Don't include audio.h when building tools.
[qemu/mini2440.git] / qemu-doc.texi
blobed585010807be187f305e713c2c38a001b19ab96
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4 @settitle QEMU CPU Emulator User Documentation
5 @exampleindent 0
6 @paragraphindent 0
7 @c %**end of header
9 @iftex
10 @titlepage
11 @sp 7
12 @center @titlefont{QEMU CPU Emulator}
13 @sp 1
14 @center @titlefont{User Documentation}
15 @sp 3
16 @end titlepage
17 @end iftex
19 @ifnottex
20 @node Top
21 @top
23 @menu
24 * Introduction::
25 * Installation::
26 * QEMU PC System emulator::
27 * QEMU System emulator for non PC targets::
28 * QEMU Linux User space emulator::
29 * compilation:: Compilation from the sources
30 * Index::
31 @end menu
32 @end ifnottex
34 @contents
36 @node Introduction
37 @chapter Introduction
39 @menu
40 * intro_features:: Features
41 @end menu
43 @node intro_features
44 @section Features
46 QEMU is a FAST! processor emulator using dynamic translation to
47 achieve good emulation speed.
49 QEMU has two operating modes:
51 @itemize @minus
53 @item 
54 Full system emulation. In this mode, QEMU emulates a full system (for
55 example a PC), including one or several processors and various
56 peripherals. It can be used to launch different Operating Systems
57 without rebooting the PC or to debug system code.
59 @item 
60 User mode emulation (Linux host only). In this mode, QEMU can launch
61 Linux processes compiled for one CPU on another CPU. It can be used to
62 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 to ease cross-compilation and cross-debugging.
65 @end itemize
67 QEMU can run without an host kernel driver and yet gives acceptable
68 performance. 
70 For system emulation, the following hardware targets are supported:
71 @itemize
72 @item PC (x86 or x86_64 processor)
73 @item ISA PC (old style PC without PCI bus)
74 @item PREP (PowerPC processor)
75 @item G3 BW PowerMac (PowerPC processor)
76 @item Mac99 PowerMac (PowerPC processor, in progress)
77 @item Sun4m (32-bit Sparc processor)
78 @item Sun4u (64-bit Sparc processor, in progress)
79 @item Malta board (32-bit MIPS processor)
80 @item ARM Integrator/CP (ARM926E or 1026E processor)
81 @item ARM Versatile baseboard (ARM926E)
82 @end itemize
84 For user emulation, x86, PowerPC, ARM, MIPS, and Sparc32/64 CPUs are supported.
86 @node Installation
87 @chapter Installation
89 If you want to compile QEMU yourself, see @ref{compilation}.
91 @menu
92 * install_linux::   Linux
93 * install_windows:: Windows
94 * install_mac::     Macintosh
95 @end menu
97 @node install_linux
98 @section Linux
100 If a precompiled package is available for your distribution - you just
101 have to install it. Otherwise, see @ref{compilation}.
103 @node install_windows
104 @section Windows
106 Download the experimental binary installer at
107 @url{http://www.free.oszoo.org/@/download.html}.
109 @node install_mac
110 @section Mac OS X
112 Download the experimental binary installer at
113 @url{http://www.free.oszoo.org/@/download.html}.
115 @node QEMU PC System emulator
116 @chapter QEMU PC System emulator
118 @menu
119 * pcsys_introduction:: Introduction
120 * pcsys_quickstart::   Quick Start
121 * sec_invocation::     Invocation
122 * pcsys_keys::         Keys
123 * pcsys_monitor::      QEMU Monitor
124 * disk_images::        Disk Images
125 * pcsys_network::      Network emulation
126 * direct_linux_boot::  Direct Linux Boot
127 * pcsys_usb::          USB emulation
128 * gdb_usage::          GDB usage
129 * pcsys_os_specific::  Target OS specific information
130 @end menu
132 @node pcsys_introduction
133 @section Introduction
135 @c man begin DESCRIPTION
137 The QEMU PC System emulator simulates the
138 following peripherals:
140 @itemize @minus
141 @item 
142 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
143 @item
144 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
145 extensions (hardware level, including all non standard modes).
146 @item
147 PS/2 mouse and keyboard
148 @item 
149 2 PCI IDE interfaces with hard disk and CD-ROM support
150 @item
151 Floppy disk
152 @item 
153 NE2000 PCI network adapters
154 @item
155 Serial ports
156 @item
157 Creative SoundBlaster 16 sound card
158 @item
159 ENSONIQ AudioPCI ES1370 sound card
160 @item
161 Adlib(OPL2) - Yamaha YM3812 compatible chip
162 @item
163 PCI UHCI USB controller and a virtual USB hub.
164 @end itemize
166 SMP is supported with up to 255 CPUs.
168 Note that adlib is only available when QEMU was configured with
169 -enable-adlib
171 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
172 VGA BIOS.
174 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
176 @c man end
178 @node pcsys_quickstart
179 @section Quick Start
181 Download and uncompress the linux image (@file{linux.img}) and type:
183 @example
184 qemu linux.img
185 @end example
187 Linux should boot and give you a prompt.
189 @node sec_invocation
190 @section Invocation
192 @example
193 @c man begin SYNOPSIS
194 usage: qemu [options] [disk_image]
195 @c man end
196 @end example
198 @c man begin OPTIONS
199 @var{disk_image} is a raw hard disk image for IDE hard disk 0.
201 General options:
202 @table @option
203 @item -M machine
204 Select the emulated machine (@code{-M ?} for list)
206 @item -fda file
207 @item -fdb file
208 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
209 use the host floppy by using @file{/dev/fd0} as filename.
211 @item -hda file
212 @item -hdb file
213 @item -hdc file
214 @item -hdd file
215 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
217 @item -cdrom file
218 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
219 @option{-cdrom} at the same time). You can use the host CD-ROM by
220 using @file{/dev/cdrom} as filename.
222 @item -boot [a|c|d]
223 Boot on floppy (a), hard disk (c) or CD-ROM (d). Hard disk boot is
224 the default.
226 @item -snapshot
227 Write to temporary files instead of disk image files. In this case,
228 the raw disk image you use is not written back. You can however force
229 the write back by pressing @key{C-a s} (@pxref{disk_images}). 
231 @item -no-fd-bootchk
232 Disable boot signature checking for floppy disks in Bochs BIOS. It may
233 be needed to boot from old floppy disks.
235 @item -m megs
236 Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
238 @item -smp n
239 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
240 CPUs are supported.
242 @item -nographic
244 Normally, QEMU uses SDL to display the VGA output. With this option,
245 you can totally disable graphical output so that QEMU is a simple
246 command line application. The emulated serial port is redirected on
247 the console. Therefore, you can still use QEMU to debug a Linux kernel
248 with a serial console.
250 @item -vnc d
252 Normally, QEMU uses SDL to display the VGA output.  With this option,
253 you can have QEMU listen on VNC display d and redirect the VGA display
254 over the VNC session.  It is very useful to enable the usb tablet device
255 when using this option (option @option{-usbdevice tablet}).
