Rearrange PCI host emulation code.
[qemu/mini2440.git] / cpu-exec.c
blob8a585c1066e11e960b7d07d7b3871ef976d4250d
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "config.h"
21 #include "exec.h"
22 #include "disas.h"
24 #if !defined(CONFIG_SOFTMMU)
25 #undef EAX
26 #undef ECX
27 #undef EDX
28 #undef EBX
29 #undef ESP
30 #undef EBP
31 #undef ESI
32 #undef EDI
33 #undef EIP
34 #include <signal.h>
35 #include <sys/ucontext.h>
36 #endif
38 int tb_invalidated_flag;
40 //#define DEBUG_EXEC
41 //#define DEBUG_SIGNAL
43 #if defined(TARGET_ARM) || defined(TARGET_SPARC)
44 /* XXX: unify with i386 target */
45 void cpu_loop_exit(void)
47 longjmp(env->jmp_env, 1);
49 #endif
50 #ifndef TARGET_SPARC
51 #define reg_T2
52 #endif
54 /* exit the current TB from a signal handler. The host registers are
55 restored in a state compatible with the CPU emulator
57 void cpu_resume_from_signal(CPUState *env1, void *puc)
59 #if !defined(CONFIG_SOFTMMU)
60 struct ucontext *uc = puc;
61 #endif
63 env = env1;
65 /* XXX: restore cpu registers saved in host registers */
67 #if !defined(CONFIG_SOFTMMU)
68 if (puc) {
69 /* XXX: use siglongjmp ? */
70 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
72 #endif
73 longjmp(env->jmp_env, 1);
77 static TranslationBlock *tb_find_slow(target_ulong pc,
78 target_ulong cs_base,
79 unsigned int flags)
81 TranslationBlock *tb, **ptb1;
82 int code_gen_size;
83 unsigned int h;
84 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
85 uint8_t *tc_ptr;
87 spin_lock(&tb_lock);
89 tb_invalidated_flag = 0;
91 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
93 /* find translated block using physical mappings */
94 phys_pc = get_phys_addr_code(env, pc);
95 phys_page1 = phys_pc & TARGET_PAGE_MASK;
96 phys_page2 = -1;
97 h = tb_phys_hash_func(phys_pc);
98 ptb1 = &tb_phys_hash[h];
99 for(;;) {
100 tb = *ptb1;
101 if (!tb)
102 goto not_found;
103 if (tb->pc == pc &&
104 tb->page_addr[0] == phys_page1 &&
105 tb->cs_base == cs_base &&
106 tb->flags == flags) {
107 /* check next page if needed */
108 if (tb->page_addr[1] != -1) {
109 virt_page2 = (pc & TARGET_PAGE_MASK) +
110 TARGET_PAGE_SIZE;
111 phys_page2 = get_phys_addr_code(env, virt_page2);
112 if (tb->page_addr[1] == phys_page2)
113 goto found;
114 } else {
115 goto found;
118 ptb1 = &tb->phys_hash_next;
120 not_found:
121 /* if no translated code available, then translate it now */
122 tb = tb_alloc(pc);
123 if (!tb) {
124 /* flush must be done */
125 tb_flush(env);
126 /* cannot fail at this point */
127 tb = tb_alloc(pc);
128 /* don't forget to invalidate previous TB info */
129 tb_invalidated_flag = 1;
131 tc_ptr = code_gen_ptr;
132 tb->tc_ptr = tc_ptr;
133 tb->cs_base = cs_base;
134 tb->flags = flags;
135 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
136 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
138 /* check next page if needed */
139 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
140 phys_page2 = -1;
141 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
142 phys_page2 = get_phys_addr_code(env, virt_page2);
144 tb_link_phys(tb, phys_pc, phys_page2);
146 found:
147 /* we add the TB in the virtual pc hash table */
148 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
149 spin_unlock(&tb_lock);
150 return tb;
153 static inline TranslationBlock *tb_find_fast(void)
155 TranslationBlock *tb;
156 target_ulong cs_base, pc;
157 unsigned int flags;
159 /* we record a subset of the CPU state. It will
160 always be the same before a given translated block
161 is executed. */
162 #if defined(TARGET_I386)
163 flags = env->hflags;
164 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
165 cs_base = env->segs[R_CS].base;
166 pc = cs_base + env->eip;
167 #elif defined(TARGET_ARM)
168 flags = env->thumb | (env->vfp.vec_len << 1)
169 | (env->vfp.vec_stride << 4);
170 if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
171 flags |= (1 << 6);
172 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
173 flags |= (1 << 7);
174 cs_base = 0;
175 pc = env->regs[15];
176 #elif defined(TARGET_SPARC)
177 #ifdef TARGET_SPARC64
178 flags = (env->pstate << 2) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
179 #else
180 flags = env->psrs | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1);
181 #endif
182 cs_base = env->npc;
183 pc = env->pc;
184 #elif defined(TARGET_PPC)
185 flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
186 (msr_se << MSR_SE) | (msr_le << MSR_LE);
187 cs_base = 0;
188 pc = env->nip;
189 #elif defined(TARGET_MIPS)
190 flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
191 cs_base = 0;
192 pc = env->PC;
193 #elif defined(TARGET_SH4)
194 flags = env->sr & (SR_MD | SR_RB);
195 cs_base = 0; /* XXXXX */
