SCSI and USB async IO support.
[qemu/mini2440.git] / qemu-doc.texi
blob8ff329a723c5433c3e2f27e673d7374bc54fd2d5
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4 @settitle QEMU CPU Emulator User Documentation
5 @exampleindent 0
6 @paragraphindent 0
7 @c %**end of header
9 @iftex
10 @titlepage
11 @sp 7
12 @center @titlefont{QEMU CPU Emulator}
13 @sp 1
14 @center @titlefont{User Documentation}
15 @sp 3
16 @end titlepage
17 @end iftex
19 @ifnottex
20 @node Top
21 @top
23 @menu
24 * Introduction::
25 * Installation::
26 * QEMU PC System emulator::
27 * QEMU System emulator for non PC targets::
28 * QEMU Linux User space emulator::
29 * compilation:: Compilation from the sources
30 * Index::
31 @end menu
32 @end ifnottex
34 @contents
36 @node Introduction
37 @chapter Introduction
39 @menu
40 * intro_features:: Features
41 @end menu
43 @node intro_features
44 @section Features
46 QEMU is a FAST! processor emulator using dynamic translation to
47 achieve good emulation speed.
49 QEMU has two operating modes:
51 @itemize @minus
53 @item 
54 Full system emulation. In this mode, QEMU emulates a full system (for
55 example a PC), including one or several processors and various
56 peripherals. It can be used to launch different Operating Systems
57 without rebooting the PC or to debug system code.
59 @item 
60 User mode emulation (Linux host only). In this mode, QEMU can launch
61 Linux processes compiled for one CPU on another CPU. It can be used to
62 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 to ease cross-compilation and cross-debugging.
65 @end itemize
67 QEMU can run without an host kernel driver and yet gives acceptable
68 performance. 
70 For system emulation, the following hardware targets are supported:
71 @itemize
72 @item PC (x86 or x86_64 processor)
73 @item ISA PC (old style PC without PCI bus)
74 @item PREP (PowerPC processor)
75 @item G3 BW PowerMac (PowerPC processor)
76 @item Mac99 PowerMac (PowerPC processor, in progress)
77 @item Sun4m (32-bit Sparc processor)
78 @item Sun4u (64-bit Sparc processor, in progress)
79 @item Malta board (32-bit MIPS processor)
80 @item ARM Integrator/CP (ARM926E or 1026E processor)
81 @item ARM Versatile baseboard (ARM926E)
82 @end itemize
84 For user emulation, x86, PowerPC, ARM, MIPS, and Sparc32/64 CPUs are supported.
86 @node Installation
87 @chapter Installation
89 If you want to compile QEMU yourself, see @ref{compilation}.
91 @menu
92 * install_linux::   Linux
93 * install_windows:: Windows
94 * install_mac::     Macintosh
95 @end menu
97 @node install_linux
98 @section Linux
100 If a precompiled package is available for your distribution - you just
101 have to install it. Otherwise, see @ref{compilation}.
103 @node install_windows
104 @section Windows
106 Download the experimental binary installer at
107 @url{http://www.free.oszoo.org/@/download.html}.
109 @node install_mac
110 @section Mac OS X
112 Download the experimental binary installer at
113 @url{http://www.free.oszoo.org/@/download.html}.
115 @node QEMU PC System emulator
116 @chapter QEMU PC System emulator
118 @menu
119 * pcsys_introduction:: Introduction
120 * pcsys_quickstart::   Quick Start
121 * sec_invocation::     Invocation
122 * pcsys_keys::         Keys
123 * pcsys_monitor::      QEMU Monitor
124 * disk_images::        Disk Images
125 * pcsys_network::      Network emulation
126 * direct_linux_boot::  Direct Linux Boot
127 * pcsys_usb::          USB emulation
128 * gdb_usage::          GDB usage
129 * pcsys_os_specific::  Target OS specific information
130 @end menu
132 @node pcsys_introduction
133 @section Introduction
135 @c man begin DESCRIPTION
137 The QEMU PC System emulator simulates the
138 following peripherals:
140 @itemize @minus
141 @item 
142 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
143 @item
144 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
145 extensions (hardware level, including all non standard modes).
