Update OpenBIOS Sparc images to SVN 125
[qemu/mini2440.git] / vl.c
blob1c79cfd78ec5d126632382eff8a8ac358d3dc8cc
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2007 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "vl.h"
26 #include <unistd.h>
27 #include <fcntl.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <errno.h>
31 #include <sys/time.h>
32 #include <zlib.h>
34 #ifndef _WIN32
35 #include <sys/times.h>
36 #include <sys/wait.h>
37 #include <termios.h>
38 #include <sys/poll.h>
39 #include <sys/mman.h>
40 #include <sys/ioctl.h>
41 #include <sys/socket.h>
42 #include <netinet/in.h>
43 #include <dirent.h>
44 #include <netdb.h>
45 #ifdef _BSD
46 #include <sys/stat.h>
47 #ifndef __APPLE__
48 #include <libutil.h>
49 #endif
50 #else
51 #ifndef __sun__
52 #include <linux/if.h>
53 #include <linux/if_tun.h>
54 #include <pty.h>
55 #include <malloc.h>
56 #include <linux/rtc.h>
57 #include <linux/ppdev.h>
58 #include <linux/parport.h>
59 #else
60 #include <sys/stat.h>
61 #include <sys/ethernet.h>
62 #include <sys/sockio.h>
63 #include <arpa/inet.h>
64 #include <netinet/arp.h>
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #include <netinet/ip_icmp.h> // must come after ip.h
69 #include <netinet/udp.h>
70 #include <netinet/tcp.h>
71 #include <net/if.h>
72 #include <syslog.h>
73 #include <stropts.h>
74 #endif
75 #endif
76 #endif
78 #if defined(CONFIG_SLIRP)
79 #include "libslirp.h"
80 #endif
82 #ifdef _WIN32
83 #include <malloc.h>
84 #include <sys/timeb.h>
85 #include <windows.h>
86 #define getopt_long_only getopt_long
87 #define memalign(align, size) malloc(size)
88 #endif
90 #include "qemu_socket.h"
92 #ifdef CONFIG_SDL
93 #ifdef __APPLE__
94 #include <SDL/SDL.h>
95 #endif
96 #endif /* CONFIG_SDL */
98 #ifdef CONFIG_COCOA
99 #undef main
100 #define main qemu_main
101 #endif /* CONFIG_COCOA */
103 #include "disas.h"
105 #include "exec-all.h"
107 #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
108 #ifdef __sun__
109 #define SMBD_COMMAND "/usr/sfw/sbin/smbd"
110 #else
111 #define SMBD_COMMAND "/usr/sbin/smbd"
112 #endif
114 //#define DEBUG_UNUSED_IOPORT
115 //#define DEBUG_IOPORT
117 #define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
119 #ifdef TARGET_PPC
120 #define DEFAULT_RAM_SIZE 144
121 #else
122 #define DEFAULT_RAM_SIZE 128
123 #endif
124 /* in ms */
125 #define GUI_REFRESH_INTERVAL 30
127 /* Max number of USB devices that can be specified on the commandline. */
128 #define MAX_USB_CMDLINE 8
130 /* XXX: use a two level table to limit memory usage */
131 #define MAX_IOPORTS 65536
133 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
134 char phys_ram_file[1024];
135 void *ioport_opaque[MAX_IOPORTS];
136 IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
137 IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
138 /* Note: bs_table[MAX_DISKS] is a dummy block driver if none available
139 to store the VM snapshots */
140 BlockDriverState *bs_table[MAX_DISKS + 1], *fd_table[MAX_FD];
141 BlockDriverState *sd_bdrv;
142 /* point to the block driver where the snapshots are managed */
143 BlockDriverState *bs_snapshots;
144 int vga_ram_size;
145 static DisplayState display_state;
146 int nographic;
147 const char* keyboard_layout = NULL;
148 int64_t ticks_per_sec;
149 int boot_device = 'c';
150 int ram_size;
151 int pit_min_timer_count = 0;
152 int nb_nics;
153 NICInfo nd_table[MAX_NICS];
154 QEMUTimer *gui_timer;
155 int vm_running;
156 int rtc_utc = 1;
157 int cirrus_vga_enabled = 1;
158 int vmsvga_enabled = 0;
159 #ifdef TARGET_SPARC
160 int graphic_width = 1024;
161 int graphic_height = 768;
162 #else
163 int graphic_width = 800;
164 int graphic_height = 600;
165 #endif
166 int graphic_depth = 15;
167 int full_screen = 0;
168 int no_frame = 0;
169 int no_quit = 0;
170 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
171 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
172 #ifdef TARGET_I386
173 int win2k_install_hack = 0;
174 #endif
175 int usb_enabled = 0;
176 static VLANState *first_vlan;
177 int smp_cpus = 1;
178 const char *vnc_display;
179 #if defined(TARGET_SPARC)
180 #define MAX_CPUS 16
181 #elif defined(TARGET_I386)
182 #define MAX_CPUS 255
183 #else
184 #define MAX_CPUS 1
185 #endif
186 int acpi_enabled = 1;
187 int fd_bootchk = 1;
188 int no_reboot = 0;
189 int daemonize = 0;
190 const char *option_rom[MAX_OPTION_ROMS];
191 int nb_option_roms;
192 int semihosting_enabled = 0;
193 int autostart = 1;
194 const char *qemu_name;
196 /***********************************************************/
197 /* x86 ISA bus support */
199 target_phys_addr_t isa_mem_base = 0;
200 PicState2 *isa_pic;
202 uint32_t default_ioport_readb(void *opaque, uint32_t address)
204 #ifdef DEBUG_UNUSED_IOPORT
205 fprintf(stderr, "unused inb: port=0x%04x\n", address);
206 #endif
207 return 0xff;
210 void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
212 #ifdef DEBUG_UNUSED_IOPORT
213 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
214 #endif
217 /* default is to make two byte accesses */
218 uint32_t default_ioport_readw(void *opaque, uint32_t address)
220 uint32_t data;
221 data = ioport_read_table[0][address](ioport_opaque[address], address);
222 address = (address + 1) & (MAX_IOPORTS - 1);
223 data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
224 return data;
227 void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
229 ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
230 address = (address + 1) & (MAX_IOPORTS - 1);
231 ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
234 uint32_t default_ioport_readl(void *opaque, uint32_t address)
236 #ifdef DEBUG_UNUSED_IOPORT
237 fprintf(stderr, "unused inl: port=0x%04x\n", address);
238 #endif
239 return 0xffffffff;
242 void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
244 #ifdef DEBUG_UNUSED_IOPORT
245 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
246 #endif
249 void init_ioports(void)
251 int i;
253 for(i = 0; i < MAX_IOPORTS; i++) {
254 ioport_read_table[0][i] = default_ioport_readb;
255 ioport_write_table[0][i] = default_ioport_writeb;
256 ioport_read_table[1][i] = default_ioport_readw;
257 ioport_write_table[1][i] = default_ioport_writew;
258 ioport_read_table[2][i] = default_ioport_readl;
259 ioport_write_table[2][i] = default_ioport_writel;
263 /* size is the word size in byte */
264 int register_ioport_read(int start, int length, int size,
265 IOPortReadFunc *func, void *opaque)
267 int i, bsize;
269 if (size == 1) {
270 bsize = 0;
271 } else if (size == 2) {
272 bsize = 1;
273 } else if (size == 4) {
274 bsize = 2;
275 } else {
276 hw_error("register_ioport_read: invalid size");
277 return -1;
279 for(i = start; i < start + length; i += size) {
280 ioport_read_table[bsize][i] = func;
281 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
282 hw_error("register_ioport_read: invalid opaque");
283 ioport_opaque[i] = opaque;
285 return 0;
288 /* size is the word size in byte */
289 int register_ioport_write(int start, int length, int size,
290 IOPortWriteFunc *func, void *opaque)
292 int i, bsize;
294 if (size == 1) {
295 bsize = 0;
296 } else if (size == 2) {
297 bsize = 1;
298 } else if (size == 4) {
299 bsize = 2;
300 } else {
301 hw_error("register_ioport_write: invalid size");
302 return -1;
304 for(i = start; i < start + length; i += size) {
305 ioport_write_table[bsize][i] = func;
306 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
307 hw_error("register_ioport_write: invalid opaque");
308 ioport_opaque[i] = opaque;
310 return 0;
313 void isa_unassign_ioport(int start, int length)
315 int i;
317 for(i = start; i < start + length; i++) {
318 ioport_read_table[0][i] = default_ioport_readb;
319 ioport_read_table[1][i] = default_ioport_readw;
320 ioport_read_table[2][i] = default_ioport_readl;
322 ioport_write_table[0][i] = default_ioport_writeb;
323 ioport_write_table[1][i] = default_ioport_writew;
324 ioport_write_table[2][i] = default_ioport_writel;
328 /***********************************************************/
330 void cpu_outb(CPUState *env, int addr, int val)
332 #ifdef DEBUG_IOPORT
333 if (loglevel & CPU_LOG_IOPORT)
334 fprintf(logfile, "outb: %04x %02x\n", addr, val);
335 #endif
336 ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
337 #ifdef USE_KQEMU
338 if (env)
339 env->last_io_time = cpu_get_time_fast();
340 #endif
343 void cpu_outw(CPUState *env, int addr, int val)
345 #ifdef DEBUG_IOPORT
346 if (loglevel & CPU_LOG_IOPORT)
347 fprintf(logfile, "outw: %04x %04x\n", addr, val);
348 #endif
349 ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
350 #ifdef USE_KQEMU
351 if (env)
352 env->last_io_time = cpu_get_time_fast();
353 #endif
356 void cpu_outl(CPUState *env, int addr, int val)
358 #ifdef DEBUG_IOPORT
359 if (loglevel & CPU_LOG_IOPORT)
360 fprintf(logfile, "outl: %04x %08x\n", addr, val);
361 #endif
362 ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
363 #ifdef USE_KQEMU
364 if (env)
365 env->last_io_time = cpu_get_time_fast();
366 #endif
369 int cpu_inb(CPUState *env, int addr)
371 int val;
372 val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
373 #ifdef DEBUG_IOPORT
374 if (loglevel & CPU_LOG_IOPORT)
375 fprintf(logfile, "inb : %04x %02x\n", addr, val);
376 #endif
377 #ifdef USE_KQEMU
378 if (env)
379 env->last_io_time = cpu_get_time_fast();
380 #endif
381 return val;
384 int cpu_inw(CPUState *env, int addr)
386 int val;
387 val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
388 #ifdef DEBUG_IOPORT
389 if (loglevel & CPU_LOG_IOPORT)
390 fprintf(logfile, "inw : %04x %04x\n", addr, val);
391 #endif
392 #ifdef USE_KQEMU
393 if (env)
394 env->last_io_time = cpu_get_time_fast();
395 #endif
396 return val;
399 int cpu_inl(CPUState *env, int addr)
401 int val;
402 val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
403 #ifdef DEBUG_IOPORT
404 if (loglevel & CPU_LOG_IOPORT)
405 fprintf(logfile, "inl : %04x %08x\n", addr, val);
406 #endif
407 #ifdef USE_KQEMU
408 if (env)
409 env->last_io_time = cpu_get_time_fast();
410 #endif
411 return val;
414 /***********************************************************/
415 void hw_error(const char *fmt, ...)
417 va_list ap;
418 CPUState *env;
420 va_start(ap, fmt);
421 fprintf(stderr, "qemu: hardware error: ");
422 vfprintf(stderr, fmt, ap);
423 fprintf(stderr, "\n");
424 for(env = first_cpu; env != NULL; env = env->next_cpu) {
425 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
426 #ifdef TARGET_I386
427 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
428 #else
429 cpu_dump_state(env, stderr, fprintf, 0);
430 #endif
432 va_end(ap);
433 abort();
436 /***********************************************************/
437 /* keyboard/mouse */
439 static QEMUPutKBDEvent *qemu_put_kbd_event;
440 static void *qemu_put_kbd_event_opaque;
441 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
442 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
444 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
446 qemu_put_kbd_event_opaque = opaque;
447 qemu_put_kbd_event = func;
450 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
451 void *opaque, int absolute,
452 const char *name)
454 QEMUPutMouseEntry *s, *cursor;
456 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
457 if (!s)
458 return NULL;
460 s->qemu_put_mouse_event = func;
461 s->qemu_put_mouse_event_opaque = opaque;
462 s->qemu_put_mouse_event_absolute = absolute;
463 s->qemu_put_mouse_event_name = qemu_strdup(name);
464 s->next = NULL;
466 if (!qemu_put_mouse_event_head) {
467 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
468 return s;
471 cursor = qemu_put_mouse_event_head;
472 while (cursor->next != NULL)
473 cursor = cursor->next;
475 cursor->next = s;
476 qemu_put_mouse_event_current = s;
478 return s;
481 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
483 QEMUPutMouseEntry *prev = NULL, *cursor;
485 if (!qemu_put_mouse_event_head || entry == NULL)
486 return;
488 cursor = qemu_put_mouse_event_head;
489 while (cursor != NULL && cursor != entry) {
490 prev = cursor;
491 cursor = cursor->next;
494 if (cursor == NULL) // does not exist or list empty
495 return;
496 else if (prev == NULL) { // entry is head
497 qemu_put_mouse_event_head = cursor->next;
498 if (qemu_put_mouse_event_current == entry)
499 qemu_put_mouse_event_current = cursor->next;
500 qemu_free(entry->qemu_put_mouse_event_name);
501 qemu_free(entry);
502 return;
505 prev->next = entry->next;
507 if (qemu_put_mouse_event_current == entry)
508 qemu_put_mouse_event_current = prev;
510 qemu_free(entry->qemu_put_mouse_event_name);
511 qemu_free(entry);
514 void kbd_put_keycode(int keycode)
516 if (qemu_put_kbd_event) {
517 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
521 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
523 QEMUPutMouseEvent *mouse_event;
524 void *mouse_event_opaque;
526 if (!qemu_put_mouse_event_current) {
527 return;
530 mouse_event =
531 qemu_put_mouse_event_current->qemu_put_mouse_event;
532 mouse_event_opaque =
533 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
535 if (mouse_event) {
536 mouse_event(mouse_event_opaque, dx, dy, dz, buttons_state);
540 int kbd_mouse_is_absolute(void)
542 if (!qemu_put_mouse_event_current)
543 return 0;
545 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
548 void (*kbd_mouse_set)(int x, int y, int on) = NULL;
549 void (*kbd_cursor_define)(int width, int height, int bpp, int hot_x, int hot_y,
550 uint8_t *image, uint8_t *mask) = NULL;
552 void do_info_mice(void)
554 QEMUPutMouseEntry *cursor;
555 int index = 0;
557 if (!qemu_put_mouse_event_head) {
558 term_printf("No mouse devices connected\n");
559 return;
562 term_printf("Mouse devices available:\n");
563 cursor = qemu_put_mouse_event_head;
564 while (cursor != NULL) {
565 term_printf("%c Mouse #%d: %s\n",
566 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
567 index, cursor->qemu_put_mouse_event_name);
568 index++;
569 cursor = cursor->next;
573 void do_mouse_set(int index)
575 QEMUPutMouseEntry *cursor;
576 int i = 0;
578 if (!qemu_put_mouse_event_head) {
579 term_printf("No mouse devices connected\n");
580 return;
583 cursor = qemu_put_mouse_event_head;
584 while (cursor != NULL && index != i) {
585 i++;
586 cursor = cursor->next;
589 if (cursor != NULL)
590 qemu_put_mouse_event_current = cursor;
591 else
592 term_printf("Mouse at given index not found\n");
595 /* compute with 96 bit intermediate result: (a*b)/c */
596 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
598 union {
599 uint64_t ll;
600 struct {
601 #ifdef WORDS_BIGENDIAN
602 uint32_t high, low;
603 #else
604 uint32_t low, high;
605 #endif
606 } l;
607 } u, res;
608 uint64_t rl, rh;
610 u.ll = a;
611 rl = (uint64_t)u.l.low * (uint64_t)b;
612 rh = (uint64_t)u.l.high * (uint64_t)b;
613 rh += (rl >> 32);
614 res.l.high = rh / c;
615 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
616 return res.ll;
619 /***********************************************************/
620 /* real time host monotonic timer */
622 #define QEMU_TIMER_BASE 1000000000LL
624 #ifdef WIN32
626 static int64_t clock_freq;
628 static void init_get_clock(void)
630 LARGE_INTEGER freq;
631 int ret;
632 ret = QueryPerformanceFrequency(&freq);
633 if (ret == 0) {
634 fprintf(stderr, "Could not calibrate ticks\n");
635 exit(1);
637 clock_freq = freq.QuadPart;
640 static int64_t get_clock(void)
642 LARGE_INTEGER ti;
643 QueryPerformanceCounter(&ti);
644 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
647 #else
649 static int use_rt_clock;
651 static void init_get_clock(void)
653 use_rt_clock = 0;
654 #if defined(__linux__)
656 struct timespec ts;
657 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
658 use_rt_clock = 1;
661 #endif
664 static int64_t get_clock(void)
666 #if defined(__linux__)
667 if (use_rt_clock) {
668 struct timespec ts;
669 clock_gettime(CLOCK_MONOTONIC, &ts);
670 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
671 } else
672 #endif
674 /* XXX: using gettimeofday leads to problems if the date
675 changes, so it should be avoided. */
676 struct timeval tv;
677 gettimeofday(&tv, NULL);
678 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
682 #endif
684 /***********************************************************/
685 /* guest cycle counter */
687 static int64_t cpu_ticks_prev;
688 static int64_t cpu_ticks_offset;
689 static int64_t cpu_clock_offset;
690 static int cpu_ticks_enabled;
692 /* return the host CPU cycle counter and handle stop/restart */
693 int64_t cpu_get_ticks(void)
695 if (!cpu_ticks_enabled) {
696 return cpu_ticks_offset;
697 } else {
698 int64_t ticks;
699 ticks = cpu_get_real_ticks();
700 if (cpu_ticks_prev > ticks) {
701 /* Note: non increasing ticks may happen if the host uses
702 software suspend */
703 cpu_ticks_offset += cpu_ticks_prev - ticks;
705 cpu_ticks_prev = ticks;
706 return ticks + cpu_ticks_offset;
710 /* return the host CPU monotonic timer and handle stop/restart */
711 static int64_t cpu_get_clock(void)
713 int64_t ti;
714 if (!cpu_ticks_enabled) {
715 return cpu_clock_offset;
716 } else {
717 ti = get_clock();
718 return ti + cpu_clock_offset;
722 /* enable cpu_get_ticks() */
723 void cpu_enable_ticks(void)
725 if (!cpu_ticks_enabled) {
726 cpu_ticks_offset -= cpu_get_real_ticks();
727 cpu_clock_offset -= get_clock();
728 cpu_ticks_enabled = 1;
732 /* disable cpu_get_ticks() : the clock is stopped. You must not call
733 cpu_get_ticks() after that. */
734 void cpu_disable_ticks(void)
736 if (cpu_ticks_enabled) {
737 cpu_ticks_offset = cpu_get_ticks();
738 cpu_clock_offset = cpu_get_clock();
739 cpu_ticks_enabled = 0;
743 /***********************************************************/
744 /* timers */
746 #define QEMU_TIMER_REALTIME 0
747 #define QEMU_TIMER_VIRTUAL 1
749 struct QEMUClock {
750 int type;
751 /* XXX: add frequency */
754 struct QEMUTimer {
755 QEMUClock *clock;
756 int64_t expire_time;
757 QEMUTimerCB *cb;
758 void *opaque;
759 struct QEMUTimer *next;
762 QEMUClock *rt_clock;
763 QEMUClock *vm_clock;
765 static QEMUTimer *active_timers[2];
766 #ifdef _WIN32
767 static MMRESULT timerID;
768 static HANDLE host_alarm = NULL;
769 static unsigned int period = 1;
770 #else
771 /* frequency of the times() clock tick */
772 static int timer_freq;
773 #endif
775 QEMUClock *qemu_new_clock(int type)
777 QEMUClock *clock;
778 clock = qemu_mallocz(sizeof(QEMUClock));
779 if (!clock)
780 return NULL;
781 clock->type = type;
782 return clock;
785 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
787 QEMUTimer *ts;
789 ts = qemu_mallocz(sizeof(QEMUTimer));
790 ts->clock = clock;
791 ts->cb = cb;
792 ts->opaque = opaque;
793 return ts;
796 void qemu_free_timer(QEMUTimer *ts)
798 qemu_free(ts);
801 /* stop a timer, but do not dealloc it */
802 void qemu_del_timer(QEMUTimer *ts)
804 QEMUTimer **pt, *t;
806 /* NOTE: this code must be signal safe because
807 qemu_timer_expired() can be called from a signal. */
808 pt = &active_timers[ts->clock->type];
809 for(;;) {
810 t = *pt;
811 if (!t)
812 break;
813 if (t == ts) {
814 *pt = t->next;
815 break;
817 pt = &t->next;
821 /* modify the current timer so that it will be fired when current_time
822 >= expire_time. The corresponding callback will be called. */
823 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
825 QEMUTimer **pt, *t;
827 qemu_del_timer(ts);
829 /* add the timer in the sorted list */
830 /* NOTE: this code must be signal safe because
831 qemu_timer_expired() can be called from a signal. */
832 pt = &active_timers[ts->clock->type];
833 for(;;) {
834 t = *pt;
835 if (!t)
836 break;
837 if (t->expire_time > expire_time)
838 break;
839 pt = &t->next;
841 ts->expire_time = expire_time;
842 ts->next = *pt;
843 *pt = ts;
846 int qemu_timer_pending(QEMUTimer *ts)
848 QEMUTimer *t;
849 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
850 if (t == ts)
851 return 1;
853 return 0;
856 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
858 if (!timer_head)
859 return 0;
860 return (timer_head->expire_time <= current_time);
863 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
865 QEMUTimer *ts;
867 for(;;) {
868 ts = *ptimer_head;
869 if (!ts || ts->expire_time > current_time)
870 break;
871 /* remove timer from the list before calling the callback */
872 *ptimer_head = ts->next;
873 ts->next = NULL;
875 /* run the callback (the timer list can be modified) */
876 ts->cb(ts->opaque);
880 int64_t qemu_get_clock(QEMUClock *clock)
882 switch(clock->type) {
883 case QEMU_TIMER_REALTIME:
884 return get_clock() / 1000000;
885 default:
886 case QEMU_TIMER_VIRTUAL:
887 return cpu_get_clock();
891 static void init_timers(void)
893 init_get_clock();
894 ticks_per_sec = QEMU_TIMER_BASE;
895 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
896 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
899 /* save a timer */
900 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
902 uint64_t expire_time;
904 if (qemu_timer_pending(ts)) {
905 expire_time = ts->expire_time;
906 } else {
907 expire_time = -1;
909 qemu_put_be64(f, expire_time);
912 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
914 uint64_t expire_time;
916 expire_time = qemu_get_be64(f);
917 if (expire_time != -1) {
918 qemu_mod_timer(ts, expire_time);
919 } else {
920 qemu_del_timer(ts);
924 static void timer_save(QEMUFile *f, void *opaque)
926 if (cpu_ticks_enabled) {
927 hw_error("cannot save state if virtual timers are running");
929 qemu_put_be64s(f, &cpu_ticks_offset);
930 qemu_put_be64s(f, &ticks_per_sec);
931 qemu_put_be64s(f, &cpu_clock_offset);
934 static int timer_load(QEMUFile *f, void *opaque, int version_id)
936 if (version_id != 1 && version_id != 2)
937 return -EINVAL;
938 if (cpu_ticks_enabled) {
939 return -EINVAL;
941 qemu_get_be64s(f, &cpu_ticks_offset);
942 qemu_get_be64s(f, &ticks_per_sec);
943 if (version_id == 2) {
944 qemu_get_be64s(f, &cpu_clock_offset);
946 return 0;
949 #ifdef _WIN32
950 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
951 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
952 #else
953 static void host_alarm_handler(int host_signum)
954 #endif
956 #if 0
957 #define DISP_FREQ 1000
959 static int64_t delta_min = INT64_MAX;
960 static int64_t delta_max, delta_cum, last_clock, delta, ti;
961 static int count;
962 ti = qemu_get_clock(vm_clock);
963 if (last_clock != 0) {
964 delta = ti - last_clock;
965 if (delta < delta_min)
966 delta_min = delta;
967 if (delta > delta_max)
968 delta_max = delta;
969 delta_cum += delta;
970 if (++count == DISP_FREQ) {
971 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
972 muldiv64(delta_min, 1000000, ticks_per_sec),
973 muldiv64(delta_max, 1000000, ticks_per_sec),
974 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
975 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
976 count = 0;
977 delta_min = INT64_MAX;
978 delta_max = 0;
979 delta_cum = 0;
982 last_clock = ti;
984 #endif
985 if (qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
986 qemu_get_clock(vm_clock)) ||
987 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
988 qemu_get_clock(rt_clock))) {
989 #ifdef _WIN32
990 SetEvent(host_alarm);
991 #endif
992 CPUState *env = cpu_single_env;
993 if (env) {
