2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu-timer.h"
29 #include "hpet_emul.h"
34 #define RTC_SECONDS_ALARM 1
36 #define RTC_MINUTES_ALARM 3
38 #define RTC_HOURS_ALARM 5
39 #define RTC_ALARM_DONT_CARE 0xC0
41 #define RTC_DAY_OF_WEEK 6
42 #define RTC_DAY_OF_MONTH 7
51 #define REG_A_UIP 0x80
53 #define REG_B_SET 0x80
54 #define REG_B_PIE 0x40
55 #define REG_B_AIE 0x20
56 #define REG_B_UIE 0x10
59 uint8_t cmos_data
[128];
65 QEMUTimer
*periodic_timer
;
66 int64_t next_periodic_time
;
68 int64_t next_second_time
;
69 QEMUTimer
*second_timer
;
70 QEMUTimer
*second_timer2
;
73 static void rtc_irq_raise(qemu_irq irq
) {
74 /* When HPET is operating in legacy mode, RTC interrupts are disabled
75 * We block qemu_irq_raise, but not qemu_irq_lower, in case legacy
76 * mode is established while interrupt is raised. We want it to
77 * be lowered in any case
79 #if defined TARGET_I386 || defined TARGET_X86_64
80 if (!hpet_in_legacy_mode())
85 static void rtc_set_time(RTCState
*s
);
86 static void rtc_copy_date(RTCState
*s
);
88 static void rtc_timer_update(RTCState
*s
, int64_t current_time
)
90 int period_code
, period
;
91 int64_t cur_clock
, next_irq_clock
;
93 period_code
= s
->cmos_data
[RTC_REG_A
] & 0x0f;
94 #if defined TARGET_I386 || defined TARGET_X86_64
95 /* disable periodic timer if hpet is in legacy mode, since interrupts are
98 if (period_code
!= 0 && (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) && !hpet_in_legacy_mode()) {
100 if (period_code
!= 0 && (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
)) {
102 if (period_code
<= 2)
104 /* period in 32 Khz cycles */
105 period
= 1 << (period_code
- 1);
106 /* compute 32 khz clock */
107 cur_clock
= muldiv64(current_time
, 32768, ticks_per_sec
);
108 next_irq_clock
= (cur_clock
& ~(period
- 1)) + period
;
109 s
->next_periodic_time
= muldiv64(next_irq_clock
, ticks_per_sec
, 32768) + 1;
110 qemu_mod_timer(s
->periodic_timer
, s
->next_periodic_time
);
112 qemu_del_timer(s
->periodic_timer
);
116 static void rtc_periodic_timer(void *opaque
)
118 RTCState
*s
= opaque
;
120 rtc_timer_update(s
, s
->next_periodic_time
);
121 s
->cmos_data
[RTC_REG_C
] |= 0xc0;
122 rtc_irq_raise(s
->irq
);
125 static void cmos_ioport_write(void *opaque
, uint32_t addr
, uint32_t data
)
127 RTCState
*s
= opaque
;
129 if ((addr
& 1) == 0) {
130 s
->cmos_index
= data
& 0x7f;
133 printf("cmos: write index=0x%02x val=0x%02x\n",
134 s
->cmos_index
, data
);
136 switch(s
->cmos_index
) {
137 case RTC_SECONDS_ALARM
:
138 case RTC_MINUTES_ALARM
:
139 case RTC_HOURS_ALARM
:
140 /* XXX: not supported */
141 s
->cmos_data
[s
->cmos_index
] = data
;
146 case RTC_DAY_OF_WEEK
:
147 case RTC_DAY_OF_MONTH
:
150 s
->cmos_data
[s
->cmos_index
] = data
;
151 /* if in set mode, do not update the time */
152 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
157 /* UIP bit is read only */
158 s
->cmos_data
[RTC_REG_A
] = (data
& ~REG_A_UIP
) |
159 (s
->cmos_data
[RTC_REG_A
] & REG_A_UIP
);
160 rtc_timer_update(s
, qemu_get_clock(vm_clock
));
163 if (data
& REG_B_SET
) {
164 /* set mode: reset UIP mode */
165 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
168 /* if disabling set mode, update the time */
169 if (s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) {
173 s
->cmos_data
[RTC_REG_B
] = data