146 @item
147 PS/2 mouse and keyboard
148 @item 
149 2 PCI IDE interfaces with hard disk and CD-ROM support
150 @item
151 Floppy disk
152 @item 
153 NE2000 PCI network adapters
154 @item
155 Serial ports
156 @item
157 Creative SoundBlaster 16 sound card
158 @item
159 ENSONIQ AudioPCI ES1370 sound card
160 @item
161 Adlib(OPL2) - Yamaha YM3812 compatible chip
162 @item
163 PCI UHCI USB controller and a virtual USB hub.
164 @end itemize
166 SMP is supported with up to 255 CPUs.
168 Note that adlib is only available when QEMU was configured with
169 -enable-adlib
171 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
172 VGA BIOS.
174 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
176 @c man end
178 @node pcsys_quickstart
179 @section Quick Start
181 Download and uncompress the linux image (@file{linux.img}) and type:
183 @example
184 qemu linux.img
185 @end example
187 Linux should boot and give you a prompt.
189 @node sec_invocation
190 @section Invocation
192 @example
193 @c man begin SYNOPSIS
194 usage: qemu [options] [disk_image]
195 @c man end
196 @end example
198 @c man begin OPTIONS
199 @var{disk_image} is a raw hard disk image for IDE hard disk 0.
201 General options:
202 @table @option
203 @item -M machine
204 Select the emulated machine (@code{-M ?} for list)
206 @item -fda file
207 @item -fdb file
208 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
209 use the host floppy by using @file{/dev/fd0} as filename.
211 @item -hda file
212 @item -hdb file
213 @item -hdc file
214 @item -hdd file
215 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
217 @item -cdrom file
218 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
219 @option{-cdrom} at the same time). You can use the host CD-ROM by
220 using @file{/dev/cdrom} as filename.
222 @item -boot [a|c|d]
223 Boot on floppy (a), hard disk (c) or CD-ROM (d). Hard disk boot is
224 the default.
226 @item -snapshot
227 Write to temporary files instead of disk image files. In this case,
228 the raw disk image you use is not written back. You can however force
229 the write back by pressing @key{C-a s} (@pxref{disk_images}). 
231 @item -no-fd-bootchk
232 Disable boot signature checking for floppy disks in Bochs BIOS. It may
233 be needed to boot from old floppy disks.
235 @item -m megs
236 Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
238 @item -smp n
239 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
240 CPUs are supported.
242 @item -nographic
244 Normally, QEMU uses SDL to display the VGA output. With this option,
245 you can totally disable graphical output so that QEMU is a simple
246 command line application. The emulated serial port is redirected on
247 the console. Therefore, you can still use QEMU to debug a Linux kernel
248 with a serial console.
250 @item -vnc d
252 Normally, QEMU uses SDL to display the VGA output.  With this option,
253 you can have QEMU listen on VNC display @var{d} and redirect the VGA
254 display over the VNC session.  It is very useful to enable the usb
255 tablet device when using this option (option @option{-usbdevice
256 tablet}). When using the VNC display, you must use the @option{-k}
257 option to set the keyboard layout.
259 @item -k language
261 Use keyboard layout @var{language} (for example @code{fr} for
262 French). This option is only needed where it is not easy to get raw PC
263 keycodes (e.g. on Macs, with some X11 servers or with a VNC
264 display). You don't normally need to use it on PC/Linux or PC/Windows
265 hosts.
267 The available layouts are:
268 @example
269 ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
270 da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
271 de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
272 @end example
274 The default is @code{en-us}.
276 @item -audio-help
278 Will show the audio subsystem help: list of drivers, tunable
279 parameters.
