4 * Copyright (c) 2007 AXIS Communications
5 * Written by Edgar E. Iglesias
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
25 #include "host-utils.h"
27 //#define CRIS_OP_HELPER_DEBUG
30 #ifdef CRIS_OP_HELPER_DEBUG
32 #define D_LOG(...) qemu_log(__VA__ARGS__)
35 #define D_LOG(...) do { } while (0)
38 #if !defined(CONFIG_USER_ONLY)
40 #define MMUSUFFIX _mmu
43 #include "softmmu_template.h"
46 #include "softmmu_template.h"
49 #include "softmmu_template.h"
52 #include "softmmu_template.h"
54 /* Try to fill the TLB and return an exception if error. If retaddr is
55 NULL, it means that the function was called in C code (i.e. not
56 from generated code or from helper.c) */
57 /* XXX: fix it to restore all registers */
58 void tlb_fill (target_ulong addr
, int is_write
, int mmu_idx
, void *retaddr
)
65 /* XXX: hack to restore env in all cases, even if not called from
70 D_LOG("%s pc=%x tpc=%x ra=%x\n", __func__
,
71 env
->pc
, env
->debug1
, retaddr
);
72 ret
= cpu_cris_handle_mmu_fault(env
, addr
, is_write
, mmu_idx
, 1);
75 /* now we have a real cpu fault */
76 pc
= (unsigned long)retaddr
;
79 /* the PC is inside the translated code. It means that we have
80 a virtual CPU fault */
81 cpu_restore_state(tb
, env
, pc
, NULL
);
83 /* Evaluate flags after retranslation. */
84 helper_top_evaluate_flags();
94 void helper_raise_exception(uint32_t index
)
96 env
->exception_index
= index
;
100 void helper_tlb_flush_pid(uint32_t pid
)
102 #if !defined(CONFIG_USER_ONLY)
104 if (pid
!= (env
->pregs
[PR_PID
] & 0xff))
105 cris_mmu_flush_pid(env
, env
->pregs
[PR_PID
]);
109 void helper_spc_write(uint32_t new_spc
)
111 #if !defined(CONFIG_USER_ONLY)
112 tlb_flush_page(env
, env
->pregs
[PR_SPC
]);
113 tlb_flush_page(env
, new_spc
);
117 void helper_dump(uint32_t a0
, uint32_t a1
, uint32_t a2
)
119 qemu_log("%s: a0=%x a1=%x\n", __func__
, a0
, a1
);
122 /* Used by the tlb decoder. */
123 #define EXTRACT_FIELD(src, start, end) \
124 (((src) >> start) & ((1 << (end - start + 1)) - 1))
126 void helper_movl_sreg_reg (uint32_t sreg
, uint32_t reg
)
129 srs
= env
->pregs
[PR_SRS
];
131 env
->sregs
[srs
][sreg
] = env
->regs
[reg
];
133 #if !defined(CONFIG_USER_ONLY)
134 if (srs
== 1 || srs
== 2) {
136 /* Writes to tlb-hi write to mm_cause as a side
138 env
->sregs
[SFR_RW_MM_TLB_HI
] = env
->regs
[reg
];
139 env
->sregs
[SFR_R_MM_CAUSE
] = env
->regs
[reg
];
141 else if (sreg
== 5) {
148 idx
= set
= env
->sregs
[SFR_RW_MM_TLB_SEL
];
153 /* We've just made a write to tlb_lo. */
154 lo
= env
->sregs
[SFR_RW_MM_TLB_LO
];
155 /* Writes are done via r_mm_cause. */
156 hi
= env
->sregs
[SFR_R_MM_CAUSE
];
158 vaddr
= EXTRACT_FIELD(env
->tlbsets
[srs
-1][set
][idx
].hi
,
160 vaddr
<<= TARGET_PAGE_BITS
;
161 tlb_v
= EXTRACT_FIELD(env
->tlbsets
[srs
-1][set
][idx
].lo
,
163 env
->tlbsets
[srs
- 1][set
][idx
].lo
= lo
;
164 env
->tlbsets
[srs
- 1][set
][idx
].hi
= hi
;
166 D_LOG("tlb flush vaddr=%x v=%d pc=%x\n",
167 vaddr
, tlb_v
, env
->pc
);
168 tlb_flush_page(env
, vaddr
);
174 void helper_movl_reg_sreg (uint32_t reg
, uint32_t sreg
)
177 env