994 /* stop the currently executing cpu because a timer occured */
995 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
996 #ifdef USE_KQEMU
997 if (env->kqemu_enabled) {
998 kqemu_cpu_interrupt(env);
1000 #endif
1005 #ifndef _WIN32
1007 #if defined(__linux__)
1009 #define RTC_FREQ 1024
1011 static int rtc_fd;
1013 static int start_rtc_timer(void)
1015 rtc_fd = open("/dev/rtc", O_RDONLY);
1016 if (rtc_fd < 0)
1017 return -1;
1018 if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1019 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1020 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1021 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1022 goto fail;
1024 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1025 fail:
1026 close(rtc_fd);
1027 return -1;
1029 pit_min_timer_count = PIT_FREQ / RTC_FREQ;
1030 return 0;
1033 #else
1035 static int start_rtc_timer(void)
1037 return -1;
1040 #endif /* !defined(__linux__) */
1042 #endif /* !defined(_WIN32) */
1044 static void init_timer_alarm(void)
1046 #ifdef _WIN32
1048 int count=0;
1049 TIMECAPS tc;
1051 ZeroMemory(&tc, sizeof(TIMECAPS));
1052 timeGetDevCaps(&tc, sizeof(TIMECAPS));
1053 if (period < tc.wPeriodMin)
1054 period = tc.wPeriodMin;
1055 timeBeginPeriod(period);
1056 timerID = timeSetEvent(1, // interval (ms)
1057 period, // resolution
1058 host_alarm_handler, // function
1059 (DWORD)&count, // user parameter
1060 TIME_PERIODIC | TIME_CALLBACK_FUNCTION);
1061 if( !timerID ) {
1062 perror("failed timer alarm");
1063 exit(1);
1065 host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1066 if (!host_alarm) {
1067 perror("failed CreateEvent");
1068 exit(1);
1070 qemu_add_wait_object(host_alarm, NULL, NULL);
1072 pit_min_timer_count = ((uint64_t)10000 * PIT_FREQ) / 1000000;
1073 #else
1075 struct sigaction act;
1076 struct itimerval itv;
1078 /* get times() syscall frequency */
1079 timer_freq = sysconf(_SC_CLK_TCK);
1081 /* timer signal */
1082 sigfillset(&act.sa_mask);
1083 act.sa_flags = 0;
1084 #if defined (TARGET_I386) && defined(USE_CODE_COPY)
1085 act.sa_flags |= SA_ONSTACK;
1086 #endif
1087 act.sa_handler = host_alarm_handler;
1088 sigaction(SIGALRM, &act, NULL);
1090 itv.it_interval.tv_sec = 0;
1091 itv.it_interval.tv_usec = 999; /* for i386 kernel 2.6 to get 1 ms */
1092 itv.it_value.tv_sec = 0;
1093 itv.it_value.tv_usec = 10 * 1000;
1094 setitimer(ITIMER_REAL, &itv, NULL);
1095 /* we probe the tick duration of the kernel to inform the user if
1096 the emulated kernel requested a too high timer frequency */
1097 getitimer(ITIMER_REAL, &itv);
1099 #if defined(__linux__)
1100 /* XXX: force /dev/rtc usage because even 2.6 kernels may not
1101 have timers with 1 ms resolution. The correct solution will
1102 be to use the POSIX real time timers available in recent
1103 2.6 kernels */
1104 if (itv.it_interval.tv_usec > 1000 || 1) {
1105 /* try to use /dev/rtc to have a faster timer */
1106 if (start_rtc_timer() < 0)
1107 goto use_itimer;
1108 /* disable itimer */
1109 itv.it_interval.tv_sec = 0;
1110 itv.it_interval.tv_usec = 0;
1111 itv.it_value.tv_sec = 0;
1112 itv.it_value.tv_usec = 0;
1113 setitimer(ITIMER_REAL, &itv, NULL);
1115 /* use the RTC */
1116 sigaction(SIGIO, &act, NULL);
1117 fcntl(rtc_fd, F_SETFL, O_ASYNC);
1118 fcntl(rtc_fd, F_SETOWN, getpid());
1119 } else
1120 #endif /* defined(__linux__) */
1122 use_itimer:
1123 pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec *
1124 PIT_FREQ) / 1000000;
1127 #endif
1130 void quit_timers(void)
1132 #ifdef _WIN32
1133 timeKillEvent(timerID);
1134 timeEndPeriod(period);
1135 if (host_alarm) {
1136 CloseHandle(host_alarm);
1137 host_alarm = NULL;
1139 #endif
1142 /***********************************************************/
1143 /* character device */
1145 static void qemu_chr_event(CharDriverState *s, int event)
1147 if (!s->chr_event)
1148 return;
1149 s->chr_event(s->handler_opaque, event);
1152 static void qemu_chr_reset_bh(void *opaque)
1154 CharDriverState *s = opaque;
1155 qemu_chr_event(s, CHR_EVENT_RESET);
1156 qemu_bh_delete(s->bh);
1157 s->bh = NULL;
1160 void qemu_chr_reset(CharDriverState *s)
1162 if (s->bh == NULL) {
1163 s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1164 qemu_bh_schedule(s->bh);
1168 int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1170 return s->chr_write(s, buf, len);
1173 int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1175 if (!s->chr_ioctl)
1176 return -ENOTSUP;
1177 return s->chr_ioctl(s, cmd, arg);
1180 int qemu_chr_can_read(CharDriverState *s)
1182 if (!s->chr_can_read)
1183 return 0;
1184 return s->chr_can_read(s->handler_opaque);
1187 void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1189 s->chr_read(s->handler_opaque, buf, len);
1193 void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1195 char buf[4096];
1196 va_list ap;
1197 va_start(ap, fmt);
1198 vsnprintf(buf, sizeof(buf), fmt, ap);
1199 qemu_chr_write(s, buf, strlen(buf));
1200 va_end(ap);
1203 void qemu_chr_send_event(CharDriverState *s, int event)
1205 if (s->chr_send_event)
1206 s->chr_send_event(s, event);
1209 void qemu_chr_add_handlers(CharDriverState *s,
1210 IOCanRWHandler *fd_can_read,
1211 IOReadHandler *fd_read,
1212 IOEventHandler *fd_event,
1213 void *opaque)
1215 s->chr_can_read = fd_can_read;
1216 s->chr_read = fd_read;
1217 s->chr_event = fd_event;
1218 s->handler_opaque = opaque;
1219 if (s->chr_update_read_handler)
1220 s->chr_update_read_handler(s);
1223 static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1225 return len;
1228 static CharDriverState *qemu_chr_open_null(void)
1230 CharDriverState *chr;
1232 chr = qemu_mallocz(sizeof(CharDriverState));
1233 if (!chr)
1234 return NULL;
1235 chr->chr_write = null_chr_write;
1236 return chr;
1239 /* MUX driver for serial I/O splitting */
1240 static int term_timestamps;
1241 static int64_t term_timestamps_start;
1242 #define MAX_MUX 4
1243 typedef struct {
1244 IOCanRWHandler *chr_can_read[MAX_MUX];
1245 IOReadHandler *chr_read[MAX_MUX];
1246 IOEventHandler *chr_event[MAX_MUX];
1247 void *ext_opaque[MAX_MUX];
1248 CharDriverState *drv;
1249 int mux_cnt;
1250 int term_got_escape;
1251 int max_size;
1252 } MuxDriver;
1255 static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1257 MuxDriver *d = chr->opaque;
1258 int ret;
1259 if (!term_timestamps) {
1260 ret = d->drv->chr_write(d->drv, buf, len);
1261 } else {
1262 int i;
1264 ret = 0;
1265 for(i = 0; i < len; i++) {
1266 ret += d->drv->chr_write(d->drv, buf+i, 1);
1267 if (buf[i] == '\n') {
1268 char buf1[64];
1269 int64_t ti;
1270 int secs;
1272 ti = get_clock();
1273 if (term_timestamps_start == -1)
1274 term_timestamps_start = ti;
1275 ti -= term_timestamps_start;
1276 secs = ti / 1000000000;
1277 snprintf(buf1, sizeof(buf1),
1278 "[%02d:%02d:%02d.%03d] ",
1279 secs / 3600,
1280 (secs / 60) % 60,
1281 secs % 60,
1282 (int)((ti / 1000000) % 1000));
1283 d->drv->chr_write(d->drv, buf1, strlen(buf1));
1287 return ret;
1290 static char *mux_help[] = {
1291 "% h print this help\n\r",
1292 "% x exit emulator\n\r",
1293 "% s save disk data back to file (if -snapshot)\n\r",
1294 "% t toggle console timestamps\n\r"
1295 "% b send break (magic sysrq)\n\r",
1296 "% c switch between console and monitor\n\r",
1297 "% % sends %\n\r",
1298 NULL
1301 static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1302 static void mux_print_help(CharDriverState *chr)
1304 int i, j;
1305 char ebuf[15] = "Escape-Char";
1306 char cbuf[50] = "\n\r";
1308 if (term_escape_char > 0 && term_escape_char < 26) {
1309 sprintf(cbuf,"\n\r");
1310 sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1311 } else {
1312 sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r", term_escape_char);
1314 chr->chr_write(chr, cbuf, strlen(cbuf));
1315 for (i = 0; mux_help[i] != NULL; i++) {
1316 for (j=0; mux_help[i][j] != '\0'; j++) {
1317 if (mux_help[i][j] == '%')
1318 chr->chr_write(chr, ebuf, strlen(ebuf));
1319 else
1320 chr->chr_write(chr, &mux_help[i][j], 1);
1325 static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1327 if (d->term_got_escape) {
1328 d->term_got_escape = 0;
1329 if (ch == term_escape_char)
1330 goto send_char;
1331 switch(ch) {
1332 case '?':
1333 case 'h':
1334 mux_print_help(chr);
1335 break;
1336 case 'x':
1338 char *term = "QEMU: Terminated\n\r";
1339 chr->chr_write(chr,term,strlen(term));
1340 exit(0);
1341 break;
1343 case 's':
1345 int i;
1346 for (i = 0; i < MAX_DISKS; i++) {
1347 if (bs_table[i])
1348 bdrv_commit(bs_table[i]);
1351 break;
1352 case 'b':
1353 if (chr->chr_event)
1354 chr->chr_event(chr->opaque, CHR_EVENT_BREAK);
1355 break;
1356 case 'c':
1357 /* Switch to the next registered device */
1358 chr->focus++;
1359 if (chr->focus >= d->mux_cnt)
1360 chr->focus = 0;
1361 break;
1362 case 't':
1363 term_timestamps = !term_timestamps;
1364 term_timestamps_start = -1;
1365 break;
1367 } else if (ch == term_escape_char) {
1368 d->term_got_escape = 1;
1369 } else {
1370 send_char:
1371 return 1;
1373 return 0;
1376 static int mux_chr_can_read(void *opaque)
1378 CharDriverState *chr = opaque;
1379 MuxDriver *d = chr->opaque;
1380 if (d->chr_can_read[chr->focus])
1381 return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1382 return 0;
1385 static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1387 CharDriverState *chr = opaque;
1388 MuxDriver *d = chr->opaque;
1389 int i;
1390 for(i = 0; i < size; i++)
1391 if (mux_proc_byte(chr, d, buf[i]))
1392 d->chr_read[chr->focus](d->ext_opaque[chr->focus], &buf[i], 1);
1395 static void mux_chr_event(void *opaque, int event)
1397 CharDriverState *chr = opaque;
1398 MuxDriver *d = chr->opaque;
1399 int i;
1401 /* Send the event to all registered listeners */
1402 for (i = 0; i < d->mux_cnt; i++)
1403 if (d->chr_event[i])
1404 d->chr_event[i](d->ext_opaque[i], event);
1407 static void mux_chr_update_read_handler(CharDriverState *chr)
1409 MuxDriver *d = chr->opaque;
1411 if (d->mux_cnt >= MAX_MUX) {
1412 fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1413 return;
1415 d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1416 d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1417 d->chr_read[d->mux_cnt] = chr->chr_read;
1418 d->chr_event[d->mux_cnt] = chr->chr_event;
1419 /* Fix up the real driver with mux routines */
1420 if (d->mux_cnt == 0) {
1421 qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1422 mux_chr_event, chr);
1424 chr->focus = d->mux_cnt;
1425 d->mux_cnt++;
1428 CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1430 CharDriverState *chr;
1431 MuxDriver *d;
1433 chr = qemu_mallocz(sizeof(CharDriverState));
1434 if (!chr)
1435 return NULL;
1436 d = qemu_mallocz(sizeof(MuxDriver));
1437 if (!d) {
1438 free(chr);
1439 return NULL;
1442 chr->opaque = d;
1443 d->drv = drv;
1444 chr->focus = -1;
1445 chr->chr_write = mux_chr_write;
1446 chr->chr_update_read_handler = mux_chr_update_read_handler;
1447 return chr;
1451 #ifdef _WIN32
1453 static void socket_cleanup(void)
1455 WSACleanup();
1458 static int socket_init(void)
1460 WSADATA Data;
1461 int ret, err;
1463 ret = WSAStartup(MAKEWORD(2,2), &Data);
1464 if (ret != 0) {
1465 err = WSAGetLastError();
1466 fprintf(stderr, "WSAStartup: %d\n", err);
1467 return -1;
1469 atexit(socket_cleanup);
1470 return 0;
1473 static int send_all(int fd, const uint8_t *buf, int len1)
1475 int ret, len;
1477 len = len1;
1478 while (len > 0) {
1479 ret = send(fd, buf, len, 0);
1480 if (ret < 0) {
1481 int errno;
1482 errno = WSAGetLastError();
1483 if (errno != WSAEWOULDBLOCK) {
1484 return -1;
1486 } else if (ret == 0) {
1487 break;
1488 } else {
1489 buf += ret;
1490 len -= ret;
1493 return len1 - len;
1496 void socket_set_nonblock(int fd)
1498 unsigned long opt = 1;
1499 ioctlsocket(fd, FIONBIO, &opt);
1502 #else
1504 static int unix_write(int fd, const uint8_t *buf, int len1)
1506 int ret, len;
1508 len = len1;
1509 while (len > 0) {
1510 ret = write(fd, buf, len);
1511 if (ret < 0) {
1512 if (errno != EINTR && errno != EAGAIN)
1513 return -1;
1514 } else if (ret == 0) {
1515 break;
1516 } else {
1517 buf += ret;
1518 len -= ret;
1521 return len1 - len;
1524 static inline int send_all(int fd, const uint8_t *buf, int len1)
1526 return unix_write(fd, buf, len1);
1529 void socket_set_nonblock(int fd)
1531 fcntl(fd, F_SETFL, O_NONBLOCK);
1533 #endif /* !_WIN32 */
1535 #ifndef _WIN32
1537 typedef struct {
1538 int fd_in, fd_out;
1539 int max_size;
1540 } FDCharDriver;
1542 #define STDIO_MAX_CLIENTS 1
1543 static int stdio_nb_clients = 0;
1545 static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1547 FDCharDriver *s = chr->opaque;
1548 return unix_write(s->fd_out, buf, len);
1551 static int fd_chr_read_poll(void *opaque)
1553 CharDriverState *chr = opaque;
1554 FDCharDriver *s = chr->opaque;
1556 s->max_size = qemu_chr_can_read(chr);
1557 return s->max_size;
1560 static void fd_chr_read(void *opaque)
1562 CharDriverState *chr = opaque;
1563 FDCharDriver *s = chr->opaque;
1564 int size, len;
1565 uint8_t buf[1024];
1567 len = sizeof(buf);
1568 if (len > s->max_size)
1569 len = s->max_size;
1570 if (len == 0)
1571 return;
1572 size = read(s->fd_in, buf, len);
1573 if (size == 0) {
1574 /* FD has been closed. Remove it from the active list. */
1575 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
1576 return;
1578 if (size > 0) {
1579 qemu_chr_read(chr, buf, size);
1583 static void fd_chr_update_read_handler(CharDriverState *chr)
1585 FDCharDriver *s = chr->opaque;
1587 if (s->fd_in >= 0) {
1588 if (nographic && s->fd_in == 0) {
1589 } else {
1590 qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
1591 fd_chr_read, NULL, chr);
1596 /* open a character device to a unix fd */
1597 static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
1599 CharDriverState *chr;
1600 FDCharDriver *s;
1602 chr = qemu_mallocz(sizeof(CharDriverState));
1603 if (!chr)
1604 return NULL;
1605 s = qemu_mallocz(sizeof(FDCharDriver));
1606 if (!s) {
1607 free(chr);
1608 return NULL;
1610 s->fd_in = fd_in;
1611 s->fd_out = fd_out;
1612 chr->opaque = s;
1613 chr->chr_write = fd_chr_write;
1614 chr->chr_update_read_handler = fd_chr_update_read_handler;
1616 qemu_chr_reset(chr);
1618 return chr;
1621 static CharDriverState *qemu_chr_open_file_out(const char *file_out)
1623 int fd_out;
1625 fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666);
1626 if (fd_out < 0)
1627 return NULL;
1628 return qemu_chr_open_fd(-1, fd_out);
1631 static CharDriverState *qemu_chr_open_pipe(const char *filename)
1633 int fd_in, fd_out;
1634 char filename_in[256], filename_out[256];
1636 snprintf(filename_in, 256, "%s.in", filename);
1637 snprintf(filename_out, 256, "%s.out", filename);
1638 fd_in = open(filename_in, O_RDWR | O_BINARY);
1639 fd_out = open(filename_out, O_RDWR | O_BINARY);
1640 if (fd_in < 0 || fd_out < 0) {
1641 if (fd_in >= 0)
1642 close(fd_in);
1643 if (fd_out >= 0)
1644 close(fd_out);
1645 fd_in = fd_out = open(filename, O_RDWR | O_BINARY);
1646 if (fd_in < 0)
1647 return NULL;
1649 return qemu_chr_open_fd(fd_in, fd_out);
1653 /* for STDIO, we handle the case where several clients use it
1654 (nographic mode) */
1656 #define TERM_FIFO_MAX_SIZE 1
1658 static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
1659 static int term_fifo_size;
1661 static int stdio_read_poll(void *opaque)
1663 CharDriverState *chr = opaque;
1665 /* try to flush the queue if needed */
1666 if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
1667 qemu_chr_read(chr, term_fifo, 1);
1668 term_fifo_size = 0;
1670 /* see if we can absorb more chars */
1671 if (term_fifo_size == 0)
1672 return 1;
1673 else
1674 return 0;
1677 static void stdio_read(void *opaque)
1679 int size;
1680 uint8_t buf[1];
1681 CharDriverState *chr = opaque;
1683 size = read(0, buf, 1);
1684 if (size == 0) {
1685 /* stdin has been closed. Remove it from the active list. */
1686 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
1687 return;
1689 if (size > 0) {
1690 if (qemu_chr_can_read(chr) > 0) {
1691 qemu_chr_read(chr, buf, 1);
1692 } else if (term_fifo_size == 0) {
1693 term_fifo[term_fifo_size++] = buf[0];
1698 /* init terminal so that we can grab keys */
1699 static struct termios oldtty;
1700 static int old_fd0_flags;
1702 static void term_exit(void)
1704 tcsetattr (0, TCSANOW, &oldtty);
1705 fcntl(0, F_SETFL, old_fd0_flags);
1708 static void term_init(void)
1710 struct termios tty;
1712 tcgetattr (0, &tty);
1713 oldtty = tty;
1714 old_fd0_flags = fcntl(0, F_GETFL);
1716 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1717 |INLCR|IGNCR|ICRNL|IXON);
1718 tty.c_oflag |= OPOST;
1719 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
1720 /* if graphical mode, we allow Ctrl-C handling */
1721 if (nographic)
1722 tty.c_lflag &= ~ISIG;
1723 tty.c_cflag &= ~(CSIZE|PARENB);
1724 tty.c_cflag |= CS8;
1725 tty.c_cc[VMIN] = 1;
1726 tty.c_cc[VTIME] = 0;
1728 tcsetattr (0, TCSANOW, &tty);
1730 atexit(term_exit);
1732 fcntl(0, F_SETFL, O_NONBLOCK);
1735 static CharDriverState *qemu_chr_open_stdio(void)
1737 CharDriverState *chr;
1739 if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
1740 return NULL;
1741 chr = qemu_chr_open_fd(0, 1);
1742 qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
1743 stdio_nb_clients++;
1744 term_init();
1746 return chr;
1749 #if defined(__linux__)
1750 static CharDriverState *qemu_chr_open_pty(void)
1752 struct termios tty;
1753 char slave_name[1024];
1754 int master_fd, slave_fd;
1756 /* Not satisfying */
1757 if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
1758 return NULL;
1761 /* Disabling local echo and line-buffered output */
1762 tcgetattr (master_fd, &tty);
1763 tty.c_lflag &= ~(ECHO|ICANON|ISIG);
1764 tty.c_cc[VMIN] = 1;
1765 tty.c_cc[VTIME] = 0;
1766 tcsetattr (master_fd, TCSAFLUSH, &tty);
1768 fprintf(stderr, "char device redirected to %s\n", slave_name);
1769 return qemu_chr_open_fd(master_fd, master_fd);
1772 static void tty_serial_init(int fd, int speed,
1773 int parity, int data_bits, int stop_bits)
1775 struct termios tty;
1776 speed_t spd;
1778 #if 0
1779 printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
1780 speed, parity, data_bits, stop_bits);
1781 #endif
1782 tcgetattr (fd, &tty);
1784 switch(speed) {
1785 case 50:
1786 spd = B50;
1787 break;
1788 case 75:
1789 spd = B75;
1790 break;
1791 case 300:
1792 spd = B300;
1793 break;
1794 case 600:
1795 spd = B600;
1796 break;
1797 case 1200:
1798 spd = B1200;
1799 break;
1800 case 2400:
1801 spd = B2400;
1802 break;
1803 case 4800:
1804 spd = B4800;
1805 break;
1806 case 9600:
1807 spd = B9600;
1808 break;
1809 case 19200:
1810 spd = B19200;
1811 break;
1812 case 38400:
1813 spd = B38400;
1814 break;
1815 case 57600:
1816 spd = B57600;
1817 break;
1818 default:
1819 case 115200:
1820 spd = B115200;
1821 break;
1824 cfsetispeed(&tty, spd);
1825 cfsetospeed(&tty, spd);
1827 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1828 |INLCR|IGNCR|ICRNL|IXON);
1829 tty.c_oflag |= OPOST;
1830 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
1831 tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
1832 switch(data_bits) {
1833 default:
1834 case 8:
1835 tty.c_cflag |= CS8;
1836 break;
1837 case 7:
1838 tty.c_cflag |= CS7;
1839 break;
1840 case 6:
1841 tty.c_cflag |= CS6;
1842 break;
1843 case 5:
1844 tty.c_cflag |= CS5;
1845 break;
1847 switch(parity) {
1848 default:
1849 case 'N':
1850 break;
1851 case 'E':
1852 tty.c_cflag |= PARENB;
1853 break;
1854 case 'O':
1855 tty.c_cflag |= PARENB | PARODD;
1856 break;
1858 if (stop_bits == 2)
1859 tty.c_cflag |= CSTOPB;
1861 tcsetattr (fd, TCSANOW, &tty);
1864 static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
1866 FDCharDriver *s = chr->opaque;
1868 switch(cmd) {
1869 case CHR_IOCTL_SERIAL_SET_PARAMS:
1871 QEMUSerialSetParams *ssp = arg;
1872 tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
1873 ssp->data_bits, ssp->stop_bits);
1875 break;
1876 case CHR_IOCTL_SERIAL_SET_BREAK:
1878 int enable = *(int *)arg;
1879 if (enable)
1880 tcsendbreak(s->fd_in, 1);
1882 break;
1883 default:
1884 return -ENOTSUP;
1886 return 0;
1889 static CharDriverState *qemu_chr_open_tty(const char *filename)
1891 CharDriverState *chr;
1892 int fd;
1894 fd = open(filename, O_RDWR | O_NONBLOCK);
1895 if (fd < 0)
1896 return NULL;
1897 fcntl(fd, F_SETFL, O_NONBLOCK);
1898 tty_serial_init(fd, 115200, 'N', 8, 1);
1899 chr = qemu_chr_open_fd(fd, fd);
1900 if (!chr)
1901 return NULL;
1902 chr->chr_ioctl = tty_serial_ioctl;
1903 qemu_chr_reset(chr);
1904 return chr;
1907 typedef struct {
1908 int fd;
1909 int mode;
1910 } ParallelCharDriver;
1912 static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
1914 if (s->mode != mode) {
1915 int m = mode;
1916 if (ioctl(s->fd, PPSETMODE, &m) < 0)
1917 return 0;
1918 s->mode = mode;
1920 return 1;
1923 static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
1925 ParallelCharDriver *drv = chr->opaque;
1926 int fd = drv->fd;
1927 uint8_t b;
1929 switch(cmd) {
1930 case CHR_IOCTL_PP_READ_DATA:
1931 if (ioctl(fd, PPRDATA, &b) < 0)
1932 return -ENOTSUP;
1933 *(uint8_t *)arg = b;
1934 break;
1935 case CHR_IOCTL_PP_WRITE_DATA:
1936 b = *(uint8_t *)arg;
1937 if (ioctl(fd, PPWDATA, &b) < 0)
1938 return -ENOTSUP;
1939 break;
1940 case CHR_IOCTL_PP_READ_CONTROL:
1941 if (ioctl(fd, PPRCONTROL, &b) < 0)
1942 return -ENOTSUP;
1943 /* Linux gives only the lowest bits, and no way to know data
1944 direction! For better compatibility set the fixed upper
1945 bits. */
1946 *(uint8_t *)arg = b | 0xc0;
1947 break;
1948 case CHR_IOCTL_PP_WRITE_CONTROL:
1949 b = *(uint8_t *)arg;
1950 if (ioctl(fd, PPWCONTROL, &b) < 0)
1951 return -ENOTSUP;
1952 break;
1953 case CHR_IOCTL_PP_READ_STATUS:
1954 if (ioctl(fd, PPRSTATUS, &b) < 0)
1955 return -ENOTSUP;
1956 *(uint8_t *)arg = b;
1957 break;
1958 case CHR_IOCTL_PP_EPP_READ_ADDR:
1959 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
1960 struct ParallelIOArg *parg = arg;
1961 int n = read(fd, parg->buffer, parg->count);
1962 if (n != parg->count) {
1963 return -EIO;
1966 break;
1967 case CHR_IOCTL_PP_EPP_READ:
1968 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
1969 struct ParallelIOArg *parg = arg;
1970 int n = read(fd, parg->buffer, parg->count);
1971 if (n != parg->count) {
1972 return -EIO;
1975 break;
1976 case CHR_IOCTL_PP_EPP_WRITE_ADDR:
1977 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
1978 struct ParallelIOArg *parg = arg;
1979 int n = write(fd, parg->buffer, parg->count);
1980 if (n != parg->count) {
1981 return -EIO;
1984 break;
1985 case CHR_IOCTL_PP_EPP_WRITE:
1986 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
1987 struct ParallelIOArg *parg = arg;
1988 int n = write(fd, parg->buffer, parg->count);
1989 if (n != parg->count) {
1990 return -EIO;
1993 break;
1994 default:
1995 return -ENOTSUP;
1997 return 0;
2000 static void pp_close(CharDriverState *chr)
2002 ParallelCharDriver *drv = chr->opaque;
2003 int fd = drv->fd;
2005 pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2006 ioctl(fd, PPRELEASE);
2007 close(fd);
2008 qemu_free(drv);
2011 static CharDriverState *qemu_chr_open_pp(const char *filename)
2013 CharDriverState *chr;
2014 ParallelCharDriver *drv;
2015 int fd;
2017 fd = open(filename, O_RDWR);
2018 if (fd < 0)