196 pc = env->pc;
197 #else
198 #error unsupported CPU
199 #endif
200 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
201 if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
202 tb->flags != flags, 0)) {
203 tb = tb_find_slow(pc, cs_base, flags);
204 /* Note: we do it here to avoid a gcc bug on Mac OS X when
205 doing it in tb_find_slow */
206 if (tb_invalidated_flag) {
207 /* as some TB could have been invalidated because
208 of memory exceptions while generating the code, we
209 must recompute the hash index here */
210 T0 = 0;
213 return tb;
217 /* main execution loop */
219 int cpu_exec(CPUState *env1)
221 int saved_T0, saved_T1;
222 #if defined(reg_T2)
223 int saved_T2;
224 #endif
225 CPUState *saved_env;
226 #if defined(TARGET_I386)
227 #ifdef reg_EAX
228 int saved_EAX;
229 #endif
230 #ifdef reg_ECX
231 int saved_ECX;
232 #endif
233 #ifdef reg_EDX
234 int saved_EDX;
235 #endif
236 #ifdef reg_EBX
237 int saved_EBX;
238 #endif
239 #ifdef reg_ESP
240 int saved_ESP;
241 #endif
242 #ifdef reg_EBP
243 int saved_EBP;
244 #endif
245 #ifdef reg_ESI
246 int saved_ESI;
247 #endif
248 #ifdef reg_EDI
249 int saved_EDI;
250 #endif
251 #elif defined(TARGET_SPARC)
252 #if defined(reg_REGWPTR)
253 uint32_t *saved_regwptr;
254 #endif
255 #endif
256 #ifdef __sparc__
257 int saved_i7, tmp_T0;
258 #endif
259 int ret, interrupt_request;
260 void (*gen_func)(void);
261 TranslationBlock *tb;
262 uint8_t *tc_ptr;
264 #if defined(TARGET_I386)
265 /* handle exit of HALTED state */
266 if (env1->hflags & HF_HALTED_MASK) {
267 /* disable halt condition */
268 if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
269 (env1->eflags & IF_MASK)) {
270 env1->hflags &= ~HF_HALTED_MASK;
271 } else {
272 return EXCP_HALTED;
275 #elif defined(TARGET_PPC)
276 if (env1->halted) {
277 if (env1->msr[MSR_EE] &&
278 (env1->interrupt_request &
279 (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER))) {
280 env1->halted = 0;
281 } else {
282 return EXCP_HALTED;
285 #elif defined(TARGET_SPARC)
286 if (env1->halted) {
287 if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
288 (env1->psret != 0)) {
289 env1->halted = 0;
290 } else {
291 return EXCP_HALTED;
294 #elif defined(TARGET_ARM)
295 if (env1->halted) {
296 /* An interrupt wakes the CPU even if the I and F CPSR bits are
297 set. */
298 if (env1->interrupt_request
299 & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD)) {
300 env1->halted = 0;
301 } else {
302 return EXCP_HALTED;
305 #elif defined(TARGET_MIPS)
306 if (env1->halted) {
307 if (env1->interrupt_request &
308 (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
309 env1->halted = 0;
310 } else {
311 return EXCP_HALTED;
314 #endif
316 cpu_single_env = env1;
318 /* first we save global registers */
319 saved_env = env;
320 env = env1;
321 saved_T0 = T0;
322 saved_T1 = T1;
323 #if defined(reg_T2)
324 saved_T2 = T2;
325 #endif
326 #ifdef __sparc__
327 /* we also save i7 because longjmp may not restore it */
328 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
329 #endif
331 #if defined(TARGET_I386)
332 #ifdef reg_EAX
333 saved_EAX = EAX;
334 #endif
335 #ifdef reg_ECX
336 saved_ECX = ECX;
337 #endif
338 #ifdef reg_EDX
339 saved_EDX = EDX;
340 #endif
341 #ifdef reg_EBX
342 saved_EBX = EBX;
343 #endif
344 #ifdef reg_ESP
345 saved_ESP = ESP;
346 #endif
347 #ifdef reg_EBP
348 saved_EBP = EBP;
349 #endif
350 #ifdef reg_ESI
351 saved_ESI = ESI;
352 #endif
353 #ifdef reg_EDI
354 saved_EDI = EDI;
355 #endif
357 env_to_regs();
358 /* put eflags in CPU temporary format */
359 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
360 DF = 1 - (2 * ((env->eflags >> 10) & 1));
361 CC_OP = CC_OP_EFLAGS;
362 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
363 #elif defined(TARGET_ARM)
364 #elif defined(TARGET_SPARC)
365 #if defined(reg_REGWPTR)
366 saved_regwptr = REGWPTR;
367 #endif
368 #elif defined(TARGET_PPC)
369 #elif defined(TARGET_MIPS)
370 #elif defined(TARGET_SH4)
371 /* XXXXX */
372 #else
373 #error unsupported target CPU
374 #endif
375 env->exception_index = -1;
377 /* prepare setjmp context for exception handling */
378 for(;;) {
379 if (setjmp(env->jmp_env) == 0) {
380 env->current_tb = NULL;
381 /* if an exception is pending, we execute it here */
382 if (env->exception_index >= 0) {
383 if (env->exception_index >= EXCP_INTERRUPT) {
384 /* exit request from the cpu execution loop */
385 ret = env->exception_index;
386 break;
387 } else if (env->user_mode_only) {
388 /* if user mode only, we simulate a fake exception
389 which will be hanlded outside the cpu execution
390 loop */
391 #if defined(TARGET_I386)
392 do_interrupt_user(env->exception_index,
393 env->exception_is_int,
394 env->error_code,
