Use initial CPU definition structure for some CPU fields instead of copying
[qemu/mini2440.git] / hw / etraxfs_eth.c
blob9ef610fd19233f0c87d83fd72f969eafdc1bd967
1 /*
2 * QEMU ETRAX Ethernet Controller.
4 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include <stdio.h>
26 #include "hw.h"
27 #include "net.h"
29 #include "etraxfs_dma.h"
31 #define D(x)
33 /*
34 * The MDIO extensions in the TDK PHY model were reversed engineered from the
35 * linux driver (PHYID and Diagnostics reg).
36 * TODO: Add friendly names for the register nums.
38 struct qemu_phy
40 uint32_t regs[32];
42 unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
43 void (*write)(struct qemu_phy *phy, unsigned int req,
44 unsigned int data);
47 static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req)
49 int regnum;
50 unsigned r = 0;
52 regnum = req & 0x1f;
54 switch (regnum) {
55 case 1:
56 /* MR1. */
57 /* Speeds and modes. */
58 r |= (1 << 13) | (1 << 14);
59 r |= (1 << 11) | (1 << 12);
60 r |= (1 << 5); /* Autoneg complete. */
61 r |= (1 << 3); /* Autoneg able. */
62 r |= (1 << 2); /* Link. */
63 break;
64 case 5:
65 /* Link partner ability.
66 We are kind; always agree with whatever best mode
67 the guest advertises. */
68 r = 1 << 14; /* Success. */
69 /* Copy advertised modes. */
70 r |= phy->regs[4] & (15 << 5);
71 /* Autoneg support. */
72 r |= 1;
73 break;
74 case 18:
76 /* Diagnostics reg. */
77 int duplex = 0;
78 int speed_100 = 0;
80 /* Are we advertising 100 half or 100 duplex ? */
81 speed_100 = !!(phy->regs[4] & 0x180);
82 /* Are we advertising 10 duplex or 100 duplex ? */
83 duplex = !!(phy->regs[4] & 0x180);
84 r = (speed_100 << 10) | (duplex << 11);
86 break;
88 default:
89 r = phy->regs[regnum];
90 break;
92 D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum));
93 return r;
96 static void
97 tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data)
99 int regnum;
101 regnum = req & 0x1f;
102 D(printf("%s reg[%d] = %x\n", __func__, regnum, data));
103 switch (regnum) {
104 default:
105 phy->regs[regnum] = data;
106 break;
110 static void
111 tdk_init(struct qemu_phy *phy)
113 phy->regs[0] = 0x3100;
114 /* PHY Id. */
115 phy->regs[2] = 0x0300;
116 phy->regs[3] = 0xe400;
117 /* Autonegotiation advertisement reg. */
118 phy->regs[4] = 0x01E1;
120 phy->read = tdk_read;
121 phy->write = tdk_write;
124 struct qemu_mdio
126 /* bus. */
127 int mdc;
128 int mdio;
130 /* decoder. */
131 enum {
132 PREAMBLE,
133 SOF,
134 OPC,
135 ADDR,
136 REQ,
137 TURNAROUND,
138 DATA
139 } state;
140 unsigned int drive;
142 unsigned int cnt;
143 unsigned int addr;
144 unsigned int opc;
145 unsigned int req;
146 unsigned int data;
148 struct qemu_phy *devs[32];
151 static void
152 mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
154 bus->devs[addr & 0x1f] = phy;
157 #ifdef USE_THIS_DEAD_CODE
158 static void
159 mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
161 bus->devs[addr & 0x1f] = NULL;
163 #endif
165 static void mdio_read_req(struct qemu_mdio *bus)
167 struct qemu_phy *phy;
169 phy = bus->devs[bus->addr];
170 if (phy && phy->read)
171 bus->data = phy->read(phy, bus->req);
172 else
173 bus->data = 0xffff;
176 static void mdio_write_req(struct qemu_mdio *bus)