2019 return NULL;
2021 if (ioctl(fd, PPCLAIM) < 0) {
2022 close(fd);
2023 return NULL;
2026 drv = qemu_mallocz(sizeof(ParallelCharDriver));
2027 if (!drv) {
2028 close(fd);
2029 return NULL;
2031 drv->fd = fd;
2032 drv->mode = IEEE1284_MODE_COMPAT;
2034 chr = qemu_mallocz(sizeof(CharDriverState));
2035 if (!chr) {
2036 qemu_free(drv);
2037 close(fd);
2038 return NULL;
2040 chr->chr_write = null_chr_write;
2041 chr->chr_ioctl = pp_ioctl;
2042 chr->chr_close = pp_close;
2043 chr->opaque = drv;
2045 qemu_chr_reset(chr);
2047 return chr;
2050 #else
2051 static CharDriverState *qemu_chr_open_pty(void)
2053 return NULL;
2055 #endif
2057 #endif /* !defined(_WIN32) */
2059 #ifdef _WIN32
2060 typedef struct {
2061 int max_size;
2062 HANDLE hcom, hrecv, hsend;
2063 OVERLAPPED orecv, osend;
2064 BOOL fpipe;
2065 DWORD len;
2066 } WinCharState;
2068 #define NSENDBUF 2048
2069 #define NRECVBUF 2048
2070 #define MAXCONNECT 1
2071 #define NTIMEOUT 5000
2073 static int win_chr_poll(void *opaque);
2074 static int win_chr_pipe_poll(void *opaque);
2076 static void win_chr_close(CharDriverState *chr)
2078 WinCharState *s = chr->opaque;
2080 if (s->hsend) {
2081 CloseHandle(s->hsend);
2082 s->hsend = NULL;
2084 if (s->hrecv) {
2085 CloseHandle(s->hrecv);
2086 s->hrecv = NULL;
2088 if (s->hcom) {
2089 CloseHandle(s->hcom);
2090 s->hcom = NULL;
2092 if (s->fpipe)
2093 qemu_del_polling_cb(win_chr_pipe_poll, chr);
2094 else
2095 qemu_del_polling_cb(win_chr_poll, chr);
2098 static int win_chr_init(CharDriverState *chr, const char *filename)
2100 WinCharState *s = chr->opaque;
2101 COMMCONFIG comcfg;
2102 COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2103 COMSTAT comstat;
2104 DWORD size;
2105 DWORD err;
2107 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2108 if (!s->hsend) {
2109 fprintf(stderr, "Failed CreateEvent\n");
2110 goto fail;
2112 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2113 if (!s->hrecv) {
2114 fprintf(stderr, "Failed CreateEvent\n");
2115 goto fail;
2118 s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2119 OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2120 if (s->hcom == INVALID_HANDLE_VALUE) {
2121 fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2122 s->hcom = NULL;
2123 goto fail;
2126 if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2127 fprintf(stderr, "Failed SetupComm\n");
2128 goto fail;
2131 ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2132 size = sizeof(COMMCONFIG);
2133 GetDefaultCommConfig(filename, &comcfg, &size);
2134 comcfg.dcb.DCBlength = sizeof(DCB);
2135 CommConfigDialog(filename, NULL, &comcfg);
2137 if (!SetCommState(s->hcom, &comcfg.dcb)) {
2138 fprintf(stderr, "Failed SetCommState\n");
2139 goto fail;
2142 if (!SetCommMask(s->hcom, EV_ERR)) {
2143 fprintf(stderr, "Failed SetCommMask\n");
2144 goto fail;
2147 cto.ReadIntervalTimeout = MAXDWORD;
2148 if (!SetCommTimeouts(s->hcom, &cto)) {
2149 fprintf(stderr, "Failed SetCommTimeouts\n");
2150 goto fail;
2153 if (!ClearCommError(s->hcom, &err, &comstat)) {
2154 fprintf(stderr, "Failed ClearCommError\n");
2155 goto fail;
2157 qemu_add_polling_cb(win_chr_poll, chr);
2158 return 0;
2160 fail:
2161 win_chr_close(chr);
2162 return -1;
2165 static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2167 WinCharState *s = chr->opaque;
2168 DWORD len, ret, size, err;
2170 len = len1;
2171 ZeroMemory(&s->osend, sizeof(s->osend));
2172 s->osend.hEvent = s->hsend;
2173 while (len > 0) {
2174 if (s->hsend)
2175 ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2176 else
2177 ret = WriteFile(s->hcom, buf, len, &size, NULL);
2178 if (!ret) {
2179 err = GetLastError();
2180 if (err == ERROR_IO_PENDING) {
2181 ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2182 if (ret) {
2183 buf += size;
2184 len -= size;
2185 } else {
2186 break;
2188 } else {
2189 break;
2191 } else {
2192 buf += size;
2193 len -= size;
2196 return len1 - len;
2199 static int win_chr_read_poll(CharDriverState *chr)
2201 WinCharState *s = chr->opaque;
2203 s->max_size = qemu_chr_can_read(chr);
2204 return s->max_size;
2207 static void win_chr_readfile(CharDriverState *chr)
2209 WinCharState *s = chr->opaque;
2210 int ret, err;
2211 uint8_t buf[1024];
2212 DWORD size;
2214 ZeroMemory(&s->orecv, sizeof(s->orecv));
2215 s->orecv.hEvent = s->hrecv;
2216 ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2217 if (!ret) {
2218 err = GetLastError();
2219 if (err == ERROR_IO_PENDING) {
2220 ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2224 if (size > 0) {
2225 qemu_chr_read(chr, buf, size);
2229 static void win_chr_read(CharDriverState *chr)
2231 WinCharState *s = chr->opaque;
2233 if (s->len > s->max_size)
2234 s->len = s->max_size;
2235 if (s->len == 0)
2236 return;
2238 win_chr_readfile(chr);
2241 static int win_chr_poll(void *opaque)
2243 CharDriverState *chr = opaque;
2244 WinCharState *s = chr->opaque;
2245 COMSTAT status;
2246 DWORD comerr;
2248 ClearCommError(s->hcom, &comerr, &status);
2249 if (status.cbInQue > 0) {
2250 s->len = status.cbInQue;
2251 win_chr_read_poll(chr);
2252 win_chr_read(chr);
2253 return 1;
2255 return 0;
2258 static CharDriverState *qemu_chr_open_win(const char *filename)
2260 CharDriverState *chr;
2261 WinCharState *s;
2263 chr = qemu_mallocz(sizeof(CharDriverState));
2264 if (!chr)
2265 return NULL;
2266 s = qemu_mallocz(sizeof(WinCharState));
2267 if (!s) {
2268 free(chr);
2269 return NULL;
2271 chr->opaque = s;
2272 chr->chr_write = win_chr_write;
2273 chr->chr_close = win_chr_close;
2275 if (win_chr_init(chr, filename) < 0) {
2276 free(s);
2277 free(chr);
2278 return NULL;
2280 qemu_chr_reset(chr);
2281 return chr;
2284 static int win_chr_pipe_poll(void *opaque)
2286 CharDriverState *chr = opaque;
2287 WinCharState *s = chr->opaque;
2288 DWORD size;
2290 PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2291 if (size > 0) {
2292 s->len = size;
2293 win_chr_read_poll(chr);
2294 win_chr_read(chr);
2295 return 1;
2297 return 0;
2300 static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2302 WinCharState *s = chr->opaque;
2303 OVERLAPPED ov;
2304 int ret;
2305 DWORD size;
2306 char openname[256];
2308 s->fpipe = TRUE;
2310 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2311 if (!s->hsend) {
2312 fprintf(stderr, "Failed CreateEvent\n");
2313 goto fail;
2315 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2316 if (!s->hrecv) {
2317 fprintf(stderr, "Failed CreateEvent\n");
2318 goto fail;
2321 snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2322 s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2323 PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2324 PIPE_WAIT,
2325 MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2326 if (s->hcom == INVALID_HANDLE_VALUE) {
2327 fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2328 s->hcom = NULL;
2329 goto fail;
2332 ZeroMemory(&ov, sizeof(ov));
2333 ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2334 ret = ConnectNamedPipe(s->hcom, &ov);
2335 if (ret) {
2336 fprintf(stderr, "Failed ConnectNamedPipe\n");
2337 goto fail;
2340 ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2341 if (!ret) {
2342 fprintf(stderr, "Failed GetOverlappedResult\n");
2343 if (ov.hEvent) {
2344 CloseHandle(ov.hEvent);
2345 ov.hEvent = NULL;
2347 goto fail;
2350 if (ov.hEvent) {
2351 CloseHandle(ov.hEvent);
2352 ov.hEvent = NULL;
2354 qemu_add_polling_cb(win_chr_pipe_poll, chr);
2355 return 0;
2357 fail:
2358 win_chr_close(chr);
2359 return -1;
2363 static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2365 CharDriverState *chr;
2366 WinCharState *s;
2368 chr = qemu_mallocz(sizeof(CharDriverState));
2369 if (!chr)
2370 return NULL;
2371 s = qemu_mallocz(sizeof(WinCharState));
2372 if (!s) {
2373 free(chr);
2374 return NULL;
2376 chr->opaque = s;
2377 chr->chr_write = win_chr_write;
2378 chr->chr_close = win_chr_close;
2380 if (win_chr_pipe_init(chr, filename) < 0) {
2381 free(s);
2382 free(chr);
2383 return NULL;
2385 qemu_chr_reset(chr);
2386 return chr;
2389 static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2391 CharDriverState *chr;
2392 WinCharState *s;
2394 chr = qemu_mallocz(sizeof(CharDriverState));
2395 if (!chr)
2396 return NULL;
2397 s = qemu_mallocz(sizeof(WinCharState));
2398 if (!s) {
2399 free(chr);
2400 return NULL;
2402 s->hcom = fd_out;
2403 chr->opaque = s;
2404 chr->chr_write = win_chr_write;
2405 qemu_chr_reset(chr);
2406 return chr;
2409 static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2411 HANDLE fd_out;
2413 fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2414 OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2415 if (fd_out == INVALID_HANDLE_VALUE)
2416 return NULL;
2418 return qemu_chr_open_win_file(fd_out);
2420 #endif
2422 /***********************************************************/
2423 /* UDP Net console */
2425 typedef struct {
2426 int fd;
2427 struct sockaddr_in daddr;
2428 char buf[1024];
2429 int bufcnt;
2430 int bufptr;
2431 int max_size;
2432 } NetCharDriver;
2434 static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2436 NetCharDriver *s = chr->opaque;
2438 return sendto(s->fd, buf, len, 0,
2439 (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2442 static int udp_chr_read_poll(void *opaque)
2444 CharDriverState *chr = opaque;
2445 NetCharDriver *s = chr->opaque;
2447 s->max_size = qemu_chr_can_read(chr);
2449 /* If there were any stray characters in the queue process them
2450 * first
2452 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2453 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2454 s->bufptr++;
2455 s->max_size = qemu_chr_can_read(chr);
2457 return s->max_size;
2460 static void udp_chr_read(void *opaque)
2462 CharDriverState *chr = opaque;
2463 NetCharDriver *s = chr->opaque;
2465 if (s->max_size == 0)
2466 return;
2467 s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2468 s->bufptr = s->bufcnt;
2469 if (s->bufcnt <= 0)
2470 return;
2472 s->bufptr = 0;
2473 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2474 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2475 s->bufptr++;
2476 s->max_size = qemu_chr_can_read(chr);
2480 static void udp_chr_update_read_handler(CharDriverState *chr)
2482 NetCharDriver *s = chr->opaque;
2484 if (s->fd >= 0) {
2485 qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
2486 udp_chr_read, NULL, chr);
2490 int parse_host_port(struct sockaddr_in *saddr, const char *str);
2491 #ifndef _WIN32
2492 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
2493 #endif
2494 int parse_host_src_port(struct sockaddr_in *haddr,
2495 struct sockaddr_in *saddr,
2496 const char *str);
2498 static CharDriverState *qemu_chr_open_udp(const char *def)
2500 CharDriverState *chr = NULL;
2501 NetCharDriver *s = NULL;
2502 int fd = -1;
2503 struct sockaddr_in saddr;
2505 chr = qemu_mallocz(sizeof(CharDriverState));
2506 if (!chr)
2507 goto return_err;
2508 s = qemu_mallocz(sizeof(NetCharDriver));
2509 if (!s)
2510 goto return_err;
2512 fd = socket(PF_INET, SOCK_DGRAM, 0);
2513 if (fd < 0) {
2514 perror("socket(PF_INET, SOCK_DGRAM)");
2515 goto return_err;
2518 if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
2519 printf("Could not parse: %s\n", def);
2520 goto return_err;
2523 if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
2525 perror("bind");
2526 goto return_err;
2529 s->fd = fd;
2530 s->bufcnt = 0;
2531 s->bufptr = 0;
2532 chr->opaque = s;
2533 chr->chr_write = udp_chr_write;
2534 chr->chr_update_read_handler = udp_chr_update_read_handler;
2535 return chr;
2537 return_err:
2538 if (chr)
2539 free(chr);
2540 if (s)
2541 free(s);
2542 if (fd >= 0)
2543 closesocket(fd);
2544 return NULL;
2547 /***********************************************************/
2548 /* TCP Net console */
2550 typedef struct {
2551 int fd, listen_fd;
2552 int connected;
2553 int max_size;
2554 int do_telnetopt;
2555 int do_nodelay;
2556 int is_unix;
2557 } TCPCharDriver;
2559 static void tcp_chr_accept(void *opaque);
2561 static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2563 TCPCharDriver *s = chr->opaque;
2564 if (s->connected) {
2565 return send_all(s->fd, buf, len);
2566 } else {
2567 /* XXX: indicate an error ? */
2568 return len;
2572 static int tcp_chr_read_poll(void *opaque)
2574 CharDriverState *chr = opaque;
2575 TCPCharDriver *s = chr->opaque;
2576 if (!s->connected)
2577 return 0;
2578 s->max_size = qemu_chr_can_read(chr);
2579 return s->max_size;
2582 #define IAC 255
2583 #define IAC_BREAK 243
2584 static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
2585 TCPCharDriver *s,
2586 char *buf, int *size)
2588 /* Handle any telnet client's basic IAC options to satisfy char by
2589 * char mode with no echo. All IAC options will be removed from
2590 * the buf and the do_telnetopt variable will be used to track the
2591 * state of the width of the IAC information.
2593 * IAC commands come in sets of 3 bytes with the exception of the
2594 * "IAC BREAK" command and the double IAC.
2597 int i;
2598 int j = 0;
2600 for (i = 0; i < *size; i++) {
2601 if (s->do_telnetopt > 1) {
2602 if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
2603 /* Double IAC means send an IAC */
2604 if (j != i)
2605 buf[j] = buf[i];
2606 j++;
2607 s->do_telnetopt = 1;
2608 } else {
2609 if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
2610 /* Handle IAC break commands by sending a serial break */
2611 qemu_chr_event(chr, CHR_EVENT_BREAK);
2612 s->do_telnetopt++;
2614 s->do_telnetopt++;
2616 if (s->do_telnetopt >= 4) {
2617 s->do_telnetopt = 1;
2619 } else {
2620 if ((unsigned char)buf[i] == IAC) {
2621 s->do_telnetopt = 2;
2622 } else {
2623 if (j != i)
2624 buf[j] = buf[i];
2625 j++;
2629 *size = j;
2632 static void tcp_chr_read(void *opaque)
2634 CharDriverState *chr = opaque;
2635 TCPCharDriver *s = chr->opaque;
2636 uint8_t buf[1024];
2637 int len, size;
2639 if (!s->connected || s->max_size <= 0)
2640 return;
2641 len = sizeof(buf);
2642 if (len > s->max_size)
2643 len = s->max_size;
2644 size = recv(s->fd, buf, len, 0);
2645 if (size == 0) {
2646 /* connection closed */
2647 s->connected = 0;
2648 if (s->listen_fd >= 0) {
2649 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
2651 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
2652 closesocket(s->fd);
2653 s->fd = -1;
2654 } else if (size > 0) {
2655 if (s->do_telnetopt)
2656 tcp_chr_process_IAC_bytes(chr, s, buf, &size);
2657 if (size > 0)
2658 qemu_chr_read(chr, buf, size);
2662 static void tcp_chr_connect(void *opaque)
2664 CharDriverState *chr = opaque;
2665 TCPCharDriver *s = chr->opaque;
2667 s->connected = 1;
2668 qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
2669 tcp_chr_read, NULL, chr);
2670 qemu_chr_reset(chr);
2673 #define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
2674 static void tcp_chr_telnet_init(int fd)
2676 char buf[3];
2677 /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
2678 IACSET(buf, 0xff, 0xfb, 0x01); /* IAC WILL ECHO */
2679 send(fd, (char *)buf, 3, 0);
2680 IACSET(buf, 0xff, 0xfb, 0x03); /* IAC WILL Suppress go ahead */
2681 send(fd, (char *)buf, 3, 0);
2682 IACSET(buf, 0xff, 0xfb, 0x00); /* IAC WILL Binary */
2683 send(fd, (char *)buf, 3, 0);
2684 IACSET(buf, 0xff, 0xfd, 0x00); /* IAC DO Binary */
2685 send(fd, (char *)buf, 3, 0);
2688 static void socket_set_nodelay(int fd)
2690 int val = 1;
2691 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2694 static void tcp_chr_accept(void *opaque)
2696 CharDriverState *chr = opaque;
2697 TCPCharDriver *s = chr->opaque;
2698 struct sockaddr_in saddr;
2699 #ifndef _WIN32
2700 struct sockaddr_un uaddr;
2701 #endif
2702 struct sockaddr *addr;
2703 socklen_t len;
2704 int fd;
2706 for(;;) {
2707 #ifndef _WIN32
2708 if (s->is_unix) {
2709 len = sizeof(uaddr);
2710 addr = (struct sockaddr *)&uaddr;
2711 } else
2712 #endif
2714 len = sizeof(saddr);
2715 addr = (struct sockaddr *)&saddr;
2717 fd = accept(s->listen_fd, addr, &len);
2718 if (fd < 0 && errno != EINTR) {
2719 return;
2720 } else if (fd >= 0) {
2721 if (s->do_telnetopt)
2722 tcp_chr_telnet_init(fd);
2723 break;
2726 socket_set_nonblock(fd);
2727 if (s->do_nodelay)
2728 socket_set_nodelay(fd);
2729 s->fd = fd;
2730 qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
2731 tcp_chr_connect(chr);
2734 static void tcp_chr_close(CharDriverState *chr)
2736 TCPCharDriver *s = chr->opaque;
2737 if (s->fd >= 0)
2738 closesocket(s->fd);
2739 if (s->listen_fd >= 0)
2740 closesocket(s->listen_fd);
2741 qemu_free(s);
2744 static CharDriverState *qemu_chr_open_tcp(const char *host_str,
2745 int is_telnet,
2746 int is_unix)
2748 CharDriverState *chr = NULL;
2749 TCPCharDriver *s = NULL;
2750 int fd = -1, ret, err, val;
2751 int is_listen = 0;
2752 int is_waitconnect = 1;
2753 int do_nodelay = 0;
2754 const char *ptr;
2755 struct sockaddr_in saddr;
2756 #ifndef _WIN32
2757 struct sockaddr_un uaddr;
2758 #endif
2759 struct sockaddr *addr;
2760 socklen_t addrlen;
2762 #ifndef _WIN32
2763 if (is_unix) {
2764 addr = (struct sockaddr *)&uaddr;
2765 addrlen = sizeof(uaddr);
2766 if (parse_unix_path(&uaddr, host_str) < 0)
2767 goto fail;
2768 } else
2769 #endif
2771 addr = (struct sockaddr *)&saddr;
2772 addrlen = sizeof(saddr);
2773 if (parse_host_port(&saddr, host_str) < 0)
2774 goto fail;
2777 ptr = host_str;
2778 while((ptr = strchr(ptr,','))) {
2779 ptr++;
2780 if (!strncmp(ptr,"server",6)) {
2781 is_listen = 1;
2782 } else if (!strncmp(ptr,"nowait",6)) {
2783 is_waitconnect = 0;
2784 } else if (!strncmp(ptr,"nodelay",6)) {
2785 do_nodelay = 1;
2786 } else {
2787 printf("Unknown option: %s\n", ptr);
2788 goto fail;
2791 if (!is_listen)
2792 is_waitconnect = 0;
2794 chr = qemu_mallocz(sizeof(CharDriverState));
2795 if (!chr)
2796 goto fail;
2797 s = qemu_mallocz(sizeof(TCPCharDriver));
2798 if (!s)
2799 goto fail;
2801 #ifndef _WIN32
2802 if (is_unix)
2803 fd = socket(PF_UNIX, SOCK_STREAM, 0);
2804 else
2805 #endif
2806 fd = socket(PF_INET, SOCK_STREAM, 0);
2808 if (fd < 0)
2809 goto fail;
2811 if (!is_waitconnect)
2812 socket_set_nonblock(fd);
2814 s->connected = 0;
2815 s->fd = -1;
2816 s->listen_fd = -1;
2817 s->is_unix = is_unix;
2818 s->do_nodelay = do_nodelay && !is_unix;
2820 chr->opaque = s;
2821 chr->chr_write = tcp_chr_write;
2822 chr->chr_close = tcp_chr_close;
2824 if (is_listen) {
2825 /* allow fast reuse */
2826 #ifndef _WIN32
2827 if (is_unix) {
2828 char path[109];
2829 strncpy(path, uaddr.sun_path, 108);
2830 path[108] = 0;
2831 unlink(path);
2832 } else
2833 #endif
2835 val = 1;
2836 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
2839 ret = bind(fd, addr, addrlen);
2840 if (ret < 0)
2841 goto fail;
2843 ret = listen(fd, 0);
2844 if (ret < 0)
2845 goto fail;
2847 s->listen_fd = fd;
2848 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
2849 if (is_telnet)
2850 s->do_telnetopt = 1;
2851 } else {
2852 for(;;) {
2853 ret = connect(fd, addr, addrlen);
2854 if (ret < 0) {
2855 err = socket_error();
2856 if (err == EINTR || err == EWOULDBLOCK) {
2857 } else if (err == EINPROGRESS) {
2858 break;
2859 #ifdef _WIN32
2860 } else if (err == WSAEALREADY) {
2861 break;
2862 #endif
2863 } else {
2864 goto fail;
2866 } else {
2867 s->connected = 1;
2868 break;
2871 s->fd = fd;
2872 socket_set_nodelay(fd);
2873 if (s->connected)
2874 tcp_chr_connect(chr);
2875 else
2876 qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
2879 if (is_listen && is_waitconnect) {
2880 printf("QEMU waiting for connection on: %s\n", host_str);
2881 tcp_chr_accept(chr);
2882 socket_set_nonblock(s->listen_fd);
2885 return chr;
2886 fail:
2887 if (fd >= 0)
2888 closesocket(fd);
2889 qemu_free(s);
2890 qemu_free(chr);
2891 return NULL;
2894 CharDriverState *qemu_chr_open(const char *filename)
2896 const char *p;
2898 if (!strcmp(filename, "vc")) {
2899 return text_console_init(&display_state);
2900 } else if (!strcmp(filename, "null")) {
2901 return qemu_chr_open_null();
2902 } else
2903 if (strstart(filename, "tcp:", &p)) {
2904 return qemu_chr_open_tcp(p, 0, 0);
2905 } else
2906 if (strstart(filename, "telnet:", &p)) {
2907 return qemu_chr_open_tcp(p, 1, 0);
2908 } else
2909 if (strstart(filename, "udp:", &p)) {
2910 return qemu_chr_open_udp(p);
2911 } else
2912 if (strstart(filename, "mon:", &p)) {
2913 CharDriverState *drv = qemu_chr_open(p);
2914 if (drv) {
2915 drv = qemu_chr_open_mux(drv);
2916 monitor_init(drv, !nographic);
2917 return drv;
2919 printf("Unable to open driver: %s\n", p);
2920 return 0;
2921 } else
2922 #ifndef _WIN32
2923 if (strstart(filename, "unix:", &p)) {
2924 return qemu_chr_open_tcp(p, 0, 1);
2925 } else if (strstart(filename, "file:", &p)) {
2926 return qemu_chr_open_file_out(p);
2927 } else if (strstart(filename, "pipe:", &p)) {
2928 return qemu_chr_open_pipe(p);
2929 } else if (!strcmp(filename, "pty")) {
2930 return qemu_chr_open_pty();
2931 } else if (!strcmp(filename, "stdio")) {
2932 return qemu_chr_open_stdio();
2933 } else
2934 #endif
2935 #if defined(__linux__)
2936 if (strstart(filename, "/dev/parport", NULL)) {
2937 return qemu_chr_open_pp(filename);
2938 } else
2939 if (strstart(filename, "/dev/", NULL)) {
2940 return qemu_chr_open_tty(filename);
2941 } else
2942 #endif
2943 #ifdef _WIN32
2944 if (strstart(filename, "COM", NULL)) {
2945 return qemu_chr_open_win(filename);
2946 } else
2947 if (strstart(filename, "pipe:", &p)) {
2948 return qemu_chr_open_win_pipe(p);
2949 } else
2950 if (strstart(filename, "file:", &p)) {
2951 return qemu_chr_open_win_file_out(p);
2953 #endif
2955 return NULL;
2959 void qemu_chr_close(CharDriverState *chr)
2961 if (chr->chr_close)
2962 chr->chr_close(chr);
2965 /***********************************************************/
2966 /* network device redirectors */
2968 void hex_dump(FILE *f, const uint8_t *buf, int size)
2970 int len, i, j, c;
2972 for(i=0;i<size;i+=16) {
2973 len = size - i;
2974 if (len > 16)
2975 len = 16;
2976 fprintf(f, "%08x ", i);
2977 for(j=0;j<16;j++) {
2978 if (j < len)
2979 fprintf(f, " %02x", buf[i+j]);
2980 else
2981 fprintf(f, " ");
2983 fprintf(f, " ");
2984 for(j=0;j<len;j++) {
2985 c = buf[i+j];
2986 if (c < ' ' || c > '~')
2987 c = '.';
2988 fprintf(f, "%c", c);
2990 fprintf(f, "\n");
2994 static int parse_macaddr(uint8_t *macaddr, const char *p)
2996 int i;
2997 for(i = 0; i < 6; i++) {
2998 macaddr[i] = strtol(p, (char **)&p, 16);
2999 if (i == 5) {
3000 if (*p != '\0')
3001 return -1;
3002 } else {
3003 if (*p != ':')
3004 return -1;
3005 p++;
3008 return 0;
3011 static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3013 const char *p, *p1;
3014 int len;
3015 p = *pp;
3016 p1 = strchr(p, sep);
3017 if (!p1)
3018 return -1;
3019 len = p1 - p;
3020 p1++;
3021 if (buf_size > 0) {
3022 if (len > buf_size - 1)
3023 len = buf_size - 1;
3024 memcpy(buf, p, len);
3025 buf[len] = '\0';
3027 *pp = p1;
3028 return 0;
3031 int parse_host_src_port(struct sockaddr_in *haddr,
3032 struct sockaddr_in *saddr,
3033 const char *input_str)
3035 char *str = strdup(input_str);
3036 char *host_str = str;
3037 char *src_str;
3038 char *ptr;
3041 * Chop off any extra arguments at the end of the string which
3042 * would start with a comma, then fill in the src port information
3043 * if it was provided else use the "any address" and "any port".