;
174 rtc_timer_update(s
, qemu_get_clock(vm_clock
));
178 /* cannot write to them */
181 s
->cmos_data
[s
->cmos_index
] = data
;
187 static inline int to_bcd(RTCState
*s
, int a
)
189 if (s
->cmos_data
[RTC_REG_B
] & 0x04) {
192 return ((a
/ 10) << 4) | (a
% 10);
196 static inline int from_bcd(RTCState
*s
, int a
)
198 if (s
->cmos_data
[RTC_REG_B
] & 0x04) {
201 return ((a
>> 4) * 10) + (a
& 0x0f);
205 static void rtc_set_time(RTCState
*s
)
207 struct tm
*tm
= &s
->current_tm
;
209 tm
->tm_sec
= from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
210 tm
->tm_min
= from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
211 tm
->tm_hour
= from_bcd(s
, s
->cmos_data
[RTC_HOURS
] & 0x7f);
212 if (!(s
->cmos_data
[RTC_REG_B
] & 0x02) &&
213 (s
->cmos_data
[RTC_HOURS
] & 0x80)) {
216 tm
->tm_wday
= from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_WEEK
]);
217 tm
->tm_mday
= from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_MONTH
]);
218 tm
->tm_mon
= from_bcd(s
, s
->cmos_data
[RTC_MONTH
]) - 1;
219 tm
->tm_year
= from_bcd(s
, s
->cmos_data
[RTC_YEAR
]) + 100;
222 static void rtc_copy_date(RTCState
*s
)
224 const struct tm
*tm
= &s
->current_tm
;
226 s
->cmos_data
[RTC_SECONDS
] = to_bcd(s
, tm
->tm_sec
);
227 s
->cmos_data
[RTC_MINUTES
] = to_bcd(s
, tm
->tm_min
);
228 if (s
->cmos_data
[RTC_REG_B
] & 0x02) {
230 s
->cmos_data
[RTC_HOURS
] = to_bcd(s
, tm
->tm_hour
);
233 s
->cmos_data
[RTC_HOURS
] = to_bcd(s
, tm
->tm_hour
% 12);
234 if (tm
->tm_hour
>= 12)
235 s
->cmos_data
[RTC_HOURS
] |= 0x80;
237 s
->cmos_data
[RTC_DAY_OF_WEEK
] = to_bcd(s
, tm
->tm_wday
);
238 s
->cmos_data
[RTC_DAY_OF_MONTH
] = to_bcd(s
, tm
->tm_mday
);
239 s
->cmos_data
[RTC_MONTH
] = to_bcd(s
, tm
->tm_mon
+ 1);
240 s
->cmos_data
[RTC_YEAR
] = to_bcd(s
, tm
->tm_year
% 100);
243 /* month is between 0 and 11. */
244 static int get_days_in_month(int month
, int year
)
246 static const int days_tab
[12] = {
247 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
250 if ((unsigned )month
>= 12)
254 if ((year
% 4) == 0 && ((year
% 100) != 0 || (year
% 400) == 0))
260 /* update 'tm' to the next second */
261 static void rtc_next_second(struct tm
*tm
)
266 if ((unsigned)tm
->tm_sec
>= 60) {
269 if ((unsigned)tm
->tm_min
>= 60) {
272 if ((unsigned)tm
->tm_hour
>= 24) {
276 if ((unsigned)tm
->tm_wday
>= 7)
278 days_in_month
= get_days_in_month(tm
->tm_mon
,
281 if (tm
->tm_mday
< 1) {
283 } else if (tm
->tm_mday
> days_in_month
) {
286 if (tm
->tm_mon
>= 12) {
297 static void rtc_update_second(void *opaque
)
299 RTCState
*s
= opaque
;
302 /* if the oscillator is not in normal operation, we do not update */
303 if ((s
->cmos_data
[RTC_REG_A
] & 0x70) != 0x20) {
304 s
->next_second_time
+= ticks_per_sec
;
305 qemu_mod_timer(s
->second_timer
, s
->next_second_time
);
307 rtc_next_second(&s
->current_tm
);
309 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
310 /* update in progress bit */
311 s
->cmos_data
[RTC_REG_A
] |= REG_A_UIP
;
313 /* should be 244 us = 8 / 32768 seconds, but currently the
314 timers do not have the necessary resolution. */
315 delay
= (ticks_per_sec
* 1) / 100;
318 qemu_mod_timer(s
->second_timer2
,
319 s
->next_second_time
+ delay
);
323 static void rtc_update_second2(void *opaque
)
325 RTCState
*s
= opaque
;
