Flush IO requests before savevm (original patch by Blue Swirl).
[qemu/mini2440.git] / hw / lance.c
blob400cce5fb1da5b1f94511895847e014c9273c2c6
1 /*
2 * QEMU Lance emulation
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "vl.h"
26 /* debug LANCE card */
27 //#define DEBUG_LANCE
29 #ifdef DEBUG_LANCE
30 #define DPRINTF(fmt, args...) \
31 do { printf("LANCE: " fmt , ##args); } while (0)
32 #else
33 #define DPRINTF(fmt, args...)
34 #endif
36 #ifndef LANCE_LOG_TX_BUFFERS
37 #define LANCE_LOG_TX_BUFFERS 4
38 #define LANCE_LOG_RX_BUFFERS 4
39 #endif
41 #define LE_CSR0 0
42 #define LE_CSR1 1
43 #define LE_CSR2 2
44 #define LE_CSR3 3
45 #define LE_NREGS (LE_CSR3 + 1)
46 #define LE_MAXREG LE_CSR3
48 #define LE_RDP 0
49 #define LE_RAP 1
51 #define LE_MO_PROM 0x8000 /* Enable promiscuous mode */
53 #define LE_C0_ERR 0x8000 /* Error: set if BAB, SQE, MISS or ME is set */
54 #define LE_C0_BABL 0x4000 /* BAB: Babble: tx timeout. */
55 #define LE_C0_CERR 0x2000 /* SQE: Signal quality error */
56 #define LE_C0_MISS 0x1000 /* MISS: Missed a packet */
57 #define LE_C0_MERR 0x0800 /* ME: Memory error */
58 #define LE_C0_RINT 0x0400 /* Received interrupt */
59 #define LE_C0_TINT 0x0200 /* Transmitter Interrupt */
60 #define LE_C0_IDON 0x0100 /* IFIN: Init finished. */
61 #define LE_C0_INTR 0x0080 /* Interrupt or error */
62 #define LE_C0_INEA 0x0040 /* Interrupt enable */
63 #define LE_C0_RXON 0x0020 /* Receiver on */
64 #define LE_C0_TXON 0x0010 /* Transmitter on */
65 #define LE_C0_TDMD 0x0008 /* Transmitter demand */
66 #define LE_C0_STOP 0x0004 /* Stop the card */
67 #define LE_C0_STRT 0x0002 /* Start the card */
68 #define LE_C0_INIT 0x0001 /* Init the card */
70 #define LE_C3_BSWP 0x4 /* SWAP */
71 #define LE_C3_ACON 0x2 /* ALE Control */
72 #define LE_C3_BCON 0x1 /* Byte control */
74 /* Receive message descriptor 1 */
75 #define LE_R1_OWN 0x80 /* Who owns the entry */
76 #define LE_R1_ERR 0x40 /* Error: if FRA, OFL, CRC or BUF is set */
77 #define LE_R1_FRA 0x20 /* FRA: Frame error */
78 #define LE_R1_OFL 0x10 /* OFL: Frame overflow */
79 #define LE_R1_CRC 0x08 /* CRC error */
80 #define LE_R1_BUF 0x04 /* BUF: Buffer error */
81 #define LE_R1_SOP 0x02 /* Start of packet */
82 #define LE_R1_EOP 0x01 /* End of packet */
83 #define LE_R1_POK 0x03 /* Packet is complete: SOP + EOP */
85 #define LE_T1_OWN 0x80 /* Lance owns the packet */
86 #define LE_T1_ERR 0x40 /* Error summary */
87 #define LE_T1_EMORE 0x10 /* Error: more than one retry needed */
88 #define LE_T1_EONE 0x08 /* Error: one retry needed */
89 #define LE_T1_EDEF 0x04 /* Error: deferred */
90 #define LE_T1_SOP 0x02 /* Start of packet */
91 #define LE_T1_EOP 0x01 /* End of packet */
92 #define LE_T1_POK 0x03 /* Packet is complete: SOP + EOP */
94 #define LE_T3_BUF 0x8000 /* Buffer error */
95 #define LE_T3_UFL 0x4000 /* Error underflow */
96 #define LE_T3_LCOL 0x1000 /* Error late collision */
97 #define LE_T3_CLOS 0x0800 /* Error carrier loss */
98 #define LE_T3_RTY 0x0400 /* Error retry */
99 #define LE_T3_TDR 0x03ff /* Time Domain Reflectometry counter */
101 #define TX_RING_SIZE (1 << (LANCE_LOG_TX_BUFFERS))
102 #define TX_RING_MOD_MASK (TX_RING_SIZE - 1)
103 #define TX_RING_LEN_BITS ((LANCE_LOG_TX_BUFFERS) << 29)
105 #define RX_RING_SIZE (1 << (LANCE_LOG_RX_BUFFERS))
106 #define RX_RING_MOD_MASK (RX_RING_SIZE - 1)
107 #define RX_RING_LEN_BITS ((LANCE_LOG_RX_BUFFERS) << 29)
109 #define PKT_BUF_SZ 1544
110 #define RX_BUFF_SIZE PKT_BUF_SZ
111 #define TX_BUFF_SIZE PKT_BUF_SZ
113 struct lance_rx_desc {
114 unsigned short rmd0; /* low address of packet */
115 unsigned char rmd1_bits; /* descriptor bits */
116 unsigned char rmd1_hadr; /* high address of packet */
117 short length; /* This length is 2s complement (negative)!
