2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #if !defined(CONFIG_SOFTMMU)
35 #include <sys/ucontext.h>
38 int tb_invalidated_flag
;
41 //#define DEBUG_SIGNAL
43 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_M68K)
44 /* XXX: unify with i386 target */
45 void cpu_loop_exit(void)
47 longjmp(env
->jmp_env
, 1);
50 #if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
54 /* exit the current TB from a signal handler. The host registers are
55 restored in a state compatible with the CPU emulator
57 void cpu_resume_from_signal(CPUState
*env1
, void *puc
)
59 #if !defined(CONFIG_SOFTMMU)
60 struct ucontext
*uc
= puc
;
65 /* XXX: restore cpu registers saved in host registers */
67 #if !defined(CONFIG_SOFTMMU)
69 /* XXX: use siglongjmp ? */
70 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
73 longjmp(env
->jmp_env
, 1);
77 static TranslationBlock
*tb_find_slow(target_ulong pc
,
81 TranslationBlock
*tb
, **ptb1
;
84 target_ulong phys_pc
, phys_page1
, phys_page2
, virt_page2
;
89 tb_invalidated_flag
= 0;
91 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
93 /* find translated block using physical mappings */
94 phys_pc
= get_phys_addr_code(env
, pc
);
95 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
97 h
= tb_phys_hash_func(phys_pc
);
98 ptb1
= &tb_phys_hash
[h
];
104 tb
->page_addr
[0] == phys_page1
&&
105 tb
->cs_base
== cs_base
&&
106 tb
->flags
== flags
) {
107 /* check next page if needed */
108 if (tb
->page_addr
[1] != -1) {
109 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
111 phys_page2
= get_phys_addr_code(env
, virt_page2
);
112 if (tb
->page_addr
[1] == phys_page2
)
118 ptb1
= &tb
->phys_hash_next
;
121 /* if no translated code available, then translate it now */
124 /* flush must be done */
126 /* cannot fail at this point */
128 /* don't forget to invalidate previous TB info */
129 tb_invalidated_flag
= 1;
131 tc_ptr
= code_gen_ptr
;
133 tb
->cs_base
= cs_base
;
135 cpu_gen_code(env
, tb
, CODE_GEN_MAX_SIZE
, &code_gen_size
);
136 code_gen_ptr
= (void *)(((unsigned long)code_gen_ptr
+ code_gen_size
+ CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
138 /* check next page if needed */
139 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
141 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
142 phys_page2
= get_phys_addr_code(env
, virt_page2
);
144 tb_link_phys(tb
, phys_pc
, phys_page2
);
147 /* we add the TB in the virtual pc hash table */
148 env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
149 spin_unlock(&tb_lock
);
153 static inline TranslationBlock
*tb_find_fast(void)
155 TranslationBlock
*tb
;
156 target_ulong cs_base
, pc
;
159 /* we record a subset of the CPU state. It will
160 always be the same before a given translated block
162 #if defined(TARGET_I386)
164 flags
|= (env
->eflags
& (IOPL_MASK
| TF_MASK
| VM_MASK
));
165 cs_base
= env
->segs
[R_CS
].base
;
166 pc
= cs_base
+ env
->eip
;
167 #elif defined(TARGET_ARM)
168 flags
= env
->thumb
| (env
->vfp
.vec_len
<< 1)
169 | (env
->vfp
.vec_stride
<< 4);
170 if ((env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
)
172 if (env
->vfp
.xregs
[ARM_VFP_FPEXC
] & (1 << 30))
176 #elif defined(TARGET_SPARC)
177 #ifdef TARGET_SPARC64
178 // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
179 flags
= (((env
->pstate
& PS_PEF
) >> 1) | ((env
->fprs
& FPRS_FEF
) << 2))
180 | (env
->pstate
& PS_PRIV
) | ((env
->lsu
& (DMMU_E
| IMMU_E
)) >> 2);
182 // FPU enable . MMU enabled . MMU no-fault . Supervisor
183 flags
= (env
->psref
<< 3) | ((env
->mmuregs
[0] & (MMU_E
| MMU_NF
)) << 1)
188 #elif defined(TARGET_PPC)
189 flags
= (msr_pr
<< MSR_PR
) | (msr_fp
<< MSR_FP
) |
190 (msr_se
<< MSR_SE
) | (msr_le
<< MSR_LE
);
193 #elif defined(TARGET_MIPS)
194 flags
= env
->hflags
& (MIPS_HFLAG_TMASK
| MIPS_HFLAG_BMASK
);
197 #elif defined(TARGET_M68K)
198 flags
= env
->fpcr
& M68K_FPCR_PREC
;
201 #elif defined(TARGET_SH4)
202 flags
= env
->sr
& (SR_MD
| SR_RB
);
203 cs_base
= 0; /* XXXXX */
206 #error unsupported CPU
208 tb
= env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
209 if (__builtin_expect(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
210 tb
->flags
!= flags
, 0)) {
211 tb
= tb_find_slow(pc
, cs_base
, flags
);