395 env->exception_next_eip);
396 #endif
397 ret = env->exception_index;
398 break;
399 } else {
400 #if defined(TARGET_I386)
401 /* simulate a real cpu exception. On i386, it can
402 trigger new exceptions, but we do not handle
403 double or triple faults yet. */
404 do_interrupt(env->exception_index,
405 env->exception_is_int,
406 env->error_code,
407 env->exception_next_eip, 0);
408 #elif defined(TARGET_PPC)
409 do_interrupt(env);
410 #elif defined(TARGET_MIPS)
411 do_interrupt(env);
412 #elif defined(TARGET_SPARC)
413 do_interrupt(env->exception_index);
414 #elif defined(TARGET_ARM)
415 do_interrupt(env);
416 #elif defined(TARGET_SH4)
417 do_interrupt(env);
418 #endif
420 env->exception_index = -1;
422 #ifdef USE_KQEMU
423 if (kqemu_is_ok(env) && env->interrupt_request == 0) {
424 int ret;
425 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
426 ret = kqemu_cpu_exec(env);
427 /* put eflags in CPU temporary format */
428 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
429 DF = 1 - (2 * ((env->eflags >> 10) & 1));
430 CC_OP = CC_OP_EFLAGS;
431 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
432 if (ret == 1) {
433 /* exception */
434 longjmp(env->jmp_env, 1);
435 } else if (ret == 2) {
436 /* softmmu execution needed */
437 } else {
438 if (env->interrupt_request != 0) {
439 /* hardware interrupt will be executed just after */
440 } else {
441 /* otherwise, we restart */
442 longjmp(env->jmp_env, 1);
446 #endif
448 T0 = 0; /* force lookup of first TB */
449 for(;;) {
450 #ifdef __sparc__
451 /* g1 can be modified by some libc? functions */
452 tmp_T0 = T0;
453 #endif
454 interrupt_request = env->interrupt_request;
455 if (__builtin_expect(interrupt_request, 0)) {
456 #if defined(TARGET_I386)
457 /* if hardware interrupt pending, we execute it */
458 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
459 (env->eflags & IF_MASK) &&
460 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
461 int intno;
462 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
463 intno = cpu_get_pic_interrupt(env);
464 if (loglevel & CPU_LOG_TB_IN_ASM) {
465 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
467 do_interrupt(intno, 0, 0, 0, 1);
468 /* ensure that no TB jump will be modified as
469 the program flow was changed */
470 #ifdef __sparc__
471 tmp_T0 = 0;
472 #else
473 T0 = 0;
474 #endif
476 #elif defined(TARGET_PPC)
477 #if 0
478 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
479 cpu_ppc_reset(env);
481 #endif
482 if (msr_ee != 0) {
483 if ((interrupt_request & CPU_INTERRUPT_HARD)) {
484 /* Raise it */
485 env->exception_index = EXCP_EXTERNAL;
486 env->error_code = 0;
487 do_interrupt(env);
488 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
489 #ifdef __sparc__
490 tmp_T0 = 0;
491 #else
492 T0 = 0;
493 #endif
494 } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
495 /* Raise it */
496 env->exception_index = EXCP_DECR;
497 env->error_code = 0;
498 do_interrupt(env);
499 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
500 #ifdef __sparc__
501 tmp_T0 = 0;
502 #else
503 T0 = 0;
504 #endif
507 #elif defined(TARGET_MIPS)
508 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
509 (env->CP0_Status & (1 << CP0St_IE)) &&
510 (env->CP0_Status & env->CP0_Cause & 0x0000FF00) &&
511 !(env->hflags & MIPS_HFLAG_EXL) &&
512 !(env->hflags & MIPS_HFLAG_ERL) &&
513 !(env->hflags & MIPS_HFLAG_DM)) {
514 /* Raise it */
515 env->exception_index = EXCP_EXT_INTERRUPT;
516 env->error_code = 0;
517 do_interrupt(env);
518 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
519 #ifdef __sparc__
520 tmp_T0 = 0;
521 #else
522 T0 = 0;
523 #endif
525 #elif defined(TARGET_SPARC)
526 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
527 (env->psret != 0)) {
528 int pil = env->interrupt_index & 15;
529 int type = env->interrupt_index & 0xf0;
531 if (((type == TT_EXTINT) &&
532 (pil == 15 || pil > env->psrpil)) ||
533 type != TT_EXTINT) {
534 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
535 do_interrupt(env->interrupt_index);
536 env->interrupt_index = 0;
537 #ifdef __sparc__
538 tmp_T0 = 0;
539 #else
540 T0 = 0;
541 #endif
543 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
544 //do_interrupt(0, 0, 0, 0, 0);
545 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
546 } else if (interrupt_request & CPU_INTERRUPT_HALT) {
547 env1->halted = 1;
548 return EXCP_HALTED;
550 #elif defined(TARGET_ARM)
551 if (interrupt_request & CPU_INTERRUPT_FIQ
552 && !(env->uncached_cpsr & CPSR_F)) {
553 env->exception_index = EXCP_FIQ;
554 do_interrupt(env);
556 if (interrupt_request & CPU_INTERRUPT_HARD
557 && !(env->uncached_cpsr & CPSR_I)) {
558 env->exception_index = EXCP_IRQ;
559 do_interrupt(env);