118 * Buffer length
120 unsigned short mblength; /* This is the actual number of bytes received */
123 struct lance_tx_desc {
124 unsigned short tmd0; /* low address of packet */
125 unsigned char tmd1_bits; /* descriptor bits */
126 unsigned char tmd1_hadr; /* high address of packet */
127 short length; /* Length is 2s complement (negative)! */
128 unsigned short misc;
131 /* The LANCE initialization block, described in databook. */
132 /* On the Sparc, this block should be on a DMA region */
133 struct lance_init_block {
134 unsigned short mode; /* Pre-set mode (reg. 15) */
135 unsigned char phys_addr[6]; /* Physical ethernet address */
136 unsigned filter[2]; /* Multicast filter. */
138 /* Receive and transmit ring base, along with extra bits. */
139 unsigned short rx_ptr; /* receive descriptor addr */
140 unsigned short rx_len; /* receive len and high addr */
141 unsigned short tx_ptr; /* transmit descriptor addr */
142 unsigned short tx_len; /* transmit len and high addr */
144 /* The Tx and Rx ring entries must aligned on 8-byte boundaries. */
145 struct lance_rx_desc brx_ring[RX_RING_SIZE];
146 struct lance_tx_desc btx_ring[TX_RING_SIZE];
148 char tx_buf[TX_RING_SIZE][TX_BUFF_SIZE];
149 char pad[2]; /* align rx_buf for copy_and_sum(). */
150 char rx_buf[RX_RING_SIZE][RX_BUFF_SIZE];
153 #define LEDMA_REGS 4
154 #define LEDMA_MAXADDR (LEDMA_REGS * 4 - 1)
156 typedef struct LANCEState {
157 VLANClientState *vc;
158 uint8_t macaddr[6]; /* init mac address */
159 uint32_t leptr;
160 uint16_t addr;
161 uint16_t regs[LE_NREGS];
162 uint8_t phys[6]; /* mac address */
163 int irq;
164 unsigned int rxptr, txptr;
165 uint32_t ledmaregs[LEDMA_REGS];
166 } LANCEState;
168 static void lance_send(void *opaque);
170 static void lance_reset(void *opaque)
172 LANCEState *s = opaque;
173 memcpy(s->phys, s->macaddr, 6);
174 s->rxptr = 0;
175 s->txptr = 0;
176 memset(s->regs, 0, LE_NREGS * 2);
177 s->regs[LE_CSR0] = LE_C0_STOP;
178 memset(s->ledmaregs, 0, LEDMA_REGS * 4);
181 static uint32_t lance_mem_readw(void *opaque, target_phys_addr_t addr)
183 LANCEState *s = opaque;
184 uint32_t saddr;
186 saddr = addr & LE_MAXREG;
187 switch (saddr >> 1) {
188 case LE_RDP:
189 DPRINTF("read dreg[%d] = %4.4x\n", s->addr, s->regs[s->addr]);
190 return s->regs[s->addr];
191 case LE_RAP:
192 DPRINTF("read areg = %4.4x\n", s->addr);
193 return s->addr;
194 default:
195 DPRINTF("read unknown(%d)\n", saddr >> 1);
196 break;
198 return 0;
201 static void lance_mem_writew(void *opaque, target_phys_addr_t addr,
202 uint32_t val)
204 LANCEState *s = opaque;
205 uint32_t saddr;
206 uint16_t reg;
208 saddr = addr & LE_MAXREG;
209 switch (saddr >> 1) {
210 case LE_RDP:
211 DPRINTF("write dreg[%d] = %4.4x\n", s->addr, val);
212 switch (s->addr) {
213 case LE_CSR0:
214 if (val & LE_C0_STOP) {
215 s->regs[LE_CSR0] = LE_C0_STOP;
216 break;
219 reg = s->regs[LE_CSR0];
221 // 1 = clear for some bits
222 reg &= ~(val & 0x7f00);
224 // generated bits
225 reg &= ~(LE_C0_ERR | LE_C0_INTR);
226 if (reg & 0x7100)
227 reg |= LE_C0_ERR;
228 if (reg & 0x7f00)
229 reg |= LE_C0_INTR;
231 // direct bit
232 reg &= ~LE_C0_INEA;
233 reg |= val & LE_C0_INEA;
235 // exclusive bits
236 if (val & LE_C0_INIT) {
237 reg |= LE_C0_IDON | LE_C0_INIT;
238 reg &= ~LE_C0_STOP;
239 } else if (val & LE_C0_STRT) {
240 reg |= LE_C0_STRT | LE_C0_RXON | LE_C0_TXON;
