2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
29 #define RTC_SECONDS_ALARM 1
31 #define RTC_MINUTES_ALARM 3
33 #define RTC_HOURS_ALARM 5
34 #define RTC_ALARM_DONT_CARE 0xC0
36 #define RTC_DAY_OF_WEEK 6
37 #define RTC_DAY_OF_MONTH 7
46 #define REG_A_UIP 0x80
48 #define REG_B_SET 0x80
49 #define REG_B_PIE 0x40
50 #define REG_B_AIE 0x20
51 #define REG_B_UIE 0x10
54 uint8_t cmos_data
[128];
59 QEMUTimer
*periodic_timer
;
60 int64_t next_periodic_time
;
62 int64_t next_second_time
;
63 QEMUTimer
*second_timer
;
64 QEMUTimer
*second_timer2
;
67 static void rtc_set_time(RTCState
*s
);
68 static void rtc_copy_date(RTCState
*s
);
70 static void rtc_timer_update(RTCState
*s
, int64_t current_time
)
72 int period_code
, period
;
73 int64_t cur_clock
, next_irq_clock
;
75 period_code
= s
->cmos_data
[RTC_REG_A
] & 0x0f;
76 if (period_code
!= 0 &&
77 (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
)) {
80 /* period in 32 Khz cycles */
81 period
= 1 << (period_code
- 1);
82 /* compute 32 khz clock */
83 cur_clock
= muldiv64(current_time
, 32768, ticks_per_sec
);
84 next_irq_clock
= (cur_clock
& ~(period
- 1)) + period
;
85 s
->next_periodic_time
= muldiv64(next_irq_clock
, ticks_per_sec
, 32768) + 1;
86 qemu_mod_timer(s
->periodic_timer
, s
->next_periodic_time
);
88 qemu_del_timer(s
->periodic_timer
);
92 static void rtc_periodic_timer(void *opaque
)
96 rtc_timer_update(s
, s
->next_periodic_time
);
97 s
->cmos_data
[RTC_REG_C
] |= 0xc0;
98 pic_set_irq(s
->irq
, 1);
101 static void cmos_ioport_write(void *opaque
, uint32_t addr
, uint32_t data
)
103 RTCState
*s
= opaque
;
105 if ((addr
& 1) == 0) {
106 s
->cmos_index
= data
& 0x7f;
109 printf("cmos: write index=0x%02x val=0x%02x\n",
110 s
->cmos_index
, data
);
112 switch(s
->cmos_index
) {
113 case RTC_SECONDS_ALARM
:
114 case RTC_MINUTES_ALARM
:
115 case RTC_HOURS_ALARM
:
116 /* XXX: not supported */
117 s
->cmos_data
[s
->cmos_index
] = data
;
122 case RTC_DAY_OF_WEEK
:
123 case RTC_DAY_OF_MONTH
:
126 s
->cmos_data
[s
->cmos_index
] = data
;
127 /* if in set mode, do not update the time */
128 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
133 /* UIP bit is read only */
134 s
->cmos_data
[RTC_REG_A
] = (data
& ~REG_A_UIP
) |
135 (s
->cmos_data
[RTC_REG_A
] & REG_A_UIP
);
136 rtc_timer_update(s
, qemu_get_clock(vm_clock
));
139 if (data
& REG_B_SET
) {
140 /* set mode: reset UIP mode */
141 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
144 /* if disabling set mode, update the time */
145 if (s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) {
149 s
->cmos_data
[RTC_REG_B
] = data
;
150 rtc_timer_update(s
, qemu_get_clock(vm_clock
));
154 /* cannot write to them */
157 s
->cmos_data
[s
->cmos_index
] = data
;
163 static inline int to_bcd(RTCState
*s
, int a
)
165 if (s
->cmos_data
[RTC_REG_B
] & 0x04) {
168 return ((a
/ 10) << 4) | (a
% 10);
172 static inline int from_bcd(RTCState
*s
, int a
)
174 if (s
->cmos_data
[RTC_REG_B
] & 0x04) {
177 return ((a
>> 4) * 10) + (a
& 0x0f);
181 static void rtc_set_time(RTCState
*s
)
183 struct tm
*tm
= &s
->current_tm
;
185 tm
->tm_sec
= from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
186 tm
->tm_min
= from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
187 tm
->tm_hour
= from_bcd(s
, s
->cmos_data
[RTC_HOURS
] & 0x7f);
188 if (!(s
->cmos_data
[RTC_REG_B
] & 0x02) &&
189 (s
->cmos_data
[RTC_HOURS
] & 0x80)) {
192 tm