178 struct qemu_phy *phy;
180 phy = bus->devs[bus->addr];
181 if (phy && phy->write)
182 phy->write(phy, bus->req, bus->data);
185 static void mdio_cycle(struct qemu_mdio *bus)
187 bus->cnt++;
189 D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n",
190 bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive));
191 #if 0
192 if (bus->mdc)
193 printf("%d", bus->mdio);
194 #endif
195 switch (bus->state)
197 case PREAMBLE:
198 if (bus->mdc) {
199 if (bus->cnt >= (32 * 2) && !bus->mdio) {
200 bus->cnt = 0;
201 bus->state = SOF;
202 bus->data = 0;
205 break;
206 case SOF:
207 if (bus->mdc) {
208 if (bus->mdio != 1)
209 printf("WARNING: no SOF\n");
210 if (bus->cnt == 1*2) {
211 bus->cnt = 0;
212 bus->opc = 0;
213 bus->state = OPC;
216 break;
217 case OPC:
218 if (bus->mdc) {
219 bus->opc <<= 1;
220 bus->opc |= bus->mdio & 1;
221 if (bus->cnt == 2*2) {
222 bus->cnt = 0;
223 bus->addr = 0;
224 bus->state = ADDR;
227 break;
228 case ADDR:
229 if (bus->mdc) {
230 bus->addr <<= 1;
231 bus->addr |= bus->mdio & 1;
233 if (bus->cnt == 5*2) {
234 bus->cnt = 0;
235 bus->req = 0;
236 bus->state = REQ;
239 break;
240 case REQ:
241 if (bus->mdc) {
242 bus->req <<= 1;
243 bus->req |= bus->mdio & 1;
244 if (bus->cnt == 5*2) {
245 bus->cnt = 0;
246 bus->state = TURNAROUND;
249 break;
250 case TURNAROUND:
251 if (bus->mdc && bus->cnt == 2*2) {
252 bus->mdio = 0;
253 bus->cnt = 0;
255 if (bus->opc == 2) {
256 bus->drive = 1;
257 mdio_read_req(bus);
258 bus->mdio = bus->data & 1;
260 bus->state = DATA;
262 break;
263 case DATA:
264 if (!bus->mdc) {
265 if (bus->drive) {
266 bus->mdio = !!(bus->data & (1 << 15));
267 bus->data <<= 1;
269 } else {
270 if (!bus->drive) {
271 bus->data <<= 1;
272 bus->data |= bus->mdio;
274 if (bus->cnt == 16 * 2) {
275 bus->cnt = 0;
276 bus->state = PREAMBLE;
277 if (!bus->drive)
278 mdio_write_req(bus);
279 bus->drive = 0;
282 break;
283 default:
284 break;
288 /* ETRAX-FS Ethernet MAC block starts here. */
290 #define RW_MA0_LO 0x00
291 #define RW_MA0_HI 0x04
292 #define RW_MA1_LO 0x08
293 #define RW_MA1_HI 0x0c
294 #define RW_GA_LO 0x10
295 #define RW_GA_HI 0x14
296 #define RW_GEN_CTRL 0x18
297 #define RW_REC_CTRL 0x1c
298 #define RW_TR_CTRL 0x20
299 #define RW_CLR_ERR 0x24
300 #define RW_MGM_CTRL 0x28
301 #define R_STAT 0x2c
302 #define FS_ETH_MAX_REGS 0x5c
304 struct fs_eth
306 CPUState *env;
307 qemu_irq *irq;
308 target_phys_addr_t base;
309 VLANClientState *vc;
310 int ethregs;
312 /* Two addrs in the filter. */
313 uint8_t macaddr[2][6];
314 uint32_t regs[FS_ETH_MAX_REGS];
316 unsigned char rx_fifo[1536];
317 int rx_fifo_len;
318 int rx_fifo_pos;
320 struct etraxfs_dma_client *dma_out;
321 struct etraxfs_dma_client *dma_in;
323 /* MDIO bus. */
324 struct qemu_mdio mdio_bus;
325 /* PHY. */
326 struct qemu_phy phy;
329 static uint32_t eth_rinvalid (void *opaque, target_phys_addr_t addr)
331 struct fs_eth *eth = opaque;
332 CPUState *env = eth->env;
333 cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
334 addr);
335 return 0;
338 static uint32_t eth_readl (void *opaque, target_phys_addr_t addr)
340 struct fs_eth *eth = opaque;
341 uint32_t r = 0;
343 /* Make addr relative to this instances base. */