3045 if ((ptr = strchr(str,',')))
3046 *ptr = '\0';
3048 if ((src_str = strchr(input_str,'@'))) {
3049 *src_str = '\0';
3050 src_str++;
3053 if (parse_host_port(haddr, host_str) < 0)
3054 goto fail;
3056 if (!src_str || *src_str == '\0')
3057 src_str = ":0";
3059 if (parse_host_port(saddr, src_str) < 0)
3060 goto fail;
3062 free(str);
3063 return(0);
3065 fail:
3066 free(str);
3067 return -1;
3070 int parse_host_port(struct sockaddr_in *saddr, const char *str)
3072 char buf[512];
3073 struct hostent *he;
3074 const char *p, *r;
3075 int port;
3077 p = str;
3078 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3079 return -1;
3080 saddr->sin_family = AF_INET;
3081 if (buf[0] == '\0') {
3082 saddr->sin_addr.s_addr = 0;
3083 } else {
3084 if (isdigit(buf[0])) {
3085 if (!inet_aton(buf, &saddr->sin_addr))
3086 return -1;
3087 } else {
3088 if ((he = gethostbyname(buf)) == NULL)
3089 return - 1;
3090 saddr->sin_addr = *(struct in_addr *)he->h_addr;
3093 port = strtol(p, (char **)&r, 0);
3094 if (r == p)
3095 return -1;
3096 saddr->sin_port = htons(port);
3097 return 0;
3100 #ifndef _WIN32
3101 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3103 const char *p;
3104 int len;
3106 len = MIN(108, strlen(str));
3107 p = strchr(str, ',');
3108 if (p)
3109 len = MIN(len, p - str);
3111 memset(uaddr, 0, sizeof(*uaddr));
3113 uaddr->sun_family = AF_UNIX;
3114 memcpy(uaddr->sun_path, str, len);
3116 return 0;
3118 #endif
3120 /* find or alloc a new VLAN */
3121 VLANState *qemu_find_vlan(int id)
3123 VLANState **pvlan, *vlan;
3124 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3125 if (vlan->id == id)
3126 return vlan;
3128 vlan = qemu_mallocz(sizeof(VLANState));
3129 if (!vlan)
3130 return NULL;
3131 vlan->id = id;
3132 vlan->next = NULL;
3133 pvlan = &first_vlan;
3134 while (*pvlan != NULL)
3135 pvlan = &(*pvlan)->next;
3136 *pvlan = vlan;
3137 return vlan;
3140 VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3141 IOReadHandler *fd_read,
3142 IOCanRWHandler *fd_can_read,
3143 void *opaque)
3145 VLANClientState *vc, **pvc;
3146 vc = qemu_mallocz(sizeof(VLANClientState));
3147 if (!vc)
3148 return NULL;
3149 vc->fd_read = fd_read;
3150 vc->fd_can_read = fd_can_read;
3151 vc->opaque = opaque;
3152 vc->vlan = vlan;
3154 vc->next = NULL;
3155 pvc = &vlan->first_client;
3156 while (*pvc != NULL)
3157 pvc = &(*pvc)->next;
3158 *pvc = vc;
3159 return vc;
3162 int qemu_can_send_packet(VLANClientState *vc1)
3164 VLANState *vlan = vc1->vlan;
3165 VLANClientState *vc;
3167 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3168 if (vc != vc1) {
3169 if (vc->fd_can_read && !vc->fd_can_read(vc->opaque))
3170 return 0;
3173 return 1;
3176 void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3178 VLANState *vlan = vc1->vlan;
3179 VLANClientState *vc;
3181 #if 0
3182 printf("vlan %d send:\n", vlan->id);
3183 hex_dump(stdout, buf, size);
3184 #endif
3185 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3186 if (vc != vc1) {
3187 vc->fd_read(vc->opaque, buf, size);
3192 #if defined(CONFIG_SLIRP)
3194 /* slirp network adapter */
3196 static int slirp_inited;
3197 static VLANClientState *slirp_vc;
3199 int slirp_can_output(void)
3201 return !slirp_vc || qemu_can_send_packet(slirp_vc);
3204 void slirp_output(const uint8_t *pkt, int pkt_len)
3206 #if 0
3207 printf("slirp output:\n");
3208 hex_dump(stdout, pkt, pkt_len);
3209 #endif
3210 if (!slirp_vc)
3211 return;
3212 qemu_send_packet(slirp_vc, pkt, pkt_len);
3215 static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3217 #if 0
3218 printf("slirp input:\n");
3219 hex_dump(stdout, buf, size);
3220 #endif
3221 slirp_input(buf, size);
3224 static int net_slirp_init(VLANState *vlan)
3226 if (!slirp_inited) {
3227 slirp_inited = 1;
3228 slirp_init();
3230 slirp_vc = qemu_new_vlan_client(vlan,
3231 slirp_receive, NULL, NULL);
3232 snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3233 return 0;
3236 static void net_slirp_redir(const char *redir_str)
3238 int is_udp;
3239 char buf[256], *r;
3240 const char *p;
3241 struct in_addr guest_addr;
3242 int host_port, guest_port;
3244 if (!slirp_inited) {
3245 slirp_inited = 1;
3246 slirp_init();
3249 p = redir_str;
3250 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3251 goto fail;
3252 if (!strcmp(buf, "tcp")) {
3253 is_udp = 0;
3254 } else if (!strcmp(buf, "udp")) {
3255 is_udp = 1;
3256 } else {
3257 goto fail;
3260 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3261 goto fail;
3262 host_port = strtol(buf, &r, 0);
3263 if (r == buf)
3264 goto fail;
3266 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3267 goto fail;
3268 if (buf[0] == '\0') {
3269 pstrcpy(buf, sizeof(buf), "10.0.2.15");
3271 if (!inet_aton(buf, &guest_addr))
3272 goto fail;
3274 guest_port = strtol(p, &r, 0);
3275 if (r == p)
3276 goto fail;
3278 if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3279 fprintf(stderr, "qemu: could not set up redirection\n");
3280 exit(1);
3282 return;
3283 fail:
3284 fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3285 exit(1);
3288 #ifndef _WIN32
3290 char smb_dir[1024];
3292 static void smb_exit(void)
3294 DIR *d;
3295 struct dirent *de;
3296 char filename[1024];
3298 /* erase all the files in the directory */
3299 d = opendir(smb_dir);
3300 for(;;) {
3301 de = readdir(d);
3302 if (!de)
3303 break;
3304 if (strcmp(de->d_name, ".") != 0 &&
3305 strcmp(de->d_name, "..") != 0) {
3306 snprintf(filename, sizeof(filename), "%s/%s",
3307 smb_dir, de->d_name);
3308 unlink(filename);
3311 closedir(d);
3312 rmdir(smb_dir);
3315 /* automatic user mode samba server configuration */
3316 void net_slirp_smb(const char *exported_dir)
3318 char smb_conf[1024];
3319 char smb_cmdline[1024];
3320 FILE *f;
3322 if (!slirp_inited) {
3323 slirp_inited = 1;
3324 slirp_init();
3327 /* XXX: better tmp dir construction */
3328 snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3329 if (mkdir(smb_dir, 0700) < 0) {
3330 fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3331 exit(1);
3333 snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3335 f = fopen(smb_conf, "w");
3336 if (!f) {
3337 fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3338 exit(1);
3340 fprintf(f,
3341 "[global]\n"
3342 "private dir=%s\n"
3343 "smb ports=0\n"
3344 "socket address=127.0.0.1\n"
3345 "pid directory=%s\n"
3346 "lock directory=%s\n"
3347 "log file=%s/log.smbd\n"
3348 "smb passwd file=%s/smbpasswd\n"
3349 "security = share\n"
3350 "[qemu]\n"
3351 "path=%s\n"
3352 "read only=no\n"
3353 "guest ok=yes\n",
3354 smb_dir,
3355 smb_dir,
3356 smb_dir,
3357 smb_dir,
3358 smb_dir,
3359 exported_dir
3361 fclose(f);
3362 atexit(smb_exit);
3364 snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3365 SMBD_COMMAND, smb_conf);
3367 slirp_add_exec(0, smb_cmdline, 4, 139);
3370 #endif /* !defined(_WIN32) */
3372 #endif /* CONFIG_SLIRP */
3374 #if !defined(_WIN32)
3376 typedef struct TAPState {
3377 VLANClientState *vc;
3378 int fd;
3379 } TAPState;
3381 static void tap_receive(void *opaque, const uint8_t *buf, int size)
3383 TAPState *s = opaque;
3384 int ret;
3385 for(;;) {
3386 ret = write(s->fd, buf, size);
3387 if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3388 } else {
3389 break;
3394 static void tap_send(void *opaque)
3396 TAPState *s = opaque;
3397 uint8_t buf[4096];
3398 int size;
3400 #ifdef __sun__
3401 struct strbuf sbuf;
3402 int f = 0;
3403 sbuf.maxlen = sizeof(buf);
3404 sbuf.buf = buf;
3405 size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
3406 #else
3407 size = read(s->fd, buf, sizeof(buf));
3408 #endif
3409 if (size > 0) {
3410 qemu_send_packet(s->vc, buf, size);
3414 /* fd support */
3416 static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3418 TAPState *s;
3420 s = qemu_mallocz(sizeof(TAPState));
3421 if (!s)
3422 return NULL;
3423 s->fd = fd;
3424 s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3425 qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3426 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3427 return s;
3430 #ifdef _BSD
3431 static int tap_open(char *ifname, int ifname_size)
3433 int fd;
3434 char *dev;
3435 struct stat s;
3437 fd = open("/dev/tap", O_RDWR);
3438 if (fd < 0) {
3439 fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
3440 return -1;
3443 fstat(fd, &s);
3444 dev = devname(s.st_rdev, S_IFCHR);
3445 pstrcpy(ifname, ifname_size, dev);
3447 fcntl(fd, F_SETFL, O_NONBLOCK);
3448 return fd;
3450 #elif defined(__sun__)
3451 #define TUNNEWPPA (('T'<<16) | 0x0001)
3453 * Allocate TAP device, returns opened fd.
3454 * Stores dev name in the first arg(must be large enough).
3456 int tap_alloc(char *dev)
3458 int tap_fd, if_fd, ppa = -1;
3459 static int ip_fd = 0;
3460 char *ptr;
3462 static int arp_fd = 0;
3463 int ip_muxid, arp_muxid;
3464 struct strioctl strioc_if, strioc_ppa;
3465 int link_type = I_PLINK;;
3466 struct lifreq ifr;
3467 char actual_name[32] = "";
3469 memset(&ifr, 0x0, sizeof(ifr));
3471 if( *dev ){
3472 ptr = dev;
3473 while( *ptr && !isdigit((int)*ptr) ) ptr++;
3474 ppa = atoi(ptr);
3477 /* Check if IP device was opened */
3478 if( ip_fd )
3479 close(ip_fd);
3481 if( (ip_fd = open("/dev/udp", O_RDWR, 0)) < 0){
3482 syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
3483 return -1;
3486 if( (tap_fd = open("/dev/tap", O_RDWR, 0)) < 0){
3487 syslog(LOG_ERR, "Can't open /dev/tap");
3488 return -1;
3491 /* Assign a new PPA and get its unit number. */
3492 strioc_ppa.ic_cmd = TUNNEWPPA;
3493 strioc_ppa.ic_timout = 0;
3494 strioc_ppa.ic_len = sizeof(ppa);
3495 strioc_ppa.ic_dp = (char *)&ppa;
3496 if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
3497 syslog (LOG_ERR, "Can't assign new interface");
3499 if( (if_fd = open("/dev/tap", O_RDWR, 0)) < 0){
3500 syslog(LOG_ERR, "Can't open /dev/tap (2)");
3501 return -1;
3503 if(ioctl(if_fd, I_PUSH, "ip") < 0){
3504 syslog(LOG_ERR, "Can't push IP module");
3505 return -1;
3508 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
3509 syslog(LOG_ERR, "Can't get flags\n");
3511 snprintf (actual_name, 32, "tap%d", ppa);
3512 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3514 ifr.lifr_ppa = ppa;
3515 /* Assign ppa according to the unit number returned by tun device */
3517 if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
3518 syslog (LOG_ERR, "Can't set PPA %d", ppa);
3519 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
3520 syslog (LOG_ERR, "Can't get flags\n");
3521 /* Push arp module to if_fd */
3522 if (ioctl (if_fd, I_PUSH, "arp") < 0)
3523 syslog (LOG_ERR, "Can't push ARP module (2)");
3525 /* Push arp module to ip_fd */
3526 if (ioctl (ip_fd, I_POP, NULL) < 0)
3527 syslog (LOG_ERR, "I_POP failed\n");
3528 if (ioctl (ip_fd, I_PUSH, "arp") < 0)
3529 syslog (LOG_ERR, "Can't push ARP module (3)\n");
3530 /* Open arp_fd */
3531 if ((arp_fd = open ("/dev/tap", O_RDWR, 0)) < 0)
3532 syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
3534 /* Set ifname to arp */
3535 strioc_if.ic_cmd = SIOCSLIFNAME;
3536 strioc_if.ic_timout = 0;
3537 strioc_if.ic_len = sizeof(ifr);
3538 strioc_if.ic_dp = (char *)&ifr;
3539 if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
3540 syslog (LOG_ERR, "Can't set ifname to arp\n");
3543 if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
3544 syslog(LOG_ERR, "Can't link TAP device to IP");
3545 return -1;
3548 if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
3549 syslog (LOG_ERR, "Can't link TAP device to ARP");
3551 close (if_fd);
3553 memset(&ifr, 0x0, sizeof(ifr));
3554 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3555 ifr.lifr_ip_muxid = ip_muxid;
3556 ifr.lifr_arp_muxid = arp_muxid;
3558 if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
3560 ioctl (ip_fd, I_PUNLINK , arp_muxid);
3561 ioctl (ip_fd, I_PUNLINK, ip_muxid);
3562 syslog (LOG_ERR, "Can't set multiplexor id");
3565 sprintf(dev, "tap%d", ppa);
3566 return tap_fd;
3569 static int tap_open(char *ifname, int ifname_size)
3571 char dev[10]="";
3572 int fd;
3573 if( (fd = tap_alloc(dev)) < 0 ){
3574 fprintf(stderr, "Cannot allocate TAP device\n");
3575 return -1;
3577 pstrcpy(ifname, ifname_size, dev);
3578 fcntl(fd, F_SETFL, O_NONBLOCK);
3579 return fd;
3581 #else
3582 static int tap_open(char *ifname, int ifname_size)
3584 struct ifreq ifr;
3585 int fd, ret;
3587 fd = open("/dev/net/tun", O_RDWR);
3588 if (fd < 0) {
3589 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
3590 return -1;
3592 memset(&ifr, 0, sizeof(ifr));
3593 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
3594 if (ifname[0] != '\0')
3595 pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
3596 else
3597 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
3598 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
3599 if (ret != 0) {
3600 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
3601 close(fd);
3602 return -1;
3604 pstrcpy(ifname, ifname_size, ifr.ifr_name);
3605 fcntl(fd, F_SETFL, O_NONBLOCK);
3606 return fd;
3608 #endif
3610 static int net_tap_init(VLANState *vlan, const char *ifname1,
3611 const char *setup_script)
3613 TAPState *s;
3614 int pid, status, fd;
3615 char *args[3];
3616 char **parg;
3617 char ifname[128];
3619 if (ifname1 != NULL)
3620 pstrcpy(ifname, sizeof(ifname), ifname1);
3621 else
3622 ifname[0] = '\0';
3623 fd = tap_open(ifname, sizeof(ifname));
3624 if (fd < 0)
3625 return -1;
3627 if (!setup_script || !strcmp(setup_script, "no"))
3628 setup_script = "";
3629 if (setup_script[0] != '\0') {
3630 /* try to launch network init script */
3631 pid = fork();
3632 if (pid >= 0) {
3633 if (pid == 0) {
3634 int open_max = sysconf (_SC_OPEN_MAX), i;
3635 for (i = 0; i < open_max; i++)
3636 if (i != STDIN_FILENO &&
3637 i != STDOUT_FILENO &&
3638 i != STDERR_FILENO &&
3639 i != fd)
3640 close(i);
3642 parg = args;
3643 *parg++ = (char *)setup_script;
3644 *parg++ = ifname;
3645 *parg++ = NULL;
3646 execv(setup_script, args);
3647 _exit(1);
3649 while (waitpid(pid, &status, 0) != pid);
3650 if (!WIFEXITED(status) ||
3651 WEXITSTATUS(status) != 0) {
3652 fprintf(stderr, "%s: could not launch network script\n",
3653 setup_script);
3654 return -1;
3658 s = net_tap_fd_init(vlan, fd);
3659 if (!s)
3660 return -1;
3661 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3662 "tap: ifname=%s setup_script=%s", ifname, setup_script);
3663 return 0;
3666 #endif /* !_WIN32 */
3668 /* network connection */
3669 typedef struct NetSocketState {
3670 VLANClientState *vc;
3671 int fd;
3672 int state; /* 0 = getting length, 1 = getting data */
3673 int index;
3674 int packet_len;
3675 uint8_t buf[4096];
3676 struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
3677 } NetSocketState;
3679 typedef struct NetSocketListenState {
3680 VLANState *vlan;
3681 int fd;
3682 } NetSocketListenState;
3684 /* XXX: we consider we can send the whole packet without blocking */
3685 static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
3687 NetSocketState *s = opaque;
3688 uint32_t len;
3689 len = htonl(size);
3691 send_all(s->fd, (const uint8_t *)&len, sizeof(len));
3692 send_all(s->fd, buf, size);
3695 static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
3697 NetSocketState *s = opaque;
3698 sendto(s->fd, buf, size, 0,
3699 (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
3702 static void net_socket_send(void *opaque)
3704 NetSocketState *s = opaque;
3705 int l, size, err;
3706 uint8_t buf1[4096];
3707 const uint8_t *buf;
3709 size = recv(s->fd, buf1, sizeof(buf1), 0);
3710 if (size < 0) {
3711 err = socket_error();
3712 if (err != EWOULDBLOCK)
3713 goto eoc;
3714 } else if (size == 0) {
3715 /* end of connection */
3716 eoc:
3717 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3718 closesocket(s->fd);
3719 return;
3721 buf = buf1;
3722 while (size > 0) {
3723 /* reassemble a packet from the network */
3724 switch(s->state) {
3725 case 0:
3726 l = 4 - s->index;
3727 if (l > size)
3728 l = size;
3729 memcpy(s->buf + s->index, buf, l);
3730 buf += l;
3731 size -= l;
3732 s->index += l;
3733 if (s->index == 4) {
3734 /* got length */
3735 s->packet_len = ntohl(*(uint32_t *)s->buf);
3736 s->index = 0;
3737 s->state = 1;
3739 break;
3740 case 1:
3741 l = s->packet_len - s->index;
3742 if (l > size)
3743 l = size;
3744 memcpy(s->buf + s->index, buf, l);
3745 s->index += l;
3746 buf += l;
3747 size -= l;
3748 if (s->index >= s->packet_len) {
3749 qemu_send_packet(s->vc, s->buf, s->packet_len);
3750 s->index = 0;
3751 s->state = 0;
3753 break;
3758 static void net_socket_send_dgram(void *opaque)
3760 NetSocketState *s = opaque;
3761 int size;
3763 size = recv(s->fd, s->buf, sizeof(s->buf), 0);
3764 if (size < 0)
3765 return;
3766 if (size == 0) {
3767 /* end of connection */
3768 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3769 return;
3771 qemu_send_packet(s->vc, s->buf, size);
3774 static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
3776 struct ip_mreq imr;
3777 int fd;
3778 int val, ret;
3779 if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
3780 fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
3781 inet_ntoa(mcastaddr->sin_addr),
3782 (int)ntohl(mcastaddr->sin_addr.s_addr));
3783 return -1;
3786 fd = socket(PF_INET, SOCK_DGRAM, 0);
3787 if (fd < 0) {
3788 perror("socket(PF_INET, SOCK_DGRAM)");
3789 return -1;
3792 val = 1;
3793 ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
3794 (const char *)&val, sizeof(val));
3795 if (ret < 0) {
3796 perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
3797 goto fail;
3800 ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
3801 if (ret < 0) {
3802 perror("bind");
3803 goto fail;
3806 /* Add host to multicast group */
3807 imr.imr_multiaddr = mcastaddr->sin_addr;
3808 imr.imr_interface.s_addr = htonl(INADDR_ANY);
3810 ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
3811 (const char *)&imr, sizeof(struct ip_mreq));
3812 if (ret < 0) {
3813 perror("setsockopt(IP_ADD_MEMBERSHIP)");
3814 goto fail;
3817 /* Force mcast msgs to loopback (eg. several QEMUs in same host */
3818 val = 1;
3819 ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
3820 (const char *)&val, sizeof(val));
3821 if (ret < 0) {
3822 perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
3823 goto fail;
3826 socket_set_nonblock(fd);
3827 return fd;
3828 fail:
3829 if (fd >= 0)
3830 closesocket(fd);
3831 return -1;
3834 static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
3835 int is_connected)
3837 struct sockaddr_in saddr;
3838 int newfd;
3839 socklen_t saddr_len;
3840 NetSocketState *s;
3842 /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
3843 * Because this may be "shared" socket from a "master" process, datagrams would be recv()
3844 * by ONLY ONE process: we must "clone" this dgram socket --jjo
3847 if (is_connected) {
3848 if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
3849 /* must be bound */
3850 if (saddr.sin_addr.s_addr==0) {
3851 fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
3852 fd);
3853 return NULL;
3855 /* clone dgram socket */
3856 newfd = net_socket_mcast_create(&saddr);
3857 if (newfd < 0) {
3858 /* error already reported by net_socket_mcast_create() */
3859 close(fd);
3860 return NULL;
3862 /* clone newfd to fd, close newfd */
3863 dup2(newfd, fd);
3864 close(newfd);
3866 } else {
3867 fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
3868 fd, strerror(errno));
3869 return NULL;
3873 s = qemu_mallocz(sizeof(NetSocketState));
3874 if (!s)
3875 return NULL;
3876 s->fd = fd;
3878 s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
3879 qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
3881 /* mcast: save bound address as dst */
3882 if (is_connected) s->dgram_dst=saddr;
3884 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3885 "socket: fd=%d (%s mcast=%s:%d)",
3886 fd, is_connected? "cloned" : "",
3887 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
3888 return s;
3891 static void net_socket_connect(void *opaque)
3893 NetSocketState *s = opaque;
3894 qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
3897 static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
3898 int is_connected)
3900 NetSocketState *s;
3901 s = qemu_mallocz(sizeof(NetSocketState));
3902 if (!s)
3903 return NULL;
3904 s->fd = fd;
3905 s->vc = qemu_new_vlan_client(vlan,
3906 net_socket_receive, NULL, s);
3907 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3908 "socket: fd=%d", fd);
3909 if (is_connected) {
3910 net_socket_connect(s);
3911 } else {
3912 qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
3914 return s;
3917 static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
3918 int is_connected)
3920 int so_type=-1, optlen=sizeof(so_type);
3922 if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type, &optlen)< 0) {
3923 fprintf(stderr, "qemu: error: setsockopt(SO_TYPE) for fd=%d failed\n", fd);
3924 return NULL;
3926 switch(so_type) {
3927 case SOCK_DGRAM:
3928 return net_socket_fd_init_dgram(vlan, fd, is_connected);
3929 case SOCK_STREAM:
3930 return net_socket_fd_init_stream(vlan, fd, is_connected);
3931 default:
3932 /* who knows ... this could be a eg. a pty, do warn and continue as stream */
3933 fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
3934 return net_socket_fd_init_stream(vlan, fd, is_connected);
3936 return NULL;
3939 static void net_socket_accept(void *opaque)
3941 NetSocketListenState *s = opaque;
3942 NetSocketState *s1;
3943 struct sockaddr_in saddr;
3944 socklen_t len;
3945 int fd;
3947 for(;;) {
3948 len = sizeof(saddr);
3949 fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
3950 if (fd < 0 && errno != EINTR) {
3951 return;
3952 } else if (fd >= 0) {
3953 break;
3956 s1 = net_socket_fd_init(s->vlan, fd, 1);
3957 if (!s1) {
3958 closesocket(fd);
3959 } else {
3960 snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
3961 "socket: connection from %s:%d",
3962 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
3966 static int net_socket_listen_init(VLANState *vlan, const char *host_str)
3968 NetSocketListenState *s;
3969 int fd, val, ret;
3970 struct sockaddr_in saddr;
3972 if (parse_host_port(&saddr, host_str) < 0)
3973 return -1;
3975 s = qemu_mallocz(sizeof(NetSocketListenState));
3976 if (!s)
3977 return -1;
3979 fd = socket(PF_INET, SOCK_STREAM, 0);