327 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
332 if (s
->cmos_data
[RTC_REG_B
] & REG_B_AIE
) {
333 if (((s
->cmos_data
[RTC_SECONDS_ALARM
] & 0xc0) == 0xc0 ||
334 s
->cmos_data
[RTC_SECONDS_ALARM
] == s
->current_tm
.tm_sec
) &&
335 ((s
->cmos_data
[RTC_MINUTES_ALARM
] & 0xc0) == 0xc0 ||
336 s
->cmos_data
[RTC_MINUTES_ALARM
] == s
->current_tm
.tm_mon
) &&
337 ((s
->cmos_data
[RTC_HOURS_ALARM
] & 0xc0) == 0xc0 ||
338 s
->cmos_data
[RTC_HOURS_ALARM
] == s
->current_tm
.tm_hour
)) {
340 s
->cmos_data
[RTC_REG_C
] |= 0xa0;
341 rtc_irq_raise(s
->irq
);
345 /* update ended interrupt */
346 if (s
->cmos_data
[RTC_REG_B
] & REG_B_UIE
) {
347 s
->cmos_data
[RTC_REG_C
] |= 0x90;
348 rtc_irq_raise(s
->irq
);
351 /* clear update in progress bit */
352 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
354 s
->next_second_time
+= ticks_per_sec
;
355 qemu_mod_timer(s
->second_timer
, s
->next_second_time
);
358 static uint32_t cmos_ioport_read(void *opaque
, uint32_t addr
)
360 RTCState
*s
= opaque
;
362 if ((addr
& 1) == 0) {
365 switch(s
->cmos_index
) {
369 case RTC_DAY_OF_WEEK
:
370 case RTC_DAY_OF_MONTH
:
373 ret
= s
->cmos_data
[s
->cmos_index
];
376 ret
= s
->cmos_data
[s
->cmos_index
];
379 ret
= s
->cmos_data
[s
->cmos_index
];
380 qemu_irq_lower(s
->irq
);
381 s
->cmos_data
[RTC_REG_C
] = 0x00;
384 ret
= s
->cmos_data
[s
->cmos_index
];
388 printf("cmos: read index=0x%02x val=0x%02x\n",
395 void rtc_set_memory(RTCState
*s
, int addr
, int val
)
397 if (addr
>= 0 && addr
<= 127)
398 s
->cmos_data
[addr
] = val
;
401 void rtc_set_date(RTCState
*s
, const struct tm
*tm
)
407 /* PC cmos mappings */
408 #define REG_IBM_CENTURY_BYTE 0x32
409 #define REG_IBM_PS2_CENTURY_BYTE 0x37
411 static void rtc_set_date_from_host(RTCState
*s
)
416 /* set the CMOS date */
417 qemu_get_timedate(&tm
, 0);
418 rtc_set_date(s
, &tm
);
420 val
= to_bcd(s
, (tm
.tm_year
/ 100) + 19);
421 rtc_set_memory(s
, REG_IBM_CENTURY_BYTE
, val
);
422 rtc_set_memory(s
, REG_IBM_PS2_CENTURY_BYTE
, val
);
425 static void rtc_save(QEMUFile
*f
, void *opaque
)
427 RTCState
*s
= opaque
;
429 qemu_put_buffer(f
, s
->cmos_data
, 128);
430 qemu_put_8s(f
, &s
->cmos_index
);
432 qemu_put_be32(f
, s
->current_tm
.tm_sec
);
433 qemu_put_be32(f
, s
->current_tm
.tm_min
);
434 qemu_put_be32(f
, s
->current_tm
.tm_hour
);
435 qemu_put_be32(f
, s
->current_tm
.tm_wday
);
436 qemu_put_be32(f
, s
->current_tm
.tm_mday
);
437 qemu_put_be32(f
, s
->current_tm
.tm_mon
);
438 qemu_put_be32(f
, s
->current_tm
.tm_year
);
440 qemu_put_timer(f
, s
->periodic_timer
);
441 qemu_put_be64(f
, s
->next_periodic_time
);
443 qemu_put_be64(f
, s
->next_second_time
);
444 qemu_put_timer(f
, s
->second_timer
);
445 qemu_put_timer(f
, s
->second_timer2
);
448 static int rtc_load(QEMUFile
*f
, void *opaque
, int version_id
)
450 RTCState
*s
= opaque
;
455 qemu_get_buffer(f
, s
->cmos_data
, 128);
456 qemu_get_8s(f
, &s
->cmos_index
);
458 s
->current_tm
.tm_sec
=qemu_get_be32(f
);
459 s
->current_tm
.tm_min
=qemu_get_be32(f
);
460 s
->current_tm
.tm_hour
=qemu_get_be32(f
);
461 s
->current_tm
.tm_wday
=qemu_get_be32(f
);
462 s
->current_tm
.tm_mday
=qemu_get_be32(f
);
463 s
->current_tm
.tm_mon
=qemu_get_be32(f
);
464 s
->current_tm
.tm_year
=qemu_get_be32(f
);
466 qemu_get_timer(f
, s
->periodic_timer
);
467 s