212 /* Note: we do it here to avoid a gcc bug on Mac OS X when
213 doing it in tb_find_slow */
214 if (tb_invalidated_flag
) {
215 /* as some TB could have been invalidated because
216 of memory exceptions while generating the code, we
217 must recompute the hash index here */
225 /* main execution loop */
227 int cpu_exec(CPUState
*env1
)
229 #define DECLARE_HOST_REGS 1
230 #include "hostregs_helper.h"
231 #if defined(TARGET_SPARC)
232 #if defined(reg_REGWPTR)
233 uint32_t *saved_regwptr
;
236 #if defined(__sparc__) && !defined(HOST_SOLARIS)
240 int ret
, interrupt_request
;
241 void (*gen_func
)(void);
242 TranslationBlock
*tb
;
245 #if defined(TARGET_I386)
246 /* handle exit of HALTED state */
247 if (env1
->hflags
& HF_HALTED_MASK
) {
248 /* disable halt condition */
249 if ((env1
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
250 (env1
->eflags
& IF_MASK
)) {
251 env1
->hflags
&= ~HF_HALTED_MASK
;
256 #elif defined(TARGET_PPC)
258 if (env1
->msr
[MSR_EE
] &&
259 (env1
->interrupt_request
&
260 (CPU_INTERRUPT_HARD
| CPU_INTERRUPT_TIMER
))) {
266 #elif defined(TARGET_SPARC)
268 if ((env1
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
269 (env1
->psret
!= 0)) {
275 #elif defined(TARGET_ARM)
277 /* An interrupt wakes the CPU even if the I and F CPSR bits are
279 if (env1
->interrupt_request
280 & (CPU_INTERRUPT_FIQ
| CPU_INTERRUPT_HARD
)) {
286 #elif defined(TARGET_MIPS)
288 if (env1
->interrupt_request
&
289 (CPU_INTERRUPT_HARD
| CPU_INTERRUPT_TIMER
)) {
297 cpu_single_env
= env1
;
299 /* first we save global registers */
300 #define SAVE_HOST_REGS 1
301 #include "hostregs_helper.h"
303 #if defined(__sparc__) && !defined(HOST_SOLARIS)
304 /* we also save i7 because longjmp may not restore it */
305 asm volatile ("mov %%i7, %0" : "=r" (saved_i7
));
308 #if defined(TARGET_I386)
310 /* put eflags in CPU temporary format */
311 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
312 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
313 CC_OP
= CC_OP_EFLAGS
;
314 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
315 #elif defined(TARGET_ARM)
316 #elif defined(TARGET_SPARC)
317 #if defined(reg_REGWPTR)
318 saved_regwptr
= REGWPTR
;
320 #elif defined(TARGET_PPC)
321 #elif defined(TARGET_M68K)
322 env
->cc_op
= CC_OP_FLAGS
;
323 env
->cc_dest
= env
->sr
& 0xf;
324 env
->cc_x
= (env
->sr
>> 4) & 1;
325 #elif defined(TARGET_MIPS)
326 #elif defined(TARGET_SH4)
329 #error unsupported target CPU
331 env
->exception_index
= -1;
333 /* prepare setjmp context for exception handling */
335 if (setjmp(env
->jmp_env
) == 0) {
336 env
->current_tb
= NULL
;
337 /* if an exception is pending, we execute it here */
338 if (env
->exception_index
>= 0) {
339 if (env
->exception_index
>= EXCP_INTERRUPT
) {
340 /* exit request from the cpu execution loop */
341 ret
= env
->exception_index
;
343 } else if (env
->user_mode_only
) {
344 /* if user mode only, we simulate a fake exception
345 which will be handled outside the cpu execution
347 #if defined(TARGET_I386)
348 do_interrupt_user(env
->exception_index
,
349 env
->exception_is_int
,
351 env
->exception_next_eip
);
353 ret
= env
->exception_index
;
356 #if defined(TARGET_I386)
357 /* simulate a real cpu exception. On i386, it can
358 trigger new exceptions, but we do not handle
359 double or triple faults yet. */
360 do_interrupt(env
->exception_index
,
361 env
->exception_is_int
,
363 env
->exception_next_eip
, 0);
364 #elif defined(TARGET_PPC)
366 #elif defined(TARGET_MIPS)
368 #elif defined(TARGET_SPARC)
369 do_interrupt(env
->exception_index
);
370 #elif defined(TARGET_ARM)
372 #elif defined(TARGET_SH4)
376 env
->exception_index
= -1;
379 if (kqemu_is_ok(env
) && env
->interrupt_request
== 0) {
381 env
->eflags
= env
->eflags
| cc_table
[CC_OP
].compute_all() | (DF
& DF_MASK
);
382 ret
= kqemu_cpu_exec(env
);
383 /* put eflags in CPU temporary format */
384 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
385 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
386 CC_OP
= CC_OP_EFLAGS
;
387 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
390 longjmp(env
->jmp_env
, 1);
391 } else if (ret
== 2) {
392 /* softmmu execution needed */
394 if (env
->interrupt_request
!= 0) {
395 /* hardware interrupt will be executed just after */