281 @item -soundhw card1,card2,... or -soundhw all
283 Enable audio and selected sound hardware. Use ? to print all
284 available sound hardware.
286 @example
287 qemu -soundhw sb16,adlib hda
288 qemu -soundhw es1370 hda
289 qemu -soundhw all hda
290 qemu -soundhw ?
291 @end example
293 @item -localtime
294 Set the real time clock to local time (the default is to UTC
295 time). This option is needed to have correct date in MS-DOS or
296 Windows.
298 @item -full-screen
299 Start in full screen.
301 @item -pidfile file
302 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
303 from a script.
305 @item -win2k-hack
306 Use it when installing Windows 2000 to avoid a disk full bug. After
307 Windows 2000 is installed, you no longer need this option (this option
308 slows down the IDE transfers).
310 @end table
312 USB options:
313 @table @option
315 @item -usb
316 Enable the USB driver (will be the default soon)
318 @item -usbdevice devname
319 Add the USB device @var{devname}. @xref{usb_devices}.
320 @end table
322 Network options:
324 @table @option
326 @item -net nic[,vlan=n][,macaddr=addr][,model=type]
327 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
328 = 0 is the default). The NIC is currently an NE2000 on the PC
329 target. Optionally, the MAC address can be changed. If no
330 @option{-net} option is specified, a single NIC is created.
331 Qemu can emulate several different models of network card.  Valid values for
332 @var{type} are @code{ne2k_pci}, @code{ne2k_isa}, @code{rtl8139},
333 @code{smc91c111} and @code{lance}.  Not all devices are supported on all
334 targets.
336 @item -net user[,vlan=n][,hostname=name]
337 Use the user mode network stack which requires no administrator
338 priviledge to run.  @option{hostname=name} can be used to specify the client
339 hostname reported by the builtin DHCP server.
341 @item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
342 Connect the host TAP network interface @var{name} to VLAN @var{n} and
343 use the network script @var{file} to configure it. The default
344 network script is @file{/etc/qemu-ifup}. If @var{name} is not
345 provided, the OS automatically provides one.  @option{fd=h} can be
346 used to specify the handle of an already opened host TAP interface. Example:
348 @example
349 qemu linux.img -net nic -net tap
350 @end example
352 More complicated example (two NICs, each one connected to a TAP device)
353 @example
354 qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
355                -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
356 @end example
359 @item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
361 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
362 machine using a TCP socket connection. If @option{listen} is
363 specified, QEMU waits for incoming connections on @var{port}
364 (@var{host} is optional). @option{connect} is used to connect to
365 another QEMU instance using the @option{listen} option. @option{fd=h}
366 specifies an already opened TCP socket.
368 Example:
369 @example
370 # launch a first QEMU instance
371 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
372                -net socket,listen=:1234
373 # connect the VLAN 0 of this instance to the VLAN 0
374 # of the first instance
375 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
376                -net socket,connect=127.0.0.1:1234
377 @end example
379 @item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
381 Create a VLAN @var{n} shared with another QEMU virtual
382 machines using a UDP multicast socket, effectively making a bus for 
383 every QEMU with same multicast address @var{maddr} and @var{port}.
384 NOTES:
385 @enumerate
386 @item 
387 Several QEMU can be running on different hosts and share same bus (assuming 
388 correct multicast setup for these hosts).
389 @item
390 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
391 @url{http://user-mode-linux.sf.net}.
392 @item Use @option{fd=h} to specify an already opened UDP multicast socket.
393 @end enumerate
395 Example:
396 @example
397 # launch one QEMU instance
398 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
399                -net socket,mcast=230.0.0.1:1234
400 # launch another QEMU instance on same "bus"
401 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
402                -net socket,mcast=230.0.0.1:1234
403 # launch yet another QEMU instance on same "bus"
404 qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
405                -net socket,mcast=230.0.0.1:1234
406 @end example
408 Example (User Mode Linux compat.):
409 @example
410 # launch QEMU instance (note mcast address selected
411 # is UML's default)
412 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
413                -net socket,mcast=239.192.168.1:1102
414 # launch UML
415 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
416 @end example
418 @item -net none
419 Indicate that no network devices should be configured. It is used to
420 override the default configuration (@option{-net nic -net user}) which
421 is activated if no @option{-net} options are provided.
