2 * vm86 linux syscall support
4 * Copyright (c) 2003 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
31 #define set_flags(X,new,mask) \
32 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
34 #define SAFE_MASK (0xDD5)
35 #define RETURN_MASK (0xDFF)
37 static inline int is_revectored(int nr
, struct target_revectored_struct
*bitmap
)
39 return (((uint8_t *)bitmap
)[nr
>> 3] >> (nr
& 7)) & 1;
42 static inline void vm_putw(uint8_t *segptr
, unsigned int reg16
, unsigned int val
)
44 stw(segptr
+ (reg16
& 0xffff), val
);
47 static inline void vm_putl(uint8_t *segptr
, unsigned int reg16
, unsigned int val
)
49 stl(segptr
+ (reg16
& 0xffff), val
);
52 static inline unsigned int vm_getw(uint8_t *segptr
, unsigned int reg16
)
54 return lduw(segptr
+ (reg16
& 0xffff));
57 static inline unsigned int vm_getl(uint8_t *segptr
, unsigned int reg16
)
59 return ldl(segptr
+ (reg16
& 0xffff));
62 void save_v86_state(CPUX86State
*env
)
64 TaskState
*ts
= env
->opaque
;
65 struct target_vm86plus_struct
* target_v86
;
67 lock_user_struct(target_v86
, ts
->target_v86
, 0);
68 /* put the VM86 registers in the userspace register structure */
69 target_v86
->regs
.eax
= tswap32(env
->regs
[R_EAX
]);
70 target_v86
->regs
.ebx
= tswap32(env
->regs
[R_EBX
]);
71 target_v86
->regs
.ecx
= tswap32(env
->regs
[R_ECX
]);
72 target_v86
->regs
.edx
= tswap32(env
->regs
[R_EDX
]);
73 target_v86
->regs
.esi
= tswap32(env
->regs
[R_ESI
]);
74 target_v86
->regs
.edi
= tswap32(env
->regs
[R_EDI
]);
75 target_v86
->regs
.ebp
= tswap32(env
->regs
[R_EBP
]);
76 target_v86
->regs
.esp
= tswap32(env
->regs
[R_ESP
]);
77 target_v86
->regs
.eip
= tswap32(env
->eip
);
78 target_v86
->regs
.cs
= tswap16(env
->segs
[R_CS
].selector
);
79 target_v86
->regs
.ss
= tswap16(env
->segs
[R_SS
].selector
);
80 target_v86
->regs
.ds
= tswap16(env
->segs
[R_DS
].selector
);
81 target_v86
->regs
.es
= tswap16(env
->segs
[R_ES
].selector
);
82 target_v86
->regs
.fs
= tswap16(env
->segs
[R_FS
].selector
);
83 target_v86
->regs
.gs
= tswap16(env
->segs
[R_GS
].selector
);
84 set_flags(env
->eflags
, ts
->v86flags
, VIF_MASK
| ts
->v86mask
);
85 target_v86
->regs
.eflags
= tswap32(env
->eflags
);
86 unlock_user_struct(target_v86
, ts
->target_v86
, 1);
88 fprintf(logfile
, "save_v86_state: eflags=%08x cs:ip=%04x:%04x\n",
89 env
->eflags
, env
->segs
[R_CS
].selector
, env
->eip
);
92 /* restore 32 bit registers */
93 env
->regs
[R_EAX
] = ts
->vm86_saved_regs
.eax
;
94 env
->regs
[R_EBX
] = ts
->vm86_saved_regs
.ebx
;
95 env
->regs
[R_ECX
] = ts
->vm86_saved_regs
.ecx
;
96 env
->regs
[R_EDX
] = ts
->vm86_saved_regs
.edx
;
97 env
->regs
[R_ESI
] = ts
->vm86_saved_regs
.esi
;
98 env
->regs
[R_EDI
] = ts
->vm86_saved_regs
.edi
;
99 env
->regs
[R_EBP
] = ts
->vm86_saved_regs
.ebp
;
100 env
->regs
[R_ESP
] = ts
->vm86_saved_regs
.esp
;
101 env
->eflags
= ts
->vm86_saved_regs
.eflags
;
102 env
->eip
= ts
->vm86_saved_regs
.eip
;
104 cpu_x86_load_seg(env
, R_CS
, ts
->vm86_saved_regs
.cs
);
105 cpu_x86_load_seg(env
, R_SS
, ts
->vm86_saved_regs
.ss
);
106 cpu_x86_load_seg(env
, R_DS
, ts
->vm86_saved_regs
.ds
);