397 /* otherwise, we restart */
398 longjmp(env
->jmp_env
, 1);
404 T0
= 0; /* force lookup of first TB */
406 #if defined(__sparc__) && !defined(HOST_SOLARIS)
407 /* g1 can be modified by some libc? functions */
410 interrupt_request
= env
->interrupt_request
;
411 if (__builtin_expect(interrupt_request
, 0)) {
412 if (interrupt_request
& CPU_INTERRUPT_DEBUG
) {
413 env
->interrupt_request
&= ~CPU_INTERRUPT_DEBUG
;
414 env
->exception_index
= EXCP_DEBUG
;
417 #if defined(TARGET_I386)
418 if ((interrupt_request
& CPU_INTERRUPT_SMI
) &&
419 !(env
->hflags
& HF_SMM_MASK
)) {
420 env
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
422 #if defined(__sparc__) && !defined(HOST_SOLARIS)
427 } else if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
428 (env
->eflags
& IF_MASK
) &&
429 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
431 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
432 intno
= cpu_get_pic_interrupt(env
);
433 if (loglevel
& CPU_LOG_TB_IN_ASM
) {
434 fprintf(logfile
, "Servicing hardware INT=0x%02x\n", intno
);
436 do_interrupt(intno
, 0, 0, 0, 1);
437 /* ensure that no TB jump will be modified as
438 the program flow was changed */
439 #if defined(__sparc__) && !defined(HOST_SOLARIS)
445 #elif defined(TARGET_PPC)
447 if ((interrupt_request
& CPU_INTERRUPT_RESET
)) {
452 if ((interrupt_request
& CPU_INTERRUPT_HARD
)) {
454 env
->exception_index
= EXCP_EXTERNAL
;
457 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
458 #if defined(__sparc__) && !defined(HOST_SOLARIS)
463 } else if ((interrupt_request
& CPU_INTERRUPT_TIMER
)) {
465 env
->exception_index
= EXCP_DECR
;
468 env
->interrupt_request
&= ~CPU_INTERRUPT_TIMER
;
469 #if defined(__sparc__) && !defined(HOST_SOLARIS)
476 #elif defined(TARGET_MIPS)
477 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
478 (env
->CP0_Status
& (1 << CP0St_IE
)) &&
479 (env
->CP0_Status
& env
->CP0_Cause
& 0x0000FF00) &&
480 !(env
->hflags
& MIPS_HFLAG_EXL
) &&
481 !(env
->hflags
& MIPS_HFLAG_ERL
) &&
482 !(env
->hflags
& MIPS_HFLAG_DM
)) {
484 env
->exception_index
= EXCP_EXT_INTERRUPT
;
487 #if defined(__sparc__) && !defined(HOST_SOLARIS)
493 #elif defined(TARGET_SPARC)
494 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
496 int pil
= env
->interrupt_index
& 15;
497 int type
= env
->interrupt_index
& 0xf0;
499 if (((type
== TT_EXTINT
) &&
500 (pil
== 15 || pil
> env
->psrpil
)) ||
502 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
503 do_interrupt(env
->interrupt_index
);
504 env
->interrupt_index
= 0;
505 #if defined(__sparc__) && !defined(HOST_SOLARIS)
511 } else if (interrupt_request
& CPU_INTERRUPT_TIMER
) {
512 //do_interrupt(0, 0, 0, 0, 0);
513 env
->interrupt_request
&= ~CPU_INTERRUPT_TIMER
;
514 } else if (interrupt_request
& CPU_INTERRUPT_HALT
) {
515 env
->interrupt_request
&= ~CPU_INTERRUPT_HALT
;
517 env
->exception_index
= EXCP_HLT
;
520 #elif defined(TARGET_ARM)
521 if (interrupt_request
& CPU_INTERRUPT_FIQ
522 && !(env
->uncached_cpsr
& CPSR_F
)) {
523 env
->exception_index
= EXCP_FIQ
;
526 if (interrupt_request
& CPU_INTERRUPT_HARD
527 && !(env
->uncached_cpsr
& CPSR_I
)) {
528 env
->exception_index
= EXCP_IRQ
;
531 #elif defined(TARGET_SH4)
534 /* Don't use the cached interupt_request value,
535 do_interrupt may have updated the EXITTB flag. */
536 if (env
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
537 env
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
538 /* ensure that no TB jump will be modified as
539 the program flow was changed */
540 #if defined(__sparc__) && !defined(HOST_SOLARIS)
546 if (interrupt_request
& CPU_INTERRUPT_EXIT
) {
547 env
->interrupt_request
&= ~CPU_INTERRUPT_EXIT
;
548 env
->exception_index
= EXCP_INTERRUPT
;
553 if ((loglevel
& CPU_LOG_TB_CPU
)) {
554 #if defined(TARGET_I386)
555 /* restore flags in standard format */
557 env
->regs
[R_EAX
] = EAX
;
560 env
->regs
[R_EBX
] = EBX
;
563 env
->regs
[R_ECX
] = ECX
;
566 env
->regs
[R_EDX
] = EDX
;
569 env
->regs
[R_ESI
] = ESI
;
572 env
->regs
[R_EDI
] = EDI
;
575 env
->regs
[R_EBP
] = EBP
;
578 env
->regs
[R_ESP
] = ESP
;
580 env
->eflags
= env
->eflags
| cc_table
[CC_OP
].compute_all() | (DF
& DF_MASK
);
581 cpu_dump_state(env
, logfile
, fprintf