561 #elif defined(TARGET_SH4)
562 /* XXXXX */
563 #endif
564 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
565 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
566 /* ensure that no TB jump will be modified as
567 the program flow was changed */
568 #ifdef __sparc__
569 tmp_T0 = 0;
570 #else
571 T0 = 0;
572 #endif
574 if (interrupt_request & CPU_INTERRUPT_EXIT) {
575 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
576 env->exception_index = EXCP_INTERRUPT;
577 cpu_loop_exit();
580 #ifdef DEBUG_EXEC
581 if ((loglevel & CPU_LOG_TB_CPU)) {
582 #if defined(TARGET_I386)
583 /* restore flags in standard format */
584 #ifdef reg_EAX
585 env->regs[R_EAX] = EAX;
586 #endif
587 #ifdef reg_EBX
588 env->regs[R_EBX] = EBX;
589 #endif
590 #ifdef reg_ECX
591 env->regs[R_ECX] = ECX;
592 #endif
593 #ifdef reg_EDX
594 env->regs[R_EDX] = EDX;
595 #endif
596 #ifdef reg_ESI
597 env->regs[R_ESI] = ESI;
598 #endif
599 #ifdef reg_EDI
600 env->regs[R_EDI] = EDI;
601 #endif
602 #ifdef reg_EBP
603 env->regs[R_EBP] = EBP;
604 #endif
605 #ifdef reg_ESP
606 env->regs[R_ESP] = ESP;
607 #endif
608 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
609 cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
610 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
611 #elif defined(TARGET_ARM)
612 cpu_dump_state(env, logfile, fprintf, 0);
613 #elif defined(TARGET_SPARC)
614 REGWPTR = env->regbase + (env->cwp * 16);
615 env->regwptr = REGWPTR;
616 cpu_dump_state(env, logfile, fprintf, 0);
617 #elif defined(TARGET_PPC)
618 cpu_dump_state(env, logfile, fprintf, 0);
619 #elif defined(TARGET_MIPS)
620 cpu_dump_state(env, logfile, fprintf, 0);
621 #elif defined(TARGET_SH4)
622 cpu_dump_state(env, logfile, fprintf, 0);
623 #else
624 #error unsupported target CPU
625 #endif
627 #endif
628 tb = tb_find_fast();
629 #ifdef DEBUG_EXEC
630 if ((loglevel & CPU_LOG_EXEC)) {
631 fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
632 (long)tb->tc_ptr, tb->pc,
633 lookup_symbol(tb->pc));
635 #endif
636 #ifdef __sparc__
637 T0 = tmp_T0;
638 #endif
639 /* see if we can patch the calling TB. When the TB
640 spans two pages, we cannot safely do a direct
641 jump. */
643 if (T0 != 0 &&
644 #if USE_KQEMU
645 (env->kqemu_enabled != 2) &&
646 #endif
647 tb->page_addr[1] == -1
648 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
649 && (tb->cflags & CF_CODE_COPY) ==
650 (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
651 #endif
653 spin_lock(&tb_lock);
654 tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
655 #if defined(USE_CODE_COPY)
656 /* propagates the FP use info */
657 ((TranslationBlock *)(T0 & ~3))->cflags |=
658 (tb->cflags & CF_FP_USED);
659 #endif
660 spin_unlock(&tb_lock);
663 tc_ptr = tb->tc_ptr;
664 env->current_tb = tb;
665 /* execute the generated code */
666 gen_func = (void *)tc_ptr;
667 #if defined(__sparc__)
668 __asm__ __volatile__("call %0\n\t"
669 "mov %%o7,%%i0"
670 : /* no outputs */
671 : "r" (gen_func)
672 : "i0", "i1", "i2", "i3", "i4", "i5");
673 #elif defined(__arm__)
674 asm volatile ("mov pc, %0\n\t"
675 ".global exec_loop\n\t"
676 "exec_loop:\n\t"
677 : /* no outputs */
678 : "r" (gen_func)
679 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
680 #elif defined(TARGET_I386) && defined(USE_CODE_COPY)
682 if (!(tb->cflags & CF_CODE_COPY)) {
683 if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
684 save_native_fp_state(env);
686 gen_func();
687 } else {
688 if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
689 restore_native_fp_state(env);
691 /* we work with native eflags */
692 CC_SRC = cc_table[CC_OP].compute_all();
693 CC_OP = CC_OP_EFLAGS;
694 asm(".globl exec_loop\n"
695 "\n"
696 "debug1:\n"
697 " pushl %%ebp\n"
698 " fs movl %10, %9\n"
699 " fs movl %11, %%eax\n"
700 " andl $0x400, %%eax\n"
701 " fs orl %8, %%eax\n"
702 " pushl %%eax\n"
703 " popf\n"
704 " fs movl %%esp, %12\n"
705 " fs movl %0, %%eax\n"
706 " fs movl %1, %%ecx\n"
707 " fs movl %2, %%edx\n"
708 " fs movl %3, %%ebx\n"
709 " fs movl %4, %%esp\n"
710 " fs movl %5, %%ebp\n"
711 " fs movl %6, %%esi\n"
712 " fs movl %7, %%edi\n"
713 " fs jmp *%9\n"
714 "exec_loop:\n"
715 " fs movl %%esp, %4\n"
716 " fs movl %12, %%esp\n"
717 " fs movl %%eax, %0\n"
718 " fs movl %%ecx, %1\n"
719 " fs movl %%edx, %2\n"
720 " fs movl %%ebx, %3\n"
721 " fs movl %%ebp, %5\n"
722 " fs movl %%esi, %6\n"
723 " fs movl %%edi, %7\n"
724 " pushf\n"
725 " popl %%eax\n"
726 " movl %%eax, %%ecx\n"
727 " andl $0x400, %%ecx\n"
728 " shrl $9, %%ecx\n"
729 " andl $0x8d5, %%eax\n"
730 " fs movl %%eax, %8\n"
731 " movl $1, %%eax\n"
732 " subl %%ecx, %%eax\n"
733 " fs movl %%eax, %11\n"
734 " fs movl %9, %%ebx\n" /* get T0 value */
735 " popl %%ebp\n"