3980 if (fd < 0) {
3981 perror("socket");
3982 return -1;
3984 socket_set_nonblock(fd);
3986 /* allow fast reuse */
3987 val = 1;
3988 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3990 ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
3991 if (ret < 0) {
3992 perror("bind");
3993 return -1;
3995 ret = listen(fd, 0);
3996 if (ret < 0) {
3997 perror("listen");
3998 return -1;
4000 s->vlan = vlan;
4001 s->fd = fd;
4002 qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
4003 return 0;
4006 static int net_socket_connect_init(VLANState *vlan, const char *host_str)
4008 NetSocketState *s;
4009 int fd, connected, ret, err;
4010 struct sockaddr_in saddr;
4012 if (parse_host_port(&saddr, host_str) < 0)
4013 return -1;
4015 fd = socket(PF_INET, SOCK_STREAM, 0);
4016 if (fd < 0) {
4017 perror("socket");
4018 return -1;
4020 socket_set_nonblock(fd);
4022 connected = 0;
4023 for(;;) {
4024 ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4025 if (ret < 0) {
4026 err = socket_error();
4027 if (err == EINTR || err == EWOULDBLOCK) {
4028 } else if (err == EINPROGRESS) {
4029 break;
4030 #ifdef _WIN32
4031 } else if (err == WSAEALREADY) {
4032 break;
4033 #endif
4034 } else {
4035 perror("connect");
4036 closesocket(fd);
4037 return -1;
4039 } else {
4040 connected = 1;
4041 break;
4044 s = net_socket_fd_init(vlan, fd, connected);
4045 if (!s)
4046 return -1;
4047 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4048 "socket: connect to %s:%d",
4049 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4050 return 0;
4053 static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4055 NetSocketState *s;
4056 int fd;
4057 struct sockaddr_in saddr;
4059 if (parse_host_port(&saddr, host_str) < 0)
4060 return -1;
4063 fd = net_socket_mcast_create(&saddr);
4064 if (fd < 0)
4065 return -1;
4067 s = net_socket_fd_init(vlan, fd, 0);
4068 if (!s)
4069 return -1;
4071 s->dgram_dst = saddr;
4073 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4074 "socket: mcast=%s:%d",
4075 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4076 return 0;
4080 static int get_param_value(char *buf, int buf_size,
4081 const char *tag, const char *str)
4083 const char *p;
4084 char *q;
4085 char option[128];
4087 p = str;
4088 for(;;) {
4089 q = option;
4090 while (*p != '\0' && *p != '=') {
4091 if ((q - option) < sizeof(option) - 1)
4092 *q++ = *p;
4093 p++;
4095 *q = '\0';
4096 if (*p != '=')
4097 break;
4098 p++;
4099 if (!strcmp(tag, option)) {
4100 q = buf;
4101 while (*p != '\0' && *p != ',') {
4102 if ((q - buf) < buf_size - 1)
4103 *q++ = *p;
4104 p++;
4106 *q = '\0';
4107 return q - buf;
4108 } else {
4109 while (*p != '\0' && *p != ',') {
4110 p++;
4113 if (*p != ',')
4114 break;
4115 p++;
4117 return 0;
4120 static int net_client_init(const char *str)
4122 const char *p;
4123 char *q;
4124 char device[64];
4125 char buf[1024];
4126 int vlan_id, ret;
4127 VLANState *vlan;
4129 p = str;
4130 q = device;
4131 while (*p != '\0' && *p != ',') {
4132 if ((q - device) < sizeof(device) - 1)
4133 *q++ = *p;
4134 p++;
4136 *q = '\0';
4137 if (*p == ',')
4138 p++;
4139 vlan_id = 0;
4140 if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4141 vlan_id = strtol(buf, NULL, 0);
4143 vlan = qemu_find_vlan(vlan_id);
4144 if (!vlan) {
4145 fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4146 return -1;
4148 if (!strcmp(device, "nic")) {
4149 NICInfo *nd;
4150 uint8_t *macaddr;
4152 if (nb_nics >= MAX_NICS) {
4153 fprintf(stderr, "Too Many NICs\n");
4154 return -1;
4156 nd = &nd_table[nb_nics];
4157 macaddr = nd->macaddr;
4158 macaddr[0] = 0x52;
4159 macaddr[1] = 0x54;
4160 macaddr[2] = 0x00;
4161 macaddr[3] = 0x12;
4162 macaddr[4] = 0x34;
4163 macaddr[5] = 0x56 + nb_nics;
4165 if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4166 if (parse_macaddr(macaddr, buf) < 0) {
4167 fprintf(stderr, "invalid syntax for ethernet address\n");
4168 return -1;
4171 if (get_param_value(buf, sizeof(buf), "model", p)) {
4172 nd->model = strdup(buf);
4174 nd->vlan = vlan;
4175 nb_nics++;
4176 ret = 0;
4177 } else
4178 if (!strcmp(device, "none")) {
4179 /* does nothing. It is needed to signal that no network cards
4180 are wanted */
4181 ret = 0;
4182 } else
4183 #ifdef CONFIG_SLIRP
4184 if (!strcmp(device, "user")) {
4185 if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4186 pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4188 ret = net_slirp_init(vlan);
4189 } else
4190 #endif
4191 #ifdef _WIN32
4192 if (!strcmp(device, "tap")) {
4193 char ifname[64];
4194 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4195 fprintf(stderr, "tap: no interface name\n");
4196 return -1;
4198 ret = tap_win32_init(vlan, ifname);
4199 } else
4200 #else
4201 if (!strcmp(device, "tap")) {
4202 char ifname[64];
4203 char setup_script[1024];
4204 int fd;
4205 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4206 fd = strtol(buf, NULL, 0);
4207 ret = -1;
4208 if (net_tap_fd_init(vlan, fd))
4209 ret = 0;
4210 } else {
4211 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4212 ifname[0] = '\0';
4214 if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4215 pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4217 ret = net_tap_init(vlan, ifname, setup_script);
4219 } else
4220 #endif
4221 if (!strcmp(device, "socket")) {
4222 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4223 int fd;
4224 fd = strtol(buf, NULL, 0);
4225 ret = -1;
4226 if (net_socket_fd_init(vlan, fd, 1))
4227 ret = 0;
4228 } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4229 ret = net_socket_listen_init(vlan, buf);
4230 } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4231 ret = net_socket_connect_init(vlan, buf);
4232 } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4233 ret = net_socket_mcast_init(vlan, buf);
4234 } else {
4235 fprintf(stderr, "Unknown socket options: %s\n", p);
4236 return -1;
4238 } else
4240 fprintf(stderr, "Unknown network device: %s\n", device);
4241 return -1;
4243 if (ret < 0) {
4244 fprintf(stderr, "Could not initialize device '%s'\n", device);
4247 return ret;
4250 void do_info_network(void)
4252 VLANState *vlan;
4253 VLANClientState *vc;
4255 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4256 term_printf("VLAN %d devices:\n", vlan->id);
4257 for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4258 term_printf(" %s\n", vc->info_str);
4262 /***********************************************************/
4263 /* USB devices */
4265 static USBPort *used_usb_ports;
4266 static USBPort *free_usb_ports;
4268 /* ??? Maybe change this to register a hub to keep track of the topology. */
4269 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
4270 usb_attachfn attach)
4272 port->opaque = opaque;
4273 port->index = index;
4274 port->attach = attach;
4275 port->next = free_usb_ports;
4276 free_usb_ports = port;
4279 static int usb_device_add(const char *devname)
4281 const char *p;
4282 USBDevice *dev;
4283 USBPort *port;
4285 if (!free_usb_ports)
4286 return -1;
4288 if (strstart(devname, "host:", &p)) {
4289 dev = usb_host_device_open(p);
4290 } else if (!strcmp(devname, "mouse")) {
4291 dev = usb_mouse_init();
4292 } else if (!strcmp(devname, "tablet")) {
4293 dev = usb_tablet_init();
4294 } else if (strstart(devname, "disk:", &p)) {
4295 dev = usb_msd_init(p);
4296 } else {
4297 return -1;
4299 if (!dev)
4300 return -1;
4302 /* Find a USB port to add the device to. */
4303 port = free_usb_ports;
4304 if (!port->next) {
4305 USBDevice *hub;
4307 /* Create a new hub and chain it on. */
4308 free_usb_ports = NULL;
4309 port->next = used_usb_ports;
4310 used_usb_ports = port;
4312 hub = usb_hub_init(VM_USB_HUB_SIZE);
4313 usb_attach(port, hub);
4314 port = free_usb_ports;
4317 free_usb_ports = port->next;
4318 port->next = used_usb_ports;
4319 used_usb_ports = port;
4320 usb_attach(port, dev);
4321 return 0;
4324 static int usb_device_del(const char *devname)
4326 USBPort *port;
4327 USBPort **lastp;
4328 USBDevice *dev;
4329 int bus_num, addr;
4330 const char *p;
4332 if (!used_usb_ports)
4333 return -1;
4335 p = strchr(devname, '.');
4336 if (!p)
4337 return -1;
4338 bus_num = strtoul(devname, NULL, 0);
4339 addr = strtoul(p + 1, NULL, 0);
4340 if (bus_num != 0)
4341 return -1;
4343 lastp = &used_usb_ports;
4344 port = used_usb_ports;
4345 while (port && port->dev->addr != addr) {
4346 lastp = &port->next;
4347 port = port->next;
4350 if (!port)
4351 return -1;
4353 dev = port->dev;
4354 *lastp = port->next;
4355 usb_attach(port, NULL);
4356 dev->handle_destroy(dev);
4357 port->next = free_usb_ports;
4358 free_usb_ports = port;
4359 return 0;
4362 void do_usb_add(const char *devname)
4364 int ret;
4365 ret = usb_device_add(devname);
4366 if (ret < 0)
4367 term_printf("Could not add USB device '%s'\n", devname);
4370 void do_usb_del(const char *devname)
4372 int ret;
4373 ret = usb_device_del(devname);
4374 if (ret < 0)
4375 term_printf("Could not remove USB device '%s'\n", devname);
4378 void usb_info(void)
4380 USBDevice *dev;
4381 USBPort *port;
4382 const char *speed_str;
4384 if (!usb_enabled) {
4385 term_printf("USB support not enabled\n");
4386 return;
4389 for (port = used_usb_ports; port; port = port->next) {
4390 dev = port->dev;
4391 if (!dev)
4392 continue;
4393 switch(dev->speed) {
4394 case USB_SPEED_LOW:
4395 speed_str = "1.5";
4396 break;
4397 case USB_SPEED_FULL:
4398 speed_str = "12";
4399 break;
4400 case USB_SPEED_HIGH:
4401 speed_str = "480";
4402 break;
4403 default:
4404 speed_str = "?";
4405 break;
4407 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
4408 0, dev->addr, speed_str, dev->devname);
4412 /***********************************************************/
4413 /* dumb display */
4415 static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
4419 static void dumb_resize(DisplayState *ds, int w, int h)
4423 static void dumb_refresh(DisplayState *ds)
4425 vga_hw_update();
4428 void dumb_display_init(DisplayState *ds)
4430 ds->data = NULL;
4431 ds->linesize = 0;
4432 ds->depth = 0;
4433 ds->dpy_update = dumb_update;
4434 ds->dpy_resize = dumb_resize;
4435 ds->dpy_refresh = dumb_refresh;
4438 /***********************************************************/
4439 /* I/O handling */
4441 #define MAX_IO_HANDLERS 64
4443 typedef struct IOHandlerRecord {
4444 int fd;
4445 IOCanRWHandler *fd_read_poll;
4446 IOHandler *fd_read;
4447 IOHandler *fd_write;
4448 int deleted;
4449 void *opaque;
4450 /* temporary data */
4451 struct pollfd *ufd;
4452 struct IOHandlerRecord *next;
4453 } IOHandlerRecord;
4455 static IOHandlerRecord *first_io_handler;
4457 /* XXX: fd_read_poll should be suppressed, but an API change is
4458 necessary in the character devices to suppress fd_can_read(). */
4459 int qemu_set_fd_handler2(int fd,
4460 IOCanRWHandler *fd_read_poll,
4461 IOHandler *fd_read,
4462 IOHandler *fd_write,
4463 void *opaque)
4465 IOHandlerRecord **pioh, *ioh;
4467 if (!fd_read && !fd_write) {
4468 pioh = &first_io_handler;
4469 for(;;) {
4470 ioh = *pioh;
4471 if (ioh == NULL)
4472 break;
4473 if (ioh->fd == fd) {
4474 ioh->deleted = 1;
4475 break;
4477 pioh = &ioh->next;
4479 } else {
4480 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4481 if (ioh->fd == fd)
4482 goto found;
4484 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
4485 if (!ioh)
4486 return -1;
4487 ioh->next = first_io_handler;
4488 first_io_handler = ioh;
4489 found:
4490 ioh->fd = fd;
4491 ioh->fd_read_poll = fd_read_poll;
4492 ioh->fd_read = fd_read;
4493 ioh->fd_write = fd_write;
4494 ioh->opaque = opaque;
4495 ioh->deleted = 0;
4497 return 0;
4500 int qemu_set_fd_handler(int fd,
4501 IOHandler *fd_read,
4502 IOHandler *fd_write,
4503 void *opaque)
4505 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
4508 /***********************************************************/
4509 /* Polling handling */
4511 typedef struct PollingEntry {
4512 PollingFunc *func;
4513 void *opaque;
4514 struct PollingEntry *next;
4515 } PollingEntry;
4517 static PollingEntry *first_polling_entry;
4519 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
4521 PollingEntry **ppe, *pe;
4522 pe = qemu_mallocz(sizeof(PollingEntry));
4523 if (!pe)
4524 return -1;
4525 pe->func = func;
4526 pe->opaque = opaque;
4527 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
4528 *ppe = pe;
4529 return 0;
4532 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
4534 PollingEntry **ppe, *pe;
4535 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
4536 pe = *ppe;
4537 if (pe->func == func && pe->opaque == opaque) {
4538 *ppe = pe->next;
4539 qemu_free(pe);
4540 break;
4545 #ifdef _WIN32
4546 /***********************************************************/
4547 /* Wait objects support */
4548 typedef struct WaitObjects {
4549 int num;
4550 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
4551 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
4552 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
4553 } WaitObjects;
4555 static WaitObjects wait_objects = {0};
4557 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
4559 WaitObjects *w = &wait_objects;
4561 if (w->num >= MAXIMUM_WAIT_OBJECTS)
4562 return -1;
4563 w->events[w->num] = handle;
4564 w->func[w->num] = func;
4565 w->opaque[w->num] = opaque;
4566 w->num++;
4567 return 0;
4570 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
4572 int i, found;
4573 WaitObjects *w = &wait_objects;
4575 found = 0;
4576 for (i = 0; i < w->num; i++) {
4577 if (w->events[i] == handle)
4578 found = 1;
4579 if (found) {
4580 w->events[i] = w->events[i + 1];
4581 w->func[i] = w->func[i + 1];
4582 w->opaque[i] = w->opaque[i + 1];
4585 if (found)
4586 w->num--;
4588 #endif
4590 /***********************************************************/
4591 /* savevm/loadvm support */
4593 #define IO_BUF_SIZE 32768
4595 struct QEMUFile {
4596 FILE *outfile;
4597 BlockDriverState *bs;
4598 int is_file;
4599 int is_writable;
4600 int64_t base_offset;
4601 int64_t buf_offset; /* start of buffer when writing, end of buffer
4602 when reading */
4603 int buf_index;
4604 int buf_size; /* 0 when writing */
4605 uint8_t buf[IO_BUF_SIZE];
4608 QEMUFile *qemu_fopen(const char *filename, const char *mode)
4610 QEMUFile *f;
4612 f = qemu_mallocz(sizeof(QEMUFile));
4613 if (!f)
4614 return NULL;
4615 if (!strcmp(mode, "wb")) {
4616 f->is_writable = 1;
4617 } else if (!strcmp(mode, "rb")) {
4618 f->is_writable = 0;
4619 } else {
4620 goto fail;
4622 f->outfile = fopen(filename, mode);
4623 if (!f->outfile)
4624 goto fail;
4625 f->is_file = 1;
4626 return f;
4627 fail:
4628 if (f->outfile)
4629 fclose(f->outfile);
4630 qemu_free(f);
4631 return NULL;
4634 QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
4636 QEMUFile *f;
4638 f = qemu_mallocz(sizeof(QEMUFile));
4639 if (!f)
4640 return NULL;
4641 f->is_file = 0;
4642 f->bs = bs;
4643 f->is_writable = is_writable;
4644 f->base_offset = offset;
4645 return f;
4648 void qemu_fflush(QEMUFile *f)
4650 if (!f->is_writable)
4651 return;
4652 if (f->buf_index > 0) {
4653 if (f->is_file) {
4654 fseek(f->outfile, f->buf_offset, SEEK_SET);
4655 fwrite(f->buf, 1, f->buf_index, f->outfile);
4656 } else {
4657 bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
4658 f->buf, f->buf_index);
4660 f->buf_offset += f->buf_index;
4661 f->buf_index = 0;
4665 static void qemu_fill_buffer(QEMUFile *f)
4667 int len;
4669 if (f->is_writable)
4670 return;
4671 if (f->is_file) {
4672 fseek(f->outfile, f->buf_offset, SEEK_SET);
4673 len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
4674 if (len < 0)
4675 len = 0;
4676 } else {
4677 len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
4678 f->buf, IO_BUF_SIZE);
4679 if (len < 0)
4680 len = 0;
4682 f->buf_index = 0;
4683 f->buf_size = len;
4684 f->buf_offset += len;
4687 void qemu_fclose(QEMUFile *f)
4689 if (f->is_writable)
4690 qemu_fflush(f);
4691 if (f->is_file) {
4692 fclose(f->outfile);
4694 qemu_free(f);
4697 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
4699 int l;
4700 while (size > 0) {
4701 l = IO_BUF_SIZE - f->buf_index;
4702 if (l > size)
4703 l = size;
4704 memcpy(f->buf + f->buf_index, buf, l);
4705 f->buf_index += l;
4706 buf += l;
4707 size -= l;
4708 if (f->buf_index >= IO_BUF_SIZE)
4709 qemu_fflush(f);
4713 void qemu_put_byte(QEMUFile *f, int v)
4715 f->buf[f->buf_index++] = v;
4716 if (f->buf_index >= IO_BUF_SIZE)
4717 qemu_fflush(f);
4720 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
4722 int size, l;
4724 size = size1;
4725 while (size > 0) {
4726 l = f->buf_size - f->buf_index;
4727 if (l == 0) {
4728 qemu_fill_buffer(f);
4729 l = f->buf_size - f->buf_index;
4730 if (l == 0)
4731 break;
4733 if (l > size)
4734 l = size;
4735 memcpy(buf, f->buf + f->buf_index, l);
4736 f->buf_index += l;
4737 buf += l;
4738 size -= l;
4740 return size1 - size;
4743 int qemu_get_byte(QEMUFile *f)
4745 if (f->buf_index >= f->buf_size) {
4746 qemu_fill_buffer(f);
4747 if (f->buf_index >= f->buf_size)
4748 return 0;
4750 return f->buf[f->buf_index++];
4753 int64_t qemu_ftell(QEMUFile *f)
4755 return f->buf_offset - f->buf_size + f->buf_index;
4758 int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
4760 if (whence == SEEK_SET) {
4761 /* nothing to do */
4762 } else if (whence == SEEK_CUR) {
4763 pos += qemu_ftell(f);
4764 } else {
4765 /* SEEK_END not supported */
4766 return -1;
4768 if (f->is_writable) {
4769 qemu_fflush(f);
4770 f->buf_offset = pos;
4771 } else {
4772 f->buf_offset = pos;
4773 f->buf_index = 0;
4774 f->buf_size = 0;
4776 return pos;
4779 void qemu_put_be16(QEMUFile *f, unsigned int v)
4781 qemu_put_byte(f, v >> 8);
4782 qemu_put_byte(f, v);
4785 void qemu_put_be32(QEMUFile *f, unsigned int v)
4787 qemu_put_byte(f, v >> 24);
4788 qemu_put_byte(f, v >> 16);
4789 qemu_put_byte(f, v >> 8);
4790 qemu_put_byte(f, v);
4793 void qemu_put_be64(QEMUFile *f, uint64_t v)
4795 qemu_put_be32(f, v >> 32);
4796 qemu_put_be32(f, v);
4799 unsigned int qemu_get_be16(QEMUFile *f)
4801 unsigned int v;
4802 v = qemu_get_byte(f) << 8;
4803 v |= qemu_get_byte(f);
4804 return v;
4807 unsigned int qemu_get_be32(QEMUFile *f)
4809 unsigned int v;
4810 v = qemu_get_byte(f) << 24;
4811 v |= qemu_get_byte(f) << 16;
4812 v |= qemu_get_byte(f) << 8;
4813 v |= qemu_get_byte(f);
4814 return v;
4817 uint64_t qemu_get_be64(QEMUFile *f)
4819 uint64_t v;
4820 v = (uint64_t)qemu_get_be32(f) << 32;
4821 v |= qemu_get_be32(f);
4822 return v;
4825 typedef struct SaveStateEntry {
4826 char idstr[256];
4827 int instance_id;
4828 int version_id;
4829 SaveStateHandler *save_state;
4830 LoadStateHandler *load_state;
4831 void *opaque;
4832 struct SaveStateEntry *next;
4833 } SaveStateEntry;
4835 static SaveStateEntry *first_se;
4837 int register_savevm(const char *idstr,
4838 int instance_id,
4839 int version_id,
4840 SaveStateHandler *save_state,
4841 LoadStateHandler *load_state,
4842 void *opaque)
4844 SaveStateEntry *se, **pse;
4846 se = qemu_malloc(sizeof(SaveStateEntry));
4847 if (!se)
4848 return -1;
4849 pstrcpy(se->idstr, sizeof(se->idstr), idstr);
4850 se->instance_id = instance_id;
4851 se->version_id = version_id;
4852 se->save_state = save_state;
4853 se->load_state = load_state;
4854 se->opaque = opaque;
4855 se->next = NULL;
4857 /* add at the end of list */
4858 pse = &first_se;
4859 while (*pse != NULL)
4860 pse = &(*pse)->next;
4861 *pse = se;
4862 return 0;
4865 #define QEMU_VM_FILE_MAGIC 0x5145564d
4866 #define QEMU_VM_FILE_VERSION 0x00000002
4868 int qemu_savevm_state(QEMUFile *f)
4870 SaveStateEntry *se;
4871 int len, ret;
4872 int64_t cur_pos, len_pos, total_len_pos;
4874 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
4875 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
4876 total_len_pos = qemu_ftell(f);
4877 qemu_put_be64(f, 0); /* total size */
4879 for(se = first_se; se != NULL; se = se->next) {
4880 /* ID string */
4881 len = strlen(se->idstr);
4882 qemu_put_byte(f, len);
4883 qemu_put_buffer(f, se->idstr, len);
4885 qemu_put_be32(f, se->instance_id);
4886 qemu_put_be32(f, se->version_id);
4888 /* record size: filled later */
4889 len_pos = qemu_ftell(f);
4890 qemu_put_be32(f, 0);
4892 se->save_state(f, se->opaque);
4894 /* fill record size */
4895 cur_pos = qemu_ftell(f);
4896 len = cur_pos - len_pos - 4;
4897 qemu_fseek(f, len_pos, SEEK_SET);
4898 qemu_put_be32(f, len);
4899 qemu_fseek(f, cur_pos, SEEK_SET);
4901 cur_pos = qemu_ftell(f);
4902 qemu_fseek(f, total_len_pos, SEEK_SET);
4903 qemu_put_be64(f, cur_pos - total_len_pos - 8);
4904 qemu_fseek(f, cur_pos, SEEK_SET);
4906 ret = 0;
4907 return ret;
4910 static SaveStateEntry *find_se(const char *idstr, int instance_id)
4912 SaveStateEntry *se;
4914 for(se = first_se; se != NULL; se = se->next) {
4915 if (!strcmp(se->idstr, idstr) &&
4916 instance_id == se->instance_id)
4917 return se;
4919 return NULL;
4922 int qemu_loadvm_state(QEMUFile *f)
4924 SaveStateEntry *se;
4925 int len, ret, instance_id, record_len, version_id;
4926 int64_t total_len, end_pos, cur_pos;
4927 unsigned int v;
4928 char idstr[256];
4930 v = qemu_get_be32(f);
4931 if (v != QEMU_VM_FILE_MAGIC)
4932 goto fail;
4933 v = qemu_get_be32(f);
4934 if (v != QEMU_VM_FILE_VERSION) {
4935 fail:
4936 ret = -1;
4937 goto the_end;
4939 total_len = qemu_get_be64(f);
4940 end_pos = total_len + qemu_ftell(f);
4941 for(;;) {
4942 if (qemu_ftell(f) >= end_pos)
4943 break;
4944 len = qemu_get_byte(f);
4945 qemu_get_buffer(f, idstr, len);
4946 idstr[len] = '\0';
4947 instance_id = qemu_get_be32(f);
4948 version_id = qemu_get_be32(f);
4949 record_len = qemu_get_be32(f);
4950 #if 0
4951 printf("idstr=%s instance=0x%x version=%d len=%d\n",
4952 idstr, instance_id, version_id, record_len);
4953 #endif
4954 cur_pos = qemu_ftell(f);
4955 se = find_se(idstr, instance_id);
4956 if (!se) {
4957 fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
4958 instance_id, idstr);
4959 } else {
4960 ret = se->load_state(f, se->opaque, version_id);
4961 if (ret < 0) {
4962 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
4963 instance_id, idstr);
4966 /* always seek to exact end of record */
4967 qemu_fseek(f, cur_pos + record_len, SEEK_SET);
4969 ret = 0;
4970 the_end:
4971 return ret;
4974 /* device can contain snapshots */
4975 static int bdrv_can_snapshot(BlockDriverState *bs)