->next_periodic_time
=qemu_get_be64(f
);
469 s
->next_second_time
=qemu_get_be64(f
);
470 qemu_get_timer(f
, s
->second_timer
);
471 qemu_get_timer(f
, s
->second_timer2
);
475 RTCState
*rtc_init(int base
, qemu_irq irq
)
479 s
= qemu_mallocz(sizeof(RTCState
));
484 s
->cmos_data
[RTC_REG_A
] = 0x26;
485 s
->cmos_data
[RTC_REG_B
] = 0x02;
486 s
->cmos_data
[RTC_REG_C
] = 0x00;
487 s
->cmos_data
[RTC_REG_D
] = 0x80;
489 rtc_set_date_from_host(s
);
491 s
->periodic_timer
= qemu_new_timer(vm_clock
,
492 rtc_periodic_timer
, s
);
493 s
->second_timer
= qemu_new_timer(vm_clock
,
494 rtc_update_second
, s
);
495 s
->second_timer2
= qemu_new_timer(vm_clock
,
496 rtc_update_second2
, s
);
498 s
->next_second_time
= qemu_get_clock(vm_clock
) + (ticks_per_sec
* 99) / 100;
499 qemu_mod_timer(s
->second_timer2
, s
->next_second_time
);
501 register_ioport_write(base
, 2, 1, cmos_ioport_write
, s
);
502 register_ioport_read(base
, 2, 1, cmos_ioport_read
, s
);
504 register_savevm("mc146818rtc", base
, 1, rtc_save
, rtc_load
, s
);
508 /* Memory mapped interface */
509 static uint32_t cmos_mm_readb (void *opaque
, target_phys_addr_t addr
)
511 RTCState
*s
= opaque
;
513 return cmos_ioport_read(s
, addr
>> s
->it_shift
) & 0xFF;
516 static void cmos_mm_writeb (void *opaque
,
517 target_phys_addr_t addr
, uint32_t value
)
519 RTCState
*s
= opaque
;
521 cmos_ioport_write(s
, addr
>> s
->it_shift
, value
& 0xFF);
524 static uint32_t cmos_mm_readw (void *opaque
, target_phys_addr_t addr
)
526 RTCState
*s
= opaque
;
529 val
= cmos_ioport_read(s
, addr
>> s
->it_shift
) & 0xFFFF;
530 #ifdef TARGET_WORDS_BIGENDIAN
536 static void cmos_mm_writew (void *opaque
,
537 target_phys_addr_t addr
, uint32_t value
)
539 RTCState
*s
= opaque
;
540 #ifdef TARGET_WORDS_BIGENDIAN
541 value
= bswap16(value
);
543 cmos_ioport_write(s
, addr
>> s
->it_shift
, value
& 0xFFFF);
546 static uint32_t cmos_mm_readl (void *opaque
, target_phys_addr_t addr
)
548 RTCState
*s
= opaque
;
551 val
= cmos_ioport_read(s
, addr
>> s
->it_shift
);
552 #ifdef TARGET_WORDS_BIGENDIAN
558 static void cmos_mm_writel (void *opaque
,
559 target_phys_addr_t addr
, uint32_t value
)
561 RTCState
*s
= opaque
;
562 #ifdef TARGET_WORDS_BIGENDIAN
563 value
= bswap32(value
);
565 cmos_ioport_write(s
, addr
>> s
->it_shift
, value
);
568 static CPUReadMemoryFunc
*rtc_mm_read
[] = {
574 static CPUWriteMemoryFunc
*rtc_mm_write
[] = {
580 RTCState
*rtc_mm_init(target_phys_addr_t base
, int it_shift
, qemu_irq irq
)
585 s
= qemu_mallocz(sizeof(RTCState
));
590 s
->cmos_data
[RTC_REG_A
] = 0x26;
591 s
->cmos_data
[RTC_REG_B
] = 0x02;
592 s
->cmos_data
[RTC_REG_C
] = 0x00;
593 s
->cmos_data
[RTC_REG_D
] = 0x80;
595 rtc_set_date_from_host(s
);
597 s
->periodic_timer
= qemu_new_timer(vm_clock
,
598 rtc_periodic_timer
, s
);
599 s
->second_timer
= qemu_new_timer(vm_clock
,
600 rtc_update_second
, s
);
601 s
->second_timer2
= qemu_new_timer(vm_clock
,
602 rtc_update_second2
, s
);
604 s
->next_second_time
= qemu_get_clock(vm_clock
) + (ticks_per_sec
* 99) / 100;
605 qemu_mod_timer(s
->second_timer2
, s
->next_second_time
);
607 io_memory
= cpu_register_io_memory(0, rtc_mm_read
, rtc_mm_write
, s
);
608 cpu_register_physical_memory(base
, 2 << it_shift
, io_memory
);
610 register_savevm("mc146818rtc", base
, 1, rtc_save
, rtc_load
, s
);