the process signal mask as the sigreturn should
1109 do it (XXX: use sigsetjmp) */
1110 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1112 /* never comes here */
1116 #elif defined (TARGET_MIPS)
1117 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1118 int is_write
, sigset_t
*old_set
,
1121 TranslationBlock
*tb
;
1125 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1126 #if defined(DEBUG_SIGNAL)
1127 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1128 pc
, address
, is_write
, *(unsigned long *)old_set
);
1130 /* XXX: locking issue */
1131 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1135 /* see if it is an MMU fault */
1136 ret
= cpu_mips_handle_mmu_fault(env
, address
, is_write
, 1, 0);
1138 return 0; /* not an MMU fault */
1140 return 1; /* the MMU fault was handled without causing real CPU fault */
1142 /* now we have a real cpu fault */
1143 tb
= tb_find_pc(pc
);
1145 /* the PC is inside the translated code. It means that we have
1146 a virtual CPU fault */
1147 cpu_restore_state(tb
, env
, pc
, puc
);
1151 printf("PF exception: PC=0x" TARGET_FMT_lx
" error=0x%x %p\n",
1152 env
->PC
, env
->error_code
, tb
);
1154 /* we restore the process signal mask as the sigreturn should
1155 do it (XXX: use sigsetjmp) */
1156 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1157 do_raise_exception_err(env
->exception_index
, env
->error_code
);
1159 /* activate soft MMU for this block */
1160 cpu_resume_from_signal(env
, puc
);
1162 /* never comes here */
1166 #elif defined (TARGET_SH4)
1167 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1168 int is_write
, sigset_t
*old_set
,
1171 TranslationBlock
*tb
;
1175 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1176 #if defined(DEBUG_SIGNAL)
1177 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1178 pc
, address
, is_write
, *(unsigned long *)old_set
);
1180 /* XXX: locking issue */
1181 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1185 /* see if it is an MMU fault */
1186 ret
= cpu_sh4_handle_mmu_fault(env
, address
, is_write
, 1, 0);
1188 return 0; /* not an MMU fault */
1190 return 1; /* the MMU fault was handled without causing real CPU fault */
1192 /* now we have a real cpu fault */
1193 tb
= tb_find_pc(pc
);
1195 /* the PC is inside the translated code. It means that we have
1196 a virtual CPU fault */
1197 cpu_restore_state(tb
, env
, pc
, puc
);
1200 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1201 env
->nip
, env
->error_code
, tb
);
1203 /* we restore the process signal mask as the sigreturn should
1204 do it (XXX: use sigsetjmp) */
1205 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1207 /* never comes here */
1211 #elif defined (TARGET_ALPHA)
1212 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1213 int is_write
, sigset_t
*old_set
,
1216 TranslationBlock
*tb
;
1220 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1221 #if defined(DEBUG_SIGNAL)
1222 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1223 pc
, address
, is_write
, *(unsigned long *)old_set
);
1225 /* XXX: locking issue */
1226 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1230 /* see if it is an MMU fault */
1231 ret
= cpu_alpha_handle_mmu_fault(env
, address
, is_write
, 1, 0);
1233 return 0; /* not an MMU fault */
1235 return 1; /* the MMU fault was handled without causing real CPU fault */
1237 /* now we have a real cpu fault */
1238 tb
= tb_find_pc(pc
);
1240 /* the PC is inside the translated code. It means that we have
1241 a virtual CPU fault */
1242 cpu_restore_state(tb
, env
, pc
, puc
);
1245 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1246 env
->nip
, env
->error_code
, tb
);
1248 /* we restore the process signal mask as the sigreturn should
1249 do it (XXX: use sigsetjmp) */
1250 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1252 /* never comes here */
1256 #error unsupported target CPU
1259 #if defined(__i386__)
1261 #if defined(__APPLE__)
1262 # include <sys/ucontext.h>
1264 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1265 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1266 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1268 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1269 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1270 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1273 #if defined(USE_CODE_COPY)
1274 static void cpu_send_trap(unsigned long pc
, int trap
,
1275 struct ucontext
*uc
)
1277 TranslationBlock
*tb
;
1280 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1281 /* now we have a real cpu fault */
1282 tb
= tb_find_pc(pc
);
1284 /* the PC is inside the translated code. It means that we have
1285 a virtual CPU fault */
1286 cpu_restore_state(tb
, env
, pc
, uc
);
1288 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
1289 raise_exception_err(trap
, env
->error_code
);
1293 int cpu_signal_handler(int host_signum
, void *pinfo
,
1296 siginfo_t
*info
= pinfo
;
1297 struct ucontext
*uc
= puc
;
1305 #define REG_TRAPNO TRAPNO
1308 trapno
= TRAP_sig(uc
);
1309 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
1310 if (trapno
== 0x00 || trapno
== 0x05) {
1311 /* send division by zero or bound exception */
1312 cpu_send_trap(pc
, trapno
, uc
);
1316 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1318 (ERROR_sig(uc
) >> 1) & 1 : 0,
1319 &uc
->uc_sigmask
, puc
);
1322 #elif defined(__x86_64__)
1324 int cpu_signal_handler(int host_signum
, void *pinfo
,
1327 siginfo_t
*info
= pinfo
;
1328 struct ucontext
*uc
= puc
;
1331 pc
= uc
->uc_mcontext
.gregs
[REG_RIP
];
1332 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1333 uc
->uc_mcontext
.gregs
[REG_TRAPNO
] == 0xe ?