344 addr -= eth->base;
345 switch (addr) {
346 case R_STAT:
347 /* Attach an MDIO/PHY abstraction. */
348 r = eth->mdio_bus.mdio & 1;
349 break;
350 default:
351 r = eth->regs[addr];
352 D(printf ("%s %x\n", __func__, addr));
353 break;
355 return r;
358 static void
359 eth_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
361 struct fs_eth *eth = opaque;
362 CPUState *env = eth->env;
363 cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
364 addr);
367 static void eth_update_ma(struct fs_eth *eth, int ma)
369 int reg;
370 int i = 0;
372 ma &= 1;
374 reg = RW_MA0_LO;
375 if (ma)
376 reg = RW_MA1_LO;
378 eth->macaddr[ma][i++] = eth->regs[reg];
379 eth->macaddr[ma][i++] = eth->regs[reg] >> 8;
380 eth->macaddr[ma][i++] = eth->regs[reg] >> 16;
381 eth->macaddr[ma][i++] = eth->regs[reg] >> 24;
382 eth->macaddr[ma][i++] = eth->regs[reg + 4];
383 eth->macaddr[ma][i++] = eth->regs[reg + 4] >> 8;
385 D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma,
386 eth->macaddr[ma][0], eth->macaddr[ma][1],
387 eth->macaddr[ma][2], eth->macaddr[ma][3],
388 eth->macaddr[ma][4], eth->macaddr[ma][5]));
391 static void
392 eth_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
394 struct fs_eth *eth = opaque;
396 /* Make addr relative to this instances base. */
397 addr -= eth->base;
398 switch (addr)
400 case RW_MA0_LO:
401 eth->regs[addr] = value;
402 eth_update_ma(eth, 0);
403 break;
404 case RW_MA0_HI:
405 eth->regs[addr] = value;
406 eth_update_ma(eth, 0);
407 break;
408 case RW_MA1_LO:
409 eth->regs[addr] = value;
410 eth_update_ma(eth, 1);
411 break;
412 case RW_MA1_HI:
413 eth->regs[addr] = value;
414 eth_update_ma(eth, 1);
415 break;
417 case RW_MGM_CTRL:
418 /* Attach an MDIO/PHY abstraction. */
419 if (value & 2)
420 eth->mdio_bus.mdio = value & 1;
421 if (eth->mdio_bus.mdc != (value & 4))
422 mdio_cycle(&eth->mdio_bus);
423 eth->mdio_bus.mdc = !!(value & 4);
424 break;
426 default:
427 eth->regs[addr] = value;
428 D(printf ("%s %x %x\n",
429 __func__, addr, value));
430 break;
434 /* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom
435 filter dropping group addresses we have not joined. The filter has 64
436 bits (m). The has function is a simple nible xor of the group addr. */
437 static int eth_match_groupaddr(struct fs_eth *eth, const unsigned char *sa)
439 unsigned int hsh;
440 int m_individual = eth->regs[RW_REC_CTRL] & 4;
441 int match;
443 /* First bit on the wire of a MAC address signals multicast or
444 physical address. */
445 if (!m_individual && !sa[0] & 1)
446 return 0;
448 /* Calculate the hash index for the GA registers. */
449 hsh = 0;
450 hsh ^= (*sa) & 0x3f;
451 hsh ^= ((*sa) >> 6) & 0x03;
452 ++sa;
453 hsh ^= ((*sa) << 2) & 0x03c;
454 hsh ^= ((*sa) >> 4) & 0xf;
455 ++sa;
456 hsh ^= ((*sa) << 4) & 0x30;
457 hsh ^= ((*sa) >> 2) & 0x3f;
458 ++sa;
459 hsh ^= (*sa) & 0x3f;
460 hsh ^= ((*sa) >> 6) & 0x03;
461 ++sa;
462 hsh ^= ((*sa) << 2) & 0x03c;
463 hsh ^= ((*sa) >> 4) & 0xf;
464 ++sa;
465 hsh ^= ((*sa) << 4) & 0x30;
466 hsh ^= ((*sa) >> 2) & 0x3f;
468 hsh &= 63;
469 if (hsh > 31)
470 match = eth->regs[RW_GA_HI] & (1 << (hsh - 32));
471 else
472 match = eth->regs[RW_GA_LO] & (1 << hsh);
473 D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh,