4977 return (bs &&
4978 !bdrv_is_removable(bs) &&
4979 !bdrv_is_read_only(bs));
4982 /* device must be snapshots in order to have a reliable snapshot */
4983 static int bdrv_has_snapshot(BlockDriverState *bs)
4985 return (bs &&
4986 !bdrv_is_removable(bs) &&
4987 !bdrv_is_read_only(bs));
4990 static BlockDriverState *get_bs_snapshots(void)
4992 BlockDriverState *bs;
4993 int i;
4995 if (bs_snapshots)
4996 return bs_snapshots;
4997 for(i = 0; i <= MAX_DISKS; i++) {
4998 bs = bs_table[i];
4999 if (bdrv_can_snapshot(bs))
5000 goto ok;
5002 return NULL;
5004 bs_snapshots = bs;
5005 return bs;
5008 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
5009 const char *name)
5011 QEMUSnapshotInfo *sn_tab, *sn;
5012 int nb_sns, i, ret;
5014 ret = -ENOENT;
5015 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5016 if (nb_sns < 0)
5017 return ret;
5018 for(i = 0; i < nb_sns; i++) {
5019 sn = &sn_tab[i];
5020 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
5021 *sn_info = *sn;
5022 ret = 0;
5023 break;
5026 qemu_free(sn_tab);
5027 return ret;
5030 void do_savevm(const char *name)
5032 BlockDriverState *bs, *bs1;
5033 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
5034 int must_delete, ret, i;
5035 BlockDriverInfo bdi1, *bdi = &bdi1;
5036 QEMUFile *f;
5037 int saved_vm_running;
5038 #ifdef _WIN32
5039 struct _timeb tb;
5040 #else
5041 struct timeval tv;
5042 #endif
5044 bs = get_bs_snapshots();
5045 if (!bs) {
5046 term_printf("No block device can accept snapshots\n");
5047 return;
5050 /* ??? Should this occur after vm_stop? */
5051 qemu_aio_flush();
5053 saved_vm_running = vm_running;
5054 vm_stop(0);
5056 must_delete = 0;
5057 if (name) {
5058 ret = bdrv_snapshot_find(bs, old_sn, name);
5059 if (ret >= 0) {
5060 must_delete = 1;
5063 memset(sn, 0, sizeof(*sn));
5064 if (must_delete) {
5065 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
5066 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
5067 } else {
5068 if (name)
5069 pstrcpy(sn->name, sizeof(sn->name), name);
5072 /* fill auxiliary fields */
5073 #ifdef _WIN32
5074 _ftime(&tb);
5075 sn->date_sec = tb.time;
5076 sn->date_nsec = tb.millitm * 1000000;
5077 #else
5078 gettimeofday(&tv, NULL);
5079 sn->date_sec = tv.tv_sec;
5080 sn->date_nsec = tv.tv_usec * 1000;
5081 #endif
5082 sn->vm_clock_nsec = qemu_get_clock(vm_clock);
5084 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5085 term_printf("Device %s does not support VM state snapshots\n",
5086 bdrv_get_device_name(bs));
5087 goto the_end;
5090 /* save the VM state */
5091 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
5092 if (!f) {
5093 term_printf("Could not open VM state file\n");
5094 goto the_end;
5096 ret = qemu_savevm_state(f);
5097 sn->vm_state_size = qemu_ftell(f);
5098 qemu_fclose(f);
5099 if (ret < 0) {
5100 term_printf("Error %d while writing VM\n", ret);
5101 goto the_end;
5104 /* create the snapshots */
5106 for(i = 0; i < MAX_DISKS; i++) {
5107 bs1 = bs_table[i];
5108 if (bdrv_has_snapshot(bs1)) {
5109 if (must_delete) {
5110 ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
5111 if (ret < 0) {
5112 term_printf("Error while deleting snapshot on '%s'\n",
5113 bdrv_get_device_name(bs1));
5116 ret = bdrv_snapshot_create(bs1, sn);
5117 if (ret < 0) {
5118 term_printf("Error while creating snapshot on '%s'\n",
5119 bdrv_get_device_name(bs1));
5124 the_end:
5125 if (saved_vm_running)
5126 vm_start();
5129 void do_loadvm(const char *name)
5131 BlockDriverState *bs, *bs1;
5132 BlockDriverInfo bdi1, *bdi = &bdi1;
5133 QEMUFile *f;
5134 int i, ret;
5135 int saved_vm_running;
5137 bs = get_bs_snapshots();
5138 if (!bs) {
5139 term_printf("No block device supports snapshots\n");
5140 return;
5143 /* Flush all IO requests so they don't interfere with the new state. */
5144 qemu_aio_flush();
5146 saved_vm_running = vm_running;
5147 vm_stop(0);
5149 for(i = 0; i <= MAX_DISKS; i++) {
5150 bs1 = bs_table[i];
5151 if (bdrv_has_snapshot(bs1)) {
5152 ret = bdrv_snapshot_goto(bs1, name);
5153 if (ret < 0) {
5154 if (bs != bs1)
5155 term_printf("Warning: ");
5156 switch(ret) {
5157 case -ENOTSUP:
5158 term_printf("Snapshots not supported on device '%s'\n",
5159 bdrv_get_device_name(bs1));
5160 break;
5161 case -ENOENT:
5162 term_printf("Could not find snapshot '%s' on device '%s'\n",
5163 name, bdrv_get_device_name(bs1));
5164 break;
5165 default:
5166 term_printf("Error %d while activating snapshot on '%s'\n",
5167 ret, bdrv_get_device_name(bs1));
5168 break;
5170 /* fatal on snapshot block device */
5171 if (bs == bs1)
5172 goto the_end;
5177 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5178 term_printf("Device %s does not support VM state snapshots\n",
5179 bdrv_get_device_name(bs));
5180 return;
5183 /* restore the VM state */
5184 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
5185 if (!f) {
5186 term_printf("Could not open VM state file\n");
5187 goto the_end;
5189 ret = qemu_loadvm_state(f);
5190 qemu_fclose(f);
5191 if (ret < 0) {
5192 term_printf("Error %d while loading VM state\n", ret);
5194 the_end:
5195 if (saved_vm_running)
5196 vm_start();
5199 void do_delvm(const char *name)
5201 BlockDriverState *bs, *bs1;
5202 int i, ret;
5204 bs = get_bs_snapshots();
5205 if (!bs) {
5206 term_printf("No block device supports snapshots\n");
5207 return;
5210 for(i = 0; i <= MAX_DISKS; i++) {
5211 bs1 = bs_table[i];
5212 if (bdrv_has_snapshot(bs1)) {
5213 ret = bdrv_snapshot_delete(bs1, name);
5214 if (ret < 0) {
5215 if (ret == -ENOTSUP)
5216 term_printf("Snapshots not supported on device '%s'\n",
5217 bdrv_get_device_name(bs1));
5218 else
5219 term_printf("Error %d while deleting snapshot on '%s'\n",
5220 ret, bdrv_get_device_name(bs1));
5226 void do_info_snapshots(void)
5228 BlockDriverState *bs, *bs1;
5229 QEMUSnapshotInfo *sn_tab, *sn;
5230 int nb_sns, i;
5231 char buf[256];
5233 bs = get_bs_snapshots();
5234 if (!bs) {
5235 term_printf("No available block device supports snapshots\n");
5236 return;
5238 term_printf("Snapshot devices:");
5239 for(i = 0; i <= MAX_DISKS; i++) {
5240 bs1 = bs_table[i];
5241 if (bdrv_has_snapshot(bs1)) {
5242 if (bs == bs1)
5243 term_printf(" %s", bdrv_get_device_name(bs1));
5246 term_printf("\n");
5248 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5249 if (nb_sns < 0) {
5250 term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
5251 return;
5253 term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
5254 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
5255 for(i = 0; i < nb_sns; i++) {
5256 sn = &sn_tab[i];
5257 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
5259 qemu_free(sn_tab);
5262 /***********************************************************/
5263 /* cpu save/restore */
5265 #if defined(TARGET_I386)
5267 static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
5269 qemu_put_be32(f, dt->selector);
5270 qemu_put_betl(f, dt->base);
5271 qemu_put_be32(f, dt->limit);
5272 qemu_put_be32(f, dt->flags);
5275 static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
5277 dt->selector = qemu_get_be32(f);
5278 dt->base = qemu_get_betl(f);
5279 dt->limit = qemu_get_be32(f);
5280 dt->flags = qemu_get_be32(f);
5283 void cpu_save(QEMUFile *f, void *opaque)
5285 CPUState *env = opaque;
5286 uint16_t fptag, fpus, fpuc, fpregs_format;
5287 uint32_t hflags;
5288 int i;
5290 for(i = 0; i < CPU_NB_REGS; i++)
5291 qemu_put_betls(f, &env->regs[i]);
5292 qemu_put_betls(f, &env->eip);
5293 qemu_put_betls(f, &env->eflags);
5294 hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
5295 qemu_put_be32s(f, &hflags);
5297 /* FPU */
5298 fpuc = env->fpuc;
5299 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
5300 fptag = 0;
5301 for(i = 0; i < 8; i++) {
5302 fptag |= ((!env->fptags[i]) << i);
5305 qemu_put_be16s(f, &fpuc);
5306 qemu_put_be16s(f, &fpus);
5307 qemu_put_be16s(f, &fptag);
5309 #ifdef USE_X86LDOUBLE
5310 fpregs_format = 0;
5311 #else
5312 fpregs_format = 1;
5313 #endif
5314 qemu_put_be16s(f, &fpregs_format);
5316 for(i = 0; i < 8; i++) {
5317 #ifdef USE_X86LDOUBLE
5319 uint64_t mant;
5320 uint16_t exp;
5321 /* we save the real CPU data (in case of MMX usage only 'mant'
5322 contains the MMX register */
5323 cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
5324 qemu_put_be64(f, mant);
5325 qemu_put_be16(f, exp);
5327 #else
5328 /* if we use doubles for float emulation, we save the doubles to
5329 avoid losing information in case of MMX usage. It can give
5330 problems if the image is restored on a CPU where long
5331 doubles are used instead. */
5332 qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
5333 #endif
5336 for(i = 0; i < 6; i++)
5337 cpu_put_seg(f, &env->segs[i]);
5338 cpu_put_seg(f, &env->ldt);
5339 cpu_put_seg(f, &env->tr);
5340 cpu_put_seg(f, &env->gdt);
5341 cpu_put_seg(f, &env->idt);
5343 qemu_put_be32s(f, &env->sysenter_cs);
5344 qemu_put_be32s(f, &env->sysenter_esp);
5345 qemu_put_be32s(f, &env->sysenter_eip);
5347 qemu_put_betls(f, &env->cr[0]);
5348 qemu_put_betls(f, &env->cr[2]);
5349 qemu_put_betls(f, &env->cr[3]);
5350 qemu_put_betls(f, &env->cr[4]);
5352 for(i = 0; i < 8; i++)
5353 qemu_put_betls(f, &env->dr[i]);
5355 /* MMU */
5356 qemu_put_be32s(f, &env->a20_mask);
5358 /* XMM */
5359 qemu_put_be32s(f, &env->mxcsr);
5360 for(i = 0; i < CPU_NB_REGS; i++) {
5361 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5362 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5365 #ifdef TARGET_X86_64
5366 qemu_put_be64s(f, &env->efer);
5367 qemu_put_be64s(f, &env->star);
5368 qemu_put_be64s(f, &env->lstar);
5369 qemu_put_be64s(f, &env->cstar);
5370 qemu_put_be64s(f, &env->fmask);
5371 qemu_put_be64s(f, &env->kernelgsbase);
5372 #endif
5373 qemu_put_be32s(f, &env->smbase);
5376 #ifdef USE_X86LDOUBLE
5377 /* XXX: add that in a FPU generic layer */
5378 union x86_longdouble {
5379 uint64_t mant;
5380 uint16_t exp;
5383 #define MANTD1(fp) (fp & ((1LL << 52) - 1))
5384 #define EXPBIAS1 1023
5385 #define EXPD1(fp) ((fp >> 52) & 0x7FF)
5386 #define SIGND1(fp) ((fp >> 32) & 0x80000000)
5388 static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
5390 int e;
5391 /* mantissa */
5392 p->mant = (MANTD1(temp) << 11) | (1LL << 63);
5393 /* exponent + sign */
5394 e = EXPD1(temp) - EXPBIAS1 + 16383;
5395 e |= SIGND1(temp) >> 16;
5396 p->exp = e;
5398 #endif
5400 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5402 CPUState *env = opaque;
5403 int i, guess_mmx;
5404 uint32_t hflags;
5405 uint16_t fpus, fpuc, fptag, fpregs_format;
5407 if (version_id != 3 && version_id != 4)
5408 return -EINVAL;
5409 for(i = 0; i < CPU_NB_REGS; i++)
5410 qemu_get_betls(f, &env->regs[i]);
5411 qemu_get_betls(f, &env->eip);
5412 qemu_get_betls(f, &env->eflags);
5413 qemu_get_be32s(f, &hflags);
5415 qemu_get_be16s(f, &fpuc);
5416 qemu_get_be16s(f, &fpus);
5417 qemu_get_be16s(f, &fptag);
5418 qemu_get_be16s(f, &fpregs_format);
5420 /* NOTE: we cannot always restore the FPU state if the image come
5421 from a host with a different 'USE_X86LDOUBLE' define. We guess
5422 if we are in an MMX state to restore correctly in that case. */
5423 guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
5424 for(i = 0; i < 8; i++) {
5425 uint64_t mant;
5426 uint16_t exp;
5428 switch(fpregs_format) {
5429 case 0:
5430 mant = qemu_get_be64(f);
5431 exp = qemu_get_be16(f);
5432 #ifdef USE_X86LDOUBLE
5433 env->fpregs[i].d = cpu_set_fp80(mant, exp);
5434 #else
5435 /* difficult case */
5436 if (guess_mmx)
5437 env->fpregs[i].mmx.MMX_Q(0) = mant;
5438 else
5439 env->fpregs[i].d = cpu_set_fp80(mant, exp);
5440 #endif
5441 break;
5442 case 1:
5443 mant = qemu_get_be64(f);
5444 #ifdef USE_X86LDOUBLE
5446 union x86_longdouble *p;
5447 /* difficult case */
5448 p = (void *)&env->fpregs[i];
5449 if (guess_mmx) {
5450 p->mant = mant;
5451 p->exp = 0xffff;
5452 } else {
5453 fp64_to_fp80(p, mant);
5456 #else
5457 env->fpregs[i].mmx.MMX_Q(0) = mant;
5458 #endif
5459 break;
5460 default:
5461 return -EINVAL;
5465 env->fpuc = fpuc;
5466 /* XXX: restore FPU round state */
5467 env->fpstt = (fpus >> 11) & 7;
5468 env->fpus = fpus & ~0x3800;
5469 fptag ^= 0xff;
5470 for(i = 0; i < 8; i++) {
5471 env->fptags[i] = (fptag >> i) & 1;
5474 for(i = 0; i < 6; i++)
5475 cpu_get_seg(f, &env->segs[i]);
5476 cpu_get_seg(f, &env->ldt);
5477 cpu_get_seg(f, &env->tr);
5478 cpu_get_seg(f, &env->gdt);
5479 cpu_get_seg(f, &env->idt);
5481 qemu_get_be32s(f, &env->sysenter_cs);
5482 qemu_get_be32s(f, &env->sysenter_esp);
5483 qemu_get_be32s(f, &env->sysenter_eip);
5485 qemu_get_betls(f, &env->cr[0]);
5486 qemu_get_betls(f, &env->cr[2]);
5487 qemu_get_betls(f, &env->cr[3]);
5488 qemu_get_betls(f, &env->cr[4]);
5490 for(i = 0; i < 8; i++)
5491 qemu_get_betls(f, &env->dr[i]);
5493 /* MMU */
5494 qemu_get_be32s(f, &env->a20_mask);
5496 qemu_get_be32s(f, &env->mxcsr);
5497 for(i = 0; i < CPU_NB_REGS; i++) {
5498 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5499 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5502 #ifdef TARGET_X86_64
5503 qemu_get_be64s(f, &env->efer);
5504 qemu_get_be64s(f, &env->star);
5505 qemu_get_be64s(f, &env->lstar);
5506 qemu_get_be64s(f, &env->cstar);
5507 qemu_get_be64s(f, &env->fmask);
5508 qemu_get_be64s(f, &env->kernelgsbase);
5509 #endif
5510 if (version_id >= 4)
5511 qemu_get_be32s(f, &env->smbase);
5513 /* XXX: compute hflags from scratch, except for CPL and IIF */
5514 env->hflags = hflags;
5515 tlb_flush(env, 1);
5516 return 0;
5519 #elif defined(TARGET_PPC)
5520 void cpu_save(QEMUFile *f, void *opaque)
5524 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5526 return 0;
5529 #elif defined(TARGET_MIPS)
5530 void cpu_save(QEMUFile *f, void *opaque)
5534 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5536 return 0;
5539 #elif defined(TARGET_SPARC)
5540 void cpu_save(QEMUFile *f, void *opaque)
5542 CPUState *env = opaque;
5543 int i;
5544 uint32_t tmp;
5546 for(i = 0; i < 8; i++)
5547 qemu_put_betls(f, &env->gregs[i]);
5548 for(i = 0; i < NWINDOWS * 16; i++)
5549 qemu_put_betls(f, &env->regbase[i]);
5551 /* FPU */
5552 for(i = 0; i < TARGET_FPREGS; i++) {
5553 union {
5554 float32 f;
5555 uint32_t i;
5556 } u;
5557 u.f = env->fpr[i];
5558 qemu_put_be32(f, u.i);
5561 qemu_put_betls(f, &env->pc);
5562 qemu_put_betls(f, &env->npc);
5563 qemu_put_betls(f, &env->y);
5564 tmp = GET_PSR(env);
5565 qemu_put_be32(f, tmp);
5566 qemu_put_betls(f, &env->fsr);
5567 qemu_put_betls(f, &env->tbr);
5568 #ifndef TARGET_SPARC64
5569 qemu_put_be32s(f, &env->wim);
5570 /* MMU */
5571 for(i = 0; i < 16; i++)
5572 qemu_put_be32s(f, &env->mmuregs[i]);
5573 #endif
5576 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5578 CPUState *env = opaque;
5579 int i;
5580 uint32_t tmp;
5582 for(i = 0; i < 8; i++)
5583 qemu_get_betls(f, &env->gregs[i]);
5584 for(i = 0; i < NWINDOWS * 16; i++)
5585 qemu_get_betls(f, &env->regbase[i]);
5587 /* FPU */
5588 for(i = 0; i < TARGET_FPREGS; i++) {
5589 union {
5590 float32 f;
5591 uint32_t i;
5592 } u;
5593 u.i = qemu_get_be32(f);
5594 env->fpr[i] = u.f;
5597 qemu_get_betls(f, &env->pc);
5598 qemu_get_betls(f, &env->npc);
5599 qemu_get_betls(f, &env->y);
5600 tmp = qemu_get_be32(f);
5601 env->cwp = 0; /* needed to ensure that the wrapping registers are
5602 correctly updated */
5603 PUT_PSR(env, tmp);
5604 qemu_get_betls(f, &env->fsr);
5605 qemu_get_betls(f, &env->tbr);
5606 #ifndef TARGET_SPARC64
5607 qemu_get_be32s(f, &env->wim);
5608 /* MMU */
5609 for(i = 0; i < 16; i++)
5610 qemu_get_be32s(f, &env->mmuregs[i]);
5611 #endif
5612 tlb_flush(env, 1);
5613 return 0;
5616 #elif defined(TARGET_ARM)
5618 /* ??? Need to implement these. */
5619 void cpu_save(QEMUFile *f, void *opaque)
5623 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5625 return 0;
5628 #else
5630 #warning No CPU save/restore functions
5632 #endif
5634 /***********************************************************/
5635 /* ram save/restore */
5637 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
5639 int v;
5641 v = qemu_get_byte(f);
5642 switch(v) {
5643 case 0:
5644 if (qemu_get_buffer(f, buf, len) != len)
5645 return -EIO;
5646 break;
5647 case 1:
5648 v = qemu_get_byte(f);
5649 memset(buf, v, len);
5650 break;
5651 default:
5652 return -EINVAL;
5654 return 0;
5657 static int ram_load_v1(QEMUFile *f, void *opaque)
5659 int i, ret;
5661 if (qemu_get_be32(f) != phys_ram_size)
5662 return -EINVAL;
5663 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
5664 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
5665 if (ret)
5666 return ret;
5668 return 0;
5671 #define BDRV_HASH_BLOCK_SIZE 1024
5672 #define IOBUF_SIZE 4096
5673 #define RAM_CBLOCK_MAGIC 0xfabe
5675 typedef struct RamCompressState {
5676 z_stream zstream;
5677 QEMUFile *f;
5678 uint8_t buf[IOBUF_SIZE];
5679 } RamCompressState;
5681 static int ram_compress_open(RamCompressState *s, QEMUFile *f)
5683 int ret;
5684 memset(s, 0, sizeof(*s));
5685 s->f = f;
5686 ret = deflateInit2(&s->zstream, 1,
5687 Z_DEFLATED, 15,
5688 9, Z_DEFAULT_STRATEGY);
5689 if (ret != Z_OK)
5690 return -1;
5691 s->zstream.avail_out = IOBUF_SIZE;
5692 s->zstream.next_out = s->buf;
5693 return 0;
5696 static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
5698 qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
5699 qemu_put_be16(s->f, len);
5700 qemu_put_buffer(s->f, buf, len);
5703 static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
5705 int ret;
5707 s->zstream.avail_in = len;
5708 s->zstream.next_in = (uint8_t *)buf;
5709 while (s->zstream.avail_in > 0) {
5710 ret = deflate(&s->zstream, Z_NO_FLUSH);
5711 if (ret != Z_OK)
5712 return -1;
5713 if (s->zstream.avail_out == 0) {
5714 ram_put_cblock(s, s->buf, IOBUF_SIZE);
5715 s->zstream.avail_out = IOBUF_SIZE;
5716 s->zstream.next_out = s->buf;
5719 return 0;
5722 static void ram_compress_close(RamCompressState *s)
5724 int len, ret;
5726 /* compress last bytes */
5727 for(;;) {
5728 ret = deflate(&s->zstream, Z_FINISH);
5729 if (ret == Z_OK || ret == Z_STREAM_END) {
5730 len = IOBUF_SIZE - s->zstream.avail_out;
5731 if (len > 0) {
5732 ram_put_cblock(s, s->buf, len);
5734 s->zstream.avail_out = IOBUF_SIZE;
5735 s->zstream.next_out = s->buf;
5736 if (ret == Z_STREAM_END)
5737 break;
5738 } else {
5739 goto fail;
5742 fail:
5743 deflateEnd(&s->zstream);
5746 typedef struct RamDecompressState {
5747 z_stream zstream;
5748 QEMUFile *f;
5749 uint8_t buf[IOBUF_SIZE];
5750 } RamDecompressState;
5752 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
5754 int ret;
5755 memset(s, 0, sizeof(*s));
5756 s->f = f;
5757 ret = inflateInit(&s->zstream);
5758 if (ret != Z_OK)
5759 return -1;
5760 return 0;
5763 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
5765 int ret, clen;
5767 s->zstream.avail_out = len;
5768 s->zstream.next_out = buf;
5769 while (s->zstream.avail_out > 0) {
5770 if (s->zstream.avail_in == 0) {
5771 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
5772 return -1;
5773 clen = qemu_get_be16(s->f);
5774 if (clen > IOBUF_SIZE)
5775 return -1;
5776 qemu_get_buffer(s->f, s->buf, clen);
5777 s->zstream.avail_in = clen;
5778 s->zstream.next_in = s->buf;
5780 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
5781 if (ret != Z_OK && ret != Z_STREAM_END) {
5782 return -1;
5785 return 0;
5788 static void ram_decompress_close(RamDecompressState *s)
5790 inflateEnd(&s->zstream);
5793 static void ram_save(QEMUFile *f, void *opaque)
5795 int i;
5796 RamCompressState s1, *s = &s1;
5797 uint8_t buf[10];
5799 qemu_put_be32(f, phys_ram_size);
5800 if (ram_compress_open(s, f) < 0)
5801 return;
5802 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
5803 #if 0
5804 if (tight_savevm_enabled) {
5805 int64_t sector_num;
5806 int j;
5808 /* find if the memory block is available on a virtual
5809 block device */
5810 sector_num = -1;
5811 for(j = 0; j < MAX_DISKS; j++) {
5812 if (bs_table[j]) {
5813 sector_num = bdrv_hash_find(bs_table[j],
5814 phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
5815 if (sector_num >= 0)
5816 break;
5819 if (j == MAX_DISKS)
5820 goto normal_compress;
5821 buf[0] = 1;
5822 buf[1] = j;
5823 cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
5824 ram_compress_buf(s, buf, 10);
5825 } else
5826 #endif
5828 // normal_compress:
5829 buf[0] = 0;
5830 ram_compress_buf(s, buf, 1);
5831 ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
5834 ram_compress_close(s);
5837 static int ram_load(QEMUFile *f, void *opaque, int version_id)
5839 RamDecompressState s1, *s = &s1;
5840 uint8_t buf[10];
5841 int i;
5843 if (version_id == 1)
5844 return ram_load_v1(f, opaque);
5845 if (version_id != 2)
5846 return -EINVAL;
5847 if (qemu_get_be32(f) != phys_ram_size)
5848 return -EINVAL;
5849 if (ram_decompress_open(s, f) < 0)
5850 return -EINVAL;
5851 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
5852 if (ram_decompress_buf(s, buf, 1) < 0) {
5853 fprintf(stderr, "Error while reading ram block header\n");
5854 goto error;
5856 if (buf[0] == 0) {
5857 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
5858 fprintf(stderr, "Error while reading ram block address=0x%08x", i);
5859 goto error;
5861 } else
5862 #if 0
5863 if (buf[0] == 1) {
5864 int bs_index;
5865 int64_t sector_num;
5867 ram_decompress_buf(s, buf + 1, 9);
5868 bs_index = buf[1];
5869 sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
5870 if (bs_index >= MAX_DISKS || bs_table[bs_index] == NULL) {
5871 fprintf(stderr, "Invalid block device index %d\n", bs_index);
5872 goto error;
5874 if (bdrv_read(bs_table[bs_index], sector_num, phys_ram_base + i,
5875 BDRV_HASH_BLOCK_SIZE / 512) < 0) {
5876 fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
5877 bs_index, sector_num);
5878 goto error;
5880 } else
5881 #endif
5883 error:
5884 printf("Error block header\n");
5885 return -EINVAL;
5888 ram_decompress_close(s);
5889 return 0;
5892 /***********************************************************/
5893 /* bottom halves (can be seen as timers which expire ASAP) */
5895 struct QEMUBH {
5896 QEMUBHFunc *cb;
5897 void *opaque;
5898 int scheduled;
5899 QEMUBH *next;
5902 static QEMUBH *first_bh = NULL;
5904 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
5906 QEMUBH *bh;
5907 bh = qemu_mallocz(sizeof(QEMUBH));
5908 if (!bh)
5909 return NULL;
5910 bh->cb = cb;
5911 bh->opaque = opaque;
5912 return bh;