, X86_DUMP_CCOP
);
582 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
583 #elif defined(TARGET_ARM)
584 cpu_dump_state(env
, logfile
, fprintf
, 0);
585 #elif defined(TARGET_SPARC)
586 REGWPTR
= env
->regbase
+ (env
->cwp
* 16);
587 env
->regwptr
= REGWPTR
;
588 cpu_dump_state(env
, logfile
, fprintf
, 0);
589 #elif defined(TARGET_PPC)
590 cpu_dump_state(env
, logfile
, fprintf
, 0);
591 #elif defined(TARGET_M68K)
592 cpu_m68k_flush_flags(env
, env
->cc_op
);
593 env
->cc_op
= CC_OP_FLAGS
;
594 env
->sr
= (env
->sr
& 0xffe0)
595 | env
->cc_dest
| (env
->cc_x
<< 4);
596 cpu_dump_state(env
, logfile
, fprintf
, 0);
597 #elif defined(TARGET_MIPS)
598 cpu_dump_state(env
, logfile
, fprintf
, 0);
599 #elif defined(TARGET_SH4)
600 cpu_dump_state(env
, logfile
, fprintf
, 0);
602 #error unsupported target CPU
608 if ((loglevel
& CPU_LOG_EXEC
)) {
609 fprintf(logfile
, "Trace 0x%08lx [" TARGET_FMT_lx
"] %s\n",
610 (long)tb
->tc_ptr
, tb
->pc
,
611 lookup_symbol(tb
->pc
));
614 #if defined(__sparc__) && !defined(HOST_SOLARIS)
617 /* see if we can patch the calling TB. When the TB
618 spans two pages, we cannot safely do a direct
623 (env
->kqemu_enabled
!= 2) &&
625 tb
->page_addr
[1] == -1
626 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
627 && (tb
->cflags
& CF_CODE_COPY
) ==
628 (((TranslationBlock
*)(T0
& ~3))->cflags
& CF_CODE_COPY
)
632 tb_add_jump((TranslationBlock
*)(long)(T0
& ~3), T0
& 3, tb
);
633 #if defined(USE_CODE_COPY)
634 /* propagates the FP use info */
635 ((TranslationBlock
*)(T0
& ~3))->cflags
|=
636 (tb
->cflags
& CF_FP_USED
);
638 spin_unlock(&tb_lock
);
642 env
->current_tb
= tb
;
643 /* execute the generated code */
644 gen_func
= (void *)tc_ptr
;
645 #if defined(__sparc__)
646 __asm__
__volatile__("call %0\n\t"
650 : "i0", "i1", "i2", "i3", "i4", "i5",
651 "o0", "o1", "o2", "o3", "o4", "o5",
652 "l0", "l1", "l2", "l3", "l4", "l5",
654 #elif defined(__arm__)
655 asm volatile ("mov pc, %0\n\t"
656 ".global exec_loop\n\t"
660 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
661 #elif defined(TARGET_I386) && defined(USE_CODE_COPY)
663 if (!(tb
->cflags
& CF_CODE_COPY
)) {
664 if ((tb
->cflags
& CF_FP_USED
) && env
->native_fp_regs
) {
665 save_native_fp_state(env
);
669 if ((tb
->cflags
& CF_FP_USED
) && !env
->native_fp_regs
) {
670 restore_native_fp_state(env
);
672 /* we work with native eflags */
673 CC_SRC
= cc_table
[CC_OP
].compute_all();
674 CC_OP
= CC_OP_EFLAGS
;
675 asm(".globl exec_loop\n"
680 " fs movl %11, %%eax\n"
681 " andl $0x400, %%eax\n"
682 " fs orl %8, %%eax\n"
685 " fs movl %%esp, %12\n"
686 " fs movl %0, %%eax\n"
687 " fs movl %1, %%ecx\n"
688 " fs movl %2, %%edx\n"
689 " fs movl %3, %%ebx\n"
690 " fs movl %4, %%esp\n"
691 " fs movl %5, %%ebp\n"
692 " fs movl %6, %%esi\n"
693 " fs movl %7, %%edi\n"
696 " fs movl %%esp, %4\n"
697 " fs movl %12, %%esp\n"
698 " fs movl %%eax, %0\n"
699 " fs movl %%ecx, %1\n"
700 " fs movl %%edx, %2\n"
701 " fs movl %%ebx, %3\n"
702 " fs movl %%ebp, %5\n"
703 " fs movl %%esi, %6\n"
704 " fs movl %%edi, %7\n"
707 " movl %%eax, %%ecx\n"
708 " andl $0x400, %%ecx\n"
710 " andl $0x8d5, %%eax\n"
711 " fs movl %%eax, %8\n"
713 " subl %%ecx, %%eax\n"
714 " fs movl %%eax, %11\n"
715 " fs movl %9, %%ebx\n" /* get T0 value */
718 : "m" (*(uint8_t *)offsetof(CPUState
, regs
[0])),
719 "m" (*(uint8_t *)offsetof(CPUState
, regs
[1])),
720 "m" (*(uint8_t *)offsetof(CPUState
, regs
[2])),
721 "m" (*(uint8_t *)offsetof(CPUState
, regs
[3])),
722 "m" (*(uint8_t *)offsetof(CPUState
, regs
[4])),
723 "m" (*(uint8_t *)offsetof(CPUState
, regs
[5])),
724 "m" (*(uint8_t *)offsetof(CPUState
, regs
[6])),
725 "m" (*(uint8_t *)offsetof(CPUState
, regs
[7])),
726 "m" (*(uint8_t *)offsetof(CPUState
, cc_src
)),
727 "m" (*(uint8_t *)offsetof(CPUState
, tmp0
)),
729 "m" (*(uint8_t *)offsetof(CPUState
, df
)),
730 "m" (*(uint8_t *)offsetof(CPUState
, saved_esp
))
735 #elif defined(__ia64)
742 fp
.gp
= code_gen_buffer
+ 2 * (1 << 20);
743 (*(void (*)(void)) &fp
)();
747 env
->current_tb
= NULL
;
748 /* reset soft MMU for next block (it can currently
749 only be set by a memory fault) */
750 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
751 if (env
->hflags
& HF_SOFTMMU_MASK
) {
752 env
->hflags