423 @item -tftp prefix
424 When using the user mode network stack, activate a built-in TFTP
425 server. All filenames beginning with @var{prefix} can be downloaded
426 from the host to the guest using a TFTP client. The TFTP client on the
427 guest must be configured in binary mode (use the command @code{bin} of
428 the Unix TFTP client). The host IP address on the guest is as usual
429 10.0.2.2.
431 @item -smb dir
432 When using the user mode network stack, activate a built-in SMB
433 server so that Windows OSes can access to the host files in @file{dir}
434 transparently.
436 In the guest Windows OS, the line:
437 @example
438 10.0.2.4 smbserver
439 @end example
440 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
441 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
443 Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
445 Note that a SAMBA server must be installed on the host OS in
446 @file{/usr/sbin/smbd}. QEMU was tested succesfully with smbd version
447 2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
449 @item -redir [tcp|udp]:host-port:[guest-host]:guest-port
451 When using the user mode network stack, redirect incoming TCP or UDP
452 connections to the host port @var{host-port} to the guest
453 @var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
454 is not specified, its value is 10.0.2.15 (default address given by the
455 built-in DHCP server).
457 For example, to redirect host X11 connection from screen 1 to guest
458 screen 0, use the following:
460 @example
461 # on the host
462 qemu -redir tcp:6001::6000 [...]
463 # this host xterm should open in the guest X11 server
464 xterm -display :1
465 @end example
467 To redirect telnet connections from host port 5555 to telnet port on
468 the guest, use the following:
470 @example
471 # on the host
472 qemu -redir tcp:5555::23 [...]
473 telnet localhost 5555
474 @end example
476 Then when you use on the host @code{telnet localhost 5555}, you
477 connect to the guest telnet server.
479 @end table
481 Linux boot specific: When using these options, you can use a given
482 Linux kernel without installing it in the disk image. It can be useful
483 for easier testing of various kernels.
485 @table @option
487 @item -kernel bzImage 
488 Use @var{bzImage} as kernel image.
490 @item -append cmdline 
491 Use @var{cmdline} as kernel command line
493 @item -initrd file
494 Use @var{file} as initial ram disk.
496 @end table
498 Debug/Expert options:
499 @table @option
501 @item -serial dev
502 Redirect the virtual serial port to host character device
503 @var{dev}. The default device is @code{vc} in graphical mode and
504 @code{stdio} in non graphical mode.
506 This option can be used several times to simulate up to 4 serials
507 ports.
509 Available character devices are:
510 @table @code
511 @item vc
512 Virtual console
513 @item pty
514 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
515 @item null
516 void device
517 @item /dev/XXX
518 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
519 parameters are set according to the emulated ones.
520 @item /dev/parportN
521 [Linux only, parallel port only] Use host parallel port
522 @var{N}. Currently only SPP parallel port features can be used.
523 @item file:filename
524 Write output to filename. No character can be read.
525 @item stdio
526 [Unix only] standard input/output
527 @item pipe:filename
528 name pipe @var{filename}
529 @item COMn
530 [Windows only] Use host serial port @var{n}
531 @item udp:[remote_host]:remote_port[@@[src_ip]:src_port]
532 This implements UDP Net Console.  When @var{remote_host} or @var{src_ip} are not specified they default to @code{0.0.0.0}.  When not using a specifed @var{src_port} a random port is automatically chosen.
534 If you just want a simple readonly console you can use @code{netcat} or
535 @code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
536 @code{nc -u -l -p 4555}. Any time qemu writes something to that port it
537 will appear in the netconsole session.