1334 (uc
->uc_mcontext
.gregs
[REG_ERR
] >> 1) & 1 : 0,
1335 &uc
->uc_sigmask
, puc
);
1338 #elif defined(__powerpc__)
1340 /***********************************************************************
1341 * signal context platform-specific definitions
1345 /* All Registers access - only for local access */
1346 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1347 /* Gpr Registers access */
1348 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1349 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1350 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1351 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1352 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1353 # define LR_sig(context) REG_sig(link, context) /* Link register */
1354 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1355 /* Float Registers access */
1356 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1357 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1358 /* Exception Registers access */
1359 # define DAR_sig(context) REG_sig(dar, context)
1360 # define DSISR_sig(context) REG_sig(dsisr, context)
1361 # define TRAP_sig(context) REG_sig(trap, context)
1365 # include <sys/ucontext.h>
1366 typedef struct ucontext SIGCONTEXT
;
1367 /* All Registers access - only for local access */
1368 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1369 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1370 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1371 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1372 /* Gpr Registers access */
1373 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1374 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1375 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1376 # define CTR_sig(context) REG_sig(ctr, context)
1377 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1378 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1379 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1380 /* Float Registers access */
1381 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1382 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1383 /* Exception Registers access */
1384 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1385 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1386 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1387 #endif /* __APPLE__ */
1389 int cpu_signal_handler(int host_signum
, void *pinfo
,
1392 siginfo_t
*info
= pinfo
;
1393 struct ucontext
*uc
= puc
;
1401 if (DSISR_sig(uc
) & 0x00800000)
1404 if (TRAP_sig(uc
) != 0x400 && (DSISR_sig(uc
) & 0x02000000))
1407 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1408 is_write
, &uc
->uc_sigmask
, puc
);
1411 #elif defined(__alpha__)
1413 int cpu_signal_handler(int host_signum
, void *pinfo
,
1416 siginfo_t
*info
= pinfo
;
1417 struct ucontext
*uc
= puc
;
1418 uint32_t *pc
= uc
->uc_mcontext
.sc_pc
;
1419 uint32_t insn
= *pc
;
1422 /* XXX: need kernel patch to get write flag faster */
1423 switch (insn
>> 26) {
1438 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1439 is_write
, &uc
->uc_sigmask
, puc
);
1441 #elif defined(__sparc__)
1443 int cpu_signal_handler(int host_signum
, void *pinfo
,
1446 siginfo_t
*info
= pinfo
;
1447 uint32_t *regs
= (uint32_t *)(info
+ 1);
1448 void *sigmask
= (regs
+ 20);
1453 /* XXX: is there a standard glibc define ? */
1455 /* XXX: need kernel patch to get write flag faster */
1457 insn
= *(uint32_t *)pc
;
1458 if ((insn
>> 30) == 3) {
1459 switch((insn
>> 19) & 0x3f) {
1471 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1472 is_write
, sigmask
, NULL
);
1475 #elif defined(__arm__)
1477 int cpu_signal_handler(int host_signum
, void *pinfo
,
1480 siginfo_t
*info
= pinfo
;
1481 struct ucontext
*uc
= puc
;
1485 pc
= uc
->uc_mcontext
.gregs
[R15
];
1486 /* XXX: compute is_write */
1488 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1490 &uc
->uc_sigmask
, puc
);
1493 #elif defined(__mc68000)
1495 int cpu_signal_handler(int host_signum
, void *pinfo
,
1498 siginfo_t
*info
= pinfo
;
1499 struct ucontext
*uc
= puc
;
1503 pc
= uc
->uc_mcontext
.gregs
[16];
1504 /* XXX: compute is_write */
1506 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1508 &uc
->uc_sigmask
, puc
);
1511 #elif defined(__ia64)
1514 /* This ought to be in <bits/siginfo.h>... */
1515 # define __ISR_VALID 1
1518 int cpu_signal_handler(int host_signum
, void *pinfo
, void *puc
)
1520 siginfo_t
*info
= pinfo
;
1521 struct ucontext
*uc
= puc
;
1525 ip
= uc
->uc_mcontext
.sc_ip
;
1526 switch (host_signum
) {
1532 if (info
->si_code
&& (info
->si_segvflags
& __ISR_VALID
))
1533 /* ISR.W (write-access) is bit 33: */
1534 is_write
= (info
->si_isr
>> 33) & 1;
1540 return handle_cpu_signal(ip
, (unsigned long)info
->si_addr
,
1542 &uc
->uc_sigmask
, puc
);
1545 #elif defined(__s390__)
1547 int cpu_signal_handler(int host_signum
, void *pinfo
,
1550 siginfo_t
*info
= pinfo
;
1551 struct ucontext
*uc
= puc
;
1555 pc
= uc
->uc_mcontext
.psw
.addr
;
1556 /* XXX: compute is_write */
1558 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1559 is_write
, &uc
->uc_sigmask
, puc
);
1562 #elif defined(__mips__)
1564 int cpu_signal_handler(int host_signum
, void *pinfo
,
1567 siginfo_t
*info
= pinfo
;
1568 struct ucontext
*uc
= puc
;
1569 greg_t pc
= uc
->uc_mcontext
.pc
;
1572 /* XXX: compute is_write */
1574 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1575 is_write
, &uc
->uc_sigmask
, puc
);
1580 #error host CPU specific signal handler needed
1584 #endif /* !defined(CONFIG_SOFTMMU) */