241 reg &= ~LE_C0_STOP;
244 s->regs[LE_CSR0] = reg;
245 break;
246 case LE_CSR1:
247 s->leptr = (s->leptr & 0xffff0000) | (val & 0xffff);
248 s->regs[s->addr] = val;
249 break;
250 case LE_CSR2:
251 s->leptr = (s->leptr & 0xffff) | ((val & 0xffff) << 16);
252 s->regs[s->addr] = val;
253 break;
254 case LE_CSR3:
255 s->regs[s->addr] = val;
256 break;
258 break;
259 case LE_RAP:
260 DPRINTF("write areg = %4.4x\n", val);
261 if (val < LE_NREGS)
262 s->addr = val;
263 break;
264 default:
265 DPRINTF("write unknown(%d) = %4.4x\n", saddr >> 1, val);
266 break;
268 lance_send(s);
271 static CPUReadMemoryFunc *lance_mem_read[3] = {
272 lance_mem_readw,
273 lance_mem_readw,
274 lance_mem_readw,
277 static CPUWriteMemoryFunc *lance_mem_write[3] = {
278 lance_mem_writew,
279 lance_mem_writew,
280 lance_mem_writew,
284 #define MIN_BUF_SIZE 60
286 static int lance_can_receive(void *opaque)
288 return 1;
291 static void lance_receive(void *opaque, const uint8_t * buf, int size)
293 LANCEState *s = opaque;
294 uint32_t dmaptr = s->leptr + s->ledmaregs[3];
295 struct lance_init_block *ib;
296 unsigned int i, old_rxptr;
297 uint16_t temp16;
298 uint8_t temp8;
300 DPRINTF("receive size %d\n", size);
301 if ((s->regs[LE_CSR0] & LE_C0_STOP) == LE_C0_STOP)
302 return;
304 ib = (void *) iommu_translate(dmaptr);
306 old_rxptr = s->rxptr;
307 for (i = s->rxptr; i != ((old_rxptr - 1) & RX_RING_MOD_MASK);
308 i = (i + 1) & RX_RING_MOD_MASK) {
309 cpu_physical_memory_read((uint32_t) & ib->brx_ring[i].rmd1_bits,
310 (void *) &temp8, 1);
311 if (temp8 == (LE_R1_OWN)) {
312 s->rxptr = (s->rxptr + 1) & RX_RING_MOD_MASK;
313 temp16 = size + 4;
314 bswap16s(&temp16);
315 cpu_physical_memory_write((uint32_t) & ib->brx_ring[i].
316 mblength, (void *) &temp16, 2);
317 cpu_physical_memory_write((uint32_t) & ib->rx_buf[i], buf,
318 size);
319 temp8 = LE_R1_POK;
320 cpu_physical_memory_write((uint32_t) & ib->brx_ring[i].
321 rmd1_bits, (void *) &temp8, 1);
322 s->regs[LE_CSR0] |= LE_C0_RINT | LE_C0_INTR;
323 if (s->regs[LE_CSR0] & LE_C0_INEA)
324 pic_set_irq(s->irq, 1);
325 DPRINTF("got packet, len %d\n", size);
326 return;
331 static void lance_send(void *opaque)
333 LANCEState *s = opaque;
334 uint32_t dmaptr = s->leptr + s->ledmaregs[3];
335 struct lance_init_block *ib;
336 unsigned int i, old_txptr;
337 uint16_t temp16;
338 uint8_t temp8;
339 char pkt_buf[PKT_BUF_SZ];
341 DPRINTF("sending packet? (csr0 %4.4x)\n", s->regs[LE_CSR0]);
342 if ((s->regs[LE_CSR0] & LE_C0_STOP) == LE_C0_STOP)
343 return;
345 ib = (void *) iommu_translate(dmaptr);
347 DPRINTF("sending packet? (dmaptr %8.8x) (ib %p) (btx_ring %p)\n",
348 dmaptr, ib, &ib->btx_ring);
349 old_txptr = s->txptr;
350 for (i = s->txptr; i != ((old_txptr - 1) & TX_RING_MOD_MASK);
351 i = (i + 1) & TX_RING_MOD_MASK) {
352 cpu_physical_memory_read((uint32_t) & ib->btx_ring[i].tmd1_bits,
353 (void *) &temp8, 1);
354 if (temp8 == (LE_T1_POK | LE_T1_OWN)) {
355 cpu_physical_memory_read((uint32_t) & ib->btx_ring[i].length,
356 (void *) &temp16, 2);
357 bswap16s(&temp16);
358 temp16 = (~temp16) + 1;
359 cpu_physical_memory_read((uint32_t) & ib->tx_buf[i], pkt_buf,
360 temp16);
361 DPRINTF("sending packet, len %d\n", temp16);
362 qemu_send_packet(s->vc, pkt_buf, temp16);
363 temp8 = LE_T1_POK;
364 cpu_physical_memory_write((uint32_t) & ib->btx_ring[i].
