Fix "make test2".
[qemu/mini2440.git] / qemu-doc.texi
blob0423ef065455bbcb534e8b9dfb9babb01625ceb7
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4 @settitle QEMU Emulator User Documentation
5 @exampleindent 0
6 @paragraphindent 0
7 @c %**end of header
9 @iftex
10 @titlepage
11 @sp 7
12 @center @titlefont{QEMU Emulator}
13 @sp 1
14 @center @titlefont{User Documentation}
15 @sp 3
16 @end titlepage
17 @end iftex
19 @ifnottex
20 @node Top
21 @top
23 @menu
24 * Introduction::
25 * Installation::
26 * QEMU PC System emulator::
27 * QEMU System emulator for non PC targets::
28 * QEMU Linux User space emulator::
29 * compilation:: Compilation from the sources
30 * Index::
31 @end menu
32 @end ifnottex
34 @contents
36 @node Introduction
37 @chapter Introduction
39 @menu
40 * intro_features:: Features
41 @end menu
43 @node intro_features
44 @section Features
46 QEMU is a FAST! processor emulator using dynamic translation to
47 achieve good emulation speed.
49 QEMU has two operating modes:
51 @itemize @minus
53 @item 
54 Full system emulation. In this mode, QEMU emulates a full system (for
55 example a PC), including one or several processors and various
56 peripherals. It can be used to launch different Operating Systems
57 without rebooting the PC or to debug system code.
59 @item 
60 User mode emulation (Linux host only). In this mode, QEMU can launch
61 Linux processes compiled for one CPU on another CPU. It can be used to
62 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 to ease cross-compilation and cross-debugging.
65 @end itemize
67 QEMU can run without an host kernel driver and yet gives acceptable
68 performance. 
70 For system emulation, the following hardware targets are supported:
71 @itemize
72 @item PC (x86 or x86_64 processor)
73 @item ISA PC (old style PC without PCI bus)
74 @item PREP (PowerPC processor)
75 @item G3 BW PowerMac (PowerPC processor)
76 @item Mac99 PowerMac (PowerPC processor, in progress)
77 @item Sun4m (32-bit Sparc processor)
78 @item Sun4u (64-bit Sparc processor, in progress)
79 @item Malta board (32-bit MIPS processor)
80 @item ARM Integrator/CP (ARM926E or 1026E processor)
81 @item ARM Versatile baseboard (ARM926E)
82 @end itemize
84 For user emulation, x86, PowerPC, ARM, MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
86 @node Installation
87 @chapter Installation
89 If you want to compile QEMU yourself, see @ref{compilation}.
91 @menu
92 * install_linux::   Linux
93 * install_windows:: Windows
94 * install_mac::     Macintosh
95 @end menu
97 @node install_linux
98 @section Linux
100 If a precompiled package is available for your distribution - you just
101 have to install it. Otherwise, see @ref{compilation}.
103 @node install_windows
104 @section Windows
106 Download the experimental binary installer at
107 @url{http://www.free.oszoo.org/@/download.html}.
109 @node install_mac
110 @section Mac OS X
112 Download the experimental binary installer at
113 @url{http://www.free.oszoo.org/@/download.html}.
115 @node QEMU PC System emulator
116 @chapter QEMU PC System emulator
118 @menu
119 * pcsys_introduction:: Introduction
120 * pcsys_quickstart::   Quick Start
121 * sec_invocation::     Invocation
122 * pcsys_keys::         Keys
123 * pcsys_monitor::      QEMU Monitor
124 * disk_images::        Disk Images
125 * pcsys_network::      Network emulation
126 * direct_linux_boot::  Direct Linux Boot
127 * pcsys_usb::          USB emulation
128 * gdb_usage::          GDB usage
129 * pcsys_os_specific::  Target OS specific information
130 @end menu
132 @node pcsys_introduction
133 @section Introduction
135 @c man begin DESCRIPTION
137 The QEMU PC System emulator simulates the
138 following peripherals:
140 @itemize @minus
141 @item 
142 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
143 @item
144 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
145 extensions (hardware level, including all non standard modes).
146 @item
147 PS/2 mouse and keyboard
148 @item 
149 2 PCI IDE interfaces with hard disk and CD-ROM support
150 @item
151 Floppy disk
152 @item 
153 NE2000 PCI network adapters
154 @item
155 Serial ports
156 @item
157 Creative SoundBlaster 16 sound card
158 @item
159 ENSONIQ AudioPCI ES1370 sound card
160 @item
161 Adlib(OPL2) - Yamaha YM3812 compatible chip
162 @item
163 PCI UHCI USB controller and a virtual USB hub.
164 @end itemize
166 SMP is supported with up to 255 CPUs.
168 Note that adlib is only available when QEMU was configured with
169 -enable-adlib
171 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
172 VGA BIOS.
174 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
176 @c man end
178 @node pcsys_quickstart
179 @section Quick Start
181 Download and uncompress the linux image (@file{linux.img}) and type:
183 @example
184 qemu linux.img
185 @end example
187 Linux should boot and give you a prompt.
189 @node sec_invocation
190 @section Invocation
192 @example
193 @c man begin SYNOPSIS
194 usage: qemu [options] [disk_image]
195 @c man end
196 @end example
198 @c man begin OPTIONS
199 @var{disk_image} is a raw hard disk image for IDE hard disk 0.
201 General options:
202 @table @option
203 @item -M machine
204 Select the emulated machine (@code{-M ?} for list)
206 @item -fda file
207 @item -fdb file
208 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
209 use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
211 @item -hda file
212 @item -hdb file
213 @item -hdc file
214 @item -hdd file
215 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
217 @item -cdrom file
218 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
219 @option{-cdrom} at the same time). You can use the host CD-ROM by
220 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
222 @item -boot [a|c|d|n]
223 Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
224 is the default.
226 @item -snapshot
227 Write to temporary files instead of disk image files. In this case,
228 the raw disk image you use is not written back. You can however force
229 the write back by pressing @key{C-a s} (@pxref{disk_images}).
231 @item -no-fd-bootchk
232 Disable boot signature checking for floppy disks in Bochs BIOS. It may
233 be needed to boot from old floppy disks.
235 @item -m megs
236 Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
238 @item -smp n
239 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
240 CPUs are supported.
242 @item -nographic
244 Normally, QEMU uses SDL to display the VGA output. With this option,
245 you can totally disable graphical output so that QEMU is a simple
246 command line application. The emulated serial port is redirected on
247 the console. Therefore, you can still use QEMU to debug a Linux kernel
248 with a serial console.
250 @item -vnc display
252 Normally, QEMU uses SDL to display the VGA output.  With this option,
253 you can have QEMU listen on VNC display @var{display} and redirect the VGA
254 display over the VNC session.  It is very useful to enable the usb
255 tablet device when using this option (option @option{-usbdevice
256 tablet}). When using the VNC display, you must use the @option{-k}
257 option to set the keyboard layout if you are not using en-us.
259 @var{display} may be in the form @var{interface:d}, in which case connections
260 will only be allowed from @var{interface} on display @var{d}. Optionally,
261 @var{interface} can be omitted.  @var{display} can also be in the form
262 @var{unix:path} where @var{path} is the location of a unix socket to listen for
263 connections on.