257 @item -k language
259 Use keyboard layout @var{language} (for example @code{fr} for
260 French). This option is only needed where it is not easy to get raw PC
261 keycodes (e.g. on Macs or with some X11 servers). You don't need to
262 use it on PC/Linux or PC/Windows hosts.
264 The available layouts are:
265 @example
266 ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
267 da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
268 de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
269 @end example
271 The default is @code{en-us}.
273 @item -audio-help
275 Will show the audio subsystem help: list of drivers, tunable
276 parameters.
278 @item -soundhw card1,card2,... or -soundhw all
280 Enable audio and selected sound hardware. Use ? to print all
281 available sound hardware.
283 @example
284 qemu -soundhw sb16,adlib hda
285 qemu -soundhw es1370 hda
286 qemu -soundhw all hda
287 qemu -soundhw ?
288 @end example
290 @item -localtime
291 Set the real time clock to local time (the default is to UTC
292 time). This option is needed to have correct date in MS-DOS or
293 Windows.
295 @item -full-screen
296 Start in full screen.
298 @item -pidfile file
299 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
300 from a script.
302 @item -win2k-hack
303 Use it when installing Windows 2000 to avoid a disk full bug. After
304 Windows 2000 is installed, you no longer need this option (this option
305 slows down the IDE transfers).
307 @end table
309 USB options:
310 @table @option
312 @item -usb
313 Enable the USB driver (will be the default soon)
315 @item -usbdevice devname
316 Add the USB device @var{devname}. @xref{usb_devices}.
317 @end table
319 Network options:
321 @table @option
323 @item -net nic[,vlan=n][,macaddr=addr][,model=type]
324 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
325 = 0 is the default). The NIC is currently an NE2000 on the PC
326 target. Optionally, the MAC address can be changed. If no
327 @option{-net} option is specified, a single NIC is created.
328 Qemu can emulate several different models of network card.  Valid values for
329 @var{type} are @code{ne2k_pci}, @code{ne2k_isa}, @code{rtl8139},
330 @code{smc91c111} and @code{lance}.  Not all devices are supported on all
331 targets.
333 @item -net user[,vlan=n][,hostname=name]
334 Use the user mode network stack which requires no administrator
335 priviledge to run.  @option{hostname=name} can be used to specify the client
336 hostname reported by the builtin DHCP server.
338 @item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
339 Connect the host TAP network interface @var{name} to VLAN @var{n} and
340 use the network script @var{file} to configure it. The default
341 network script is @file{/etc/qemu-ifup}. If @var{name} is not
342 provided, the OS automatically provides one.  @option{fd=h} can be
343 used to specify the handle of an already opened host TAP interface. Example:
345 @example
346 qemu linux.img -net nic -net tap
347 @end example
349 More complicated example (two NICs, each one connected to a TAP device)
350 @example
351 qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
352                -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
353 @end example
356 @item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
358 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
359 machine using a TCP socket connection. If @option{listen} is
360 specified, QEMU waits for incoming connections on @var{port}
361 (@var{host} is optional). @option{connect} is used to connect to
362 another QEMU instance using the @option{listen} option. @option{fd=h}
363 specifies an already opened TCP socket.
365 Example:
366 @example
367 # launch a first QEMU instance
368 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
369                -net socket,listen=:1234
370 # connect the VLAN 0 of this instance to the VLAN 0
371 # of the first instance
372 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
373                -net socket,connect=127.0.0.1:1234
374 @end example
376 @item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
378 Create a VLAN @var{n} shared with another QEMU virtual
379 machines using a UDP multicast socket, effectively making a bus for 
380 every QEMU with same multicast address @var{maddr} and @var{port}.
381 NOTES:
382 @enumerate
383 @item 
384 Several QEMU can be running on different hosts and share same bus (assuming 
385 correct multicast setup for these hosts).
386 @item
387 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
388 @url{http://user-mode-linux.sf.net}.
389 @item Use @option{fd=h} to specify an already opened UDP multicast socket.
390 @end enumerate
392 Example:
393 @example
394 # launch one QEMU instance
395 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
396                -net socket,mcast=230.0.0.1:1234
397 # launch another QEMU instance on same "bus"
398 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
399                -net socket,mcast=230.0.0.1:1234
400 # launch yet another QEMU instance on same "bus"
401 qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
402                -net socket,mcast=230.0.0.1:1234
403 @end example
405 Example (User Mode Linux compat.):
406 @example
407 # launch QEMU instance (note mcast address selected
408 # is UML's default)
409 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
410                -net socket,mcast=239.192.168.1:1102
411 # launch UML
412 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
413 @end example
415 @item -net none
416 Indicate that no network devices should be configured. It is used to
417 override the default configuration (@option{-net nic -net user}) which
418 is activated if no @option{-net} options are provided.
420 @item -tftp prefix
421 When using the user mode network stack, activate a built-in TFTP
422 server. All filenames beginning with @var{prefix} can be downloaded
423 from the host to the guest using a TFTP client. The TFTP client on the
424 guest must be configured in binary mode (use the command @code{bin} of
425 the Unix TFTP client). The host IP address on the guest is as usual
426 10.0.2.2.
428 @item -smb dir
429 When using the user mode network stack, activate a built-in SMB
430 server so that Windows OSes can access to the host files in @file{dir}
431 transparently.
433 In the guest Windows OS, the line:
434 @example
435 10.0.2.4 smbserver
436 @end example
437 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
438 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
440 Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
442 Note that a SAMBA server must be installed on the host OS in
443 @file{/usr/sbin/smbd}. QEMU was tested succesfully with smbd version
444 2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
446 @item -redir [tcp|udp]:host-port:[guest-host]:guest-port
448 When using the user mode network stack, redirect incoming TCP or UDP
449 connections to the host port @var{host-port} to the guest
450 @var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
451 is not specified, its value is 10.0.2.15 (default address given by the
452 built-in DHCP server).
454 For example, to redirect host X11 connection from screen 1 to guest
455 screen 0, use the following:
457 @example
458 # on the host
459 qemu -redir tcp:6001::6000 [...]
460 # this host xterm should open in the guest X11 server
461 xterm -display :1
462 @end example
464 To redirect telnet connections from host port 5555 to telnet port on
465 the guest, use the following:
467 @example
468 # on the host
469 qemu -redir tcp:5555::23 [...]
470 telnet localhost 5555
471 @end example
473 Then when you use on the host @code{telnet localhost 5555}, you
474 connect to the guest telnet server.
476 @end table
478 Linux boot specific: When using these options, you can use a given
479 Linux kernel without installing it in the disk image. It can be useful
480 for easier testing of various kernels.
482 @table @option
484 @item -kernel bzImage 
485 Use @var{bzImage} as kernel image.
487 @item -append cmdline 
488 Use @var{cmdline} as kernel command line
490 @item -initrd file
491 Use @var{file} as initial ram disk.
493 @end table
495 Debug/Expert options:
496 @table @option
498 @item -serial dev
499 Redirect the virtual serial port to host character device
500 @var{dev}. The default device is @code{vc} in graphical mode and
501 @code{stdio} in non graphical mode.
503 This option can be used several times to simulate up to 4 serials
504 ports.