539 If you plan to send characters back via netconsole or you want to stop
540 and start qemu a lot of times, you should have qemu use the same
541 source port each time by using something like @code{-serial
542 udp::4555@@:4556} to qemu. Another approach is to use a patched
543 version of netcat which can listen to a TCP port and send and receive
544 characters via udp.  If you have a patched version of netcat which
545 activates telnet remote echo and single char transfer, then you can
546 use the following options to step up a netcat redirector to allow
547 telnet on port 5555 to access the qemu port.
548 @table @code
549 @item Qemu Options:
550 -serial udp::4555@@:4556
551 @item netcat options:
552 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
553 @item telnet options:
554 localhost 5555
555 @end table
558 @item tcp:[host]:port[,server][,nowait]
559 The TCP Net Console has two modes of operation.  It can send the serial
560 I/O to a location or wait for a connection from a location.  By default
561 the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
562 the @var{,server} option QEMU will wait for a client socket application
563 to connect to the port before continuing, unless the @code{,nowait}
564 option was specified. If @var{host} is omitted, 0.0.0.0 is assumed. Only
565 one TCP connection at a time is accepted. You can use @code{telnet} to
566 connect to the corresponding character device.
567 @table @code
568 @item Example to send tcp console to 192.168.0.2 port 4444
569 -serial tcp:192.168.0.2:4444
570 @item Example to listen and wait on port 4444 for connection
571 -serial tcp::4444,server
572 @item Example to not wait and listen on ip 192.168.0.100 port 4444
573 -serial tcp:192.168.0.100:4444,server,nowait
574 @end table
576 @item telnet:host:port[,server][,nowait]
577 The telnet protocol is used instead of raw tcp sockets.  The options
578 work the same as if you had specified @code{-serial tcp}.  The
579 difference is that the port acts like a telnet server or client using
580 telnet option negotiation.  This will also allow you to send the
581 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
582 sequence.  Typically in unix telnet you do it with Control-] and then
583 type "send break" followed by pressing the enter key.
585 @end table
587 @item -parallel dev
588 Redirect the virtual parallel port to host device @var{dev} (same
589 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
590 be used to use hardware devices connected on the corresponding host
591 parallel port.
593 This option can be used several times to simulate up to 3 parallel
594 ports.
596 @item -monitor dev
597 Redirect the monitor to host device @var{dev} (same devices as the
598 serial port).
599 The default device is @code{vc} in graphical mode and @code{stdio} in
600 non graphical mode.
602 @item -s
603 Wait gdb connection to port 1234 (@pxref{gdb_usage}). 
604 @item -p port
605 Change gdb connection port.
606 @item -S
607 Do not start CPU at startup (you must type 'c' in the monitor).
608 @item -d             
609 Output log in /tmp/qemu.log
610 @item -hdachs c,h,s,[,t]
611 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
612 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
613 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
614 all thoses parameters. This option is useful for old MS-DOS disk
615 images.
617 @item -std-vga
618 Simulate a standard VGA card with Bochs VBE extensions (default is
619 Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
620 VBE extensions (e.g. Windows XP) and if you want to use high
621 resolution modes (>= 1280x1024x16) then you should use this option.
623 @item -no-acpi
624 Disable ACPI (Advanced Configuration and Power Interface) support. Use
625 it if your guest OS complains about ACPI problems (PC target machine
626 only).