->pregs
[PR_SRS
] &= 3;
178 srs
= env
->pregs
[PR_SRS
];
180 #if !defined(CONFIG_USER_ONLY)
181 if (srs
== 1 || srs
== 2)
187 idx
= set
= env
->sregs
[SFR_RW_MM_TLB_SEL
];
192 /* Update the mirror regs. */
193 hi
= env
->tlbsets
[srs
- 1][set
][idx
].hi
;
194 lo
= env
->tlbsets
[srs
- 1][set
][idx
].lo
;
195 env
->sregs
[SFR_RW_MM_TLB_HI
] = hi
;
196 env
->sregs
[SFR_RW_MM_TLB_LO
] = lo
;
199 env
->regs
[reg
] = env
->sregs
[srs
][sreg
];
202 static void cris_ccs_rshift(CPUState
*env
)
206 /* Apply the ccs shift. */
207 ccs
= env
->pregs
[PR_CCS
];
208 ccs
= (ccs
& 0xc0000000) | ((ccs
& 0x0fffffff) >> 10);
211 /* Enter user mode. */
212 env
->ksp
= env
->regs
[R_SP
];
213 env
->regs
[R_SP
] = env
->pregs
[PR_USP
];
216 env
->pregs
[PR_CCS
] = ccs
;
219 void helper_rfe(void)
221 int rflag
= env
->pregs
[PR_CCS
] & R_FLAG
;
223 D_LOG("rfe: erp=%x pid=%x ccs=%x btarget=%x\n",
224 env
->pregs
[PR_ERP
], env
->pregs
[PR_PID
],
228 cris_ccs_rshift(env
);
230 /* RFE sets the P_FLAG only if the R_FLAG is not set. */
232 env
->pregs
[PR_CCS
] |= P_FLAG
;
235 void helper_rfn(void)
237 int rflag
= env
->pregs
[PR_CCS
] & R_FLAG
;
239 D_LOG("rfn: erp=%x pid=%x ccs=%x btarget=%x\n",
240 env
->pregs
[PR_ERP
], env
->pregs
[PR_PID
],
244 cris_ccs_rshift(env
);
246 /* Set the P_FLAG only if the R_FLAG is not set. */
248 env
->pregs
[PR_CCS
] |= P_FLAG
;
250 /* Always set the M flag. */
251 env
->pregs
[PR_CCS
] |= M_FLAG
;
254 uint32_t helper_lz(uint32_t t0
)
259 uint32_t helper_btst(uint32_t t0
, uint32_t t1
, uint32_t ccs
)
261 /* FIXME: clean this up. */
264 The N flag is set according to the selected bit in the dest reg.
265 The Z flag is set if the selected bit and all bits to the right are
267 The X flag is cleared.
268 Other flags are left untouched.
269 The destination reg is not affected.*/
270 unsigned int fz
, sbit
, bset
, mask
, masked_t0
;
273 bset
= !!(t0
& (1 << sbit
));
274 mask
= sbit
== 31 ? -1 : (1 << (sbit
+ 1)) - 1;
275 masked_t0
= t0
& mask
;
276 fz
= !(masked_t0
| bset
);
278 /* Clear the X, N and Z flags. */
279 ccs
= ccs
& ~(X_FLAG
| N_FLAG
| Z_FLAG
);
280 /* Set the N and Z flags accordingly. */
281 ccs
|= (bset
<< 3) | (fz
<< 2);
285 static inline uint32_t evaluate_flags_writeback(uint32_t flags
, uint32_t ccs
)
287 unsigned int x
, z
, mask
;
289 /* Extended arithmetics, leave the z flag alone. */
291 mask
= env
->cc_mask
| X_FLAG
;
298 /* all insn clear the x-flag except setf or clrf. */
304 uint32_t helper_evaluate_flags_muls(uint32_t ccs
, uint32_t res
, uint32_t mof
)
310 dneg
= ((int32_t)res
) < 0;
319 if ((dneg
&& mof
!= -1)
320 || (!dneg
&& mof
!= 0))
322 return evaluate_flags_writeback(flags
, ccs
);
325 uint32_t helper_evaluate_flags_mulu(uint32_t ccs
, uint32_t res
, uint32_t mof
)
340 return evaluate_flags_writeback(flags
, ccs
);
343 uint32_t helper_evaluate_flags_mcp(uint32_t ccs
,
344 uint32_t src
, uint32_t dst
, uint32_t res
)
348 src
= src
& 0x80000000;
349 dst
= dst
& 0x80000000;
351 if ((res
& 0x80000000L
) != 0L)
369 return evaluate_flags_writeback(flags
, ccs
);
372 uint32_t helper_evaluate_flags_alu_4(uint32_t ccs