737 : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
738 "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
739 "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
740 "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
741 "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
742 "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
743 "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
744 "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
745 "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
746 "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
747 "a" (gen_func),
748 "m" (*(uint8_t *)offsetof(CPUState, df)),
749 "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
750 : "%ecx", "%edx"
754 #elif defined(__ia64)
755 struct fptr {
756 void *ip;
757 void *gp;
758 } fp;
760 fp.ip = tc_ptr;
761 fp.gp = code_gen_buffer + 2 * (1 << 20);
762 (*(void (*)(void)) &fp)();
763 #else
764 gen_func();
765 #endif
766 env->current_tb = NULL;
767 /* reset soft MMU for next block (it can currently
768 only be set by a memory fault) */
769 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
770 if (env->hflags & HF_SOFTMMU_MASK) {
771 env->hflags &= ~HF_SOFTMMU_MASK;
772 /* do not allow linking to another block */
773 T0 = 0;
775 #endif
776 #if defined(USE_KQEMU)
777 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
778 if (kqemu_is_ok(env) &&
779 (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
780 cpu_loop_exit();
782 #endif
784 } else {
785 env_to_regs();
787 } /* for(;;) */
790 #if defined(TARGET_I386)
791 #if defined(USE_CODE_COPY)
792 if (env->native_fp_regs) {
793 save_native_fp_state(env);
795 #endif
796 /* restore flags in standard format */
797 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
799 /* restore global registers */
800 #ifdef reg_EAX
801 EAX = saved_EAX;
802 #endif
803 #ifdef reg_ECX
804 ECX = saved_ECX;
805 #endif
806 #ifdef reg_EDX
807 EDX = saved_EDX;
808 #endif
809 #ifdef reg_EBX
810 EBX = saved_EBX;
811 #endif
812 #ifdef reg_ESP
813 ESP = saved_ESP;
814 #endif
815 #ifdef reg_EBP
816 EBP = saved_EBP;
817 #endif
818 #ifdef reg_ESI
819 ESI = saved_ESI;
820 #endif
821 #ifdef reg_EDI
822 EDI = saved_EDI;
823 #endif
824 #elif defined(TARGET_ARM)
825 /* XXX: Save/restore host fpu exception state?. */
826 #elif defined(TARGET_SPARC)
827 #if defined(reg_REGWPTR)
828 REGWPTR = saved_regwptr;
829 #endif
830 #elif defined(TARGET_PPC)
831 #elif defined(TARGET_MIPS)
832 #elif defined(TARGET_SH4)
833 /* XXXXX */
834 #else
835 #error unsupported target CPU
836 #endif
837 #ifdef __sparc__
838 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
839 #endif
840 T0 = saved_T0;
841 T1 = saved_T1;
842 #if defined(reg_T2)
843 T2 = saved_T2;
844 #endif
845 env = saved_env;
846 /* fail safe : never use cpu_single_env outside cpu_exec() */
847 cpu_single_env = NULL;
848 return ret;
851 /* must only be called from the generated code as an exception can be
852 generated */
853 void tb_invalidate_page_range(target_ulong start, target_ulong end)
855 /* XXX: cannot enable it yet because it yields to MMU exception
856 where NIP != read address on PowerPC */
857 #if 0
858 target_ulong phys_addr;
859 phys_addr = get_phys_addr_code(env, start);
860 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
861 #endif
864 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
866 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
868 CPUX86State *saved_env;
870 saved_env = env;
871 env = s;
872 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
873 selector &= 0xffff;
874 cpu_x86_load_seg_cache(env, seg_reg, selector,
875 (selector << 4), 0xffff, 0);
876 } else {
877 load_seg(seg_reg, selector);
879 env = saved_env;
882 void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
884 CPUX86State *saved_env;
886 saved_env = env;
887 env = s;
889 helper_fsave((target_ulong)ptr, data32);
891 env = saved_env;
894 void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
896 CPUX86State *saved_env;
898 saved_env = env;
899 env = s;
901 helper_frstor((target_ulong)ptr, data32);
903 env = saved_env;
906 #endif /* TARGET_I386 */
908 #if !defined(CONFIG_SOFTMMU)
910 #if defined(TARGET_I386)
912 /* 'pc' is the host PC at which the exception was raised. 'address' is
913 the effective address of the memory exception. 'is_write' is 1 if a
914 write caused the exception and otherwise 0'. 'old_set' is the
915 signal set which should be restored */
916 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
917 int is_write, sigset_t *old_set,
918 void *puc)
920 TranslationBlock *tb;
921 int ret;
923 if (cpu_single_env)
924 env = cpu_single_env; /* XXX: find a correct solution for multithread */
925 #if defined(DEBUG_SIGNAL)