->tm_wday
= from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_WEEK
]);
193 tm
->tm_mday
= from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_MONTH
]);
194 tm
->tm_mon
= from_bcd(s
, s
->cmos_data
[RTC_MONTH
]) - 1;
195 tm
->tm_year
= from_bcd(s
, s
->cmos_data
[RTC_YEAR
]) + 100;
198 static void rtc_copy_date(RTCState
*s
)
200 const struct tm
*tm
= &s
->current_tm
;
202 s
->cmos_data
[RTC_SECONDS
] = to_bcd(s
, tm
->tm_sec
);
203 s
->cmos_data
[RTC_MINUTES
] = to_bcd(s
, tm
->tm_min
);
204 if (s
->cmos_data
[RTC_REG_B
] & 0x02) {
206 s
->cmos_data
[RTC_HOURS
] = to_bcd(s
, tm
->tm_hour
);
209 s
->cmos_data
[RTC_HOURS
] = to_bcd(s
, tm
->tm_hour
% 12);
210 if (tm
->tm_hour
>= 12)
211 s
->cmos_data
[RTC_HOURS
] |= 0x80;
213 s
->cmos_data
[RTC_DAY_OF_WEEK
] = to_bcd(s
, tm
->tm_wday
);
214 s
->cmos_data
[RTC_DAY_OF_MONTH
] = to_bcd(s
, tm
->tm_mday
);
215 s
->cmos_data
[RTC_MONTH
] = to_bcd(s
, tm
->tm_mon
+ 1);
216 s
->cmos_data
[RTC_YEAR
] = to_bcd(s
, tm
->tm_year
% 100);
219 /* month is between 0 and 11. */
220 static int get_days_in_month(int month
, int year
)
222 static const int days_tab
[12] = {
223 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
226 if ((unsigned )month
>= 12)
230 if ((year
% 4) == 0 && ((year
% 100) != 0 || (year
% 400) == 0))
236 /* update 'tm' to the next second */
237 static void rtc_next_second(struct tm
*tm
)
242 if ((unsigned)tm
->tm_sec
>= 60) {
245 if ((unsigned)tm
->tm_min
>= 60) {
248 if ((unsigned)tm
->tm_hour
>= 24) {
252 if ((unsigned)tm
->tm_wday
>= 7)
254 days_in_month
= get_days_in_month(tm
->tm_mon
,
257 if (tm
->tm_mday
< 1) {
259 } else if (tm
->tm_mday
> days_in_month
) {
262 if (tm
->tm_mon
>= 12) {
273 static void rtc_update_second(void *opaque
)
275 RTCState
*s
= opaque
;
278 /* if the oscillator is not in normal operation, we do not update */
279 if ((s
->cmos_data
[RTC_REG_A
] & 0x70) != 0x20) {
280 s
->next_second_time
+= ticks_per_sec
;
281 qemu_mod_timer(s
->second_timer
, s
->next_second_time
);
283 rtc_next_second(&s
->current_tm
);
285 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
286 /* update in progress bit */
287 s
->cmos_data
[RTC_REG_A
] |= REG_A_UIP
;
289 /* should be 244 us = 8 / 32768 seconds, but currently the
290 timers do not have the necessary resolution. */
291 delay
= (ticks_per_sec
* 1) / 100;
294 qemu_mod_timer(s
->second_timer2
,
295 s
->next_second_time
+ delay
);
299 static void rtc_update_second2(void *opaque
)
301 RTCState
*s
= opaque
;
303 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
308 if (s
->cmos_data
[RTC_REG_B
] & REG_B_AIE
) {
309 if (((s
->cmos_data
[RTC_SECONDS_ALARM
] & 0xc0) == 0xc0 ||
310 s
->cmos_data
[RTC_SECONDS_ALARM
] == s
->current_tm
.tm_sec
) &&
311 ((s
->cmos_data
[RTC_MINUTES_ALARM
] & 0xc0) == 0xc0 ||
312 s
->cmos_data
[RTC_MINUTES_ALARM
] == s
->current_tm
.tm_mon
) &&
313 ((s
->cmos_data
[RTC_HOURS_ALARM
] & 0xc0) == 0xc0 ||
314 s
->cmos_data
[RTC_HOURS_ALARM
] == s
->current_tm
.tm_hour
)) {
316 s
->cmos_data
[RTC_REG_C
] |= 0xa0;
317 pic_set_irq(s
->irq
, 1);
321 /* update ended interrupt */
322 if (s
->cmos_data
[RTC_REG_B
] & REG_B_UIE
) {
323 s
->cmos_data
[RTC_REG_C
] |= 0x90;
324 pic_set_irq(s
->irq
, 1);
327 /* clear update in progress bit */
328 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
330 s
->next_second_time
+= ticks_per_sec
;
331 qemu_mod_timer(s
->second_timer
, s
->next_second_time