&= ~HF_SOFTMMU_MASK
;
753 /* do not allow linking to another block */
757 #if defined(USE_KQEMU)
758 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
759 if (kqemu_is_ok(env
) &&
760 (cpu_get_time_fast() - env
->last_io_time
) >= MIN_CYCLE_BEFORE_SWITCH
) {
771 #if defined(TARGET_I386)
772 #if defined(USE_CODE_COPY)
773 if (env
->native_fp_regs
) {
774 save_native_fp_state(env
);
777 /* restore flags in standard format */
778 env
->eflags
= env
->eflags
| cc_table
[CC_OP
].compute_all() | (DF
& DF_MASK
);
779 #elif defined(TARGET_ARM)
780 /* XXX: Save/restore host fpu exception state?. */
781 #elif defined(TARGET_SPARC)
782 #if defined(reg_REGWPTR)
783 REGWPTR
= saved_regwptr
;
785 #elif defined(TARGET_PPC)
786 #elif defined(TARGET_M68K)
787 cpu_m68k_flush_flags(env
, env
->cc_op
);
788 env
->cc_op
= CC_OP_FLAGS
;
789 env
->sr
= (env
->sr
& 0xffe0)
790 | env
->cc_dest
| (env
->cc_x
<< 4);
791 #elif defined(TARGET_MIPS)
792 #elif defined(TARGET_SH4)
795 #error unsupported target CPU
798 /* restore global registers */
799 #if defined(__sparc__) && !defined(HOST_SOLARIS)
800 asm volatile ("mov %0, %%i7" : : "r" (saved_i7
));
802 #include "hostregs_helper.h"
804 /* fail safe : never use cpu_single_env outside cpu_exec() */
805 cpu_single_env
= NULL
;
809 /* must only be called from the generated code as an exception can be
811 void tb_invalidate_page_range(target_ulong start
, target_ulong end
)
813 /* XXX: cannot enable it yet because it yields to MMU exception
814 where NIP != read address on PowerPC */
816 target_ulong phys_addr
;
817 phys_addr
= get_phys_addr_code(env
, start
);
818 tb_invalidate_phys_page_range(phys_addr
, phys_addr
+ end
- start
, 0);
822 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
824 void cpu_x86_load_seg(CPUX86State
*s
, int seg_reg
, int selector
)
826 CPUX86State
*saved_env
;
830 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
832 cpu_x86_load_seg_cache(env
, seg_reg
, selector
,
833 (selector
<< 4), 0xffff, 0);
835 load_seg(seg_reg
, selector
);
840 void cpu_x86_fsave(CPUX86State
*s
, uint8_t *ptr
, int data32
)
842 CPUX86State
*saved_env
;
847 helper_fsave((target_ulong
)ptr
, data32
);
852 void cpu_x86_frstor(CPUX86State
*s
, uint8_t *ptr
, int data32
)
854 CPUX86State
*saved_env
;
859 helper_frstor((target_ulong
)ptr
, data32
);
864 #endif /* TARGET_I386 */
866 #if !defined(CONFIG_SOFTMMU)
868 #if defined(TARGET_I386)
870 /* 'pc' is the host PC at which the exception was raised. 'address' is
871 the effective address of the memory exception. 'is_write' is 1 if a
872 write caused the exception and otherwise 0'. 'old_set' is the
873 signal set which should be restored */
874 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
875 int is_write
, sigset_t
*old_set
,
878 TranslationBlock
*tb
;
882 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
883 #if defined(DEBUG_SIGNAL)
884 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
885 pc
, address
, is_write
, *(unsigned long *)old_set
);
887 /* XXX: locking issue */
888 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
892 /* see if it is an MMU fault */
893 ret
= cpu_x86_handle_mmu_fault(env
, address
, is_write
,
894 ((env
->hflags
& HF_CPL_MASK
) == 3), 0);
896 return 0; /* not an MMU fault */
898 return 1; /* the MMU fault was handled without causing real CPU fault */
899 /* now we have a real cpu fault */
902 /* the PC is inside the translated code. It means that we have
903 a virtual CPU fault */
904 cpu_restore_state(tb
, env
, pc
, puc
);
908 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
909 env
->eip
, env
->cr
[2], env
->error_code
);
911 /* we restore the process signal mask as the sigreturn should
912 do it (XXX: use sigsetjmp) */
913 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
914 raise_exception_err(env
->exception_index
, env
->error_code
);
916 /* activate soft MMU for this block */
917 env
->hflags
|= HF_SOFTMMU_MASK
;
918 cpu_resume_from_signal(env
, puc
);
920 /* never comes here */
924 #elif defined(TARGET_ARM)
925 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
926 int is_write
, sigset_t
*old_set
,
929 TranslationBlock
*tb
;
933 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
934 #if defined(DEBUG_SIGNAL)