628 @item -loadvm file
629 Start right away with a saved state (@code{loadvm} in monitor)
630 @end table
632 @c man end
634 @node pcsys_keys
635 @section Keys
637 @c man begin OPTIONS
639 During the graphical emulation, you can use the following keys:
640 @table @key
641 @item Ctrl-Alt-f
642 Toggle full screen
644 @item Ctrl-Alt-n
645 Switch to virtual console 'n'. Standard console mappings are:
646 @table @emph
647 @item 1
648 Target system display
649 @item 2
650 Monitor
651 @item 3
652 Serial port
653 @end table
655 @item Ctrl-Alt
656 Toggle mouse and keyboard grab.
657 @end table
659 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
660 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
662 During emulation, if you are using the @option{-nographic} option, use
663 @key{Ctrl-a h} to get terminal commands:
665 @table @key
666 @item Ctrl-a h
667 Print this help
668 @item Ctrl-a x    
669 Exit emulatior
670 @item Ctrl-a s    
671 Save disk data back to file (if -snapshot)
672 @item Ctrl-a b
673 Send break (magic sysrq in Linux)
674 @item Ctrl-a c
675 Switch between console and monitor
676 @item Ctrl-a Ctrl-a
677 Send Ctrl-a
678 @end table
679 @c man end
681 @ignore
683 @c man begin SEEALSO
684 The HTML documentation of QEMU for more precise information and Linux
685 user mode emulator invocation.
686 @c man end
688 @c man begin AUTHOR
689 Fabrice Bellard
690 @c man end
692 @end ignore
694 @node pcsys_monitor
695 @section QEMU Monitor
697 The QEMU monitor is used to give complex commands to the QEMU
698 emulator. You can use it to:
700 @itemize @minus
702 @item
703 Remove or insert removable medias images
704 (such as CD-ROM or floppies)
706 @item 
707 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
708 from a disk file.
710 @item Inspect the VM state without an external debugger.
712 @end itemize
714 @subsection Commands
716 The following commands are available:
718 @table @option
720 @item help or ? [cmd]
721 Show the help for all commands or just for command @var{cmd}.
723 @item commit  
724 Commit changes to the disk images (if -snapshot is used)
726 @item info subcommand 
727 show various information about the system state
729 @table @option
730 @item info network
731 show the various VLANs and the associated devices
732 @item info block
733 show the block devices
734 @item info registers
735 show the cpu registers
736 @item info history
737 show the command line history
738 @item info pci
739 show emulated PCI device
740 @item info usb
741 show USB devices plugged on the virtual USB hub
742 @item info usbhost
743 show all USB host devices
744 @item info capture
745 show information about active capturing
746 @item info snapshots
747 show list of VM snapshots
748 @end table
750 @item q or quit
751 Quit the emulator.
753 @item eject [-f] device
754 Eject a removable media (use -f to force it).
756 @item change device filename
757 Change a removable media.
759 @item screendump filename
760 Save screen into PPM image @var{filename}.
762 @item wavcapture filename [frequency [bits [channels]]]
763 Capture audio into @var{filename}. Using sample rate @var{frequency}
764 bits per sample @var{bits} and number of channels @var{channels}.
766 Defaults:
767 @itemize @minus
768 @item Sample rate = 44100 Hz - CD quality
769 @item Bits = 16
770 @item Number of channels = 2 - Stereo
771 @end itemize
773 @item stopcapture index
774 Stop capture with a given @var{index}, index can be obtained with
775 @example
776 info capture
777 @end example
779 @item log item1[,...]
780 Activate logging of the specified items to @file{/tmp/qemu.log}.
782 @item savevm [tag|id]
783 Create a snapshot of the whole virtual machine. If @var{tag} is
784 provided, it is used as human readable identifier. If there is already
785 a snapshot with the same tag or ID, it is replaced. More info at
786 @ref{vm_snapshots}.
788 @item loadvm tag|id
789 Set the whole virtual machine to the snapshot identified by the tag
790 @var{tag} or the unique snapshot ID @var{id}.
792 @item delvm tag|id
793 Delete the snapshot identified by @var{tag} or @var{id}.
795 @item stop
796 Stop emulation.
798 @item c or cont
799 Resume emulation.
801 @item gdbserver [port]
802 Start gdbserver session (default port=1234)
804 @item x/fmt addr
805 Virtual memory dump starting at @var{addr}.
807 @item xp /fmt addr
808 Physical memory dump starting at @var{addr}.
810 @var{fmt} is a format which tells the command how to format the
811 data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
813 @table @var
814 @item count 
815 is the number of items to be dumped.