365 tmd1_bits, (void *) &temp8, 1);
366 s->txptr = (s->txptr + 1) & TX_RING_MOD_MASK;
367 s->regs[LE_CSR0] |= LE_C0_TINT | LE_C0_INTR;
370 if ((s->regs[LE_CSR0] & LE_C0_INTR) && (s->regs[LE_CSR0] & LE_C0_INEA))
371 pic_set_irq(s->irq, 1);
374 static uint32_t ledma_mem_readl(void *opaque, target_phys_addr_t addr)
376 LANCEState *s = opaque;
377 uint32_t saddr;
379 saddr = (addr & LEDMA_MAXADDR) >> 2;
380 return s->ledmaregs[saddr];
383 static void ledma_mem_writel(void *opaque, target_phys_addr_t addr,
384 uint32_t val)
386 LANCEState *s = opaque;
387 uint32_t saddr;
389 saddr = (addr & LEDMA_MAXADDR) >> 2;
390 s->ledmaregs[saddr] = val;
393 static CPUReadMemoryFunc *ledma_mem_read[3] = {
394 ledma_mem_readl,
395 ledma_mem_readl,
396 ledma_mem_readl,
399 static CPUWriteMemoryFunc *ledma_mem_write[3] = {
400 ledma_mem_writel,
401 ledma_mem_writel,
402 ledma_mem_writel,
405 static void lance_save(QEMUFile * f, void *opaque)
407 LANCEState *s = opaque;
408 int i;
410 qemu_put_be32s(f, &s->leptr);
411 qemu_put_be16s(f, &s->addr);
412 for (i = 0; i < LE_NREGS; i++)
413 qemu_put_be16s(f, &s->regs[i]);
414 qemu_put_buffer(f, s->phys, 6);
415 qemu_put_be32s(f, &s->irq);
416 for (i = 0; i < LEDMA_REGS; i++)
417 qemu_put_be32s(f, &s->ledmaregs[i]);
420 static int lance_load(QEMUFile * f, void *opaque, int version_id)
422 LANCEState *s = opaque;
423 int i;
425 if (version_id != 1)
426 return -EINVAL;
428 qemu_get_be32s(f, &s->leptr);
429 qemu_get_be16s(f, &s->addr);
430 for (i = 0; i < LE_NREGS; i++)
431 qemu_get_be16s(f, &s->regs[i]);
432 qemu_get_buffer(f, s->phys, 6);
433 qemu_get_be32s(f, &s->irq);
434 for (i = 0; i < LEDMA_REGS; i++)
435 qemu_get_be32s(f, &s->ledmaregs[i]);
436 return 0;
439 void lance_init(NICInfo * nd, int irq, uint32_t leaddr, uint32_t ledaddr)
441 LANCEState *s;
442 int lance_io_memory, ledma_io_memory;
444 s = qemu_mallocz(sizeof(LANCEState));
445 if (!s)
446 return;
448 s->irq = irq;
450 lance_io_memory =
451 cpu_register_io_memory(0, lance_mem_read, lance_mem_write, s);
452 cpu_register_physical_memory(leaddr, 4, lance_io_memory);
454 ledma_io_memory =
455 cpu_register_io_memory(0, ledma_mem_read, ledma_mem_write, s);
456 cpu_register_physical_memory(ledaddr, 16, ledma_io_memory);
458 memcpy(s->macaddr, nd->macaddr, 6);
460 lance_reset(s);
462 s->vc =
463 qemu_new_vlan_client(nd->vlan, lance_receive, lance_can_receive,
466 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
467 "lance macaddr=%02x:%02x:%02x:%02x:%02x:%02x",
468 s->macaddr[0],
469 s->macaddr[1],
470 s->macaddr[2], s->macaddr[3], s->macaddr[4], s->macaddr[5]);
472 register_savevm("lance", leaddr, 1, lance_save, lance_load, s);
473 qemu_register_reset(lance_reset, s);