266 @item -k language
268 Use keyboard layout @var{language} (for example @code{fr} for
269 French). This option is only needed where it is not easy to get raw PC
270 keycodes (e.g. on Macs, with some X11 servers or with a VNC
271 display). You don't normally need to use it on PC/Linux or PC/Windows
272 hosts.
274 The available layouts are:
275 @example
276 ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
277 da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
278 de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
279 @end example
281 The default is @code{en-us}.
283 @item -audio-help
285 Will show the audio subsystem help: list of drivers, tunable
286 parameters.
288 @item -soundhw card1,card2,... or -soundhw all
290 Enable audio and selected sound hardware. Use ? to print all
291 available sound hardware.
293 @example
294 qemu -soundhw sb16,adlib hda
295 qemu -soundhw es1370 hda
296 qemu -soundhw all hda
297 qemu -soundhw ?
298 @end example
300 @item -localtime
301 Set the real time clock to local time (the default is to UTC
302 time). This option is needed to have correct date in MS-DOS or
303 Windows.
305 @item -full-screen
306 Start in full screen.
308 @item -pidfile file
309 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
310 from a script.
312 @item -daemonize
313 Daemonize the QEMU process after initialization.  QEMU will not detach from
314 standard IO until it is ready to receive connections on any of its devices.
315 This option is a useful way for external programs to launch QEMU without having
316 to cope with initialization race conditions.
318 @item -win2k-hack
319 Use it when installing Windows 2000 to avoid a disk full bug. After
320 Windows 2000 is installed, you no longer need this option (this option
321 slows down the IDE transfers).
323 @item -option-rom file
324 Load the contents of file as an option ROM.  This option is useful to load
325 things like EtherBoot.
327 @end table
329 USB options:
330 @table @option
332 @item -usb
333 Enable the USB driver (will be the default soon)
335 @item -usbdevice devname
336 Add the USB device @var{devname}. @xref{usb_devices}.
337 @end table
339 Network options:
341 @table @option
343 @item -net nic[,vlan=n][,macaddr=addr][,model=type]
344 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
345 = 0 is the default). The NIC is currently an NE2000 on the PC
346 target. Optionally, the MAC address can be changed. If no
347 @option{-net} option is specified, a single NIC is created.
348 Qemu can emulate several different models of network card.  Valid values for
349 @var{type} are @code{ne2k_pci}, @code{ne2k_isa}, @code{rtl8139},
350 @code{smc91c111} and @code{lance}.  Not all devices are supported on all
351 targets.
353 @item -net user[,vlan=n][,hostname=name]
354 Use the user mode network stack which requires no administrator
355 priviledge to run.  @option{hostname=name} can be used to specify the client
356 hostname reported by the builtin DHCP server.
358 @item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
359 Connect the host TAP network interface @var{name} to VLAN @var{n} and
360 use the network script @var{file} to configure it. The default
361 network script is @file{/etc/qemu-ifup}. If @var{name} is not
362 provided, the OS automatically provides one.  @option{fd=h} can be
363 used to specify the handle of an already opened host TAP interface. Example:
365 @example
366 qemu linux.img -net nic -net tap
367 @end example
369 More complicated example (two NICs, each one connected to a TAP device)
370 @example
371 qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
372                -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
373 @end example
376 @item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
378 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
379 machine using a TCP socket connection. If @option{listen} is
380 specified, QEMU waits for incoming connections on @var{port}
381 (@var{host} is optional). @option{connect} is used to connect to
382 another QEMU instance using the @option{listen} option. @option{fd=h}
383 specifies an already opened TCP socket.
385 Example:
386 @example
387 # launch a first QEMU instance
388 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
389                -net socket,listen=:1234
390 # connect the VLAN 0 of this instance to the VLAN 0
391 # of the first instance
392 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
393                -net socket,connect=127.0.0.1:1234
394 @end example
396 @item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
398 Create a VLAN @var{n} shared with another QEMU virtual
399 machines using a UDP multicast socket, effectively making a bus for 
400 every QEMU with same multicast address @var{maddr} and @var{port}.
401 NOTES:
402 @enumerate
403 @item 
404 Several QEMU can be running on different hosts and share same bus (assuming 
405 correct multicast setup for these hosts).
406 @item
407 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
408 @url{http://user-mode-linux.sf.net}.
409 @item Use @option{fd=h} to specify an already opened UDP multicast socket.
410 @end enumerate
412 Example:
413 @example
414 # launch one QEMU instance
415 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
416                -net socket,mcast=230.0.0.1:1234
417 # launch another QEMU instance on same "bus"
418 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
419                -net socket,mcast=230.0.0.1:1234
420 # launch yet another QEMU instance on same "bus"
421 qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
422                -net socket,mcast=230.0.0.1:1234
423 @end example
425 Example (User Mode Linux compat.):
426 @example
427 # launch QEMU instance (note mcast address selected
428 # is UML's default)
429 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
430                -net socket,mcast=239.192.168.1:1102
431 # launch UML
432 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
433 @end example
435 @item -net none
436 Indicate that no network devices should be configured. It is used to
437 override the default configuration (@option{-net nic -net user}) which
438 is activated if no @option{-net} options are provided.
440 @item -tftp prefix
441 When using the user mode network stack, activate a built-in TFTP
442 server. All filenames beginning with @var{prefix} can be downloaded
443 from the host to the guest using a TFTP client. The TFTP client on the
444 guest must be configured in binary mode (use the command @code{bin} of
445 the Unix TFTP client). The host IP address on the guest is as usual
446 10.0.2.2.
448 @item -smb dir
449 When using the user mode network stack, activate a built-in SMB
450 server so that Windows OSes can access to the host files in @file{dir}
451 transparently.
453 In the guest Windows OS, the line:
454 @example
455 10.0.2.4 smbserver
456 @end example
457 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
458 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
460 Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
462 Note that a SAMBA server must be installed on the host OS in
463 @file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
464 2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
466 @item -redir [tcp|udp]:host-port:[guest-host]:guest-port
468 When using the user mode network stack, redirect incoming TCP or UDP
469 connections to the host port @var{host-port} to the guest
470 @var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
471 is not specified, its value is 10.0.2.15 (default address given by the
472 built-in DHCP server).
474 For example, to redirect host X11 connection from screen 1 to guest
475 screen 0, use the following:
477 @example
478 # on the host
479 qemu -redir tcp:6001::6000 [...]
480 # this host xterm should open in the guest X11 server
481 xterm -display :1
482 @end example
484 To redirect telnet connections from host port 5555 to telnet port on
485 the guest, use the following:
487 @example
488 # on the host
489 qemu -redir tcp:5555::23 [...]
490 telnet localhost 5555
491 @end example
493 Then when you use on the host @code{telnet localhost 5555}, you
494 connect to the guest telnet server.
496 @end table
498 Linux boot specific: When using these options, you can use a given
499 Linux kernel without installing it in the disk image. It can be useful
500 for easier testing of various kernels.
502 @table @option
504 @item -kernel bzImage 
505 Use @var{bzImage} as kernel image.
507 @item -append cmdline 
508 Use @var{cmdline} as kernel command line
510 @item -initrd file
511 Use @var{file} as initial ram disk.
513 @end table
515 Debug/Expert options:
516 @table @option
518 @item -serial dev
519 Redirect the virtual serial port to host character device
520 @var{dev}. The default device is @code{vc} in graphical mode and
521 @code{stdio} in non graphical mode.