506 Available character devices are:
507 @table @code
508 @item vc
509 Virtual console
510 @item pty
511 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
512 @item null
513 void device
514 @item /dev/XXX
515 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
516 parameters are set according to the emulated ones.
517 @item /dev/parportN
518 [Linux only, parallel port only] Use host parallel port
519 @var{N}. Currently only SPP parallel port features can be used.
520 @item file:filename
521 Write output to filename. No character can be read.
522 @item stdio
523 [Unix only] standard input/output
524 @item pipe:filename
525 name pipe @var{filename}
526 @item COMn
527 [Windows only] Use host serial port @var{n}
528 @item udp:[remote_host]:remote_port[@@[src_ip]:src_port]
529 This implements UDP Net Console.  When @var{remote_host} or @var{src_ip} are not specified they default to @code{0.0.0.0}.  When not using a specifed @var{src_port} a random port is automatically chosen.
531 If you just want a simple readonly console you can use @code{netcat} or
532 @code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
533 @code{nc -u -l -p 4555}. Any time qemu writes something to that port it
534 will appear in the netconsole session.
536 If you plan to send characters back via netconsole or you want to stop
537 and start qemu a lot of times, you should have qemu use the same
538 source port each time by using something like @code{-serial
539 udp::4555@@:4556} to qemu. Another approach is to use a patched
540 version of netcat which can listen to a TCP port and send and receive
541 characters via udp.  If you have a patched version of netcat which
542 activates telnet remote echo and single char transfer, then you can
543 use the following options to step up a netcat redirector to allow
544 telnet on port 5555 to access the qemu port.
545 @table @code
546 @item Qemu Options:
547 -serial udp::4555@@:4556
548 @item netcat options:
549 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
550 @item telnet options:
551 localhost 5555
552 @end table
555 @item tcp:[host]:port[,server][,nowait]
556 The TCP Net Console has two modes of operation.  It can send the serial
557 I/O to a location or wait for a connection from a location.  By default
558 the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
559 the @var{,server} option QEMU will wait for a client socket application
560 to connect to the port before continuing, unless the @code{,nowait}
561 option was specified. If @var{host} is omitted, 0.0.0.0 is assumed. Only
562 one TCP connection at a time is accepted. You can use @code{telnet} to
563 connect to the corresponding character device.
564 @table @code
565 @item Example to send tcp console to 192.168.0.2 port 4444
566 -serial tcp:192.168.0.2:4444
567 @item Example to listen and wait on port 4444 for connection
568 -serial tcp::4444,server
569 @item Example to not wait and listen on ip 192.168.0.100 port 4444
570 -serial tcp:192.168.0.100:4444,server,nowait
571 @end table
573 @item telnet:host:port[,server][,nowait]
574 The telnet protocol is used instead of raw tcp sockets.  The options
575 work the same as if you had specified @code{-serial tcp}.  The
576 difference is that the port acts like a telnet server or client using
577 telnet option negotiation.  This will also allow you to send the
578 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
579 sequence.  Typically in unix telnet you do it with Control-] and then
580 type "send break" followed by pressing the enter key.
582 @end table
584 @item -parallel dev
585 Redirect the virtual parallel port to host device @var{dev} (same
586 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
587 be used to use hardware devices connected on the corresponding host
588 parallel port.
590 This option can be used several times to simulate up to 3 parallel
591 ports.
593 @item -monitor dev
594 Redirect the monitor to host device @var{dev} (same devices as the
595 serial port).
596 The default device is @code{vc} in graphical mode and @code{stdio} in
597 non graphical mode.
599 @item -s
600 Wait gdb connection to port 1234 (@pxref{gdb_usage}). 
601 @item -p port
602 Change gdb connection port.
603 @item -S
604 Do not start CPU at startup (you must type 'c' in the monitor).
605 @item -d             
606 Output log in /tmp/qemu.log
607 @item -hdachs c,h,s,[,t]
608 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
609 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
610 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
611 all thoses parameters. This option is useful for old MS-DOS disk
612 images.
614 @item -std-vga
615 Simulate a standard VGA card with Bochs VBE extensions (default is
616 Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
617 VBE extensions (e.g. Windows XP) and if you want to use high
618 resolution modes (>= 1280x1024x16) then you should use this option.
620 @item -loadvm file
621 Start right away with a saved state (@code{loadvm} in monitor)
622 @end table
624 @c man end
626 @node pcsys_keys
627 @section Keys
629 @c man begin OPTIONS
631 During the graphical emulation, you can use the following keys:
632 @table @key
633 @item Ctrl-Alt-f
634 Toggle full screen
636 @item Ctrl-Alt-n
637 Switch to virtual console 'n'. Standard console mappings are:
638 @table @emph
639 @item 1
640 Target system display
641 @item 2
642 Monitor
643 @item 3
644 Serial port
645 @end table
647 @item Ctrl-Alt
648 Toggle mouse and keyboard grab.
649 @end table
651 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
652 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
654 During emulation, if you are using the @option{-nographic} option, use
655 @key{Ctrl-a h} to get terminal commands:
657 @table @key
658 @item Ctrl-a h
659 Print this help
660 @item Ctrl-a x    
661 Exit emulatior
662 @item Ctrl-a s    
663 Save disk data back to file (if -snapshot)
664 @item Ctrl-a b
665 Send break (magic sysrq in Linux)
666 @item Ctrl-a c
667 Switch between console and monitor
668 @item Ctrl-a Ctrl-a
669 Send Ctrl-a
670 @end table
671 @c man end
673 @ignore
675 @c man begin SEEALSO
676 The HTML documentation of QEMU for more precise information and Linux
677 user mode emulator invocation.
678 @c man end
680 @c man begin AUTHOR
681 Fabrice Bellard
682 @c man end
684 @end ignore
686 @node pcsys_monitor
687 @section QEMU Monitor
689 The QEMU monitor is used to give complex commands to the QEMU
690 emulator. You can use it to:
692 @itemize @minus
694 @item
695 Remove or insert removable medias images
696 (such as CD-ROM or floppies)
698 @item 
699 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
700 from a disk file.
702 @item Inspect the VM state without an external debugger.
704 @end itemize
706 @subsection Commands
708 The following commands are available:
710 @table @option
712 @item help or ? [cmd]
713 Show the help for all commands or just for command @var{cmd}.
715 @item commit  
716 Commit changes to the disk images (if -snapshot is used)
718 @item info subcommand 
719 show various information about the system state
721 @table @option
722 @item info network
723 show the various VLANs and the associated devices
724 @item info block
725 show the block devices
726 @item info registers
727 show the cpu registers
728 @item info history
729 show the command line history
730 @item info pci
731 show emulated PCI device
732 @item info usb
733 show USB devices plugged on the virtual USB hub
734 @item info usbhost
735 show all USB host devices
736 @end table
738 @item q or quit
739 Quit the emulator.
741 @item eject [-f] device
742 Eject a removable media (use -f to force it).
744 @item change device filename
745 Change a removable media.
747 @item screendump filename
748 Save screen into PPM image @var{filename}.
750 @item log item1[,...]