817 @item format
818 can be x (hexa), d (signed decimal), u (unsigned decimal), o (octal),
819 c (char) or i (asm instruction).
821 @item size
822 can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
823 @code{h} or @code{w} can be specified with the @code{i} format to
824 respectively select 16 or 32 bit code instruction size.
826 @end table
828 Examples: 
829 @itemize
830 @item
831 Dump 10 instructions at the current instruction pointer:
832 @example 
833 (qemu) x/10i $eip
834 0x90107063:  ret
835 0x90107064:  sti
836 0x90107065:  lea    0x0(%esi,1),%esi
837 0x90107069:  lea    0x0(%edi,1),%edi
838 0x90107070:  ret
839 0x90107071:  jmp    0x90107080
840 0x90107073:  nop
841 0x90107074:  nop
842 0x90107075:  nop
843 0x90107076:  nop
844 @end example
846 @item
847 Dump 80 16 bit values at the start of the video memory.
848 @smallexample 
849 (qemu) xp/80hx 0xb8000
850 0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
851 0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
852 0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
853 0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
854 0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
855 0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
856 0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
857 0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
858 0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
859 0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
860 @end smallexample
861 @end itemize
863 @item p or print/fmt expr
865 Print expression value. Only the @var{format} part of @var{fmt} is
866 used.
868 @item sendkey keys
870 Send @var{keys} to the emulator. Use @code{-} to press several keys
871 simultaneously. Example:
872 @example
873 sendkey ctrl-alt-f1
874 @end example
876 This command is useful to send keys that your graphical user interface
877 intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
879 @item system_reset
881 Reset the system.
883 @item usb_add devname
885 Add the USB device @var{devname}.  For details of available devices see
886 @ref{usb_devices}
888 @item usb_del devname
890 Remove the USB device @var{devname} from the QEMU virtual USB
891 hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
892 command @code{info usb} to see the devices you can remove.
894 @end table
896 @subsection Integer expressions
898 The monitor understands integers expressions for every integer
899 argument. You can use register names to get the value of specifics
900 CPU registers by prefixing them with @emph{$}.
902 @node disk_images
903 @section Disk Images
905 Since version 0.6.1, QEMU supports many disk image formats, including
906 growable disk images (their size increase as non empty sectors are
907 written), compressed and encrypted disk images. Version 0.8.3 added
908 the new qcow2 disk image format which is essential to support VM
909 snapshots.
911 @menu
912 * disk_images_quickstart::    Quick start for disk image creation
913 * disk_images_snapshot_mode:: Snapshot mode
914 * vm_snapshots::              VM snapshots
915 * qemu_img_invocation::       qemu-img Invocation
916 * disk_images_fat_images::    Virtual FAT disk images
917 @end menu
919 @node disk_images_quickstart
920 @subsection Quick start for disk image creation
922 You can create a disk image with the command:
923 @example
924 qemu-img create myimage.img mysize
925 @end example
926 where @var{myimage.img} is the disk image filename and @var{mysize} is its
927 size in kilobytes. You can add an @code{M} suffix to give the size in
928 megabytes and a @code{G} suffix for gigabytes.
930 See @ref{qemu_img_invocation} for more information.
932 @node disk_images_snapshot_mode
933 @subsection Snapshot mode
935 If you use the option @option{-snapshot}, all disk images are
936 considered as read only. When sectors in written, they are written in
937 a temporary file created in @file{/tmp}. You can however force the
938 write back to the raw disk images by using the @code{commit} monitor
939 command (or @key{C-a s} in the serial console).
941 @node vm_snapshots
942 @subsection VM snapshots
944 VM snapshots are snapshots of the complete virtual machine including
945 CPU state, RAM, device state and the content of all the writable
946 disks. In order to use VM snapshots, you must have at least one non
947 removable and writable block device using the @code{qcow2} disk image
948 format. Normally this device is the first virtual hard drive.