523 This option can be used several times to simulate up to 4 serials
524 ports.
526 Use @code{-serial none} to disable all serial ports.
528 Available character devices are:
529 @table @code
530 @item vc
531 Virtual console
532 @item pty
533 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
534 @item none
535 No device is allocated.
536 @item null
537 void device
538 @item /dev/XXX
539 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
540 parameters are set according to the emulated ones.
541 @item /dev/parportN
542 [Linux only, parallel port only] Use host parallel port
543 @var{N}. Currently only SPP parallel port features can be used.
544 @item file:filename
545 Write output to filename. No character can be read.
546 @item stdio
547 [Unix only] standard input/output
548 @item pipe:filename
549 name pipe @var{filename}
550 @item COMn
551 [Windows only] Use host serial port @var{n}
552 @item udp:[remote_host]:remote_port[@@[src_ip]:src_port]
553 This implements UDP Net Console.  When @var{remote_host} or @var{src_ip} are not specified they default to @code{0.0.0.0}.  When not using a specifed @var{src_port} a random port is automatically chosen.
555 If you just want a simple readonly console you can use @code{netcat} or
556 @code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
557 @code{nc -u -l -p 4555}. Any time qemu writes something to that port it
558 will appear in the netconsole session.
560 If you plan to send characters back via netconsole or you want to stop
561 and start qemu a lot of times, you should have qemu use the same
562 source port each time by using something like @code{-serial
563 udp::4555@@:4556} to qemu. Another approach is to use a patched
564 version of netcat which can listen to a TCP port and send and receive
565 characters via udp.  If you have a patched version of netcat which
566 activates telnet remote echo and single char transfer, then you can
567 use the following options to step up a netcat redirector to allow
568 telnet on port 5555 to access the qemu port.
569 @table @code
570 @item Qemu Options:
571 -serial udp::4555@@:4556
572 @item netcat options:
573 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
574 @item telnet options:
575 localhost 5555
576 @end table
579 @item tcp:[host]:port[,server][,nowait]
580 The TCP Net Console has two modes of operation.  It can send the serial
581 I/O to a location or wait for a connection from a location.  By default
582 the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
583 the @var{server} option QEMU will wait for a client socket application
584 to connect to the port before continuing, unless the @code{nowait}
585 option was specified. If @var{host} is omitted, 0.0.0.0 is assumed. Only
586 one TCP connection at a time is accepted. You can use @code{telnet} to
587 connect to the corresponding character device.
588 @table @code
589 @item Example to send tcp console to 192.168.0.2 port 4444
590 -serial tcp:192.168.0.2:4444
591 @item Example to listen and wait on port 4444 for connection
592 -serial tcp::4444,server
593 @item Example to not wait and listen on ip 192.168.0.100 port 4444
594 -serial tcp:192.168.0.100:4444,server,nowait
595 @end table
597 @item telnet:host:port[,server][,nowait]
598 The telnet protocol is used instead of raw tcp sockets.  The options
599 work the same as if you had specified @code{-serial tcp}.  The
600 difference is that the port acts like a telnet server or client using
601 telnet option negotiation.  This will also allow you to send the
602 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
603 sequence.  Typically in unix telnet you do it with Control-] and then
604 type "send break" followed by pressing the enter key.
606 @item unix:path[,server][,nowait]
607 A unix domain socket is used instead of a tcp socket.  The option works the
608 same as if you had specified @code{-serial tcp} except the unix domain socket
609 @var{path} is used for connections.
611 @end table
613 @item -parallel dev
614 Redirect the virtual parallel port to host device @var{dev} (same
615 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
616 be used to use hardware devices connected on the corresponding host
617 parallel port.
619 This option can be used several times to simulate up to 3 parallel
620 ports.
622 Use @code{-parallel none} to disable all parallel ports.
624 @item -monitor dev
625 Redirect the monitor to host device @var{dev} (same devices as the
626 serial port).
627 The default device is @code{vc} in graphical mode and @code{stdio} in
628 non graphical mode.
630 @item -s
631 Wait gdb connection to port 1234 (@pxref{gdb_usage}). 
632 @item -p port
633 Change gdb connection port.
634 @item -S
635 Do not start CPU at startup (you must type 'c' in the monitor).
636 @item -d             
637 Output log in /tmp/qemu.log
638 @item -hdachs c,h,s,[,t]
639 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
640 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
641 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
642 all thoses parameters. This option is useful for old MS-DOS disk
643 images.
645 @item -L path
646 Set the directory for the BIOS, VGA BIOS and keymaps.
648 @item -std-vga
649 Simulate a standard VGA card with Bochs VBE extensions (default is
650 Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
651 VBE extensions (e.g. Windows XP) and if you want to use high
652 resolution modes (>= 1280x1024x16) then you should use this option.
654 @item -no-acpi
655 Disable ACPI (Advanced Configuration and Power Interface) support. Use
656 it if your guest OS complains about ACPI problems (PC target machine
657 only).
659 @item -no-reboot
660 Exit instead of rebooting.
662 @item -loadvm file
663 Start right away with a saved state (@code{loadvm} in monitor)
664 @end table
666 @c man end
668 @node pcsys_keys
669 @section Keys
671 @c man begin OPTIONS
673 During the graphical emulation, you can use the following keys:
674 @table @key
675 @item Ctrl-Alt-f
676 Toggle full screen
678 @item Ctrl-Alt-n
679 Switch to virtual console 'n'. Standard console mappings are:
680 @table @emph
681 @item 1
682 Target system display
683 @item 2
684 Monitor
685 @item 3
686 Serial port
687 @end table
689 @item Ctrl-Alt
690 Toggle mouse and keyboard grab.
691 @end table
693 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
694 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
696 During emulation, if you are using the @option{-nographic} option, use
697 @key{Ctrl-a h} to get terminal commands:
699 @table @key
700 @item Ctrl-a h
701 Print this help
702 @item Ctrl-a x    
703 Exit emulator
704 @item Ctrl-a s    
705 Save disk data back to file (if -snapshot)
706 @item Ctrl-a b
707 Send break (magic sysrq in Linux)
708 @item Ctrl-a c
709 Switch between console and monitor
710 @item Ctrl-a Ctrl-a
711 Send Ctrl-a
712 @end table
713 @c man end
715 @ignore
717 @c man begin SEEALSO
718 The HTML documentation of QEMU for more precise information and Linux
719 user mode emulator invocation.
720 @c man end
722 @c man begin AUTHOR
723 Fabrice Bellard
724 @c man end
726 @end ignore
728 @node pcsys_monitor
729 @section QEMU Monitor
731 The QEMU monitor is used to give complex commands to the QEMU
732 emulator. You can use it to:
734 @itemize @minus
736 @item
737 Remove or insert removable medias images
738 (such as CD-ROM or floppies)
740 @item 
741 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
742 from a disk file.
744 @item Inspect the VM state without an external debugger.