926 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
927 pc, address, is_write, *(unsigned long *)old_set);
928 #endif
929 /* XXX: locking issue */
930 if (is_write && page_unprotect(h2g(address), pc, puc)) {
931 return 1;
934 /* see if it is an MMU fault */
935 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
936 ((env->hflags & HF_CPL_MASK) == 3), 0);
937 if (ret < 0)
938 return 0; /* not an MMU fault */
939 if (ret == 0)
940 return 1; /* the MMU fault was handled without causing real CPU fault */
941 /* now we have a real cpu fault */
942 tb = tb_find_pc(pc);
943 if (tb) {
944 /* the PC is inside the translated code. It means that we have
945 a virtual CPU fault */
946 cpu_restore_state(tb, env, pc, puc);
948 if (ret == 1) {
949 #if 0
950 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
951 env->eip, env->cr[2], env->error_code);
952 #endif
953 /* we restore the process signal mask as the sigreturn should
954 do it (XXX: use sigsetjmp) */
955 sigprocmask(SIG_SETMASK, old_set, NULL);
956 raise_exception_err(env->exception_index, env->error_code);
957 } else {
958 /* activate soft MMU for this block */
959 env->hflags |= HF_SOFTMMU_MASK;
960 cpu_resume_from_signal(env, puc);
962 /* never comes here */
963 return 1;
966 #elif defined(TARGET_ARM)
967 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
968 int is_write, sigset_t *old_set,
969 void *puc)
971 TranslationBlock *tb;
972 int ret;
974 if (cpu_single_env)
975 env = cpu_single_env; /* XXX: find a correct solution for multithread */
976 #if defined(DEBUG_SIGNAL)
977 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
978 pc, address, is_write, *(unsigned long *)old_set);
979 #endif
980 /* XXX: locking issue */
981 if (is_write && page_unprotect(h2g(address), pc, puc)) {
982 return 1;
984 /* see if it is an MMU fault */
985 ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
986 if (ret < 0)
987 return 0; /* not an MMU fault */
988 if (ret == 0)
989 return 1; /* the MMU fault was handled without causing real CPU fault */
990 /* now we have a real cpu fault */
991 tb = tb_find_pc(pc);
992 if (tb) {
993 /* the PC is inside the translated code. It means that we have
994 a virtual CPU fault */
995 cpu_restore_state(tb, env, pc, puc);
997 /* we restore the process signal mask as the sigreturn should
998 do it (XXX: use sigsetjmp) */
999 sigprocmask(SIG_SETMASK, old_set, NULL);
1000 cpu_loop_exit();
1002 #elif defined(TARGET_SPARC)
1003 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1004 int is_write, sigset_t *old_set,
1005 void *puc)
1007 TranslationBlock *tb;
1008 int ret;
1010 if (cpu_single_env)
1011 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1012 #if defined(DEBUG_SIGNAL)
1013 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1014 pc, address, is_write, *(unsigned long *)old_set);
1015 #endif
1016 /* XXX: locking issue */
1017 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1018 return 1;
1020 /* see if it is an MMU fault */
1021 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
1022 if (ret < 0)
1023 return 0; /* not an MMU fault */
1024 if (ret == 0)
1025 return 1; /* the MMU fault was handled without causing real CPU fault */
1026 /* now we have a real cpu fault */
1027 tb = tb_find_pc(pc);
1028 if (tb) {
1029 /* the PC is inside the translated code. It means that we have
1030 a virtual CPU fault */
1031 cpu_restore_state(tb, env, pc, puc);
1033 /* we restore the process signal mask as the sigreturn should
1034 do it (XXX: use sigsetjmp) */
1035 sigprocmask(SIG_SETMASK, old_set, NULL);
1036 cpu_loop_exit();
1038 #elif defined (TARGET_PPC)
1039 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1040 int is_write, sigset_t *old_set,
1041 void *puc)
1043 TranslationBlock *tb;
1044 int ret;
1046 if (cpu_single_env)
1047 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1048 #if defined(DEBUG_SIGNAL)
1049 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1050 pc, address, is_write, *(unsigned long *)old_set);
1051 #endif
1052 /* XXX: locking issue */
1053 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1054 return 1;
1057 /* see if it is an MMU fault */
1058 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
1059 if (ret < 0)
1060 return 0; /* not an MMU fault */
1061 if (ret == 0)
1062 return 1; /* the MMU fault was handled without causing real CPU fault */
1064 /* now we have a real cpu fault */
1065 tb = tb_find_pc(pc);
1066 if (tb) {
1067 /* the PC is inside the translated code. It means that we have
1068 a virtual CPU fault */
1069 cpu_restore_state(tb, env, pc, puc);
1071 if (ret == 1) {
1072 #if 0
1073 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1074 env->nip, env->error_code, tb);