751 Activate logging of the specified items to @file{/tmp/qemu.log}.
753 @item savevm filename
754 Save the whole virtual machine state to @var{filename}.
756 @item loadvm filename
757 Restore the whole virtual machine state from @var{filename}.
759 @item stop
760 Stop emulation.
762 @item c or cont
763 Resume emulation.
765 @item gdbserver [port]
766 Start gdbserver session (default port=1234)
768 @item x/fmt addr
769 Virtual memory dump starting at @var{addr}.
771 @item xp /fmt addr
772 Physical memory dump starting at @var{addr}.
774 @var{fmt} is a format which tells the command how to format the
775 data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
777 @table @var
778 @item count 
779 is the number of items to be dumped.
781 @item format
782 can be x (hexa), d (signed decimal), u (unsigned decimal), o (octal),
783 c (char) or i (asm instruction).
785 @item size
786 can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
787 @code{h} or @code{w} can be specified with the @code{i} format to
788 respectively select 16 or 32 bit code instruction size.
790 @end table
792 Examples: 
793 @itemize
794 @item
795 Dump 10 instructions at the current instruction pointer:
796 @example 
797 (qemu) x/10i $eip
798 0x90107063:  ret
799 0x90107064:  sti
800 0x90107065:  lea    0x0(%esi,1),%esi
801 0x90107069:  lea    0x0(%edi,1),%edi
802 0x90107070:  ret
803 0x90107071:  jmp    0x90107080
804 0x90107073:  nop
805 0x90107074:  nop
806 0x90107075:  nop
807 0x90107076:  nop
808 @end example
810 @item
811 Dump 80 16 bit values at the start of the video memory.
812 @smallexample 
813 (qemu) xp/80hx 0xb8000
814 0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
815 0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
816 0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
817 0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
818 0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
819 0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
820 0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
821 0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
822 0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
823 0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
824 @end smallexample
825 @end itemize
827 @item p or print/fmt expr
829 Print expression value. Only the @var{format} part of @var{fmt} is
830 used.
832 @item sendkey keys
834 Send @var{keys} to the emulator. Use @code{-} to press several keys
835 simultaneously. Example:
836 @example
837 sendkey ctrl-alt-f1
838 @end example
840 This command is useful to send keys that your graphical user interface
841 intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
843 @item system_reset
845 Reset the system.
847 @item usb_add devname
849 Add the USB device @var{devname}.  For details of available devices see
850 @ref{usb_devices}
852 @item usb_del devname
854 Remove the USB device @var{devname} from the QEMU virtual USB
855 hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
856 command @code{info usb} to see the devices you can remove.
858 @end table
860 @subsection Integer expressions
862 The monitor understands integers expressions for every integer
863 argument. You can use register names to get the value of specifics
864 CPU registers by prefixing them with @emph{$}.
866 @node disk_images
867 @section Disk Images
869 Since version 0.6.1, QEMU supports many disk image formats, including
870 growable disk images (their size increase as non empty sectors are
871 written), compressed and encrypted disk images.
873 @menu
874 * disk_images_quickstart::    Quick start for disk image creation
875 * disk_images_snapshot_mode:: Snapshot mode
876 * qemu_img_invocation::       qemu-img Invocation
877 * disk_images_fat_images::    Virtual FAT disk images
878 @end menu
880 @node disk_images_quickstart
881 @subsection Quick start for disk image creation
883 You can create a disk image with the command:
884 @example
885 qemu-img create myimage.img mysize
886 @end example
887 where @var{myimage.img} is the disk image filename and @var{mysize} is its
888 size in kilobytes. You can add an @code{M} suffix to give the size in
889 megabytes and a @code{G} suffix for gigabytes.
891 See @ref{qemu_img_invocation} for more information.
893 @node disk_images_snapshot_mode
894 @subsection Snapshot mode
896 If you use the option @option{-snapshot}, all disk images are
897 considered as read only. When sectors in written, they are written in
898 a temporary file created in @file{/tmp}. You can however force the
899 write back to the raw disk images by using the @code{commit} monitor
900 command (or @key{C-a s} in the serial console).
902 @node qemu_img_invocation
903 @subsection @code{qemu-img} Invocation
905 @include qemu-img.texi
907 @node disk_images_fat_images
908 @subsection Virtual FAT disk images
910 QEMU can automatically create a virtual FAT disk image from a
911 directory tree. In order to use it, just type:
913 @example 
914 qemu linux.img -hdb fat:/my_directory
915 @end example
917 Then you access access to all the files in the @file{/my_directory}
918 directory without having to copy them in a disk image or to export
919 them via SAMBA or NFS. The default access is @emph{read-only}.
921 Floppies can be emulated with the @code{:floppy:} option:
923 @example 
924 qemu linux.img -fda fat:floppy:/my_directory
925 @end example
927 A read/write support is available for testing (beta stage) with the
928 @code{:rw:} option:
930 @example 
931 qemu linux.img -fda fat:floppy:rw:/my_directory
932 @end example
934 What you should @emph{never} do:
935 @itemize
936 @item use non-ASCII filenames ;
937 @item use "-snapshot" together with ":rw:" ;
938 @item expect it to work when loadvm'ing ;
939 @item write to the FAT directory on the host system while accessing it with the guest system.
940 @end itemize
942 @node pcsys_network
943 @section Network emulation
945 QEMU can simulate several networks cards (NE2000 boards on the PC
946 target) and can connect them to an arbitrary number of Virtual Local
947 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
948 VLAN. VLAN can be connected between separate instances of QEMU to
949 simulate large networks. For simpler usage, a non priviledged user mode
950 network stack can replace the TAP device to have a basic network
951 connection.
953 @subsection VLANs
955 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
956 connection between several network devices. These devices can be for
957 example QEMU virtual Ethernet cards or virtual Host ethernet devices
958 (TAP devices).
960 @subsection Using TAP network interfaces
962 This is the standard way to connect QEMU to a real network. QEMU adds
963 a virtual network device on your host (called @code{tapN}), and you
964 can then configure it as if it was a real ethernet card.
966 As an example, you can download the @file{linux-test-xxx.tar.gz}
967 archive and copy the script @file{qemu-ifup} in @file{/etc} and
968 configure properly @code{sudo} so that the command @code{ifconfig}
969 contained in @file{qemu-ifup} can be executed as root. You must verify
970 that your host kernel supports the TAP network interfaces: the
971 device @file{/dev/net/tun} must be present.
973 See @ref{direct_linux_boot} to have an example of network use with a
974 Linux distribution and @ref{sec_invocation} to have examples of
975 command lines using the TAP network interfaces.
977 @subsection Using the user mode network stack
979 By using the option @option{-net user} (default configuration if no
980 @option{-net} option is specified), QEMU uses a completely user mode
981 network stack (you don't need root priviledge to use the virtual
982 network). The virtual network configuration is the following:
984 @example
986          QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
987                            |          (10.0.2.2)
988                            |
989                            ---->  DNS server (10.0.2.3)
990                            |     
991                            ---->  SMB server (10.0.2.4)
992 @end example
994 The QEMU VM behaves as if it was behind a firewall which blocks all
995 incoming connections. You can use a DHCP client to automatically
996 configure the network in the QEMU VM. The DHCP server assign addresses
997 to the hosts starting from 10.0.2.15.