935 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
936 pc
, address
, is_write
, *(unsigned long *)old_set
);
938 /* XXX: locking issue */
939 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
942 /* see if it is an MMU fault */
943 ret
= cpu_arm_handle_mmu_fault(env
, address
, is_write
, 1, 0);
945 return 0; /* not an MMU fault */
947 return 1; /* the MMU fault was handled without causing real CPU fault */
948 /* now we have a real cpu fault */
951 /* the PC is inside the translated code. It means that we have
952 a virtual CPU fault */
953 cpu_restore_state(tb
, env
, pc
, puc
);
955 /* we restore the process signal mask as the sigreturn should
956 do it (XXX: use sigsetjmp) */
957 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
960 #elif defined(TARGET_SPARC)
961 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
962 int is_write
, sigset_t
*old_set
,
965 TranslationBlock
*tb
;
969 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
970 #if defined(DEBUG_SIGNAL)
971 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
972 pc
, address
, is_write
, *(unsigned long *)old_set
);
974 /* XXX: locking issue */
975 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
978 /* see if it is an MMU fault */
979 ret
= cpu_sparc_handle_mmu_fault(env
, address
, is_write
, 1, 0);
981 return 0; /* not an MMU fault */
983 return 1; /* the MMU fault was handled without causing real CPU fault */
984 /* now we have a real cpu fault */
987 /* the PC is inside the translated code. It means that we have
988 a virtual CPU fault */
989 cpu_restore_state(tb
, env
, pc
, puc
);
991 /* we restore the process signal mask as the sigreturn should
992 do it (XXX: use sigsetjmp) */
993 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
996 #elif defined (TARGET_PPC)
997 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
998 int is_write
, sigset_t
*old_set
,
1001 TranslationBlock
*tb
;
1005 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1006 #if defined(DEBUG_SIGNAL)
1007 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1008 pc
, address
, is_write
, *(unsigned long *)old_set
);
1010 /* XXX: locking issue */
1011 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1015 /* see if it is an MMU fault */
1016 ret
= cpu_ppc_handle_mmu_fault(env
, address
, is_write
, msr_pr
, 0);
1018 return 0; /* not an MMU fault */
1020 return 1; /* the MMU fault was handled without causing real CPU fault */
1022 /* now we have a real cpu fault */
1023 tb
= tb_find_pc(pc
);
1025 /* the PC is inside the translated code. It means that we have
1026 a virtual CPU fault */
1027 cpu_restore_state(tb
, env
, pc
, puc
);
1031 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1032 env
->nip
, env
->error_code
, tb
);
1034 /* we restore the process signal mask as the sigreturn should
1035 do it (XXX: use sigsetjmp) */
1036 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1037 do_raise_exception_err(env
->exception_index
, env
->error_code
);
1039 /* activate soft MMU for this block */
1040 cpu_resume_from_signal(env
, puc
);
1042 /* never comes here */
1046 #elif defined(TARGET_M68K)
1047 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1048 int is_write
, sigset_t
*old_set
,
1051 TranslationBlock
*tb
;
1055 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1056 #if defined(DEBUG_SIGNAL)
1057 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1058 pc
, address
, is_write
, *(unsigned long *)old_set
);
1060 /* XXX: locking issue */
1061 if (is_write
&& page_unprotect(address
, pc
, puc
)) {
1064 /* see if it is an MMU fault */
1065 ret
= cpu_m68k_handle_mmu_fault(env
, address
, is_write
, 1, 0);
1067 return 0; /* not an MMU fault */
1069 return 1; /* the MMU fault was handled without causing real CPU fault */
1070 /* now we have a real cpu fault */
1071 tb
= tb_find_pc(pc
);
1073 /* the PC is inside the translated code. It means that we have
1074 a virtual CPU fault */
1075 cpu_restore_state(tb
, env
, pc
, puc
);
1077 /* we restore the process signal mask as the sigreturn should
1078 do it (XXX: use sigsetjmp) */
1079 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1081 /* never comes here */
1085 #elif defined (TARGET_MIPS)
1086 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1087 int is_write