746 @end itemize
748 @subsection Commands
750 The following commands are available:
752 @table @option
754 @item help or ? [cmd]
755 Show the help for all commands or just for command @var{cmd}.
757 @item commit  
758 Commit changes to the disk images (if -snapshot is used)
760 @item info subcommand 
761 show various information about the system state
763 @table @option
764 @item info network
765 show the various VLANs and the associated devices
766 @item info block
767 show the block devices
768 @item info registers
769 show the cpu registers
770 @item info history
771 show the command line history
772 @item info pci
773 show emulated PCI device
774 @item info usb
775 show USB devices plugged on the virtual USB hub
776 @item info usbhost
777 show all USB host devices
778 @item info capture
779 show information about active capturing
780 @item info snapshots
781 show list of VM snapshots
782 @item info mice
783 show which guest mouse is receiving events
784 @end table
786 @item q or quit
787 Quit the emulator.
789 @item eject [-f] device
790 Eject a removable media (use -f to force it).
792 @item change device filename
793 Change a removable media.
795 @item screendump filename
796 Save screen into PPM image @var{filename}.
798 @item mouse_move dx dy [dz]
799 Move the active mouse to the specified coordinates @var{dx} @var{dy}
800 with optional scroll axis @var{dz}.
802 @item mouse_button val
803 Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
805 @item mouse_set index
806 Set which mouse device receives events at given @var{index}, index
807 can be obtained with
808 @example
809 info mice
810 @end example
812 @item wavcapture filename [frequency [bits [channels]]]
813 Capture audio into @var{filename}. Using sample rate @var{frequency}
814 bits per sample @var{bits} and number of channels @var{channels}.
816 Defaults:
817 @itemize @minus
818 @item Sample rate = 44100 Hz - CD quality
819 @item Bits = 16
820 @item Number of channels = 2 - Stereo
821 @end itemize
823 @item stopcapture index
824 Stop capture with a given @var{index}, index can be obtained with
825 @example
826 info capture
827 @end example
829 @item log item1[,...]
830 Activate logging of the specified items to @file{/tmp/qemu.log}.
832 @item savevm [tag|id]
833 Create a snapshot of the whole virtual machine. If @var{tag} is
834 provided, it is used as human readable identifier. If there is already
835 a snapshot with the same tag or ID, it is replaced. More info at
836 @ref{vm_snapshots}.
838 @item loadvm tag|id
839 Set the whole virtual machine to the snapshot identified by the tag
840 @var{tag} or the unique snapshot ID @var{id}.
842 @item delvm tag|id
843 Delete the snapshot identified by @var{tag} or @var{id}.
845 @item stop
846 Stop emulation.
848 @item c or cont
849 Resume emulation.
851 @item gdbserver [port]
852 Start gdbserver session (default port=1234)
854 @item x/fmt addr
855 Virtual memory dump starting at @var{addr}.
857 @item xp /fmt addr
858 Physical memory dump starting at @var{addr}.
860 @var{fmt} is a format which tells the command how to format the
861 data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
863 @table @var
864 @item count 
865 is the number of items to be dumped.
867 @item format
868 can be x (hexa), d (signed decimal), u (unsigned decimal), o (octal),
869 c (char) or i (asm instruction).
871 @item size
872 can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
873 @code{h} or @code{w} can be specified with the @code{i} format to
874 respectively select 16 or 32 bit code instruction size.
876 @end table
878 Examples: 
879 @itemize
880 @item
881 Dump 10 instructions at the current instruction pointer:
882 @example 
883 (qemu) x/10i $eip
884 0x90107063:  ret
885 0x90107064:  sti
886 0x90107065:  lea    0x0(%esi,1),%esi
887 0x90107069:  lea    0x0(%edi,1),%edi
888 0x90107070:  ret
889 0x90107071:  jmp    0x90107080
890 0x90107073:  nop
891 0x90107074:  nop
892 0x90107075:  nop
893 0x90107076:  nop
894 @end example
896 @item
897 Dump 80 16 bit values at the start of the video memory.
898 @smallexample 
899 (qemu) xp/80hx 0xb8000
900 0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
901 0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
902 0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
903 0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
904 0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
905 0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
906 0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
907 0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
908 0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
909 0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
910 @end smallexample
911 @end itemize
913 @item p or print/fmt expr
915 Print expression value. Only the @var{format} part of @var{fmt} is
916 used.
918 @item sendkey keys
920 Send @var{keys} to the emulator. Use @code{-} to press several keys
921 simultaneously. Example:
922 @example
923 sendkey ctrl-alt-f1
924 @end example
926 This command is useful to send keys that your graphical user interface
927 intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
929 @item system_reset
931 Reset the system.
933 @item usb_add devname
935 Add the USB device @var{devname}.  For details of available devices see
936 @ref{usb_devices}
938 @item usb_del devname
940 Remove the USB device @var{devname} from the QEMU virtual USB
941 hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
942 command @code{info usb} to see the devices you can remove.
944 @end table
946 @subsection Integer expressions
948 The monitor understands integers expressions for every integer
949 argument. You can use register names to get the value of specifics
950 CPU registers by prefixing them with @emph{$}.
952 @node disk_images
953 @section Disk Images
955 Since version 0.6.1, QEMU supports many disk image formats, including
956 growable disk images (their size increase as non empty sectors are
957 written), compressed and encrypted disk images. Version 0.8.3 added
958 the new qcow2 disk image format which is essential to support VM
959 snapshots.
961 @menu
962 * disk_images_quickstart::    Quick start for disk image creation
963 * disk_images_snapshot_mode:: Snapshot mode
964 * vm_snapshots::              VM snapshots
965 * qemu_img_invocation::       qemu-img Invocation
966 * host_drives::               Using host drives
967 * disk_images_fat_images::    Virtual FAT disk images
968 @end menu
970 @node disk_images_quickstart
971 @subsection Quick start for disk image creation
973 You can create a disk image with the command:
974 @example
975 qemu-img create myimage.img mysize
976 @end example
977 where @var{myimage.img} is the disk image filename and @var{mysize} is its
978 size in kilobytes. You can add an @code{M} suffix to give the size in
979 megabytes and a @code{G} suffix for gigabytes.
981 See @ref{qemu_img_invocation} for more information.
983 @node disk_images_snapshot_mode
984 @subsection Snapshot mode
986 If you use the option @option{-snapshot}, all disk images are
987 considered as read only. When sectors in written, they are written in
988 a temporary file created in @file{/tmp}. You can however force the
989 write back to the raw disk images by using the @code{commit} monitor
990 command (or @key{C-a s} in the serial console).
992 @node vm_snapshots
993 @subsection VM snapshots
995 VM snapshots are snapshots of the complete virtual machine including
996 CPU state, RAM, device state and the content of all the writable
997 disks. In order to use VM snapshots, you must have at least one non
998 removable and writable block device using the @code{qcow2} disk image
999 format. Normally this device is the first virtual hard drive.
1001 Use the monitor command @code{savevm} to create a new VM snapshot or
1002 replace an existing one. A human readable name can be assigned to each
1003 snapshot in addition to its numerical ID.
1005 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1006 a VM snapshot. @code{info snapshots} lists the available snapshots
1007 with their associated information:
1009 @example
1010 (qemu) info snapshots
1011 Snapshot devices: hda
1012 Snapshot list (from hda):
1013 ID        TAG                 VM SIZE                DATE       VM CLOCK
1014 1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1015 2                                 40M 2006-08-06 12:43:29   00:00:18.633
1016 3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1017 @end example
1019 A VM snapshot is made of a VM state info (its size is shown in
1020 @code{info snapshots}) and a snapshot of every writable disk image.