,
373 uint32_t src
, uint32_t dst
, uint32_t res
)
377 src
= src
& 0x80000000;
378 dst
= dst
& 0x80000000;
380 if ((res
& 0x80000000L
) != 0L)
398 return evaluate_flags_writeback(flags
, ccs
);
401 uint32_t helper_evaluate_flags_sub_4(uint32_t ccs
,
402 uint32_t src
, uint32_t dst
, uint32_t res
)
406 src
= (~src
) & 0x80000000;
407 dst
= dst
& 0x80000000;
409 if ((res
& 0x80000000L
) != 0L)
428 return evaluate_flags_writeback(flags
, ccs
);
431 uint32_t helper_evaluate_flags_move_4(uint32_t ccs
, uint32_t res
)
435 if ((int32_t)res
< 0)
440 return evaluate_flags_writeback(flags
, ccs
);
442 uint32_t helper_evaluate_flags_move_2(uint32_t ccs
, uint32_t res
)
446 if ((int16_t)res
< 0L)
451 return evaluate_flags_writeback(flags
, ccs
);
454 /* TODO: This is expensive. We could split things up and only evaluate part of
455 CCR on a need to know basis. For now, we simply re-evaluate everything. */
456 void helper_evaluate_flags(void)
458 uint32_t src
, dst
, res
;
463 res
= env
->cc_result
;
465 if (env
->cc_op
== CC_OP_SUB
|| env
->cc_op
== CC_OP_CMP
)
468 /* Now, evaluate the flags. This stuff is based on
469 Per Zander's CRISv10 simulator. */
470 switch (env
->cc_size
)
473 if ((res
& 0x80L
) != 0L)
476 if (((src
& 0x80L
) == 0L)
477 && ((dst
& 0x80L
) == 0L))
481 else if (((src
& 0x80L
) != 0L)
482 && ((dst
& 0x80L
) != 0L))
489 if ((res
& 0xFFL
) == 0L)
493 if (((src
& 0x80L
) != 0L)
494 && ((dst
& 0x80L
) != 0L))
498 if ((dst
& 0x80L
) != 0L
499 || (src
& 0x80L
) != 0L)
506 if ((res
& 0x8000L
) != 0L)
509 if (((src
& 0x8000L
) == 0L)
510 && ((dst
& 0x8000L
) == 0L))
514 else if (((src
& 0x8000L
) != 0L)
515 && ((dst
& 0x8000L
) != 0L))
522 if ((res
& 0xFFFFL
) == 0L)
526 if (((src
& 0x8000L
) != 0L)
527 && ((dst
& 0x8000L
) != 0L))
531 if ((dst
& 0x8000L
) != 0L
532 || (src
& 0x8000L
) != 0L)
539 if ((res
& 0x80000000L
) != 0L)
542 if (((src
& 0x80000000L
) == 0L)
543 && ((dst
& 0x80000000L
) == 0L))
547 else if (((src
& 0x80000000L
) != 0L) &&
548 ((dst
& 0x80000000L
) != 0L))
557 if (((src
& 0x80000000L
) != 0L)
558 && ((dst
& 0x80000000L
) != 0L))
560 if ((dst
& 0x80000000L
) != 0L
561 || (src
& 0x80000000L
) != 0L)
569 if (env
->cc_op
== CC_OP_SUB
|| env
->cc_op
== CC_OP_CMP
)
572 env
->pregs
[PR_CCS
] = evaluate_flags_writeback(flags
, env
->pregs
[PR_CCS
]);
575 void helper_top_evaluate_flags(void)
580 env
->pregs
[PR_CCS
] = helper_evaluate_flags_mcp(
581 env
->pregs
[PR_CCS
], env
->cc_src
,
582 env
->cc_dest
, env
->cc_result
);
585 env
->pregs
[PR_CCS
] = helper_evaluate_flags_muls(
586 env
->pregs
[PR_CCS
], env
->cc_result
,
590 env
->pregs
[PR_CCS
] = helper_evaluate_flags_mulu(
591 env
->pregs
[PR_CCS
], env
->cc_result
,
601 switch (env
->cc_size
)
605 helper_evaluate_flags_move_4(
611 helper_evaluate_flags_move_2(
616 helper_evaluate_flags();
625 if (env
->cc_size
== 4)
627 helper_evaluate_flags_sub_4(
629 env
->cc_src
, env
->cc_dest
,
632 helper_evaluate_flags();
636 switch (env
->cc_size
)
640 helper_evaluate_flags_alu_4(
642 env
->cc_src
, env
->cc_dest
,
646 helper_evaluate_flags();