);
334 static uint32_t cmos_ioport_read(void *opaque
, uint32_t addr
)
336 RTCState
*s
= opaque
;
338 if ((addr
& 1) == 0) {
341 switch(s
->cmos_index
) {
345 case RTC_DAY_OF_WEEK
:
346 case RTC_DAY_OF_MONTH
:
349 ret
= s
->cmos_data
[s
->cmos_index
];
352 ret
= s
->cmos_data
[s
->cmos_index
];
355 ret
= s
->cmos_data
[s
->cmos_index
];
356 pic_set_irq(s
->irq
, 0);
357 s
->cmos_data
[RTC_REG_C
] = 0x00;
360 ret
= s
->cmos_data
[s
->cmos_index
];
364 printf("cmos: read index=0x%02x val=0x%02x\n",
371 void rtc_set_memory(RTCState
*s
, int addr
, int val
)
373 if (addr
>= 0 && addr
<= 127)
374 s
->cmos_data
[addr
] = val
;
377 void rtc_set_date(RTCState
*s
, const struct tm
*tm
)
383 /* PC cmos mappings */
384 #define REG_IBM_CENTURY_BYTE 0x32
385 #define REG_IBM_PS2_CENTURY_BYTE 0x37
387 void rtc_set_date_from_host(RTCState
*s
)
393 /* set the CMOS date */
401 val
= to_bcd(s
, (tm
->tm_year
/ 100) + 19);
402 rtc_set_memory(s
, REG_IBM_CENTURY_BYTE
, val
);
403 rtc_set_memory(s
, REG_IBM_PS2_CENTURY_BYTE
, val
);
406 static void rtc_save(QEMUFile
*f
, void *opaque
)
408 RTCState
*s
= opaque
;
410 qemu_put_buffer(f
, s
->cmos_data
, 128);
411 qemu_put_8s(f
, &s
->cmos_index
);
413 qemu_put_be32s(f
, &s
->current_tm
.tm_sec
);
414 qemu_put_be32s(f
, &s
->current_tm
.tm_min
);
415 qemu_put_be32s(f
, &s
->current_tm
.tm_hour
);
416 qemu_put_be32s(f
, &s
->current_tm
.tm_wday
);
417 qemu_put_be32s(f
, &s
->current_tm
.tm_mday
);
418 qemu_put_be32s(f
, &s
->current_tm
.tm_mon
);
419 qemu_put_be32s(f
, &s
->current_tm
.tm_year
);
421 qemu_put_timer(f
, s
->periodic_timer
);
422 qemu_put_be64s(f
, &s
->next_periodic_time
);
424 qemu_put_be64s(f
, &s
->next_second_time
);
425 qemu_put_timer(f
, s
->second_timer
);
426 qemu_put_timer(f
, s
->second_timer2
);
429 static int rtc_load(QEMUFile
*f
, void *opaque
, int version_id
)
431 RTCState
*s
= opaque
;
436 qemu_get_buffer(f
, s
->cmos_data
, 128);
437 qemu_get_8s(f
, &s
->cmos_index
);
439 qemu_get_be32s(f
, &s
->current_tm
.tm_sec
);
440 qemu_get_be32s(f
, &s
->current_tm
.tm_min
);
441 qemu_get_be32s(f
, &s
->current_tm
.tm_hour
);
442 qemu_get_be32s(f
, &s
->current_tm
.tm_wday
);
443 qemu_get_be32s(f
, &s
->current_tm
.tm_mday
);
444 qemu_get_be32s(f
, &s
->current_tm
.tm_mon
);
445 qemu_get_be32s(f
, &s
->current_tm
.tm_year
);
447 qemu_get_timer(f
, s
->periodic_timer
);
448 qemu_get_be64s(f
, &s
->next_periodic_time
);
450 qemu_get_be64s(f
, &s
->next_second_time
);
451 qemu_get_timer(f
, s
->second_timer
);
452 qemu_get_timer(f
, s
->second_timer2
);
456 RTCState
*rtc_init(int base
, int irq
)
460 s
= qemu_mallocz(sizeof(RTCState
));
465 s
->cmos_data
[RTC_REG_A
] = 0x26;
466 s
->cmos_data
[RTC_REG_B
] = 0x02;
467 s
->cmos_data
[RTC_REG_C
] = 0x00;
468 s
->cmos_data
[RTC_REG_D
] = 0x80;
470 rtc_set_date_from_host(s
);
472 s
->periodic_timer
= qemu_new_timer(vm_clock
,
473 rtc_periodic_timer
, s
);
474 s
->second_timer
= qemu_new_timer(vm_clock
,
475 rtc_update_second
, s
);
476 s
->second_timer2
= qemu_new_timer(vm_clock
,
477 rtc_update_second2
, s
);
479 s
->next_second_time
= qemu_get_clock(vm_clock
) + (ticks_per_sec
* 99) / 100;
480 qemu_mod_timer(s
->second_timer2
, s
->next_second_time
);
482 register_ioport_write(base
, 2, 1, cmos_ioport_write
, s
);
483 register_ioport_read(base
, 2, 1, cmos_ioport_read
, s
);
485 register_savevm("mc146818rtc", base
, 1, rtc_save
, rtc_load
, s
);