5915 int qemu_bh_poll(void)
5917 QEMUBH *bh, **pbh;
5918 int ret;
5920 ret = 0;
5921 for(;;) {
5922 pbh = &first_bh;
5923 bh = *pbh;
5924 if (!bh)
5925 break;
5926 ret = 1;
5927 *pbh = bh->next;
5928 bh->scheduled = 0;
5929 bh->cb(bh->opaque);
5931 return ret;
5934 void qemu_bh_schedule(QEMUBH *bh)
5936 CPUState *env = cpu_single_env;
5937 if (bh->scheduled)
5938 return;
5939 bh->scheduled = 1;
5940 bh->next = first_bh;
5941 first_bh = bh;
5943 /* stop the currently executing CPU to execute the BH ASAP */
5944 if (env) {
5945 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
5949 void qemu_bh_cancel(QEMUBH *bh)
5951 QEMUBH **pbh;
5952 if (bh->scheduled) {
5953 pbh = &first_bh;
5954 while (*pbh != bh)
5955 pbh = &(*pbh)->next;
5956 *pbh = bh->next;
5957 bh->scheduled = 0;
5961 void qemu_bh_delete(QEMUBH *bh)
5963 qemu_bh_cancel(bh);
5964 qemu_free(bh);
5967 /***********************************************************/
5968 /* machine registration */
5970 QEMUMachine *first_machine = NULL;
5972 int qemu_register_machine(QEMUMachine *m)
5974 QEMUMachine **pm;
5975 pm = &first_machine;
5976 while (*pm != NULL)
5977 pm = &(*pm)->next;
5978 m->next = NULL;
5979 *pm = m;
5980 return 0;
5983 QEMUMachine *find_machine(const char *name)
5985 QEMUMachine *m;
5987 for(m = first_machine; m != NULL; m = m->next) {
5988 if (!strcmp(m->name, name))
5989 return m;
5991 return NULL;
5994 /***********************************************************/
5995 /* main execution loop */
5997 void gui_update(void *opaque)
5999 display_state.dpy_refresh(&display_state);
6000 qemu_mod_timer(gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
6003 struct vm_change_state_entry {
6004 VMChangeStateHandler *cb;
6005 void *opaque;
6006 LIST_ENTRY (vm_change_state_entry) entries;
6009 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
6011 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
6012 void *opaque)
6014 VMChangeStateEntry *e;
6016 e = qemu_mallocz(sizeof (*e));
6017 if (!e)
6018 return NULL;
6020 e->cb = cb;
6021 e->opaque = opaque;
6022 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
6023 return e;
6026 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
6028 LIST_REMOVE (e, entries);
6029 qemu_free (e);
6032 static void vm_state_notify(int running)
6034 VMChangeStateEntry *e;
6036 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
6037 e->cb(e->opaque, running);
6041 /* XXX: support several handlers */
6042 static VMStopHandler *vm_stop_cb;
6043 static void *vm_stop_opaque;
6045 int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
6047 vm_stop_cb = cb;
6048 vm_stop_opaque = opaque;
6049 return 0;
6052 void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
6054 vm_stop_cb = NULL;
6057 void vm_start(void)
6059 if (!vm_running) {
6060 cpu_enable_ticks();
6061 vm_running = 1;
6062 vm_state_notify(1);
6066 void vm_stop(int reason)
6068 if (vm_running) {
6069 cpu_disable_ticks();
6070 vm_running = 0;
6071 if (reason != 0) {
6072 if (vm_stop_cb) {
6073 vm_stop_cb(vm_stop_opaque, reason);
6076 vm_state_notify(0);
6080 /* reset/shutdown handler */
6082 typedef struct QEMUResetEntry {
6083 QEMUResetHandler *func;
6084 void *opaque;
6085 struct QEMUResetEntry *next;
6086 } QEMUResetEntry;
6088 static QEMUResetEntry *first_reset_entry;
6089 static int reset_requested;
6090 static int shutdown_requested;
6091 static int powerdown_requested;
6093 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
6095 QEMUResetEntry **pre, *re;
6097 pre = &first_reset_entry;
6098 while (*pre != NULL)
6099 pre = &(*pre)->next;
6100 re = qemu_mallocz(sizeof(QEMUResetEntry));
6101 re->func = func;
6102 re->opaque = opaque;
6103 re->next = NULL;
6104 *pre = re;
6107 static void qemu_system_reset(void)
6109 QEMUResetEntry *re;
6111 /* reset all devices */
6112 for(re = first_reset_entry; re != NULL; re = re->next) {
6113 re->func(re->opaque);
6117 void qemu_system_reset_request(void)
6119 if (no_reboot) {
6120 shutdown_requested = 1;
6121 } else {
6122 reset_requested = 1;
6124 if (cpu_single_env)
6125 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6128 void qemu_system_shutdown_request(void)
6130 shutdown_requested = 1;
6131 if (cpu_single_env)
6132 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6135 void qemu_system_powerdown_request(void)
6137 powerdown_requested = 1;
6138 if (cpu_single_env)
6139 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6142 void main_loop_wait(int timeout)
6144 IOHandlerRecord *ioh;
6145 fd_set rfds, wfds, xfds;
6146 int ret, nfds;
6147 struct timeval tv;
6148 PollingEntry *pe;
6151 /* XXX: need to suppress polling by better using win32 events */
6152 ret = 0;
6153 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
6154 ret |= pe->func(pe->opaque);
6156 #ifdef _WIN32
6157 if (ret == 0 && timeout > 0) {
6158 int err;
6159 WaitObjects *w = &wait_objects;
6161 ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
6162 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
6163 if (w->func[ret - WAIT_OBJECT_0])
6164 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
6165 } else if (ret == WAIT_TIMEOUT) {
6166 } else {
6167 err = GetLastError();
6168 fprintf(stderr, "Wait error %d %d\n", ret, err);
6171 #endif
6172 /* poll any events */
6173 /* XXX: separate device handlers from system ones */
6174 nfds = -1;
6175 FD_ZERO(&rfds);
6176 FD_ZERO(&wfds);
6177 FD_ZERO(&xfds);
6178 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6179 if (ioh->deleted)
6180 continue;
6181 if (ioh->fd_read &&
6182 (!ioh->fd_read_poll ||
6183 ioh->fd_read_poll(ioh->opaque) != 0)) {
6184 FD_SET(ioh->fd, &rfds);
6185 if (ioh->fd > nfds)
6186 nfds = ioh->fd;
6188 if (ioh->fd_write) {
6189 FD_SET(ioh->fd, &wfds);
6190 if (ioh->fd > nfds)
6191 nfds = ioh->fd;
6195 tv.tv_sec = 0;
6196 #ifdef _WIN32
6197 tv.tv_usec = 0;
6198 #else
6199 tv.tv_usec = timeout * 1000;
6200 #endif
6201 #if defined(CONFIG_SLIRP)
6202 if (slirp_inited) {
6203 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
6205 #endif
6206 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
6207 if (ret > 0) {
6208 IOHandlerRecord **pioh;
6210 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6211 if (ioh->deleted)
6212 continue;
6213 if (FD_ISSET(ioh->fd, &rfds)) {
6214 ioh->fd_read(ioh->opaque);
6216 if (FD_ISSET(ioh->fd, &wfds)) {
6217 ioh->fd_write(ioh->opaque);
6221 /* remove deleted IO handlers */
6222 pioh = &first_io_handler;
6223 while (*pioh) {
6224 ioh = *pioh;
6225 if (ioh->deleted) {
6226 *pioh = ioh->next;
6227 qemu_free(ioh);
6228 } else
6229 pioh = &ioh->next;
6232 #if defined(CONFIG_SLIRP)
6233 if (slirp_inited) {
6234 if (ret < 0) {
6235 FD_ZERO(&rfds);
6236 FD_ZERO(&wfds);
6237 FD_ZERO(&xfds);
6239 slirp_select_poll(&rfds, &wfds, &xfds);
6241 #endif
6242 qemu_aio_poll();
6243 qemu_bh_poll();
6245 if (vm_running) {
6246 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
6247 qemu_get_clock(vm_clock));
6248 /* run dma transfers, if any */
6249 DMA_run();
6252 /* real time timers */
6253 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
6254 qemu_get_clock(rt_clock));
6257 static CPUState *cur_cpu;
6259 int main_loop(void)
6261 int ret, timeout;
6262 #ifdef CONFIG_PROFILER
6263 int64_t ti;
6264 #endif
6265 CPUState *env;
6267 cur_cpu = first_cpu;
6268 for(;;) {
6269 if (vm_running) {
6271 env = cur_cpu;
6272 for(;;) {
6273 /* get next cpu */
6274 env = env->next_cpu;
6275 if (!env)
6276 env = first_cpu;
6277 #ifdef CONFIG_PROFILER
6278 ti = profile_getclock();
6279 #endif
6280 ret = cpu_exec(env);
6281 #ifdef CONFIG_PROFILER
6282 qemu_time += profile_getclock() - ti;
6283 #endif
6284 if (ret == EXCP_HLT) {
6285 /* Give the next CPU a chance to run. */
6286 cur_cpu = env;
6287 continue;
6289 if (ret != EXCP_HALTED)
6290 break;
6291 /* all CPUs are halted ? */
6292 if (env == cur_cpu)
6293 break;
6295 cur_cpu = env;
6297 if (shutdown_requested) {
6298 ret = EXCP_INTERRUPT;
6299 break;
6301 if (reset_requested) {
6302 reset_requested = 0;
6303 qemu_system_reset();
6304 ret = EXCP_INTERRUPT;
6306 if (powerdown_requested) {
6307 powerdown_requested = 0;
6308 qemu_system_powerdown();
6309 ret = EXCP_INTERRUPT;
6311 if (ret == EXCP_DEBUG) {
6312 vm_stop(EXCP_DEBUG);
6314 /* If all cpus are halted then wait until the next IRQ */
6315 /* XXX: use timeout computed from timers */
6316 if (ret == EXCP_HALTED)
6317 timeout = 10;
6318 else
6319 timeout = 0;
6320 } else {
6321 timeout = 10;
6323 #ifdef CONFIG_PROFILER
6324 ti = profile_getclock();
6325 #endif
6326 main_loop_wait(timeout);
6327 #ifdef CONFIG_PROFILER
6328 dev_time += profile_getclock() - ti;
6329 #endif
6331 cpu_disable_ticks();
6332 return ret;
6335 void help(void)
6337 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2007 Fabrice Bellard\n"
6338 "usage: %s [options] [disk_image]\n"
6339 "\n"
6340 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
6341 "\n"
6342 "Standard options:\n"
6343 "-M machine select emulated machine (-M ? for list)\n"
6344 "-cpu cpu select CPU (-cpu ? for list)\n"
6345 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
6346 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
6347 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
6348 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
6349 "-sd file use 'file' as SecureDigital card image\n"
6350 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
6351 "-snapshot write to temporary files instead of disk image files\n"
6352 #ifdef CONFIG_SDL
6353 "-no-frame open SDL window without a frame and window decorations\n"
6354 "-no-quit disable SDL window close capability\n"
6355 #endif
6356 #ifdef TARGET_I386
6357 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
6358 #endif
6359 "-m megs set virtual RAM size to megs MB [default=%d]\n"
6360 "-smp n set the number of CPUs to 'n' [default=1]\n"
6361 "-nographic disable graphical output and redirect serial I/Os to console\n"
6362 #ifndef _WIN32
6363 "-k language use keyboard layout (for example \"fr\" for French)\n"
6364 #endif
6365 #ifdef HAS_AUDIO
6366 "-audio-help print list of audio drivers and their options\n"
6367 "-soundhw c1,... enable audio support\n"
6368 " and only specified sound cards (comma separated list)\n"
6369 " use -soundhw ? to get the list of supported cards\n"
6370 " use -soundhw all to enable all of them\n"
6371 #endif
6372 "-localtime set the real time clock to local time [default=utc]\n"
6373 "-full-screen start in full screen\n"
6374 #ifdef TARGET_I386
6375 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
6376 #endif
6377 "-usb enable the USB driver (will be the default soon)\n"
6378 "-usbdevice name add the host or guest USB device 'name'\n"
6379 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
6380 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
6381 #endif
6382 "-name string set the name of the guest\n"
6383 "\n"
6384 "Network options:\n"
6385 "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
6386 " create a new Network Interface Card and connect it to VLAN 'n'\n"
6387 #ifdef CONFIG_SLIRP
6388 "-net user[,vlan=n][,hostname=host]\n"
6389 " connect the user mode network stack to VLAN 'n' and send\n"
6390 " hostname 'host' to DHCP clients\n"
6391 #endif
6392 #ifdef _WIN32
6393 "-net tap[,vlan=n],ifname=name\n"
6394 " connect the host TAP network interface to VLAN 'n'\n"
6395 #else
6396 "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file]\n"
6397 " connect the host TAP network interface to VLAN 'n' and use\n"
6398 " the network script 'file' (default=%s);\n"
6399 " use 'script=no' to disable script execution;\n"
6400 " use 'fd=h' to connect to an already opened TAP interface\n"
6401 #endif
6402 "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
6403 " connect the vlan 'n' to another VLAN using a socket connection\n"
6404 "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
6405 " connect the vlan 'n' to multicast maddr and port\n"
6406 "-net none use it alone to have zero network devices; if no -net option\n"
6407 " is provided, the default is '-net nic -net user'\n"
6408 "\n"
6409 #ifdef CONFIG_SLIRP
6410 "-tftp dir allow tftp access to files in dir [-net user]\n"
6411 "-bootp file advertise file in BOOTP replies\n"
6412 #ifndef _WIN32
6413 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
6414 #endif
6415 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
6416 " redirect TCP or UDP connections from host to guest [-net user]\n"
6417 #endif
6418 "\n"
6419 "Linux boot specific:\n"
6420 "-kernel bzImage use 'bzImage' as kernel image\n"
6421 "-append cmdline use 'cmdline' as kernel command line\n"
6422 "-initrd file use 'file' as initial ram disk\n"
6423 "\n"
6424 "Debug/Expert options:\n"
6425 "-monitor dev redirect the monitor to char device 'dev'\n"
6426 "-serial dev redirect the serial port to char device 'dev'\n"
6427 "-parallel dev redirect the parallel port to char device 'dev'\n"
6428 "-pidfile file Write PID to 'file'\n"
6429 "-S freeze CPU at startup (use 'c' to start execution)\n"
6430 "-s wait gdb connection to port\n"
6431 "-p port set gdb connection port [default=%s]\n"
6432 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
6433 "-hdachs c,h,s[,t] force hard disk 0 physical geometry and the optional BIOS\n"
6434 " translation (t=none or lba) (usually qemu can guess them)\n"
6435 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
6436 #ifdef USE_KQEMU
6437 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
6438 "-no-kqemu disable KQEMU kernel module usage\n"
6439 #endif
6440 #ifdef USE_CODE_COPY
6441 "-no-code-copy disable code copy acceleration\n"
6442 #endif
6443 #ifdef TARGET_I386
6444 "-std-vga simulate a standard VGA card with VESA Bochs Extensions\n"
6445 " (default is CL-GD5446 PCI VGA)\n"
6446 "-no-acpi disable ACPI\n"
6447 #endif
6448 "-no-reboot exit instead of rebooting\n"
6449 "-loadvm file start right away with a saved state (loadvm in monitor)\n"
6450 "-vnc display start a VNC server on display\n"
6451 #ifndef _WIN32
6452 "-daemonize daemonize QEMU after initializing\n"
6453 #endif
6454 "-option-rom rom load a file, rom, into the option ROM space\n"
6455 "\n"
6456 "During emulation, the following keys are useful:\n"
6457 "ctrl-alt-f toggle full screen\n"
6458 "ctrl-alt-n switch to virtual console 'n'\n"
6459 "ctrl-alt toggle mouse and keyboard grab\n"
6460 "\n"
6461 "When using -nographic, press 'ctrl-a h' to get some help.\n"
6463 "qemu",
6464 DEFAULT_RAM_SIZE,
6465 #ifndef _WIN32
6466 DEFAULT_NETWORK_SCRIPT,
6467 #endif
6468 DEFAULT_GDBSTUB_PORT,
6469 "/tmp/qemu.log");
6470 exit(1);
6473 #define HAS_ARG 0x0001
6475 enum {
6476 QEMU_OPTION_h,
6478 QEMU_OPTION_M,
6479 QEMU_OPTION_cpu,
6480 QEMU_OPTION_fda,
6481 QEMU_OPTION_fdb,
6482 QEMU_OPTION_hda,
6483 QEMU_OPTION_hdb,
6484 QEMU_OPTION_hdc,
6485 QEMU_OPTION_hdd,
6486 QEMU_OPTION_cdrom,
6487 QEMU_OPTION_sd,
6488 QEMU_OPTION_boot,
6489 QEMU_OPTION_snapshot,
6490 #ifdef TARGET_I386
6491 QEMU_OPTION_no_fd_bootchk,
6492 #endif
6493 QEMU_OPTION_m,
6494 QEMU_OPTION_nographic,
6495 #ifdef HAS_AUDIO
6496 QEMU_OPTION_audio_help,
6497 QEMU_OPTION_soundhw,
6498 #endif
6500 QEMU_OPTION_net,
6501 QEMU_OPTION_tftp,
6502 QEMU_OPTION_bootp,
6503 QEMU_OPTION_smb,
6504 QEMU_OPTION_redir,
6506 QEMU_OPTION_kernel,
6507 QEMU_OPTION_append,
6508 QEMU_OPTION_initrd,
6510 QEMU_OPTION_S,
6511 QEMU_OPTION_s,
6512 QEMU_OPTION_p,
6513 QEMU_OPTION_d,
6514 QEMU_OPTION_hdachs,
6515 QEMU_OPTION_L,
6516 QEMU_OPTION_no_code_copy,
6517 QEMU_OPTION_k,
6518 QEMU_OPTION_localtime,
6519 QEMU_OPTION_cirrusvga,
6520 QEMU_OPTION_vmsvga,
6521 QEMU_OPTION_g,
6522 QEMU_OPTION_std_vga,
6523 QEMU_OPTION_echr,
6524 QEMU_OPTION_monitor,
6525 QEMU_OPTION_serial,
6526 QEMU_OPTION_parallel,
6527 QEMU_OPTION_loadvm,
6528 QEMU_OPTION_full_screen,
6529 QEMU_OPTION_no_frame,
6530 QEMU_OPTION_no_quit,
6531 QEMU_OPTION_pidfile,
6532 QEMU_OPTION_no_kqemu,
6533 QEMU_OPTION_kernel_kqemu,
6534 QEMU_OPTION_win2k_hack,
6535 QEMU_OPTION_usb,
6536 QEMU_OPTION_usbdevice,
6537 QEMU_OPTION_smp,
6538 QEMU_OPTION_vnc,
6539 QEMU_OPTION_no_acpi,
6540 QEMU_OPTION_no_reboot,
6541 QEMU_OPTION_daemonize,
6542 QEMU_OPTION_option_rom,
6543 QEMU_OPTION_semihosting,
6544 QEMU_OPTION_name,
6547 typedef struct QEMUOption {
6548 const char *name;
6549 int flags;
6550 int index;
6551 } QEMUOption;
6553 const QEMUOption qemu_options[] = {
6554 { "h", 0, QEMU_OPTION_h },
6555 { "help", 0, QEMU_OPTION_h },
6557 { "M", HAS_ARG, QEMU_OPTION_M },
6558 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
6559 { "fda", HAS_ARG, QEMU_OPTION_fda },
6560 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
6561 { "hda", HAS_ARG, QEMU_OPTION_hda },
6562 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
6563 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
6564 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
6565 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
6566 { "sd", HAS_ARG, QEMU_OPTION_sd },
6567 { "boot", HAS_ARG, QEMU_OPTION_boot },
6568 { "snapshot", 0, QEMU_OPTION_snapshot },
6569 #ifdef TARGET_I386
6570 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
6571 #endif
6572 { "m", HAS_ARG, QEMU_OPTION_m },
6573 { "nographic", 0, QEMU_OPTION_nographic },
6574 { "k", HAS_ARG, QEMU_OPTION_k },
6575 #ifdef HAS_AUDIO
6576 { "audio-help", 0, QEMU_OPTION_audio_help },
6577 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
6578 #endif
6580 { "net", HAS_ARG, QEMU_OPTION_net},
6581 #ifdef CONFIG_SLIRP
6582 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
6583 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
6584 #ifndef _WIN32
6585 { "smb", HAS_ARG, QEMU_OPTION_smb },
6586 #endif
6587 { "redir", HAS_ARG, QEMU_OPTION_redir },
6588 #endif
6590 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
6591 { "append", HAS_ARG, QEMU_OPTION_append },
6592 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
6594 { "S", 0, QEMU_OPTION_S },
6595 { "s", 0, QEMU_OPTION_s },
6596 { "p", HAS_ARG, QEMU_OPTION_p },
6597 { "d", HAS_ARG, QEMU_OPTION_d },
6598 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
6599 { "L", HAS_ARG, QEMU_OPTION_L },
6600 { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
6601 #ifdef USE_KQEMU
6602 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
6603 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
6604 #endif
6605 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
6606 { "g", 1, QEMU_OPTION_g },
6607 #endif
6608 { "localtime", 0, QEMU_OPTION_localtime },
6609 { "std-vga", 0, QEMU_OPTION_std_vga },
6610 { "echr", 1, QEMU_OPTION_echr },
6611 { "monitor", 1, QEMU_OPTION_monitor },
6612 { "serial", 1, QEMU_OPTION_serial },
6613 { "parallel", 1, QEMU_OPTION_parallel },
6614 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
6615 { "full-screen", 0, QEMU_OPTION_full_screen },
6616 #ifdef CONFIG_SDL
6617 { "no-frame", 0, QEMU_OPTION_no_frame },
6618 { "no-quit", 0, QEMU_OPTION_no_quit },
6619 #endif
6620 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
6621 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
6622 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
6623 { "smp", HAS_ARG, QEMU_OPTION_smp },
6624 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
6626 /* temporary options */
6627 { "usb", 0, QEMU_OPTION_usb },
6628 { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
6629 { "vmwarevga", 0, QEMU_OPTION_vmsvga },
6630 { "no-acpi", 0, QEMU_OPTION_no_acpi },
6631 { "no-reboot", 0, QEMU_OPTION_no_reboot },
6632 { "daemonize", 0, QEMU_OPTION_daemonize },
6633 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
6634 #if defined(TARGET_ARM)
6635 { "semihosting", 0, QEMU_OPTION_semihosting },
6636 #endif
6637 { "name", HAS_ARG, QEMU_OPTION_name },
6638 { NULL },
6641 #if defined (TARGET_I386) && defined(USE_CODE_COPY)
6643 /* this stack is only used during signal handling */
6644 #define SIGNAL_STACK_SIZE 32768
6646 static uint8_t *signal_stack;
6648 #endif
6650 /* password input */
6652 static BlockDriverState *get_bdrv(int index)
6654 BlockDriverState *bs;
6656 if (index < 4) {
6657 bs = bs_table[index];
6658 } else if (index < 6) {
6659 bs = fd_table[index - 4];
6660 } else {
6661 bs = NULL;
6663 return bs;
6666 static void read_passwords(void)
6668 BlockDriverState *bs;
6669 int i, j;
6670 char password[256];
6672 for(i = 0; i < 6; i++) {
6673 bs = get_bdrv(i);
6674 if (bs && bdrv_is_encrypted(bs)) {
6675 term_printf("%s is encrypted.\n", bdrv_get_device_name(bs));
6676 for(j = 0; j < 3; j++) {
6677 monitor_readline("Password: ",
6678 1, password, sizeof(password));
6679 if (bdrv_set_key(bs, password) == 0)
6680 break;
6681 term_printf("invalid password\n");
6687 /* XXX: currently we cannot use simultaneously different CPUs */
6688 void register_machines(void)
6690 #if defined(TARGET_I386)
6691 qemu_register_machine(&pc_machine);
6692 qemu_register_machine(&isapc_machine);
6693 #elif defined(TARGET_PPC)
6694 qemu_register_machine(&heathrow_machine);
6695 qemu_register_machine(&core99_machine);
6696 qemu_register_machine(&prep_machine);
6697 #elif defined(TARGET_MIPS)
6698 qemu_register_machine(&mips_machine);
6699 qemu_register_machine(&mips_malta_machine);
6700 qemu_register_machine(&mips_pica61_machine);
6701 #elif defined(TARGET_SPARC)
6702 #ifdef TARGET_SPARC64
6703 qemu_register_machine(&sun4u_machine);
6704 #else
6705 qemu_register_machine(&ss5_machine);
6706 qemu_register_machine(&ss10_machine);
6707 #endif
6708 #elif defined(TARGET_ARM)
6709 qemu_register_machine(&integratorcp_machine);
6710 qemu_register_machine(&versatilepb_machine);
6711 qemu_register_machine(&versatileab_machine);
6712 qemu_register_machine(&realview_machine);
6713 #elif defined(TARGET_SH4)
6714 qemu_register_machine(&shix_machine);
6715 #elif defined(TARGET_ALPHA)
6716 /* XXX: TODO */
6717 #else
6718 #error unsupported CPU
6719 #endif
6722 #ifdef HAS_AUDIO
6723 struct soundhw soundhw[] = {
6724 #ifdef TARGET_I386
6726 "pcspk",
6727 "PC speaker",
6730 { .init_isa = pcspk_audio_init }
6732 #endif
6734 "sb16",
6735 "Creative Sound Blaster 16",
6738 { .init_isa = SB16_init }
6741 #ifdef CONFIG_ADLIB
6743 "adlib",
6744 #ifdef HAS_YMF262
6745 "Yamaha YMF262 (OPL3)",
6746 #else
6747 "Yamaha YM3812 (OPL2)",
6748 #endif
6751 { .init_isa = Adlib_init }
6753 #endif