999 In order to check that the user mode network is working, you can ping
1000 the address 10.0.2.2 and verify that you got an address in the range
1001 10.0.2.x from the QEMU virtual DHCP server.
1003 Note that @code{ping} is not supported reliably to the internet as it
1004 would require root priviledges. It means you can only ping the local
1005 router (10.0.2.2).
1007 When using the built-in TFTP server, the router is also the TFTP
1008 server.
1010 When using the @option{-redir} option, TCP or UDP connections can be
1011 redirected from the host to the guest. It allows for example to
1012 redirect X11, telnet or SSH connections.
1014 @subsection Connecting VLANs between QEMU instances
1016 Using the @option{-net socket} option, it is possible to make VLANs
1017 that span several QEMU instances. See @ref{sec_invocation} to have a
1018 basic example.
1020 @node direct_linux_boot
1021 @section Direct Linux Boot
1023 This section explains how to launch a Linux kernel inside QEMU without
1024 having to make a full bootable image. It is very useful for fast Linux
1025 kernel testing. The QEMU network configuration is also explained.
1027 @enumerate
1028 @item
1029 Download the archive @file{linux-test-xxx.tar.gz} containing a Linux
1030 kernel and a disk image. 
1032 @item Optional: If you want network support (for example to launch X11 examples), you
1033 must copy the script @file{qemu-ifup} in @file{/etc} and configure
1034 properly @code{sudo} so that the command @code{ifconfig} contained in
1035 @file{qemu-ifup} can be executed as root. You must verify that your host
1036 kernel supports the TUN/TAP network interfaces: the device
1037 @file{/dev/net/tun} must be present.
1039 When network is enabled, there is a virtual network connection between
1040 the host kernel and the emulated kernel. The emulated kernel is seen
1041 from the host kernel at IP address 172.20.0.2 and the host kernel is
1042 seen from the emulated kernel at IP address 172.20.0.1.
1044 @item Launch @code{qemu.sh}. You should have the following output:
1046 @smallexample
1047 > ./qemu.sh 
1048 Connected to host network interface: tun0
1049 Linux version 2.4.21 (bellard@@voyager.localdomain) (gcc version 3.2.2 20030222 @/(Red Hat @/Linux 3.2.2-5)) #5 Tue Nov 11 18:18:53 CET 2003
1050 BIOS-provided physical RAM map:
1051  BIOS-e801: 0000000000000000 - 000000000009f000 (usable)
1052  BIOS-e801: 0000000000100000 - 0000000002000000 (usable)
1053 32MB LOWMEM available.
1054 On node 0 totalpages: 8192
1055 zone(0): 4096 pages.
1056 zone(1): 4096 pages.
1057 zone(2): 0 pages.
1058 Kernel command line: root=/dev/hda sb=0x220,5,1,5 ide2=noprobe ide3=noprobe ide4=noprobe @/ide5=noprobe console=ttyS0
1059 ide_setup: ide2=noprobe
1060 ide_setup: ide3=noprobe
1061 ide_setup: ide4=noprobe
1062 ide_setup: ide5=noprobe
1063 Initializing CPU#0
1064 Detected 2399.621 MHz processor.
1065 Console: colour EGA 80x25
1066 Calibrating delay loop... 4744.80 BogoMIPS
1067 Memory: 28872k/32768k available (1210k kernel code, 3508k reserved, 266k data, 64k init, @/0k highmem)
1068 Dentry cache hash table entries: 4096 (order: 3, 32768 bytes)
1069 Inode cache hash table entries: 2048 (order: 2, 16384 bytes)
1070 Mount cache hash table entries: 512 (order: 0, 4096 bytes)
1071 Buffer-cache hash table entries: 1024 (order: 0, 4096 bytes)
1072 Page-cache hash table entries: 8192 (order: 3, 32768 bytes)
1073 CPU: Intel Pentium Pro stepping 03
1074 Checking 'hlt' instruction... OK.
1075 POSIX conformance testing by UNIFIX
1076 Linux NET4.0 for Linux 2.4
1077 Based upon Swansea University Computer Society NET3.039
1078 Initializing RT netlink socket
1079 apm: BIOS not found.
1080 Starting kswapd
1081 Journalled Block Device driver loaded
1082 Detected PS/2 Mouse Port.
1083 pty: 256 Unix98 ptys configured
1084 Serial driver version 5.05c (2001-07-08) with no serial options enabled
1085 ttyS00 at 0x03f8 (irq = 4) is a 16450
1086 ne.c:v1.10 9/23/94 Donald Becker (becker@@scyld.com)
1087 Last modified Nov 1, 2000 by Paul Gortmaker
1088 NE*000 ethercard probe at 0x300: 52 54 00 12 34 56
1089 eth0: NE2000 found at 0x300, using IRQ 9.
1090 RAMDISK driver initialized: 16 RAM disks of 4096K size 1024 blocksize
1091 Uniform Multi-Platform E-IDE driver Revision: 7.00beta4-2.4
1092 ide: Assuming 50MHz system bus speed for PIO modes; override with idebus=xx
1093 hda: QEMU HARDDISK, ATA DISK drive
1094 ide0 at 0x1f0-0x1f7,0x3f6 on irq 14
1095 hda: attached ide-disk driver.
1096 hda: 20480 sectors (10 MB) w/256KiB Cache, CHS=20/16/63
1097 Partition check:
1098  hda:
1099 Soundblaster audio driver Copyright (C) by Hannu Savolainen 1993-1996
1100 NET4: Linux TCP/IP 1.0 for NET4.0
1101 IP Protocols: ICMP, UDP, TCP, IGMP
1102 IP: routing cache hash table of 512 buckets, 4Kbytes
1103 TCP: Hash tables configured (established 2048 bind 4096)
1104 NET4: Unix domain sockets 1.0/SMP for Linux NET4.0.
1105 EXT2-fs warning: mounting unchecked fs, running e2fsck is recommended
1106 VFS: Mounted root (ext2 filesystem).
1107 Freeing unused kernel memory: 64k freed
1109 Linux version 2.4.21 (bellard@@voyager.localdomain) (gcc version 3.2.2 20030222 @/(Red Hat @/Linux 3.2.2-5)) #5 Tue Nov 11 18:18:53 CET 2003
1111 QEMU Linux test distribution (based on Redhat 9)
1113 Type 'exit' to halt the system
1115 sh-2.05b# 
1116 @end smallexample
1118 @item
1119 Then you can play with the kernel inside the virtual serial console. You
1120 can launch @code{ls} for example. Type @key{Ctrl-a h} to have an help
1121 about the keys you can type inside the virtual serial console. In
1122 particular, use @key{Ctrl-a x} to exit QEMU and use @key{Ctrl-a b} as
1123 the Magic SysRq key.
1125 @item 
1126 If the network is enabled, launch the script @file{/etc/linuxrc} in the
1127 emulator (don't forget the leading dot):
1128 @example
1129 . /etc/linuxrc
1130 @end example
1132 Then enable X11 connections on your PC from the emulated Linux: 
1133 @example
1134 xhost +172.20.0.2
1135 @end example
1137 You can now launch @file{xterm} or @file{xlogo} and verify that you have
1138 a real Virtual Linux system !