, sigset_t
*old_set
,
1090 TranslationBlock
*tb
;
1094 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1095 #if defined(DEBUG_SIGNAL)
1096 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1097 pc
, address
, is_write
, *(unsigned long *)old_set
);
1099 /* XXX: locking issue */
1100 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1104 /* see if it is an MMU fault */
1105 ret
= cpu_mips_handle_mmu_fault(env
, address
, is_write
, 1, 0);
1107 return 0; /* not an MMU fault */
1109 return 1; /* the MMU fault was handled without causing real CPU fault */
1111 /* now we have a real cpu fault */
1112 tb
= tb_find_pc(pc
);
1114 /* the PC is inside the translated code. It means that we have
1115 a virtual CPU fault */
1116 cpu_restore_state(tb
, env
, pc
, puc
);
1120 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1121 env
->nip
, env
->error_code
, tb
);
1123 /* we restore the process signal mask as the sigreturn should
1124 do it (XXX: use sigsetjmp) */
1125 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1126 do_raise_exception_err(env
->exception_index
, env
->error_code
);
1128 /* activate soft MMU for this block */
1129 cpu_resume_from_signal(env
, puc
);
1131 /* never comes here */
1135 #elif defined (TARGET_SH4)
1136 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1137 int is_write
, sigset_t
*old_set
,
1140 TranslationBlock
*tb
;
1144 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1145 #if defined(DEBUG_SIGNAL)
1146 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1147 pc
, address
, is_write
, *(unsigned long *)old_set
);
1149 /* XXX: locking issue */
1150 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1154 /* see if it is an MMU fault */
1155 ret
= cpu_sh4_handle_mmu_fault(env
, address
, is_write
, 1, 0);
1157 return 0; /* not an MMU fault */
1159 return 1; /* the MMU fault was handled without causing real CPU fault */
1161 /* now we have a real cpu fault */
1162 tb
= tb_find_pc(pc
);
1164 /* the PC is inside the translated code. It means that we have
1165 a virtual CPU fault */
1166 cpu_restore_state(tb
, env
, pc
, puc
);
1169 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1170 env
->nip
, env
->error_code
, tb
);
1172 /* we restore the process signal mask as the sigreturn should
1173 do it (XXX: use sigsetjmp) */
1174 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1176 /* never comes here */
1180 #error unsupported target CPU
1183 #if defined(__i386__)
1185 #if defined(__APPLE__)
1186 # include <sys/ucontext.h>
1188 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1189 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1190 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1192 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1193 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1194 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1197 #if defined(USE_CODE_COPY)
1198 static void cpu_send_trap(unsigned long pc
, int trap
,
1199 struct ucontext
*uc
)
1201 TranslationBlock
*tb
;
1204 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1205 /* now we have a real cpu fault */
1206 tb
= tb_find_pc(pc
);
1208 /* the PC is inside the translated code. It means that we have
1209 a virtual CPU fault */
1210 cpu_restore_state(tb
, env
, pc
, uc
);
1212 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
1213 raise_exception_err(trap
, env
->error_code
);
1217 int cpu_signal_handler(int host_signum
, void *pinfo
,
1220 siginfo_t
*info
= pinfo
;
1221 struct ucontext
*uc
= puc
;
1229 #define REG_TRAPNO TRAPNO
1232 trapno
= TRAP_sig(uc
);
1233 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
1234 if (trapno
== 0x00 || trapno
== 0x05) {
1235 /* send division by zero or bound exception */
1236 cpu_send_trap(pc
, trapno
, uc
);
1240 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1242 (ERROR_sig(uc
) >> 1) & 1 : 0,
1243 &uc
->uc_sigmask
, puc
);
1246 #elif defined(__x86_64__)
1248 int cpu_signal_handler(int host_signum
, void *pinfo
,
1251 siginfo_t
*info
= pinfo
;
1252 struct ucontext
*uc
= puc
;
1255 pc
= uc
->uc_mcontext
.gregs
[REG_RIP
];
1256 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1257 uc
->uc_mcontext
.gregs
[REG_TRAPNO
] == 0xe ?