107 cpu_x86_load_seg(env
, R_ES
, ts
->vm86_saved_regs
.es
);
108 cpu_x86_load_seg(env
, R_FS
, ts
->vm86_saved_regs
.fs
);
109 cpu_x86_load_seg(env
, R_GS
, ts
->vm86_saved_regs
.gs
);
112 /* return from vm86 mode to 32 bit. The vm86() syscall will return
114 static inline void return_to_32bit(CPUX86State
*env
, int retval
)
117 fprintf(logfile
, "return_to_32bit: ret=0x%x\n", retval
);
120 env
->regs
[R_EAX
] = retval
;
123 static inline int set_IF(CPUX86State
*env
)
125 TaskState
*ts
= env
->opaque
;
127 ts
->v86flags
|= VIF_MASK
;
128 if (ts
->v86flags
& VIP_MASK
) {
129 return_to_32bit(env
, TARGET_VM86_STI
);
135 static inline void clear_IF(CPUX86State
*env
)
137 TaskState
*ts
= env
->opaque
;
139 ts
->v86flags
&= ~VIF_MASK
;
142 static inline void clear_TF(CPUX86State
*env
)
144 env
->eflags
&= ~TF_MASK
;
147 static inline void clear_AC(CPUX86State
*env
)
149 env
->eflags
&= ~AC_MASK
;
152 static inline int set_vflags_long(unsigned long eflags
, CPUX86State
*env
)
154 TaskState
*ts
= env
->opaque
;
156 set_flags(ts
->v86flags
, eflags
, ts
->v86mask
);
157 set_flags(env
->eflags
, eflags
, SAFE_MASK
);
158 if (eflags
& IF_MASK
)
165 static inline int set_vflags_short(unsigned short flags
, CPUX86State
*env
)
167 TaskState
*ts
= env
->opaque
;
169 set_flags(ts
->v86flags
, flags
, ts
->v86mask
& 0xffff);
170 set_flags(env
->eflags
, flags
, SAFE_MASK
);
178 static inline unsigned int get_vflags(CPUX86State
*env
)
180 TaskState
*ts
= env
->opaque
;
183 flags
= env
->eflags
& RETURN_MASK
;
184 if (ts
->v86flags
& VIF_MASK
)
187 return flags
| (ts
->v86flags
& ts
->v86mask
);
190 #define ADD16(reg, val) reg = (reg & ~0xffff) | ((reg + (val)) & 0xffff)
192 /* handle VM86 interrupt (NOTE: the CPU core currently does not
193 support TSS interrupt revectoring, so this code is always executed) */
194 static void do_int(CPUX86State
*env
, int intno
)
196 TaskState
*ts
= env
->opaque
;
197 uint32_t *int_ptr
, segoffs
;
201 if (env
->segs
[R_CS
].selector
== TARGET_BIOSSEG
)
203 if (is_revectored(intno
, &ts
->vm86plus
.int_revectored
))
205 if (intno
== 0x21 && is_revectored((env
->regs
[R_EAX
] >> 8) & 0xff,
206 &ts
->vm86plus
.int21_revectored
))
208 int_ptr
= (uint32_t *)(intno
<< 2);
209 segoffs
= tswap32(*int_ptr
);
210 if ((segoffs
>> 16) == TARGET_BIOSSEG
)
212 #if defined(DEBUG_VM86)
213 fprintf(logfile
, "VM86: emulating int 0x%x. CS:IP=%04x:%04x\n",
214 intno
, segoffs
>> 16, segoffs
& 0xffff);
217 ssp
= (uint8_t *)(env
->segs
[R_SS
].selector
<< 4);
218 sp
= env
->regs
[R_ESP
] & 0xffff;
219 vm_putw(ssp
, sp
- 2, get_vflags(env
));
220 vm_putw(ssp
, sp
- 4, env
->segs
[R_CS
].selector
);
221 vm_putw(ssp
, sp
- 6, env
->eip
);
222 ADD16(env
->regs
[R_ESP
], -6);
223 /* goto interrupt handler */
224 env
->eip
= segoffs
& 0xffff;
225 cpu_x86_load_seg(env
, R_CS
, segoffs
>> 16);
231 #if defined(DEBUG_VM86)
232 fprintf(logfile
, "VM86: return to 32 bits int 0x%x\n", intno
);
234 return_to_32bit(env
, TARGET_VM86_INTx
| (intno
<< 8));
237 void handle_vm86_trap(CPUX86State
*env
, int trapno
)
239 if (trapno
== 1 || trapno
== 3) {
240 return_to_32bit(env
, TARGET_VM86_TRAP