1021 The VM state info is stored in the first @code{qcow2} non removable
1022 and writable block device. The disk image snapshots are stored in
1023 every disk image. The size of a snapshot in a disk image is difficult
1024 to evaluate and is not shown by @code{info snapshots} because the
1025 associated disk sectors are shared among all the snapshots to save
1026 disk space (otherwise each snapshot would need a full copy of all the
1027 disk images).
1029 When using the (unrelated) @code{-snapshot} option
1030 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1031 but they are deleted as soon as you exit QEMU.
1033 VM snapshots currently have the following known limitations:
1034 @itemize
1035 @item 
1036 They cannot cope with removable devices if they are removed or
1037 inserted after a snapshot is done.
1038 @item 
1039 A few device drivers still have incomplete snapshot support so their
1040 state is not saved or restored properly (in particular USB).
1041 @end itemize
1043 @node qemu_img_invocation
1044 @subsection @code{qemu-img} Invocation
1046 @include qemu-img.texi
1048 @node host_drives
1049 @subsection Using host drives
1051 In addition to disk image files, QEMU can directly access host
1052 devices. We describe here the usage for QEMU version >= 0.8.3.
1054 @subsubsection Linux
1056 On Linux, you can directly use the host device filename instead of a
1057 disk image filename provided you have enough proviledge to access
1058 it. For example, use @file{/dev/cdrom} to access to the CDROM or
1059 @file{/dev/fd0} for the floppy.
1061 @table @code
1062 @item CD
1063 You can specify a CDROM device even if no CDROM is loaded. QEMU has
1064 specific code to detect CDROM insertion or removal. CDROM ejection by
1065 the guest OS is supported. Currently only data CDs are supported.
1066 @item Floppy
1067 You can specify a floppy device even if no floppy is loaded. Floppy
1068 removal is currently not detected accurately (if you change floppy
1069 without doing floppy access while the floppy is not loaded, the guest
1070 OS will think that the same floppy is loaded).
1071 @item Hard disks
1072 Hard disks can be used. Normally you must specify the whole disk
1073 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1074 see it as a partitioned disk. WARNING: unless you know what you do, it
1075 is better to only make READ-ONLY accesses to the hard disk otherwise
1076 you may corrupt your host data (use the @option{-snapshot} command
1077 line option or modify the device permissions accordingly).
1078 @end table
1080 @subsubsection Windows
1082 @table @code
1083 @item CD
1084 The prefered syntax is the drive letter (e.g. @file{d:}). The
1085 alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1086 supported as an alias to the first CDROM drive.
1088 Currently there is no specific code to handle removable medias, so it
1089 is better to use the @code{change} or @code{eject} monitor commands to
1090 change or eject media.
1091 @item Hard disks
1092 Hard disks can be used with the syntax: @file{\\.\PhysicalDriveN}
1093 where @var{N} is the drive number (0 is the first hard disk).
1095 WARNING: unless you know what you do, it is better to only make
1096 READ-ONLY accesses to the hard disk otherwise you may corrupt your
1097 host data (use the @option{-snapshot} command line so that the
1098 modifications are written in a temporary file).
1099 @end table
1102 @subsubsection Mac OS X
1104 @file{/dev/cdrom} is an alias to the first CDROM. 
1106 Currently there is no specific code to handle removable medias, so it
1107 is better to use the @code{change} or @code{eject} monitor commands to
1108 change or eject media.
1110 @node disk_images_fat_images
1111 @subsection Virtual FAT disk images
1113 QEMU can automatically create a virtual FAT disk image from a
1114 directory tree. In order to use it, just type:
1116 @example 
1117 qemu linux.img -hdb fat:/my_directory
1118 @end example
1120 Then you access access to all the files in the @file{/my_directory}
1121 directory without having to copy them in a disk image or to export
1122 them via SAMBA or NFS. The default access is @emph{read-only}.
1124 Floppies can be emulated with the @code{:floppy:} option:
1126 @example 
1127 qemu linux.img -fda fat:floppy:/my_directory
1128 @end example
1130 A read/write support is available for testing (beta stage) with the
1131 @code{:rw:} option:
1133 @example 
1134 qemu linux.img -fda fat:floppy:rw:/my_directory
1135 @end example
1137 What you should @emph{never} do:
1138 @itemize
1139 @item use non-ASCII filenames ;
1140 @item use "-snapshot" together with ":rw:" ;
1141 @item expect it to work when loadvm'ing ;
1142 @item write to the FAT directory on the host system while accessing it with the guest system.
1143 @end itemize
1145 @node pcsys_network
1146 @section Network emulation
1148 QEMU can simulate several networks cards (NE2000 boards on the PC
1149 target) and can connect them to an arbitrary number of Virtual Local
1150 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1151 VLAN. VLAN can be connected between separate instances of QEMU to
1152 simulate large networks. For simpler usage, a non priviledged user mode
1153 network stack can replace the TAP device to have a basic network
1154 connection.
1156 @subsection VLANs
1158 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1159 connection between several network devices. These devices can be for
1160 example QEMU virtual Ethernet cards or virtual Host ethernet devices
1161 (TAP devices).
1163 @subsection Using TAP network interfaces
1165 This is the standard way to connect QEMU to a real network. QEMU adds
1166 a virtual network device on your host (called @code{tapN}), and you
1167 can then configure it as if it was a real ethernet card.
1169 @subsubsection Linux host
1171 As an example, you can download the @file{linux-test-xxx.tar.gz}
1172 archive and copy the script @file{qemu-ifup} in @file{/etc} and
1173 configure properly @code{sudo} so that the command @code{ifconfig}
1174 contained in @file{qemu-ifup} can be executed as root. You must verify
1175 that your host kernel supports the TAP network interfaces: the
1176 device @file{/dev/net/tun} must be present.
1178 See @ref{sec_invocation} to have examples of command lines using the
1179 TAP network interfaces.
1181 @subsubsection Windows host
1183 There is a virtual ethernet driver for Windows 2000/XP systems, called
1184 TAP-Win32. But it is not included in standard QEMU for Windows,
1185 so you will need to get it separately. It is part of OpenVPN package,
1186 so download OpenVPN from : @url{http://openvpn.net/}.
1188 @subsection Using the user mode network stack
1190 By using the option @option{-net user} (default configuration if no
1191 @option{-net} option is specified), QEMU uses a completely user mode
1192 network stack (you don't need root priviledge to use the virtual
1193 network). The virtual network configuration is the following:
1195 @example
1197          QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1198                            |          (10.0.2.2)
1199                            |
1200                            ---->  DNS server (10.0.2.3)
1201                            |     
1202                            ---->  SMB server (10.0.2.4)
1203 @end example
1205 The QEMU VM behaves as if it was behind a firewall which blocks all
1206 incoming connections. You can use a DHCP client to automatically
1207 configure the network in the QEMU VM. The DHCP server assign addresses
1208 to the hosts starting from 10.0.2.15.
1210 In order to check that the user mode network is working, you can ping
1211 the address 10.0.2.2 and verify that you got an address in the range
1212 10.0.2.x from the QEMU virtual DHCP server.
1214 Note that @code{ping} is not supported reliably to the internet as it
1215 would require root priviledges. It means you can only ping the local
1216 router (10.0.2.2).
1218 When using the built-in TFTP server, the router is also the TFTP
1219 server.
1221 When using the @option{-redir} option, TCP or UDP connections can be
1222 redirected from the host to the guest. It allows for example to
1223 redirect X11, telnet or SSH connections.