1075 #endif
1076 /* we restore the process signal mask as the sigreturn should
1077 do it (XXX: use sigsetjmp) */
1078 sigprocmask(SIG_SETMASK, old_set, NULL);
1079 do_raise_exception_err(env->exception_index, env->error_code);
1080 } else {
1081 /* activate soft MMU for this block */
1082 cpu_resume_from_signal(env, puc);
1084 /* never comes here */
1085 return 1;
1088 #elif defined (TARGET_MIPS)
1089 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1090 int is_write, sigset_t *old_set,
1091 void *puc)
1093 TranslationBlock *tb;
1094 int ret;
1096 if (cpu_single_env)
1097 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1098 #if defined(DEBUG_SIGNAL)
1099 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1100 pc, address, is_write, *(unsigned long *)old_set);
1101 #endif
1102 /* XXX: locking issue */
1103 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1104 return 1;
1107 /* see if it is an MMU fault */
1108 ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1109 if (ret < 0)
1110 return 0; /* not an MMU fault */
1111 if (ret == 0)
1112 return 1; /* the MMU fault was handled without causing real CPU fault */
1114 /* now we have a real cpu fault */
1115 tb = tb_find_pc(pc);
1116 if (tb) {
1117 /* the PC is inside the translated code. It means that we have
1118 a virtual CPU fault */
1119 cpu_restore_state(tb, env, pc, puc);
1121 if (ret == 1) {
1122 #if 0
1123 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1124 env->nip, env->error_code, tb);
1125 #endif
1126 /* we restore the process signal mask as the sigreturn should
1127 do it (XXX: use sigsetjmp) */
1128 sigprocmask(SIG_SETMASK, old_set, NULL);
1129 do_raise_exception_err(env->exception_index, env->error_code);
1130 } else {
1131 /* activate soft MMU for this block */
1132 cpu_resume_from_signal(env, puc);
1134 /* never comes here */
1135 return 1;
1138 #elif defined (TARGET_SH4)
1139 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1140 int is_write, sigset_t *old_set,
1141 void *puc)
1143 TranslationBlock *tb;
1144 int ret;
1146 if (cpu_single_env)
1147 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1148 #if defined(DEBUG_SIGNAL)
1149 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1150 pc, address, is_write, *(unsigned long *)old_set);
1151 #endif
1152 /* XXX: locking issue */
1153 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1154 return 1;
1157 /* see if it is an MMU fault */
1158 ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
1159 if (ret < 0)
1160 return 0; /* not an MMU fault */
1161 if (ret == 0)
1162 return 1; /* the MMU fault was handled without causing real CPU fault */
1164 /* now we have a real cpu fault */
1165 tb = tb_find_pc(pc);
1166 if (tb) {
1167 /* the PC is inside the translated code. It means that we have
1168 a virtual CPU fault */
1169 cpu_restore_state(tb, env, pc, puc);
1171 if (ret == 1) {
1172 #if 0
1173 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1174 env->nip, env->error_code, tb);
1175 #endif
1176 /* we restore the process signal mask as the sigreturn should
1177 do it (XXX: use sigsetjmp) */
1178 sigprocmask(SIG_SETMASK, old_set, NULL);
1179 // do_raise_exception_err(env->exception_index, env->error_code);
1180 } else {
1181 /* activate soft MMU for this block */
1182 cpu_resume_from_signal(env, puc);
1184 /* never comes here */
1185 return 1;
1187 #else
1188 #error unsupported target CPU
1189 #endif
1191 #if defined(__i386__)
1193 #if defined(USE_CODE_COPY)
1194 static void cpu_send_trap(unsigned long pc, int trap,
1195 struct ucontext *uc)
1197 TranslationBlock *tb;
1199 if (cpu_single_env)
1200 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1201 /* now we have a real cpu fault */
1202 tb = tb_find_pc(pc);
1203 if (tb) {
1204 /* the PC is inside the translated code. It means that we have
1205 a virtual CPU fault */
1206 cpu_restore_state(tb, env, pc, uc);
1208 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1209 raise_exception_err(trap, env->error_code);
1211 #endif
1213 int cpu_signal_handler(int host_signum, struct siginfo *info,
1214 void *puc)
1216 struct ucontext *uc = puc;
1217 unsigned long pc;
1218 int trapno;
1220 #ifndef REG_EIP
1221 /* for glibc 2.1 */
1222 #define REG_EIP EIP
1223 #define REG_ERR ERR
1224 #define REG_TRAPNO TRAPNO
1225 #endif
1226 pc = uc->uc_mcontext.gregs[REG_EIP];
1227 trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
1228 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
1229 if (trapno == 0x00 || trapno == 0x05) {
1230 /* send division by zero or bound exception */
1231 cpu_send_trap(pc, trapno, uc);
1232 return 1;
1233 } else
1234 #endif
1235 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1236 trapno == 0xe ?