+ (trapno
<< 8));
246 #define CHECK_IF_IN_TRAP() \
247 if ((ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) && \
248 (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_TFpendig)) \
251 #define VM86_FAULT_RETURN \
252 if ((ts->vm86plus.vm86plus.flags & TARGET_force_return_for_pic) && \
253 (ts->v86flags & (IF_MASK | VIF_MASK))) \
254 return_to_32bit(env, TARGET_VM86_PICRETURN); \
257 void handle_vm86_fault(CPUX86State
*env
)
259 TaskState
*ts
= env
->opaque
;
260 uint8_t *csp
, *pc
, *ssp
;
261 unsigned int ip
, sp
, newflags
, newip
, newcs
, opcode
, intno
;
262 int data32
, pref_done
;
264 csp
= (uint8_t *)(env
->segs
[R_CS
].selector
<< 4);
265 ip
= env
->eip
& 0xffff;
268 ssp
= (uint8_t *)(env
->segs
[R_SS
].selector
<< 4);
269 sp
= env
->regs
[R_ESP
] & 0xffff;
271 #if defined(DEBUG_VM86)
272 fprintf(logfile
, "VM86 exception %04x:%08x %02x %02x\n",
273 env
->segs
[R_CS
].selector
, env
->eip
, pc
[0], pc
[1]);
282 case 0x66: /* 32-bit data */ data32
=1; break;
283 case 0x67: /* 32-bit address */ break;
284 case 0x2e: /* CS */ break;
285 case 0x3e: /* DS */ break;
286 case 0x26: /* ES */ break;
287 case 0x36: /* SS */ break;
288 case 0x65: /* GS */ break;
289 case 0x64: /* FS */ break;
290 case 0xf2: /* repnz */ break;
291 case 0xf3: /* rep */ break;
292 default: pref_done
= 1;
294 } while (!pref_done
);
298 case 0x9c: /* pushf */
300 vm_putl(ssp
, sp
- 4, get_vflags(env
));
301 ADD16(env
->regs
[R_ESP
], -4);
303 vm_putw(ssp
, sp
- 2, get_vflags(env
));
304 ADD16(env
->regs
[R_ESP
], -2);
309 case 0x9d: /* popf */
311 newflags
= vm_getl(ssp
, sp
);
312 ADD16(env
->regs
[R_ESP
], 4);
314 newflags
= vm_getw(ssp
, sp
);
315 ADD16(env
->regs
[R_ESP
], 2);
320 if (set_vflags_long(newflags
, env
))
323 if (set_vflags_short(newflags
, env
))
332 if (ts
->vm86plus
.vm86plus
.flags
& TARGET_vm86dbg_active
) {
333 if ( (ts
->vm86plus
.vm86plus
.vm86dbg_intxxtab
[intno
>> 3] >>
335 return_to_32bit(env
, TARGET_VM86_INTx
+ (intno
<< 8));
342 case 0xcf: /* iret */
344 newip
= vm_getl(ssp
, sp
) & 0xffff;
345 newcs
= vm_getl(ssp
, sp
+ 4) & 0xffff;
346 newflags
= vm_getl(ssp
, sp
+ 8);
347 ADD16(env
->regs
[R_ESP
], 12);
349 newip
= vm_getw(ssp
, sp
);
350 newcs
= vm_getw(ssp
, sp
+ 2);
351 newflags
= vm_getw(ssp
, sp
+ 4);
352 ADD16(env
->regs
[R_ESP
], 6);
355 cpu_x86_load_seg(env
, R_CS
, newcs
);
358 if (set_vflags_long(newflags
, env
))
361 if (set_vflags_short(newflags
, env
))
378 /* real VM86 GPF exception */
379 return_to_32bit(env
, TARGET_VM86_UNKNOWN
);
384 int do_vm86(CPUX86State
*env
, long subfunction
, target_ulong vm86_addr
)
386 TaskState
*ts
= env
->opaque
;
387 struct target_vm86plus_struct
* target_v86
;
390 switch (subfunction
) {
391 case TARGET_VM86_REQUEST_IRQ
:
392 case TARGET_VM86_FREE_IRQ
:
393 case TARGET_VM86_GET_IRQ_BITS
:
394 case TARGET_VM86_GET_AND_RESET_IRQ
:
395 gemu_log("qemu: unsupported vm86 subfunction (%ld)\n", subfunction
);
398 case TARGET_VM86_PLUS_INSTALL_CHECK
:
399 /* NOTE: on old vm86 stuff this will return the error
400 from verify_area(), because the subfunction is
401 interpreted as (invalid) address to vm86_struct.