1258 (uc
->uc_mcontext
.gregs
[REG_ERR
] >> 1) & 1 : 0,
1259 &uc
->uc_sigmask
, puc
);
1262 #elif defined(__powerpc__)
1264 /***********************************************************************
1265 * signal context platform-specific definitions
1269 /* All Registers access - only for local access */
1270 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1271 /* Gpr Registers access */
1272 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1273 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1274 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1275 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1276 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1277 # define LR_sig(context) REG_sig(link, context) /* Link register */
1278 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1279 /* Float Registers access */
1280 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1281 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1282 /* Exception Registers access */
1283 # define DAR_sig(context) REG_sig(dar, context)
1284 # define DSISR_sig(context) REG_sig(dsisr, context)
1285 # define TRAP_sig(context) REG_sig(trap, context)
1289 # include <sys/ucontext.h>
1290 typedef struct ucontext SIGCONTEXT
;
1291 /* All Registers access - only for local access */
1292 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1293 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1294 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1295 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1296 /* Gpr Registers access */
1297 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1298 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1299 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1300 # define CTR_sig(context) REG_sig(ctr, context)
1301 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1302 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1303 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1304 /* Float Registers access */
1305 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1306 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1307 /* Exception Registers access */
1308 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1309 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1310 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1311 #endif /* __APPLE__ */
1313 int cpu_signal_handler(int host_signum
, void *pinfo
,
1316 siginfo_t
*info
= pinfo
;
1317 struct ucontext
*uc
= puc
;
1325 if (DSISR_sig(uc
) & 0x00800000)
1328 if (TRAP_sig(uc
) != 0x400 && (DSISR_sig(uc
) & 0x02000000))
1331 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1332 is_write
, &uc
->uc_sigmask
, puc
);
1335 #elif defined(__alpha__)
1337 int cpu_signal_handler(int host_signum
, void *pinfo
,
1340 siginfo_t
*info
= pinfo
;
1341 struct ucontext
*uc
= puc
;
1342 uint32_t *pc
= uc
->uc_mcontext
.sc_pc
;
1343 uint32_t insn
= *pc
;
1346 /* XXX: need kernel patch to get write flag faster */
1347 switch (insn
>> 26) {
1362 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1363 is_write
, &uc
->uc_sigmask
, puc
);
1365 #elif defined(__sparc__)
1367 int cpu_signal_handler(int host_signum
, void *pinfo
,
1370 siginfo_t
*info
= pinfo
;
1371 uint32_t *regs
= (uint32_t *)(info
+ 1);
1372 void *sigmask
= (regs
+ 20);
1377 /* XXX: is there a standard glibc define ? */
1379 /* XXX: need kernel patch to get write flag faster */
1381 insn
= *(uint32_t *)pc
;
1382 if ((insn
>> 30) == 3) {
1383 switch((insn
>> 19) & 0x3f) {
1395 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1396 is_write
, sigmask
, NULL
);
1399 #elif defined(__arm__)
1401 int cpu_signal_handler(int host_signum
, void *pinfo
,
1404 siginfo_t
*info
= pinfo
;
1405 struct ucontext
*uc
= puc
;
1409 pc
= uc
->uc_mcontext
.gregs
[R15
];
1410 /* XXX: compute is_write */
1412 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1414 &uc
->uc_sigmask
, puc
);
1417 #elif defined(__mc68000)
1419 int cpu_signal_handler(int host_signum
, void *pinfo
,
1422 siginfo_t
*info
= pinfo
;
1423 struct ucontext
*uc
= puc
;
1427 pc
= uc
->uc_mcontext
.gregs
[16];
1428 /* XXX: compute is_write */
1430 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1432 &uc
->uc_sigmask
, puc
);
1435 #elif defined(__ia64)
1438 /* This ought to be in <bits/siginfo.h>... */
1439 # define __ISR_VALID 1
1442 int cpu_signal_handler(int host_signum
, void *pinfo
, void *puc
)
1444 siginfo_t
*info
= pinfo
;
1445 struct ucontext
*uc
= puc
;
1449 ip
= uc
->uc_mcontext
.sc_ip
;
1450 switch (host_signum
) {
1456 if (info
->si_code
&& (info
->si_segvflags
& __ISR_VALID
))
1457 /* ISR.W (write-access) is bit 33: */
1458 is_write
= (info
->si_isr
>> 33) & 1;
1464 return handle_cpu_signal(ip
, (unsigned long)info
->si_addr
,
1466 &uc
->uc_sigmask
, puc
);
1469 #elif defined(__s390__)
1471 int cpu_signal_handler(int host_signum
, void *pinfo
,
1474 siginfo_t
*info
= pinfo
;
1475 struct ucontext
*uc
= puc
;
1479 pc
= uc
->uc_mcontext
.psw
.addr
;
1480 /* XXX: compute is_write */
1482 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1484 &uc
->uc_sigmask
, puc
);
1489 #error host CPU specific signal handler needed
1493 #endif /* !defined(CONFIG_SOFTMMU) */