6755 #ifdef CONFIG_GUS
6757 "gus",
6758 "Gravis Ultrasound GF1",
6761 { .init_isa = GUS_init }
6763 #endif
6766 "es1370",
6767 "ENSONIQ AudioPCI ES1370",
6770 { .init_pci = es1370_init }
6773 { NULL, NULL, 0, 0, { NULL } }
6776 static void select_soundhw (const char *optarg)
6778 struct soundhw *c;
6780 if (*optarg == '?') {
6781 show_valid_cards:
6783 printf ("Valid sound card names (comma separated):\n");
6784 for (c = soundhw; c->name; ++c) {
6785 printf ("%-11s %s\n", c->name, c->descr);
6787 printf ("\n-soundhw all will enable all of the above\n");
6788 exit (*optarg != '?');
6790 else {
6791 size_t l;
6792 const char *p;
6793 char *e;
6794 int bad_card = 0;
6796 if (!strcmp (optarg, "all")) {
6797 for (c = soundhw; c->name; ++c) {
6798 c->enabled = 1;
6800 return;
6803 p = optarg;
6804 while (*p) {
6805 e = strchr (p, ',');
6806 l = !e ? strlen (p) : (size_t) (e - p);
6808 for (c = soundhw; c->name; ++c) {
6809 if (!strncmp (c->name, p, l)) {
6810 c->enabled = 1;
6811 break;
6815 if (!c->name) {
6816 if (l > 80) {
6817 fprintf (stderr,
6818 "Unknown sound card name (too big to show)\n");
6820 else {
6821 fprintf (stderr, "Unknown sound card name `%.*s'\n",
6822 (int) l, p);
6824 bad_card = 1;
6826 p += l + (e != NULL);
6829 if (bad_card)
6830 goto show_valid_cards;
6833 #endif
6835 #ifdef _WIN32
6836 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
6838 exit(STATUS_CONTROL_C_EXIT);
6839 return TRUE;
6841 #endif
6843 #define MAX_NET_CLIENTS 32
6845 int main(int argc, char **argv)
6847 #ifdef CONFIG_GDBSTUB
6848 int use_gdbstub;
6849 const char *gdbstub_port;
6850 #endif
6851 int i, cdrom_index;
6852 int snapshot, linux_boot;
6853 const char *initrd_filename;
6854 const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
6855 const char *sd_filename;
6856 const char *kernel_filename, *kernel_cmdline;
6857 DisplayState *ds = &display_state;
6858 int cyls, heads, secs, translation;
6859 char net_clients[MAX_NET_CLIENTS][256];
6860 int nb_net_clients;
6861 int optind;
6862 const char *r, *optarg;
6863 CharDriverState *monitor_hd;
6864 char monitor_device[128];
6865 char serial_devices[MAX_SERIAL_PORTS][128];
6866 int serial_device_index;
6867 char parallel_devices[MAX_PARALLEL_PORTS][128];
6868 int parallel_device_index;
6869 const char *loadvm = NULL;
6870 QEMUMachine *machine;
6871 const char *cpu_model;
6872 char usb_devices[MAX_USB_CMDLINE][128];
6873 int usb_devices_index;
6874 int fds[2];
6875 const char *pid_file = NULL;
6877 LIST_INIT (&vm_change_state_head);
6878 #ifndef _WIN32
6880 struct sigaction act;
6881 sigfillset(&act.sa_mask);
6882 act.sa_flags = 0;
6883 act.sa_handler = SIG_IGN;
6884 sigaction(SIGPIPE, &act, NULL);
6886 #else
6887 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
6888 /* Note: cpu_interrupt() is currently not SMP safe, so we force
6889 QEMU to run on a single CPU */
6891 HANDLE h;
6892 DWORD mask, smask;
6893 int i;
6894 h = GetCurrentProcess();
6895 if (GetProcessAffinityMask(h, &mask, &smask)) {
6896 for(i = 0; i < 32; i++) {
6897 if (mask & (1 << i))
6898 break;
6900 if (i != 32) {
6901 mask = 1 << i;
6902 SetProcessAffinityMask(h, mask);
6906 #endif
6908 register_machines();
6909 machine = first_machine;
6910 cpu_model = NULL;
6911 initrd_filename = NULL;
6912 for(i = 0; i < MAX_FD; i++)
6913 fd_filename[i] = NULL;
6914 for(i = 0; i < MAX_DISKS; i++)
6915 hd_filename[i] = NULL;
6916 sd_filename = NULL;
6917 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
6918 vga_ram_size = VGA_RAM_SIZE;
6919 #ifdef CONFIG_GDBSTUB
6920 use_gdbstub = 0;
6921 gdbstub_port = DEFAULT_GDBSTUB_PORT;
6922 #endif
6923 snapshot = 0;
6924 nographic = 0;
6925 kernel_filename = NULL;
6926 kernel_cmdline = "";
6927 #ifdef TARGET_PPC
6928 cdrom_index = 1;
6929 #else
6930 cdrom_index = 2;
6931 #endif
6932 cyls = heads = secs = 0;
6933 translation = BIOS_ATA_TRANSLATION_AUTO;
6934 pstrcpy(monitor_device, sizeof(monitor_device), "vc");
6936 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "vc");
6937 for(i = 1; i < MAX_SERIAL_PORTS; i++)
6938 serial_devices[i][0] = '\0';
6939 serial_device_index = 0;
6941 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "vc");
6942 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
6943 parallel_devices[i][0] = '\0';
6944 parallel_device_index = 0;
6946 usb_devices_index = 0;
6948 nb_net_clients = 0;
6950 nb_nics = 0;
6951 /* default mac address of the first network interface */
6953 optind = 1;
6954 for(;;) {
6955 if (optind >= argc)
6956 break;
6957 r = argv[optind];
6958 if (r[0] != '-') {
6959 hd_filename[0] = argv[optind++];
6960 } else {
6961 const QEMUOption *popt;
6963 optind++;
6964 /* Treat --foo the same as -foo. */
6965 if (r[1] == '-')
6966 r++;
6967 popt = qemu_options;
6968 for(;;) {
6969 if (!popt->name) {
6970 fprintf(stderr, "%s: invalid option -- '%s'\n",
6971 argv[0], r);
6972 exit(1);
6974 if (!strcmp(popt->name, r + 1))
6975 break;
6976 popt++;
6978 if (popt->flags & HAS_ARG) {
6979 if (optind >= argc) {
6980 fprintf(stderr, "%s: option '%s' requires an argument\n",
6981 argv[0], r);
6982 exit(1);
6984 optarg = argv[optind++];
6985 } else {
6986 optarg = NULL;
6989 switch(popt->index) {
6990 case QEMU_OPTION_M:
6991 machine = find_machine(optarg);
6992 if (!machine) {
6993 QEMUMachine *m;
6994 printf("Supported machines are:\n");
6995 for(m = first_machine; m != NULL; m = m->next) {
6996 printf("%-10s %s%s\n",
6997 m->name, m->desc,
6998 m == first_machine ? " (default)" : "");
7000 exit(1);
7002 break;
7003 case QEMU_OPTION_cpu:
7004 /* hw initialization will check this */
7005 if (optarg[0] == '?') {
7006 #if defined(TARGET_PPC)
7007 ppc_cpu_list(stdout, &fprintf);
7008 #elif defined(TARGET_ARM)
7009 arm_cpu_list();
7010 #elif defined(TARGET_MIPS)
7011 mips_cpu_list(stdout, &fprintf);
7012 #elif defined(TARGET_SPARC)
7013 sparc_cpu_list(stdout, &fprintf);
7014 #endif
7015 exit(1);
7016 } else {
7017 cpu_model = optarg;
7019 break;
7020 case QEMU_OPTION_initrd:
7021 initrd_filename = optarg;
7022 break;
7023 case QEMU_OPTION_hda:
7024 case QEMU_OPTION_hdb:
7025 case QEMU_OPTION_hdc:
7026 case QEMU_OPTION_hdd:
7028 int hd_index;
7029 hd_index = popt->index - QEMU_OPTION_hda;
7030 hd_filename[hd_index] = optarg;
7031 if (hd_index == cdrom_index)
7032 cdrom_index = -1;
7034 break;
7035 case QEMU_OPTION_sd:
7036 sd_filename = optarg;
7037 break;
7038 case QEMU_OPTION_snapshot:
7039 snapshot = 1;
7040 break;
7041 case QEMU_OPTION_hdachs:
7043 const char *p;
7044 p = optarg;
7045 cyls = strtol(p, (char **)&p, 0);
7046 if (cyls < 1 || cyls > 16383)
7047 goto chs_fail;
7048 if (*p != ',')
7049 goto chs_fail;
7050 p++;
7051 heads = strtol(p, (char **)&p, 0);
7052 if (heads < 1 || heads > 16)
7053 goto chs_fail;
7054 if (*p != ',')
7055 goto chs_fail;
7056 p++;
7057 secs = strtol(p, (char **)&p, 0);
7058 if (secs < 1 || secs > 63)
7059 goto chs_fail;
7060 if (*p == ',') {
7061 p++;
7062 if (!strcmp(p, "none"))
7063 translation = BIOS_ATA_TRANSLATION_NONE;
7064 else if (!strcmp(p, "lba"))
7065 translation = BIOS_ATA_TRANSLATION_LBA;
7066 else if (!strcmp(p, "auto"))
7067 translation = BIOS_ATA_TRANSLATION_AUTO;
7068 else
7069 goto chs_fail;
7070 } else if (*p != '\0') {
7071 chs_fail:
7072 fprintf(stderr, "qemu: invalid physical CHS format\n");
7073 exit(1);
7076 break;
7077 case QEMU_OPTION_nographic:
7078 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "stdio");
7079 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "null");
7080 pstrcpy(monitor_device, sizeof(monitor_device), "stdio");
7081 nographic = 1;
7082 break;
7083 case QEMU_OPTION_kernel:
7084 kernel_filename = optarg;
7085 break;
7086 case QEMU_OPTION_append:
7087 kernel_cmdline = optarg;
7088 break;
7089 case QEMU_OPTION_cdrom:
7090 if (cdrom_index >= 0) {
7091 hd_filename[cdrom_index] = optarg;
7093 break;
7094 case QEMU_OPTION_boot:
7095 boot_device = optarg[0];
7096 if (boot_device != 'a' &&
7097 #if defined(TARGET_SPARC) || defined(TARGET_I386)
7098 // Network boot
7099 boot_device != 'n' &&
7100 #endif
7101 boot_device != 'c' && boot_device != 'd') {
7102 fprintf(stderr, "qemu: invalid boot device '%c'\n", boot_device);
7103 exit(1);
7105 break;
7106 case QEMU_OPTION_fda:
7107 fd_filename[0] = optarg;
7108 break;
7109 case QEMU_OPTION_fdb:
7110 fd_filename[1] = optarg;
7111 break;
7112 #ifdef TARGET_I386
7113 case QEMU_OPTION_no_fd_bootchk:
7114 fd_bootchk = 0;
7115 break;
7116 #endif
7117 case QEMU_OPTION_no_code_copy:
7118 code_copy_enabled = 0;
7119 break;
7120 case QEMU_OPTION_net:
7121 if (nb_net_clients >= MAX_NET_CLIENTS) {
7122 fprintf(stderr, "qemu: too many network clients\n");
7123 exit(1);
7125 pstrcpy(net_clients[nb_net_clients],
7126 sizeof(net_clients[0]),
7127 optarg);
7128 nb_net_clients++;
7129 break;
7130 #ifdef CONFIG_SLIRP
7131 case QEMU_OPTION_tftp:
7132 tftp_prefix = optarg;
7133 break;
7134 case QEMU_OPTION_bootp:
7135 bootp_filename = optarg;
7136 break;
7137 #ifndef _WIN32
7138 case QEMU_OPTION_smb:
7139 net_slirp_smb(optarg);
7140 break;
7141 #endif
7142 case QEMU_OPTION_redir:
7143 net_slirp_redir(optarg);
7144 break;
7145 #endif
7146 #ifdef HAS_AUDIO
7147 case QEMU_OPTION_audio_help:
7148 AUD_help ();
7149 exit (0);
7150 break;
7151 case QEMU_OPTION_soundhw:
7152 select_soundhw (optarg);
7153 break;
7154 #endif
7155 case QEMU_OPTION_h:
7156 help();
7157 break;
7158 case QEMU_OPTION_m:
7159 ram_size = atoi(optarg) * 1024 * 1024;
7160 if (ram_size <= 0)
7161 help();
7162 if (ram_size > PHYS_RAM_MAX_SIZE) {
7163 fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
7164 PHYS_RAM_MAX_SIZE / (1024 * 1024));
7165 exit(1);
7167 break;
7168 case QEMU_OPTION_d:
7170 int mask;
7171 CPULogItem *item;
7173 mask = cpu_str_to_log_mask(optarg);
7174 if (!mask) {
7175 printf("Log items (comma separated):\n");
7176 for(item = cpu_log_items; item->mask != 0; item++) {
7177 printf("%-10s %s\n", item->name, item->help);
7179 exit(1);
7181 cpu_set_log(mask);
7183 break;
7184 #ifdef CONFIG_GDBSTUB
7185 case QEMU_OPTION_s:
7186 use_gdbstub = 1;
7187 break;
7188 case QEMU_OPTION_p:
7189 gdbstub_port = optarg;
7190 break;
7191 #endif
7192 case QEMU_OPTION_L:
7193 bios_dir = optarg;
7194 break;
7195 case QEMU_OPTION_S:
7196 autostart = 0;
7197 break;
7198 case QEMU_OPTION_k:
7199 keyboard_layout = optarg;
7200 break;
7201 case QEMU_OPTION_localtime:
7202 rtc_utc = 0;
7203 break;
7204 case QEMU_OPTION_cirrusvga:
7205 cirrus_vga_enabled = 1;
7206 vmsvga_enabled = 0;
7207 break;
7208 case QEMU_OPTION_vmsvga:
7209 cirrus_vga_enabled = 0;
7210 vmsvga_enabled = 1;
7211 break;
7212 case QEMU_OPTION_std_vga:
7213 cirrus_vga_enabled = 0;
7214 vmsvga_enabled = 0;
7215 break;
7216 case QEMU_OPTION_g:
7218 const char *p;
7219 int w, h, depth;
7220 p = optarg;
7221 w = strtol(p, (char **)&p, 10);
7222 if (w <= 0) {
7223 graphic_error:
7224 fprintf(stderr, "qemu: invalid resolution or depth\n");
7225 exit(1);
7227 if (*p != 'x')
7228 goto graphic_error;
7229 p++;
7230 h = strtol(p, (char **)&p, 10);
7231 if (h <= 0)
7232 goto graphic_error;
7233 if (*p == 'x') {
7234 p++;
7235 depth = strtol(p, (char **)&p, 10);
7236 if (depth != 8 && depth != 15 && depth != 16 &&
7237 depth != 24 && depth != 32)
7238 goto graphic_error;
7239 } else if (*p == '\0') {
7240 depth = graphic_depth;
7241 } else {
7242 goto graphic_error;
7245 graphic_width = w;
7246 graphic_height = h;
7247 graphic_depth = depth;
7249 break;
7250 case QEMU_OPTION_echr:
7252 char *r;
7253 term_escape_char = strtol(optarg, &r, 0);
7254 if (r == optarg)
7255 printf("Bad argument to echr\n");
7256 break;
7258 case QEMU_OPTION_monitor:
7259 pstrcpy(monitor_device, sizeof(monitor_device), optarg);
7260 break;
7261 case QEMU_OPTION_serial:
7262 if (serial_device_index >= MAX_SERIAL_PORTS) {
7263 fprintf(stderr, "qemu: too many serial ports\n");
7264 exit(1);
7266 pstrcpy(serial_devices[serial_device_index],
7267 sizeof(serial_devices[0]), optarg);
7268 serial_device_index++;
7269 break;
7270 case QEMU_OPTION_parallel:
7271 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
7272 fprintf(stderr, "qemu: too many parallel ports\n");
7273 exit(1);
7275 pstrcpy(parallel_devices[parallel_device_index],
7276 sizeof(parallel_devices[0]), optarg);
7277 parallel_device_index++;
7278 break;
7279 case QEMU_OPTION_loadvm:
7280 loadvm = optarg;
7281 break;
7282 case QEMU_OPTION_full_screen:
7283 full_screen = 1;
7284 break;
7285 #ifdef CONFIG_SDL
7286 case QEMU_OPTION_no_frame:
7287 no_frame = 1;
7288 break;
7289 case QEMU_OPTION_no_quit:
7290 no_quit = 1;
7291 break;
7292 #endif
7293 case QEMU_OPTION_pidfile:
7294 pid_file = optarg;
7295 break;
7296 #ifdef TARGET_I386
7297 case QEMU_OPTION_win2k_hack:
7298 win2k_install_hack = 1;
7299 break;
7300 #endif
7301 #ifdef USE_KQEMU
7302 case QEMU_OPTION_no_kqemu:
7303 kqemu_allowed = 0;
7304 break;
7305 case QEMU_OPTION_kernel_kqemu:
7306 kqemu_allowed = 2;
7307 break;
7308 #endif
7309 case QEMU_OPTION_usb:
7310 usb_enabled = 1;
7311 break;
7312 case QEMU_OPTION_usbdevice:
7313 usb_enabled = 1;
7314 if (usb_devices_index >= MAX_USB_CMDLINE) {
7315 fprintf(stderr, "Too many USB devices\n");
7316 exit(1);
7318 pstrcpy(usb_devices[usb_devices_index],
7319 sizeof(usb_devices[usb_devices_index]),
7320 optarg);
7321 usb_devices_index++;
7322 break;
7323 case QEMU_OPTION_smp:
7324 smp_cpus = atoi(optarg);
7325 if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
7326 fprintf(stderr, "Invalid number of CPUs\n");
7327 exit(1);
7329 break;
7330 case QEMU_OPTION_vnc:
7331 vnc_display = optarg;
7332 break;
7333 case QEMU_OPTION_no_acpi:
7334 acpi_enabled = 0;
7335 break;
7336 case QEMU_OPTION_no_reboot:
7337 no_reboot = 1;
7338 break;
7339 case QEMU_OPTION_daemonize:
7340 daemonize = 1;
7341 break;
7342 case QEMU_OPTION_option_rom:
7343 if (nb_option_roms >= MAX_OPTION_ROMS) {
7344 fprintf(stderr, "Too many option ROMs\n");
7345 exit(1);
7347 option_rom[nb_option_roms] = optarg;
7348 nb_option_roms++;
7349 break;
7350 case QEMU_OPTION_semihosting:
7351 semihosting_enabled = 1;
7352 break;
7353 case QEMU_OPTION_name:
7354 qemu_name = optarg;
7355 break;
7360 #ifndef _WIN32
7361 if (daemonize && !nographic && vnc_display == NULL) {
7362 fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
7363 daemonize = 0;
7366 if (daemonize) {
7367 pid_t pid;
7369 if (pipe(fds) == -1)
7370 exit(1);
7372 pid = fork();
7373 if (pid > 0) {
7374 uint8_t status;
7375 ssize_t len;
7377 close(fds[1]);
7379 again:
7380 len = read(fds[0], &status, 1);
7381 if (len == -1 && (errno == EINTR))
7382 goto again;
7384 if (len != 1)
7385 exit(1);
7386 else if (status == 1) {
7387 fprintf(stderr, "Could not acquire pidfile\n");
7388 exit(1);
7389 } else
7390 exit(0);
7391 } else if (pid < 0)
7392 exit(1);
7394 setsid();
7396 pid = fork();
7397 if (pid > 0)
7398 exit(0);
7399 else if (pid < 0)
7400 exit(1);
7402 umask(027);
7403 chdir("/");
7405 signal(SIGTSTP, SIG_IGN);
7406 signal(SIGTTOU, SIG_IGN);
7407 signal(SIGTTIN, SIG_IGN);
7409 #endif
7411 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
7412 if (daemonize) {
7413 uint8_t status = 1;
7414 write(fds[1], &status, 1);
7415 } else
7416 fprintf(stderr, "Could not acquire pid file\n");
7417 exit(1);
7420 #ifdef USE_KQEMU
7421 if (smp_cpus > 1)
7422 kqemu_allowed = 0;
7423 #endif
7424 linux_boot = (kernel_filename != NULL);
7426 if (!linux_boot &&
7427 boot_device != 'n' &&
7428 hd_filename[0] == '\0' &&
7429 (cdrom_index >= 0 && hd_filename[cdrom_index] == '\0') &&
7430 fd_filename[0] == '\0')
7431 help();
7433 /* boot to floppy or the default cd if no hard disk defined yet */
7434 if (hd_filename[0] == '\0' && boot_device == 'c') {
7435 if (fd_filename[0] != '\0')
7436 boot_device = 'a';
7437 else
7438 boot_device = 'd';
7441 setvbuf(stdout, NULL, _IOLBF, 0);
7443 init_timers();
7444 init_timer_alarm();
7445 qemu_aio_init();
7447 #ifdef _WIN32
7448 socket_init();
7449 #endif
7451 /* init network clients */
7452 if (nb_net_clients == 0) {
7453 /* if no clients, we use a default config */
7454 pstrcpy(net_clients[0], sizeof(net_clients[0]),
7455 "nic");
7456 pstrcpy(net_clients[1], sizeof(net_clients[0]),
7457 "user");
7458 nb_net_clients = 2;
7461 for(i = 0;i < nb_net_clients; i++) {
7462 if (net_client_init(net_clients[i]) < 0)
7463 exit(1);
7466 #ifdef TARGET_I386
7467 if (boot_device == 'n') {
7468 for (i = 0; i < nb_nics; i++) {
7469 const char *model = nd_table[i].model;
7470 char buf[1024];
7471 if (model == NULL)
7472 model = "ne2k_pci";
7473 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
7474 if (get_image_size(buf) > 0) {
7475 option_rom[nb_option_roms] = strdup(buf);
7476 nb_option_roms++;
7477 break;
7480 if (i == nb_nics) {
7481 fprintf(stderr, "No valid PXE rom found for network device\n");
7482 exit(1);
7484 boot_device = 'c'; /* to prevent confusion by the BIOS */
7486 #endif
7488 /* init the memory */
7489 phys_ram_size = ram_size + vga_ram_size + MAX_BIOS_SIZE;
7491 phys_ram_base = qemu_vmalloc(phys_ram_size);
7492 if (!phys_ram_base) {
7493 fprintf(stderr, "Could not allocate physical memory\n");
7494 exit(1);
7497 /* we always create the cdrom drive, even if no disk is there */
7498 bdrv_init();
7499 if (cdrom_index >= 0) {
7500 bs_table[cdrom_index] = bdrv_new("cdrom");
7501 bdrv_set_type_hint(bs_table[cdrom_index], BDRV_TYPE_CDROM);
7504 /* open the virtual block devices */
7505 for(i = 0; i < MAX_DISKS; i++) {
7506 if (hd_filename[i]) {
7507 if (!bs_table[i]) {
7508 char buf[64];
7509 snprintf(buf, sizeof(buf), "hd%c", i + 'a');
7510 bs_table[i] = bdrv_new(buf);
7512 if (bdrv_open(bs_table[i], hd_filename[i], snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7513 fprintf(stderr, "qemu: could not open hard disk image '%s'\n",
7514 hd_filename[i]);
7515 exit(1);
7517 if (i == 0 && cyls != 0) {
7518 bdrv_set_geometry_hint(bs_table[i], cyls, heads, secs);
7519 bdrv_set_translation_hint(bs_table[i], translation);
7524 /* we always create at least one floppy disk */
7525 fd_table[0] = bdrv_new("fda");
7526 bdrv_set_type_hint(fd_table[0], BDRV_TYPE_FLOPPY);
7528 for(i = 0; i < MAX_FD; i++) {
7529 if (fd_filename[i]) {
7530 if (!fd_table[i]) {
7531 char buf[64];
7532 snprintf(buf, sizeof(buf), "fd%c", i + 'a');
7533 fd_table[i] = bdrv_new(buf);
7534 bdrv_set_type_hint(fd_table[i], BDRV_TYPE_FLOPPY);
7536 if (fd_filename[i][0] != '\0') {
7537 if (bdrv_open(fd_table[i], fd_filename[i],
7538 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7539 fprintf(stderr, "qemu: could not open floppy disk image '%s'\n",
7540 fd_filename[i]);
7541 exit(1);
7547 sd_bdrv = bdrv_new ("sd");
7548 /* FIXME: This isn't really a floppy, but it's a reasonable
7549 approximation. */
7550 bdrv_set_type_hint(sd_bdrv, BDRV_TYPE_FLOPPY);
7551 if (sd_filename) {
7552 if (bdrv_open(sd_bdrv, sd_filename,
7553 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7554 fprintf(stderr, "qemu: could not open SD card image %s\n",
7555 sd_filename);
7559 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
7560 register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
7562 init_ioports();
7564 /* terminal init */
7565 if (nographic) {
7566 dumb_display_init(ds);
7567 } else if (vnc_display != NULL) {
7568 vnc_display_init(ds, vnc_display);
7569 } else {
7570 #if defined(CONFIG_SDL)
7571 sdl_display_init(ds, full_screen, no_frame);
7572 #elif defined(CONFIG_COCOA)
7573 cocoa_display_init(ds, full_screen);
7574 #else
7575 dumb_display_init(ds);
7576 #endif
7579 /* Maintain compatibility with multiple stdio monitors */
7580 if (!strcmp(monitor_device,"stdio")) {
7581 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
7582 if (!strcmp(serial_devices[i],"mon:stdio")) {
7583 monitor_device[0] = '\0';
7584 break;
7585 } else if (!strcmp(serial_devices[i],"stdio")) {
7586 monitor_device[0] = '\0';
7587 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "mon:stdio");
7588 break;
7592 if (monitor_device[0] != '\0') {
7593 monitor_hd = qemu_chr_open(monitor_device);
7594 if (!monitor_hd) {
7595 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
7596 exit(1);
7598 monitor_init(monitor_hd, !nographic);
7601 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
7602 const char *devname = serial_devices[i];
7603 if (devname[0] != '\0' && strcmp(devname, "none")) {
7604 serial_hds[i] = qemu_chr_open(devname);
7605 if (!serial_hds[i]) {
7606 fprintf(stderr, "qemu: could not open serial device '%s'\n",
7607 devname);
7608 exit(1);
7610 if (!strcmp(devname, "vc"))
7611 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
7615 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
7616 const char *devname = parallel_devices[i];
7617 if (devname[0] != '\0' && strcmp(devname, "none")) {
7618 parallel_hds[i] = qemu_chr_open(devname);
7619 if (!parallel_hds[i]) {
7620 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
7621 devname);
7622 exit(1);
7624 if (!strcmp(devname, "vc"))
7625 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
7629 machine->init(ram_size, vga_ram_size, boot_device,
7630 ds, fd_filename, snapshot,
7631 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
7633 /* init USB devices */
7634 if (usb_enabled) {
7635 for(i = 0; i < usb_devices_index; i++) {
7636 if (usb_device_add(usb_devices[i]) < 0) {
7637 fprintf(stderr, "Warning: could not add USB device %s\n",
7638 usb_devices[i]);
7643 gui_timer = qemu_new_timer(rt_clock, gui_update, NULL);
7644 qemu_mod_timer(gui_timer, qemu_get_clock(rt_clock));
7646 #ifdef CONFIG_GDBSTUB
7647 if (use_gdbstub) {
7648 /* XXX: use standard host:port notation and modify options
7649 accordingly. */
7650 if (gdbserver_start(gdbstub_port) < 0) {
7651 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
7652 gdbstub_port);
7653 exit(1);
7655 } else
7656 #endif
7657 if (loadvm)
7658 do_loadvm(loadvm);
7661 /* XXX: simplify init */
7662 read_passwords();
7663 if (autostart) {
7664 vm_start();
7668 if (daemonize) {
7669 uint8_t status = 0;
7670 ssize_t len;
7671 int fd;
7673 again1:
7674 len = write(fds[1], &status, 1);
7675 if (len == -1 && (errno == EINTR))
7676 goto again1;
7678 if (len != 1)
7679 exit(1);
7681 fd = open("/dev/null", O_RDWR);
7682 if (fd == -1)
7683 exit(1);
7685 dup2(fd, 0);
7686 dup2(fd, 1);
7687 dup2(fd, 2);
7689 close(fd);
7692 main_loop();
7693 quit_timers();
7694 return 0;