402 So the installation check works.
408 /* save current CPU regs */
409 ts
->vm86_saved_regs
.eax
= 0; /* default vm86 syscall return code */
410 ts
->vm86_saved_regs
.ebx
= env
->regs
[R_EBX
];
411 ts
->vm86_saved_regs
.ecx
= env
->regs
[R_ECX
];
412 ts
->vm86_saved_regs
.edx
= env
->regs
[R_EDX
];
413 ts
->vm86_saved_regs
.esi
= env
->regs
[R_ESI
];
414 ts
->vm86_saved_regs
.edi
= env
->regs
[R_EDI
];
415 ts
->vm86_saved_regs
.ebp
= env
->regs
[R_EBP
];
416 ts
->vm86_saved_regs
.esp
= env
->regs
[R_ESP
];
417 ts
->vm86_saved_regs
.eflags
= env
->eflags
;
418 ts
->vm86_saved_regs
.eip
= env
->eip
;
419 ts
->vm86_saved_regs
.cs
= env
->segs
[R_CS
].selector
;
420 ts
->vm86_saved_regs
.ss
= env
->segs
[R_SS
].selector
;
421 ts
->vm86_saved_regs
.ds
= env
->segs
[R_DS
].selector
;
422 ts
->vm86_saved_regs
.es
= env
->segs
[R_ES
].selector
;
423 ts
->vm86_saved_regs
.fs
= env
->segs
[R_FS
].selector
;
424 ts
->vm86_saved_regs
.gs
= env
->segs
[R_GS
].selector
;
426 ts
->target_v86
= vm86_addr
;
427 lock_user_struct(target_v86
, vm86_addr
, 1);
428 /* build vm86 CPU state */
429 ts
->v86flags
= tswap32(target_v86
->regs
.eflags
);
430 env
->eflags
= (env
->eflags
& ~SAFE_MASK
) |
431 (tswap32(target_v86
->regs
.eflags
) & SAFE_MASK
) | VM_MASK
;
433 ts
->vm86plus
.cpu_type
= tswapl(target_v86
->cpu_type
);
434 switch (ts
->vm86plus
.cpu_type
) {
439 ts
->v86mask
= NT_MASK
| IOPL_MASK
;
442 ts
->v86mask
= AC_MASK
| NT_MASK
| IOPL_MASK
;
445 ts
->v86mask
= ID_MASK
| AC_MASK
| NT_MASK
| IOPL_MASK
;
449 env
->regs
[R_EBX
] = tswap32(target_v86
->regs
.ebx
);
450 env
->regs
[R_ECX
] = tswap32(target_v86
->regs
.ecx
);
451 env
->regs
[R_EDX
] = tswap32(target_v86
->regs
.edx
);
452 env
->regs
[R_ESI
] = tswap32(target_v86
->regs
.esi
);
453 env
->regs
[R_EDI
] = tswap32(target_v86
->regs
.edi
);
454 env
->regs
[R_EBP
] = tswap32(target_v86
->regs
.ebp
);
455 env
->regs
[R_ESP
] = tswap32(target_v86
->regs
.esp
);
456 env
->eip
= tswap32(target_v86
->regs
.eip
);
457 cpu_x86_load_seg(env
, R_CS
, tswap16(target_v86
->regs
.cs
));
458 cpu_x86_load_seg(env
, R_SS
, tswap16(target_v86
->regs
.ss
));
459 cpu_x86_load_seg(env
, R_DS
, tswap16(target_v86
->regs
.ds
));
460 cpu_x86_load_seg(env
, R_ES
, tswap16(target_v86
->regs
.es
));
461 cpu_x86_load_seg(env
, R_FS
, tswap16(target_v86
->regs
.fs
));
462 cpu_x86_load_seg(env
, R_GS
, tswap16(target_v86
->regs
.gs
));
463 ret
= tswap32(target_v86
->regs
.eax
); /* eax will be restored at
464 the end of the syscall */
465 memcpy(&ts
->vm86plus
.int_revectored
,
466 &target_v86
->int_revectored
, 32);
467 memcpy(&ts
->vm86plus
.int21_revectored
,
468 &target_v86
->int21_revectored
, 32);
469 ts
->vm86plus
.vm86plus
.flags
= tswapl(target_v86
->vm86plus
.flags
);
470 memcpy(&ts
->vm86plus
.vm86plus
.vm86dbg_intxxtab
,
471 target_v86
->vm86plus
.vm86dbg_intxxtab
, 32);
472 unlock_user_struct(target_v86
, vm86_addr
, 0);
475 fprintf(logfile
, "do_vm86: cs:ip=%04x:%04x\n",
476 env
->segs
[R_CS
].selector
, env
->eip
);
478 /* now the virtual CPU is ready for vm86 execution ! */