474 eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match));
475 return match;
478 static int eth_can_receive(void *opaque)
480 struct fs_eth *eth = opaque;
481 int r;
483 r = eth->rx_fifo_len == 0;
484 if (!r) {
485 /* TODO: signal fifo overrun. */
486 printf("PACKET LOSS!\n");
488 return r;
491 static void eth_receive(void *opaque, const uint8_t *buf, int size)
493 unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
494 struct fs_eth *eth = opaque;
495 int use_ma0 = eth->regs[RW_REC_CTRL] & 1;
496 int use_ma1 = eth->regs[RW_REC_CTRL] & 2;
497 int r_bcast = eth->regs[RW_REC_CTRL] & 8;
499 if (size < 12)
500 return;
502 D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n",
503 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
504 use_ma0, use_ma1, r_bcast));
506 /* Does the frame get through the address filters? */
507 if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6))
508 && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6))
509 && (!r_bcast || memcmp(buf, sa_bcast, 6))
510 && !eth_match_groupaddr(eth, buf))
511 return;
513 if (size > sizeof(eth->rx_fifo)) {
514 /* TODO: signal error. */
515 } else if (eth->rx_fifo_len) {
516 /* FIFO overrun. */
517 } else {
518 memcpy(eth->rx_fifo, buf, size);
519 /* +4, HW passes the CRC to sw. */
520 eth->rx_fifo_len = size + 4;
521 eth->rx_fifo_pos = 0;
525 static void eth_rx_pull(void *opaque)
527 struct fs_eth *eth = opaque;
528 int len;
529 if (eth->rx_fifo_len) {
530 D(printf("%s %d\n", __func__, eth->rx_fifo_len));
531 #if 0
533 int i;
534 for (i = 0; i < 32; i++)
535 printf("%2.2x", eth->rx_fifo[i]);
536 printf("\n");
538 #endif
539 len = etraxfs_dmac_input(eth->dma_in,
540 eth->rx_fifo + eth->rx_fifo_pos,
541 eth->rx_fifo_len, 1);
542 eth->rx_fifo_len -= len;
543 eth->rx_fifo_pos += len;
547 static int eth_tx_push(void *opaque, unsigned char *buf, int len)
549 struct fs_eth *eth = opaque;
551 D(printf("%s buf=%p len=%d\n", __func__, buf, len));
552 qemu_send_packet(eth->vc, buf, len);
553 return len;
556 static CPUReadMemoryFunc *eth_read[] = {
557 &eth_rinvalid,
558 &eth_rinvalid,
559 &eth_readl,
562 static CPUWriteMemoryFunc *eth_write[] = {
563 &eth_winvalid,
564 &eth_winvalid,
565 &eth_writel,
568 void *etraxfs_eth_init(NICInfo *nd, CPUState *env,
569 qemu_irq *irq, target_phys_addr_t base)
571 struct etraxfs_dma_client *dma = NULL;
572 struct fs_eth *eth = NULL;
574 dma = qemu_mallocz(sizeof *dma * 2);
575 if (!dma)
576 return NULL;
578 eth = qemu_mallocz(sizeof *eth);
579 if (!eth)
580 goto err;
582 dma[0].client.push = eth_tx_push;
583 dma[0].client.opaque = eth;
584 dma[1].client.opaque = eth;
585 dma[1].client.pull = eth_rx_pull;
587 eth->env = env;
588 eth->base = base;
589 eth->irq = irq;
590 eth->dma_out = dma;
591 eth->dma_in = dma + 1;
593 /* Connect the phy. */
594 tdk_init(&eth->phy);
595 mdio_attach(&eth->mdio_bus, &eth->phy, 0x1);
597 eth->ethregs = cpu_register_io_memory(0, eth_read, eth_write, eth);
598 cpu_register_physical_memory (base, 0x5c, eth->ethregs);
600 eth->vc = qemu_new_vlan_client(nd->vlan,
601 eth_receive, eth_can_receive, eth);
603 return dma;
604 err:
605 qemu_free(eth);
606 qemu_free(dma);
607 return NULL;