1140 @end enumerate
1142 NOTES:
1143 @enumerate
1144 @item 
1145 A 2.5.74 kernel is also included in the archive. Just
1146 replace the bzImage in qemu.sh to try it.
1148 @item 
1149 In order to exit cleanly from qemu, you can do a @emph{shutdown} inside
1150 qemu. qemu will automatically exit when the Linux shutdown is done.
1152 @item 
1153 You can boot slightly faster by disabling the probe of non present IDE
1154 interfaces. To do so, add the following options on the kernel command
1155 line:
1156 @example
1157 ide1=noprobe ide2=noprobe ide3=noprobe ide4=noprobe ide5=noprobe
1158 @end example
1160 @item 
1161 The example disk image is a modified version of the one made by Kevin
1162 Lawton for the plex86 Project (@url{www.plex86.org}).
1164 @end enumerate
1166 @node pcsys_usb
1167 @section USB emulation
1169 QEMU emulates a PCI UHCI USB controller. You can virtually plug
1170 virtual USB devices or real host USB devices (experimental, works only
1171 on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1172 as neccessary to connect multiple USB devices.
1174 @menu
1175 * usb_devices::
1176 * host_usb_devices::
1177 @end menu
1178 @node usb_devices
1179 @subsection Connecting USB devices
1181 USB devices can be connected with the @option{-usbdevice} commandline option
1182 or the @code{usb_add} monitor command.  Available devices are:
1184 @table @var
1185 @item @code{mouse}
1186 Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1187 @item @code{tablet}
1188 Pointer device that uses abolsute coordinates (like a touchscreen).
1189 This means qemu is able to report the mouse position without having
1190 to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1191 @item @code{disk:file}
1192 Mass storage device based on @var{file} (@pxref{disk_images})
1193 @item @code{host:bus.addr}
1194 Pass through the host device identified by @var{bus.addr}
1195 (Linux only)
1196 @item @code{host:vendor_id:product_id}
1197 Pass through the host device identified by @var{vendor_id:product_id}
1198 (Linux only)
1199 @end table
1201 @node host_usb_devices
1202 @subsection Using host USB devices on a Linux host
1204 WARNING: this is an experimental feature. QEMU will slow down when
1205 using it. USB devices requiring real time streaming (i.e. USB Video
1206 Cameras) are not supported yet.
1208 @enumerate
1209 @item If you use an early Linux 2.4 kernel, verify that no Linux driver 
1210 is actually using the USB device. A simple way to do that is simply to
1211 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1212 to @file{mydriver.o.disabled}.
1214 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1215 @example
1216 ls /proc/bus/usb
1217 001  devices  drivers
1218 @end example
1220 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1221 @example
1222 chown -R myuid /proc/bus/usb
1223 @end example
1225 @item Launch QEMU and do in the monitor:
1226 @example 
1227 info usbhost
1228   Device 1.2, speed 480 Mb/s
1229     Class 00: USB device 1234:5678, USB DISK
1230 @end example
1231 You should see the list of the devices you can use (Never try to use
1232 hubs, it won't work).
1234 @item Add the device in QEMU by using:
1235 @example 
1236 usb_add host:1234:5678
1237 @end example
1239 Normally the guest OS should report that a new USB device is
1240 plugged. You can use the option @option{-usbdevice} to do the same.
1242 @item Now you can try to use the host USB device in QEMU.
1244 @end enumerate
1246 When relaunching QEMU, you may have to unplug and plug again the USB
1247 device to make it work again (this is a bug).
1249 @node gdb_usage
1250 @section GDB usage
1252 QEMU has a primitive support to work with gdb, so that you can do
1253 'Ctrl-C' while the virtual machine is running and inspect its state.
1255 In order to use gdb, launch qemu with the '-s' option. It will wait for a
1256 gdb connection:
1257 @example
1258 > qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1259        -append "root=/dev/hda"
1260 Connected to host network interface: tun0
1261 Waiting gdb connection on port 1234
1262 @end example
1264 Then launch gdb on the 'vmlinux' executable:
1265 @example
1266 > gdb vmlinux
1267 @end example
1269 In gdb, connect to QEMU:
1270 @example
1271 (gdb) target remote localhost:1234
1272 @end example
1274 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1275 @example
1276 (gdb) c
1277 @end example
1279 Here are some useful tips in order to use gdb on system code:
1281 @enumerate
1282 @item
1283 Use @code{info reg} to display all the CPU registers.
1284 @item
1285 Use @code{x/10i $eip} to display the code at the PC position.
1286 @item
1287 Use @code{set architecture i8086} to dump 16 bit code. Then use
1288 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1289 @end enumerate
1291 @node pcsys_os_specific
1292 @section Target OS specific information
1294 @subsection Linux
1296 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1297 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1298 color depth in the guest and the host OS.
1300 When using a 2.6 guest Linux kernel, you should add the option
1301 @code{clock=pit} on the kernel command line because the 2.6 Linux
1302 kernels make very strict real time clock checks by default that QEMU
1303 cannot simulate exactly.
1305 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1306 not activated because QEMU is slower with this patch. The QEMU
1307 Accelerator Module is also much slower in this case. Earlier Fedora
1308 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporte this
1309 patch by default. Newer kernels don't have it.
1311 @subsection Windows
1313 If you have a slow host, using Windows 95 is better as it gives the
1314 best speed. Windows 2000 is also a good choice.
1316 @subsubsection SVGA graphic modes support
1318 QEMU emulates a Cirrus Logic GD5446 Video
1319 card. All Windows versions starting from Windows 95 should recognize
1320 and use this graphic card. For optimal performances, use 16 bit color
1321 depth in the guest and the host OS.
1323 If you are using Windows XP as guest OS and if you want to use high
1324 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1325 1280x1024x16), then you should use the VESA VBE virtual graphic card
1326 (option @option{-std-vga}).
1328 @subsubsection CPU usage reduction
1330 Windows 9x does not correctly use the CPU HLT
1331 instruction. The result is that it takes host CPU cycles even when
1332 idle. You can install the utility from
1333 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1334 problem. Note that no such tool is needed for NT, 2000 or XP.
1336 @subsubsection Windows 2000 disk full problem
1338 Windows 2000 has a bug which gives a disk full problem during its
1339 installation. When installing it, use the @option{-win2k-hack} QEMU
1340 option to enable a specific workaround. After Windows 2000 is
1341 installed, you no longer need this option (this option slows down the
1342 IDE transfers).
1344 @subsubsection Windows 2000 shutdown
1346 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1347 can. It comes from the fact that Windows 2000 does not automatically
1348 use the APM driver provided by the BIOS.
1350 In order to correct that, do the following (thanks to Struan
1351 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1352 Add/Troubleshoot a device => Add a new device & Next => No, select the
1353 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1354 (again) a few times. Now the driver is installed and Windows 2000 now
1355 correctly instructs QEMU to shutdown at the appropriate moment. 
1357 @subsubsection Share a directory between Unix and Windows
1359 See @ref{sec_invocation} about the help of the option @option{-smb}.
1361 @subsubsection Windows XP security problems
1363 Some releases of Windows XP install correctly but give a security
1364 error when booting:
1365 @example
1366 A problem is preventing Windows from accurately checking the
1367 license for this computer. Error code: 0x800703e6.