1237 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1238 &uc->uc_sigmask, puc);
1241 #elif defined(__x86_64__)
1243 int cpu_signal_handler(int host_signum, struct siginfo *info,
1244 void *puc)
1246 struct ucontext *uc = puc;
1247 unsigned long pc;
1249 pc = uc->uc_mcontext.gregs[REG_RIP];
1250 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1251 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
1252 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1253 &uc->uc_sigmask, puc);
1256 #elif defined(__powerpc__)
1258 /***********************************************************************
1259 * signal context platform-specific definitions
1260 * From Wine
1262 #ifdef linux
1263 /* All Registers access - only for local access */
1264 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1265 /* Gpr Registers access */
1266 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1267 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1268 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1269 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1270 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1271 # define LR_sig(context) REG_sig(link, context) /* Link register */
1272 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1273 /* Float Registers access */
1274 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1275 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1276 /* Exception Registers access */
1277 # define DAR_sig(context) REG_sig(dar, context)
1278 # define DSISR_sig(context) REG_sig(dsisr, context)
1279 # define TRAP_sig(context) REG_sig(trap, context)
1280 #endif /* linux */
1282 #ifdef __APPLE__
1283 # include <sys/ucontext.h>
1284 typedef struct ucontext SIGCONTEXT;
1285 /* All Registers access - only for local access */
1286 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1287 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1288 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1289 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1290 /* Gpr Registers access */
1291 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1292 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1293 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1294 # define CTR_sig(context) REG_sig(ctr, context)
1295 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1296 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1297 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1298 /* Float Registers access */
1299 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1300 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1301 /* Exception Registers access */
1302 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1303 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1304 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1305 #endif /* __APPLE__ */
1307 int cpu_signal_handler(int host_signum, struct siginfo *info,
1308 void *puc)
1310 struct ucontext *uc = puc;
1311 unsigned long pc;
1312 int is_write;
1314 pc = IAR_sig(uc);
1315 is_write = 0;
1316 #if 0
1317 /* ppc 4xx case */
1318 if (DSISR_sig(uc) & 0x00800000)
1319 is_write = 1;
1320 #else
1321 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1322 is_write = 1;
1323 #endif
1324 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1325 is_write, &uc->uc_sigmask, puc);
1328 #elif defined(__alpha__)
1330 int cpu_signal_handler(int host_signum, struct siginfo *info,
1331 void *puc)
1333 struct ucontext *uc = puc;
1334 uint32_t *pc = uc->uc_mcontext.sc_pc;
1335 uint32_t insn = *pc;
1336 int is_write = 0;
1338 /* XXX: need kernel patch to get write flag faster */
1339 switch (insn >> 26) {
1340 case 0x0d: // stw
1341 case 0x0e: // stb
1342 case 0x0f: // stq_u
1343 case 0x24: // stf
1344 case 0x25: // stg
1345 case 0x26: // sts
1346 case 0x27: // stt
1347 case 0x2c: // stl
1348 case 0x2d: // stq
1349 case 0x2e: // stl_c
1350 case 0x2f: // stq_c
1351 is_write = 1;
1354 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1355 is_write, &uc->uc_sigmask, puc);
1357 #elif defined(__sparc__)
1359 int cpu_signal_handler(int host_signum, struct siginfo *info,
1360 void *puc)
1362 uint32_t *regs = (uint32_t *)(info + 1);
1363 void *sigmask = (regs + 20);
1364 unsigned long pc;
1365 int is_write;
1366 uint32_t insn;
1368 /* XXX: is there a standard glibc define ? */
1369 pc = regs[1];
1370 /* XXX: need kernel patch to get write flag faster */
1371 is_write = 0;
1372 insn = *(uint32_t *)pc;
1373 if ((insn >> 30) == 3) {
1374 switch((insn >> 19) & 0x3f) {
1375 case 0x05: // stb
1376 case 0x06: // sth
1377 case 0x04: // st
1378 case 0x07: // std
1379 case 0x24: // stf
1380 case 0x27: // stdf
1381 case 0x25: // stfsr
1382 is_write = 1;
1383 break;
1386 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1387 is_write, sigmask, NULL);
1390 #elif defined(__arm__)
1392 int cpu_signal_handler(int host_signum, struct siginfo *info,
1393 void *puc)
1395 struct ucontext *uc = puc;
1396 unsigned long pc;
1397 int is_write;
1399 pc = uc->uc_mcontext.gregs[R15];
1400 /* XXX: compute is_write */
1401 is_write = 0;
1402 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1403 is_write,
1404 &uc->uc_sigmask);
1407 #elif defined(__mc68000)
1409 int cpu_signal_handler(int host_signum, struct siginfo *info,
1410 void *puc)
1412 struct ucontext *uc = puc;
1413 unsigned long pc;
1414 int is_write;
1416 pc = uc->uc_mcontext.gregs[16];
1417 /* XXX: compute is_write */
1418 is_write = 0;
1419 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1420 is_write,
1421 &uc->uc_sigmask, puc);
1424 #elif defined(__ia64)
1426 #ifndef __ISR_VALID
1427 /* This ought to be in <bits/siginfo.h>... */
1428 # define __ISR_VALID 1
1429 #endif
1431 int cpu_signal_handler(int host_signum, struct siginfo *info, void *puc)
1433 struct ucontext *uc = puc;
1434 unsigned long ip;
1435 int is_write = 0;
1437 ip = uc->uc_mcontext.sc_ip;
1438 switch (host_signum) {
1439 case SIGILL:
1440 case SIGFPE:
1441 case SIGSEGV:
1442 case SIGBUS:
1443 case SIGTRAP:
1444 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1445 /* ISR.W (write-access) is bit 33: */
1446 is_write = (info->si_isr >> 33) & 1;
1447 break;
1449 default:
1450 break;
1452 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1453 is_write,
1454 &uc->uc_sigmask, puc);
1457 #elif defined(__s390__)
1459 int cpu_signal_handler(int host_signum, struct siginfo *info,
1460 void *puc)
1462 struct ucontext *uc = puc;
1463 unsigned long pc;
1464 int is_write;
1466 pc = uc->uc_mcontext.psw.addr;
1467 /* XXX: compute is_write */
1468 is_write = 0;
1469 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1470 is_write,
1471 &uc->uc_sigmask, puc);
1474 #else
1476 #error host CPU specific signal handler needed
1478 #endif
1480 #endif /* !defined(CONFIG_SOFTMMU) */