1225 @subsection Connecting VLANs between QEMU instances
1227 Using the @option{-net socket} option, it is possible to make VLANs
1228 that span several QEMU instances. See @ref{sec_invocation} to have a
1229 basic example.
1231 @node direct_linux_boot
1232 @section Direct Linux Boot
1234 This section explains how to launch a Linux kernel inside QEMU without
1235 having to make a full bootable image. It is very useful for fast Linux
1236 kernel testing.
1238 The syntax is:
1239 @example
1240 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1241 @end example
1243 Use @option{-kernel} to provide the Linux kernel image and
1244 @option{-append} to give the kernel command line arguments. The
1245 @option{-initrd} option can be used to provide an INITRD image.
1247 When using the direct Linux boot, a disk image for the first hard disk
1248 @file{hda} is required because its boot sector is used to launch the
1249 Linux kernel.
1251 If you do not need graphical output, you can disable it and redirect
1252 the virtual serial port and the QEMU monitor to the console with the
1253 @option{-nographic} option. The typical command line is:
1254 @example
1255 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1256      -append "root=/dev/hda console=ttyS0" -nographic
1257 @end example
1259 Use @key{Ctrl-a c} to switch between the serial console and the
1260 monitor (@pxref{pcsys_keys}).
1262 @node pcsys_usb
1263 @section USB emulation
1265 QEMU emulates a PCI UHCI USB controller. You can virtually plug
1266 virtual USB devices or real host USB devices (experimental, works only
1267 on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1268 as necessary to connect multiple USB devices.
1270 @menu
1271 * usb_devices::
1272 * host_usb_devices::
1273 @end menu
1274 @node usb_devices
1275 @subsection Connecting USB devices
1277 USB devices can be connected with the @option{-usbdevice} commandline option
1278 or the @code{usb_add} monitor command.  Available devices are:
1280 @table @var
1281 @item @code{mouse}
1282 Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1283 @item @code{tablet}
1284 Pointer device that uses absolute coordinates (like a touchscreen).
1285 This means qemu is able to report the mouse position without having
1286 to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1287 @item @code{disk:file}
1288 Mass storage device based on @var{file} (@pxref{disk_images})
1289 @item @code{host:bus.addr}
1290 Pass through the host device identified by @var{bus.addr}
1291 (Linux only)
1292 @item @code{host:vendor_id:product_id}
1293 Pass through the host device identified by @var{vendor_id:product_id}
1294 (Linux only)
1295 @end table
1297 @node host_usb_devices
1298 @subsection Using host USB devices on a Linux host
1300 WARNING: this is an experimental feature. QEMU will slow down when
1301 using it. USB devices requiring real time streaming (i.e. USB Video
1302 Cameras) are not supported yet.
1304 @enumerate
1305 @item If you use an early Linux 2.4 kernel, verify that no Linux driver 
1306 is actually using the USB device. A simple way to do that is simply to
1307 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1308 to @file{mydriver.o.disabled}.
1310 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1311 @example
1312 ls /proc/bus/usb
1313 001  devices  drivers
1314 @end example
1316 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1317 @example
1318 chown -R myuid /proc/bus/usb
1319 @end example
1321 @item Launch QEMU and do in the monitor:
1322 @example 
1323 info usbhost
1324   Device 1.2, speed 480 Mb/s
1325     Class 00: USB device 1234:5678, USB DISK
1326 @end example
1327 You should see the list of the devices you can use (Never try to use
1328 hubs, it won't work).
1330 @item Add the device in QEMU by using:
1331 @example 
1332 usb_add host:1234:5678
1333 @end example
1335 Normally the guest OS should report that a new USB device is
1336 plugged. You can use the option @option{-usbdevice} to do the same.
1338 @item Now you can try to use the host USB device in QEMU.
1340 @end enumerate
1342 When relaunching QEMU, you may have to unplug and plug again the USB
1343 device to make it work again (this is a bug).
1345 @node gdb_usage
1346 @section GDB usage
1348 QEMU has a primitive support to work with gdb, so that you can do
1349 'Ctrl-C' while the virtual machine is running and inspect its state.
1351 In order to use gdb, launch qemu with the '-s' option. It will wait for a
1352 gdb connection:
1353 @example
1354 > qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1355        -append "root=/dev/hda"
1356 Connected to host network interface: tun0
1357 Waiting gdb connection on port 1234
1358 @end example
1360 Then launch gdb on the 'vmlinux' executable:
1361 @example
1362 > gdb vmlinux
1363 @end example
1365 In gdb, connect to QEMU:
1366 @example
1367 (gdb) target remote localhost:1234
1368 @end example
1370 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1371 @example
1372 (gdb) c
1373 @end example
1375 Here are some useful tips in order to use gdb on system code:
1377 @enumerate
1378 @item
1379 Use @code{info reg} to display all the CPU registers.
1380 @item
1381 Use @code{x/10i $eip} to display the code at the PC position.
1382 @item
1383 Use @code{set architecture i8086} to dump 16 bit code. Then use
1384 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1385 @end enumerate
1387 @node pcsys_os_specific
1388 @section Target OS specific information
1390 @subsection Linux
1392 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1393 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1394 color depth in the guest and the host OS.
1396 When using a 2.6 guest Linux kernel, you should add the option
1397 @code{clock=pit} on the kernel command line because the 2.6 Linux
1398 kernels make very strict real time clock checks by default that QEMU
1399 cannot simulate exactly.
1401 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1402 not activated because QEMU is slower with this patch. The QEMU
1403 Accelerator Module is also much slower in this case. Earlier Fedora
1404 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporte this
1405 patch by default. Newer kernels don't have it.
1407 @subsection Windows
1409 If you have a slow host, using Windows 95 is better as it gives the
1410 best speed. Windows 2000 is also a good choice.
1412 @subsubsection SVGA graphic modes support
1414 QEMU emulates a Cirrus Logic GD5446 Video
1415 card. All Windows versions starting from Windows 95 should recognize
1416 and use this graphic card. For optimal performances, use 16 bit color
1417 depth in the guest and the host OS.
1419 If you are using Windows XP as guest OS and if you want to use high
1420 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1421 1280x1024x16), then you should use the VESA VBE virtual graphic card
1422 (option @option{-std-vga}).
1424 @subsubsection CPU usage reduction
1426 Windows 9x does not correctly use the CPU HLT
1427 instruction. The result is that it takes host CPU cycles even when
1428 idle. You can install the utility from
1429 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1430 problem. Note that no such tool is needed for NT, 2000 or XP.
1432 @subsubsection Windows 2000 disk full problem
1434 Windows 2000 has a bug which gives a disk full problem during its
1435 installation. When installing it, use the @option{-win2k-hack} QEMU
1436 option to enable a specific workaround. After Windows 2000 is
1437 installed, you no longer need this option (this option slows down the
1438 IDE transfers).
1440 @subsubsection Windows 2000 shutdown
1442 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1443 can. It comes from the fact that Windows 2000 does not automatically
1444 use the APM driver provided by the BIOS.
1446 In order to correct that, do the following (thanks to Struan
1447 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1448 Add/Troubleshoot a device => Add a new device & Next => No, select the
1449 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1450 (again) a few times. Now the driver is installed and Windows 2000 now
1451 correctly instructs QEMU to shutdown at the appropriate moment. 