1368 @end example
1369 The only known workaround is to boot in Safe mode
1370 without networking support. 
1372 Future QEMU releases are likely to correct this bug.
1374 @subsection MS-DOS and FreeDOS
1376 @subsubsection CPU usage reduction
1378 DOS does not correctly use the CPU HLT instruction. The result is that
1379 it takes host CPU cycles even when idle. You can install the utility
1380 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1381 problem.
1383 @node QEMU System emulator for non PC targets
1384 @chapter QEMU System emulator for non PC targets
1386 QEMU is a generic emulator and it emulates many non PC
1387 machines. Most of the options are similar to the PC emulator. The
1388 differences are mentionned in the following sections.
1390 @menu
1391 * QEMU PowerPC System emulator::
1392 * Sparc32 System emulator invocation::
1393 * Sparc64 System emulator invocation::
1394 * MIPS System emulator invocation::
1395 * ARM System emulator invocation::
1396 @end menu
1398 @node QEMU PowerPC System emulator
1399 @section QEMU PowerPC System emulator
1401 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1402 or PowerMac PowerPC system.
1404 QEMU emulates the following PowerMac peripherals:
1406 @itemize @minus
1407 @item 
1408 UniNorth PCI Bridge 
1409 @item
1410 PCI VGA compatible card with VESA Bochs Extensions
1411 @item 
1412 2 PMAC IDE interfaces with hard disk and CD-ROM support
1413 @item 
1414 NE2000 PCI adapters
1415 @item
1416 Non Volatile RAM
1417 @item
1418 VIA-CUDA with ADB keyboard and mouse.
1419 @end itemize
1421 QEMU emulates the following PREP peripherals:
1423 @itemize @minus
1424 @item 
1425 PCI Bridge
1426 @item
1427 PCI VGA compatible card with VESA Bochs Extensions
1428 @item 
1429 2 IDE interfaces with hard disk and CD-ROM support
1430 @item
1431 Floppy disk
1432 @item 
1433 NE2000 network adapters
1434 @item
1435 Serial port
1436 @item
1437 PREP Non Volatile RAM
1438 @item
1439 PC compatible keyboard and mouse.
1440 @end itemize
1442 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1443 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1445 @c man begin OPTIONS
1447 The following options are specific to the PowerPC emulation:
1449 @table @option
1451 @item -g WxH[xDEPTH]  
1453 Set the initial VGA graphic mode. The default is 800x600x15.
1455 @end table
1457 @c man end 
1460 More information is available at
1461 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1463 @node Sparc32 System emulator invocation
1464 @section Sparc32 System emulator invocation
1466 Use the executable @file{qemu-system-sparc} to simulate a SparcStation 5
1467 (sun4m architecture). The emulation is somewhat complete.
1469 QEMU emulates the following sun4m peripherals:
1471 @itemize @minus
1472 @item
1473 IOMMU
1474 @item
1475 TCX Frame buffer
1476 @item 
1477 Lance (Am7990) Ethernet
1478 @item
1479 Non Volatile RAM M48T08
1480 @item
1481 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1482 and power/reset logic
1483 @item
1484 ESP SCSI controller with hard disk and CD-ROM support
1485 @item
1486 Floppy drive
1487 @end itemize
1489 The number of peripherals is fixed in the architecture.
1491 Since version 0.8.2, QEMU uses OpenBIOS
1492 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1493 firmware implementation. The goal is to implement a 100% IEEE
1494 1275-1994 (referred to as Open Firmware) compliant firmware.
1496 A sample Linux 2.6 series kernel and ram disk image are available on
1497 the QEMU web site. Please note that currently NetBSD, OpenBSD or
1498 Solaris kernels don't work.
1500 @c man begin OPTIONS
1502 The following options are specific to the Sparc emulation:
1504 @table @option
1506 @item -g WxH
1508 Set the initial TCX graphic mode. The default is 1024x768.
1510 @end table
1512 @c man end 
1514 @node Sparc64 System emulator invocation
1515 @section Sparc64 System emulator invocation
1517 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
1518 The emulator is not usable for anything yet.
1520 QEMU emulates the following sun4u peripherals:
1522 @itemize @minus
1523 @item
1524 UltraSparc IIi APB PCI Bridge 
1525 @item
1526 PCI VGA compatible card with VESA Bochs Extensions
1527 @item
1528 Non Volatile RAM M48T59
1529 @item
1530 PC-compatible serial ports
1531 @end itemize
1533 @node MIPS System emulator invocation
1534 @section MIPS System emulator invocation
1536 Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
1537 The emulator is able to boot a Linux kernel and to run a Linux Debian
1538 installation from NFS. The following devices are emulated:
1540 @itemize @minus
1541 @item 
1542 MIPS R4K CPU
1543 @item
1544 PC style serial port
1545 @item
1546 NE2000 network card
1547 @end itemize
1549 More information is available in the QEMU mailing-list archive.
1551 @node ARM System emulator invocation
1552 @section ARM System emulator invocation
1554 Use the executable @file{qemu-system-arm} to simulate a ARM
1555 machine. The ARM Integrator/CP board is emulated with the following
1556 devices:
1558 @itemize @minus
1559 @item
1560 ARM926E or ARM1026E CPU
1561 @item
1562 Two PL011 UARTs
1563 @item 
1564 SMC 91c111 Ethernet adapter
1565 @item
1566 PL110 LCD controller
1567 @item
1568 PL050 KMI with PS/2 keyboard and mouse.
1569 @end itemize
1571 The ARM Versatile baseboard is emulated with the following devices:
1573 @itemize @minus
1574 @item
1575 ARM926E CPU
1576 @item
1577 PL190 Vectored Interrupt Controller
1578 @item
1579 Four PL011 UARTs
1580 @item 
1581 SMC 91c111 Ethernet adapter
1582 @item
1583 PL110 LCD controller
1584 @item
1585 PL050 KMI with PS/2 keyboard and mouse.
1586 @item
1587 PCI host bridge.  Note the emulated PCI bridge only provides access to
1588 PCI memory space.  It does not provide access to PCI IO space.
1589 This means some devices (eg. ne2k_pci NIC) are not useable, and others
1590 (eg. rtl8139 NIC) are only useable when the guest drivers use the memory
1591 mapped control registers.
1592 @item
1593 PCI OHCI USB controller.
1594 @item
1595 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1596 @end itemize
1598 A Linux 2.6 test image is available on the QEMU web site. More
1599 information is available in the QEMU mailing-list archive.
1601 @node QEMU Linux User space emulator 
1602 @chapter QEMU Linux User space emulator 
1604 @menu
1605 * Quick Start::
1606 * Wine launch::
1607 * Command line options::
1608 * Other binaries::
1609 @end menu
1611 @node Quick Start
1612 @section Quick Start
1614 In order to launch a Linux process, QEMU needs the process executable
1615 itself and all the target (x86) dynamic libraries used by it. 