1453 @subsubsection Share a directory between Unix and Windows
1455 See @ref{sec_invocation} about the help of the option @option{-smb}.
1457 @subsubsection Windows XP security problem
1459 Some releases of Windows XP install correctly but give a security
1460 error when booting:
1461 @example
1462 A problem is preventing Windows from accurately checking the
1463 license for this computer. Error code: 0x800703e6.
1464 @end example
1466 The workaround is to install a service pack for XP after a boot in safe
1467 mode. Then reboot, and the problem should go away. Since there is no
1468 network while in safe mode, its recommended to download the full
1469 installation of SP1 or SP2 and transfer that via an ISO or using the
1470 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1472 @subsection MS-DOS and FreeDOS
1474 @subsubsection CPU usage reduction
1476 DOS does not correctly use the CPU HLT instruction. The result is that
1477 it takes host CPU cycles even when idle. You can install the utility
1478 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1479 problem.
1481 @node QEMU System emulator for non PC targets
1482 @chapter QEMU System emulator for non PC targets
1484 QEMU is a generic emulator and it emulates many non PC
1485 machines. Most of the options are similar to the PC emulator. The
1486 differences are mentionned in the following sections.
1488 @menu
1489 * QEMU PowerPC System emulator::
1490 * Sparc32 System emulator invocation::
1491 * Sparc64 System emulator invocation::
1492 * MIPS System emulator invocation::
1493 * ARM System emulator invocation::
1494 @end menu
1496 @node QEMU PowerPC System emulator
1497 @section QEMU PowerPC System emulator
1499 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1500 or PowerMac PowerPC system.
1502 QEMU emulates the following PowerMac peripherals:
1504 @itemize @minus
1505 @item 
1506 UniNorth PCI Bridge 
1507 @item
1508 PCI VGA compatible card with VESA Bochs Extensions
1509 @item 
1510 2 PMAC IDE interfaces with hard disk and CD-ROM support
1511 @item 
1512 NE2000 PCI adapters
1513 @item
1514 Non Volatile RAM
1515 @item
1516 VIA-CUDA with ADB keyboard and mouse.
1517 @end itemize
1519 QEMU emulates the following PREP peripherals:
1521 @itemize @minus
1522 @item 
1523 PCI Bridge
1524 @item
1525 PCI VGA compatible card with VESA Bochs Extensions
1526 @item 
1527 2 IDE interfaces with hard disk and CD-ROM support
1528 @item
1529 Floppy disk
1530 @item 
1531 NE2000 network adapters
1532 @item
1533 Serial port
1534 @item
1535 PREP Non Volatile RAM
1536 @item
1537 PC compatible keyboard and mouse.
1538 @end itemize
1540 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1541 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1543 @c man begin OPTIONS
1545 The following options are specific to the PowerPC emulation:
1547 @table @option
1549 @item -g WxH[xDEPTH]  
1551 Set the initial VGA graphic mode. The default is 800x600x15.
1553 @end table
1555 @c man end 
1558 More information is available at
1559 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1561 @node Sparc32 System emulator invocation
1562 @section Sparc32 System emulator invocation
1564 Use the executable @file{qemu-system-sparc} to simulate a SparcStation 5
1565 (sun4m architecture). The emulation is somewhat complete.
1567 QEMU emulates the following sun4m peripherals:
1569 @itemize @minus
1570 @item
1571 IOMMU
1572 @item
1573 TCX Frame buffer
1574 @item 
1575 Lance (Am7990) Ethernet
1576 @item
1577 Non Volatile RAM M48T08
1578 @item
1579 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1580 and power/reset logic
1581 @item
1582 ESP SCSI controller with hard disk and CD-ROM support
1583 @item
1584 Floppy drive
1585 @end itemize
1587 The number of peripherals is fixed in the architecture.
1589 Since version 0.8.2, QEMU uses OpenBIOS
1590 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1591 firmware implementation. The goal is to implement a 100% IEEE
1592 1275-1994 (referred to as Open Firmware) compliant firmware.
1594 A sample Linux 2.6 series kernel and ram disk image are available on
1595 the QEMU web site. Please note that currently NetBSD, OpenBSD or
1596 Solaris kernels don't work.
1598 @c man begin OPTIONS
1600 The following options are specific to the Sparc emulation:
1602 @table @option
1604 @item -g WxH
1606 Set the initial TCX graphic mode. The default is 1024x768.
1608 @end table
1610 @c man end 
1612 @node Sparc64 System emulator invocation
1613 @section Sparc64 System emulator invocation
1615 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
1616 The emulator is not usable for anything yet.
1618 QEMU emulates the following sun4u peripherals:
1620 @itemize @minus
1621 @item
1622 UltraSparc IIi APB PCI Bridge 
1623 @item
1624 PCI VGA compatible card with VESA Bochs Extensions
1625 @item
1626 Non Volatile RAM M48T59
1627 @item
1628 PC-compatible serial ports
1629 @end itemize
1631 @node MIPS System emulator invocation
1632 @section MIPS System emulator invocation
1634 Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
1635 The emulator is able to boot a Linux kernel and to run a Linux Debian
1636 installation from NFS. The following devices are emulated:
1638 @itemize @minus
1639 @item 
1640 MIPS R4K CPU
1641 @item
1642 PC style serial port
1643 @item
1644 NE2000 network card
1645 @end itemize
1647 More information is available in the QEMU mailing-list archive.
1649 @node ARM System emulator invocation
1650 @section ARM System emulator invocation
1652 Use the executable @file{qemu-system-arm} to simulate a ARM
1653 machine. The ARM Integrator/CP board is emulated with the following
1654 devices:
1656 @itemize @minus
1657 @item
1658 ARM926E or ARM1026E CPU
1659 @item
1660 Two PL011 UARTs
1661 @item 
1662 SMC 91c111 Ethernet adapter
1663 @item
1664 PL110 LCD controller
1665 @item
1666 PL050 KMI with PS/2 keyboard and mouse.
1667 @end itemize
1669 The ARM Versatile baseboard is emulated with the following devices:
1671 @itemize @minus
1672 @item
1673 ARM926E CPU
1674 @item
1675 PL190 Vectored Interrupt Controller
1676 @item
1677 Four PL011 UARTs
1678 @item 
1679 SMC 91c111 Ethernet adapter
1680 @item
1681 PL110 LCD controller
1682 @item
1683 PL050 KMI with PS/2 keyboard and mouse.
1684 @item
1685 PCI host bridge.  Note the emulated PCI bridge only provides access to
1686 PCI memory space.  It does not provide access to PCI IO space.
1687 This means some devices (eg. ne2k_pci NIC) are not useable, and others
1688 (eg. rtl8139 NIC) are only useable when the guest drivers use the memory
1689 mapped control registers.
1690 @item
1691 PCI OHCI USB controller.
1692 @item
1693 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1694 @end itemize
1696 A Linux 2.6 test image is available on the QEMU web site. More
1697 information is available in the QEMU mailing-list archive.
1699 @node QEMU Linux User space emulator 
1700 @chapter QEMU Linux User space emulator 
1702 @menu
1703 * Quick Start::
1704 * Wine launch::
1705 * Command line options::
1706 * Other binaries::
1707 @end menu
1709 @node Quick Start
1710 @section Quick Start
1712 In order to launch a Linux process, QEMU needs the process executable
1713 itself and all the target (x86) dynamic libraries used by it. 
1715 @itemize
1717 @item On x86, you can just try to launch any process by using the native
1718 libraries:
1720 @example 
1721 qemu-i386 -L / /bin/ls
1722 @end example
1724 @code{-L /} tells that the x86 dynamic linker must be searched with a
1725 @file{/} prefix.
1727 @item Since QEMU is also a linux process, you can launch qemu with qemu (NOTE: you can only do that if you compiled QEMU from the sources):
1729 @example 
1730 qemu-i386 -L / qemu-i386 -L / /bin/ls
1731 @end example
1733 @item On non x86 CPUs, you need first to download at least an x86 glibc
1734 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
1735 @code{LD_LIBRARY_PATH} is not set:
1737 @example
1738 unset LD_LIBRARY_PATH 
1739 @end example
1741 Then you can launch the precompiled @file{ls} x86 executable:
1743 @example
1744 qemu-i386 tests/i386/ls
1745 @end example
1746 You can look at @file{qemu-binfmt-conf.sh} so that
1747 QEMU is automatically launched by the Linux kernel when you try to
1748 launch x86 executables. It requires the @code{binfmt_misc} module in the
1749 Linux kernel.
1751 @item The x86 version of QEMU is also included. You can try weird things such as:
1752 @example
1753 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
1754           /usr/local/qemu-i386/bin/ls-i386
1755 @end example
1757 @end itemize
1759 @node Wine launch
1760 @section Wine launch
1762 @itemize
1764 @item Ensure that you have a working QEMU with the x86 glibc
1765 distribution (see previous section). In order to verify it, you must be
1766 able to do:
1768 @example
1769 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
1770 @end example
1772 @item Download the binary x86 Wine install
1773 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page). 
1775 @item Configure Wine on your account. Look at the provided script
1776 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1777 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
1779 @item Then you can try the example @file{putty.exe}:
1781 @example
1782 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
1783           /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1784 @end example
1786 @end itemize
1788 @node Command line options
1789 @section Command line options
1791 @example
1792 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
1793 @end example
1795 @table @option
1796 @item -h
1797 Print the help
1798 @item -L path   
1799 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
1800 @item -s size
1801 Set the x86 stack size in bytes (default=524288)
1802 @end table
1804 Debug options:
1806 @table @option
1807 @item -d
1808 Activate log (logfile=/tmp/qemu.log)
1809 @item -p pagesize
1810 Act as if the host page size was 'pagesize' bytes
1811 @end table
1813 @node Other binaries
1814 @section Other binaries
1816 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
1817 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
1818 configurations), and arm-uclinux bFLT format binaries.
1820 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
1821 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
1822 coldfire uClinux bFLT format binaries.
1824 The binary format is detected automatically.
1826 @node compilation
1827 @chapter Compilation from the sources
1829 @menu
1830 * Linux/Unix::
1831 * Windows::
1832 * Cross compilation for Windows with Linux::
1833 * Mac OS X::
1834 @end menu
1836 @node Linux/Unix
1837 @section Linux/Unix
1839 @subsection Compilation
1841 First you must decompress the sources:
1842 @example
1843 cd /tmp
1844 tar zxvf qemu-x.y.z.tar.gz
1845 cd qemu-x.y.z
1846 @end example
1848 Then you configure QEMU and build it (usually no options are needed):
1849 @example
1850 ./configure
1851 make
1852 @end example
1854 Then type as root user:
1855 @example
1856 make install
1857 @end example
1858 to install QEMU in @file{/usr/local}.
1860 @subsection Tested tool versions
1862 In order to compile QEMU successfully, it is very important that you
1863 have the right tools. The most important one is gcc. I cannot guaranty
1864 that QEMU works if you do not use a tested gcc version. Look at
1865 'configure' and 'Makefile' if you want to make a different gcc
1866 version work.
1868 @example
1869 host      gcc      binutils      glibc    linux       distribution
1870 ----------------------------------------------------------------------
1871 x86       3.2      2.13.2        2.1.3    2.4.18
1872           2.96     2.11.93.0.2   2.2.5    2.4.18      Red Hat 7.3
1873           3.2.2    2.13.90.0.18  2.3.2    2.4.20      Red Hat 9
1875 PowerPC   3.3 [4]  2.13.90.0.18  2.3.1    2.4.20briq
1876           3.2
1878 Alpha     3.3 [1]  2.14.90.0.4   2.2.5    2.2.20 [2]  Debian 3.0
1880 Sparc32   2.95.4   2.12.90.0.1   2.2.5    2.4.18      Debian 3.0
1882 ARM       2.95.4   2.12.90.0.1   2.2.5    2.4.9 [3]   Debian 3.0
1884 [1] On Alpha, QEMU needs the gcc 'visibility' attribute only available
1885     for gcc version >= 3.3.
1886 [2] Linux >= 2.4.20 is necessary for precise exception support
1887     (untested).
1888 [3] 2.4.9-ac10-rmk2-np1-cerf2
1890 [4] gcc 2.95.x generates invalid code when using too many register
1891 variables. You must use gcc 3.x on PowerPC.
1892 @end example
1894 @node Windows
1895 @section Windows
1897 @itemize
1898 @item Install the current versions of MSYS and MinGW from
1899 @url{http://www.mingw.org/}. You can find detailed installation
1900 instructions in the download section and the FAQ.
1902 @item Download 
1903 the MinGW development library of SDL 1.2.x
1904 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
1905 @url{http://www.libsdl.org}. Unpack it in a temporary place, and
1906 unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
1907 directory. Edit the @file{sdl-config} script so that it gives the
1908 correct SDL directory when invoked.
1910 @item Extract the current version of QEMU.
1912 @item Start the MSYS shell (file @file{msys.bat}).
1914 @item Change to the QEMU directory. Launch @file{./configure} and 
1915 @file{make}.  If you have problems using SDL, verify that
1916 @file{sdl-config} can be launched from the MSYS command line.
1918 @item You can install QEMU in @file{Program Files/Qemu} by typing 
1919 @file{make install}. Don't forget to copy @file{SDL.dll} in
1920 @file{Program Files/Qemu}.
1922 @end itemize
1924 @node Cross compilation for Windows with Linux
1925 @section Cross compilation for Windows with Linux
1927 @itemize
1928 @item
1929 Install the MinGW cross compilation tools available at
1930 @url{http://www.mingw.org/}.
1932 @item 
1933 Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
1934 unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
1935 variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
1936 the QEMU configuration script.
1938 @item 
1939 Configure QEMU for Windows cross compilation:
1940 @example
1941 ./configure --enable-mingw32
1942 @end example
1943 If necessary, you can change the cross-prefix according to the prefix
1944 choosen for the MinGW tools with --cross-prefix. You can also use
1945 --prefix to set the Win32 install path.
1947 @item You can install QEMU in the installation directory by typing 
1948 @file{make install}. Don't forget to copy @file{SDL.dll} in the
1949 installation directory. 
1951 @end itemize
1953 Note: Currently, Wine does not seem able to launch
1954 QEMU for Win32.
1956 @node Mac OS X
1957 @section Mac OS X
1959 The Mac OS X patches are not fully merged in QEMU, so you should look
1960 at the QEMU mailing list archive to have all the necessary
1961 information.
1963 @node Index
1964 @chapter Index
1965 @printindex cp
1967 @bye