1617 @itemize
1619 @item On x86, you can just try to launch any process by using the native
1620 libraries:
1622 @example 
1623 qemu-i386 -L / /bin/ls
1624 @end example
1626 @code{-L /} tells that the x86 dynamic linker must be searched with a
1627 @file{/} prefix.
1629 @item Since QEMU is also a linux process, you can launch qemu with qemu (NOTE: you can only do that if you compiled QEMU from the sources):
1631 @example 
1632 qemu-i386 -L / qemu-i386 -L / /bin/ls
1633 @end example
1635 @item On non x86 CPUs, you need first to download at least an x86 glibc
1636 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
1637 @code{LD_LIBRARY_PATH} is not set:
1639 @example
1640 unset LD_LIBRARY_PATH 
1641 @end example
1643 Then you can launch the precompiled @file{ls} x86 executable:
1645 @example
1646 qemu-i386 tests/i386/ls
1647 @end example
1648 You can look at @file{qemu-binfmt-conf.sh} so that
1649 QEMU is automatically launched by the Linux kernel when you try to
1650 launch x86 executables. It requires the @code{binfmt_misc} module in the
1651 Linux kernel.
1653 @item The x86 version of QEMU is also included. You can try weird things such as:
1654 @example
1655 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
1656           /usr/local/qemu-i386/bin/ls-i386
1657 @end example
1659 @end itemize
1661 @node Wine launch
1662 @section Wine launch
1664 @itemize
1666 @item Ensure that you have a working QEMU with the x86 glibc
1667 distribution (see previous section). In order to verify it, you must be
1668 able to do:
1670 @example
1671 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
1672 @end example
1674 @item Download the binary x86 Wine install
1675 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page). 
1677 @item Configure Wine on your account. Look at the provided script
1678 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1679 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
1681 @item Then you can try the example @file{putty.exe}:
1683 @example
1684 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
1685           /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1686 @end example
1688 @end itemize
1690 @node Command line options
1691 @section Command line options
1693 @example
1694 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
1695 @end example
1697 @table @option
1698 @item -h
1699 Print the help
1700 @item -L path   
1701 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
1702 @item -s size
1703 Set the x86 stack size in bytes (default=524288)
1704 @end table
1706 Debug options:
1708 @table @option
1709 @item -d
1710 Activate log (logfile=/tmp/qemu.log)
1711 @item -p pagesize
1712 Act as if the host page size was 'pagesize' bytes
1713 @end table
1715 @node Other binaries
1716 @section Other binaries
1718 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
1719 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
1720 configurations), and arm-uclinux bFLT format binaries.
1722 The binary format is detected automatically.
1724 @node compilation
1725 @chapter Compilation from the sources
1727 @menu
1728 * Linux/Unix::
1729 * Windows::
1730 * Cross compilation for Windows with Linux::
1731 * Mac OS X::
1732 @end menu
1734 @node Linux/Unix
1735 @section Linux/Unix
1737 @subsection Compilation
1739 First you must decompress the sources:
1740 @example
1741 cd /tmp
1742 tar zxvf qemu-x.y.z.tar.gz
1743 cd qemu-x.y.z
1744 @end example
1746 Then you configure QEMU and build it (usually no options are needed):
1747 @example
1748 ./configure
1749 make
1750 @end example
1752 Then type as root user:
1753 @example
1754 make install
1755 @end example
1756 to install QEMU in @file{/usr/local}.
1758 @subsection Tested tool versions
1760 In order to compile QEMU succesfully, it is very important that you
1761 have the right tools. The most important one is gcc. I cannot guaranty
1762 that QEMU works if you do not use a tested gcc version. Look at
1763 'configure' and 'Makefile' if you want to make a different gcc
1764 version work.
1766 @example
1767 host      gcc      binutils      glibc    linux       distribution
1768 ----------------------------------------------------------------------
1769 x86       3.2      2.13.2        2.1.3    2.4.18
1770           2.96     2.11.93.0.2   2.2.5    2.4.18      Red Hat 7.3
1771           3.2.2    2.13.90.0.18  2.3.2    2.4.20      Red Hat 9
1773 PowerPC   3.3 [4]  2.13.90.0.18  2.3.1    2.4.20briq
1774           3.2
1776 Alpha     3.3 [1]  2.14.90.0.4   2.2.5    2.2.20 [2]  Debian 3.0
1778 Sparc32   2.95.4   2.12.90.0.1   2.2.5    2.4.18      Debian 3.0
1780 ARM       2.95.4   2.12.90.0.1   2.2.5    2.4.9 [3]   Debian 3.0
1782 [1] On Alpha, QEMU needs the gcc 'visibility' attribute only available
1783     for gcc version >= 3.3.
1784 [2] Linux >= 2.4.20 is necessary for precise exception support
1785     (untested).
1786 [3] 2.4.9-ac10-rmk2-np1-cerf2
1788 [4] gcc 2.95.x generates invalid code when using too many register
1789 variables. You must use gcc 3.x on PowerPC.
1790 @end example
1792 @node Windows
1793 @section Windows
1795 @itemize
1796 @item Install the current versions of MSYS and MinGW from
1797 @url{http://www.mingw.org/}. You can find detailed installation
1798 instructions in the download section and the FAQ.
1800 @item Download 
1801 the MinGW development library of SDL 1.2.x
1802 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
1803 @url{http://www.libsdl.org}. Unpack it in a temporary place, and
1804 unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
1805 directory. Edit the @file{sdl-config} script so that it gives the
1806 correct SDL directory when invoked.
1808 @item Extract the current version of QEMU.
1810 @item Start the MSYS shell (file @file{msys.bat}).
1812 @item Change to the QEMU directory. Launch @file{./configure} and 
1813 @file{make}.  If you have problems using SDL, verify that
1814 @file{sdl-config} can be launched from the MSYS command line.
1816 @item You can install QEMU in @file{Program Files/Qemu} by typing 
1817 @file{make install}. Don't forget to copy @file{SDL.dll} in
1818 @file{Program Files/Qemu}.
1820 @end itemize
1822 @node Cross compilation for Windows with Linux
1823 @section Cross compilation for Windows with Linux
1825 @itemize
1826 @item
1827 Install the MinGW cross compilation tools available at
1828 @url{http://www.mingw.org/}.
1830 @item 
1831 Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
1832 unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
1833 variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
1834 the QEMU configuration script.
1836 @item 
1837 Configure QEMU for Windows cross compilation:
1838 @example
1839 ./configure --enable-mingw32
1840 @end example
1841 If necessary, you can change the cross-prefix according to the prefix
1842 choosen for the MinGW tools with --cross-prefix. You can also use
1843 --prefix to set the Win32 install path.
1845 @item You can install QEMU in the installation directory by typing 
1846 @file{make install}. Don't forget to copy @file{SDL.dll} in the
1847 installation directory. 
1849 @end itemize
1851 Note: Currently, Wine does not seem able to launch
1852 QEMU for Win32.
1854 @node Mac OS X
1855 @section Mac OS X
1857 The Mac OS X patches are not fully merged in QEMU, so you should look
1858 at the QEMU mailing list archive to have all the necessary
1859 information.
1861 @node Index
1862 @chapter Index
1863 @printindex cp
1865 @bye