950 Use the monitor command @code{savevm} to create a new VM snapshot or
951 replace an existing one. A human readable name can be assigned to each
952 snapshot in addition to its numerical ID.
954 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
955 a VM snapshot. @code{info snapshots} lists the available snapshots
956 with their associated information:
958 @example
959 (qemu) info snapshots
960 Snapshot devices: hda
961 Snapshot list (from hda):
962 ID        TAG                 VM SIZE                DATE       VM CLOCK
963 1         start                   41M 2006-08-06 12:38:02   00:00:14.954
964 2                                 40M 2006-08-06 12:43:29   00:00:18.633
965 3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
966 @end example
968 A VM snapshot is made of a VM state info (its size is shown in
969 @code{info snapshots}) and a snapshot of every writable disk image.
970 The VM state info is stored in the first @code{qcow2} non removable
971 and writable block device. The disk image snapshots are stored in
972 every disk image. The size of a snapshot in a disk image is difficult
973 to evaluate and is not shown by @code{info snapshots} because the
974 associated disk sectors are shared among all the snapshots to save
975 disk space (otherwise each snapshot would need a full copy of all the
976 disk images).
978 When using the (unrelated) @code{-snapshot} option
979 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
980 but they are deleted as soon as you exit QEMU.
982 VM snapshots currently have the following known limitations:
983 @itemize
984 @item 
985 They cannot cope with removable devices if they are removed or
986 inserted after a snapshot is done.
987 @item 
988 A few device drivers still have incomplete snapshot support so their
989 state is not saved or restored properly (in particular USB).
990 @end itemize
992 @node qemu_img_invocation
993 @subsection @code{qemu-img} Invocation
995 @include qemu-img.texi
997 @node disk_images_fat_images
998 @subsection Virtual FAT disk images
1000 QEMU can automatically create a virtual FAT disk image from a
1001 directory tree. In order to use it, just type:
1003 @example 
1004 qemu linux.img -hdb fat:/my_directory
1005 @end example
1007 Then you access access to all the files in the @file{/my_directory}
1008 directory without having to copy them in a disk image or to export
1009 them via SAMBA or NFS. The default access is @emph{read-only}.
1011 Floppies can be emulated with the @code{:floppy:} option:
1013 @example 
1014 qemu linux.img -fda fat:floppy:/my_directory
1015 @end example
1017 A read/write support is available for testing (beta stage) with the
1018 @code{:rw:} option:
1020 @example 
1021 qemu linux.img -fda fat:floppy:rw:/my_directory
1022 @end example
1024 What you should @emph{never} do:
1025 @itemize
1026 @item use non-ASCII filenames ;
1027 @item use "-snapshot" together with ":rw:" ;
1028 @item expect it to work when loadvm'ing ;
1029 @item write to the FAT directory on the host system while accessing it with the guest system.
1030 @end itemize
1032 @node pcsys_network
1033 @section Network emulation
1035 QEMU can simulate several networks cards (NE2000 boards on the PC
1036 target) and can connect them to an arbitrary number of Virtual Local
1037 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1038 VLAN. VLAN can be connected between separate instances of QEMU to
1039 simulate large networks. For simpler usage, a non priviledged user mode
1040 network stack can replace the TAP device to have a basic network
1041 connection.
1043 @subsection VLANs
1045 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1046 connection between several network devices. These devices can be for
1047 example QEMU virtual Ethernet cards or virtual Host ethernet devices
1048 (TAP devices).
1050 @subsection Using TAP network interfaces
1052 This is the standard way to connect QEMU to a real network. QEMU adds
1053 a virtual network device on your host (called @code{tapN}), and you
1054 can then configure it as if it was a real ethernet card.
1056 As an example, you can download the @file{linux-test-xxx.tar.gz}
1057 archive and copy the script @file{qemu-ifup} in @file{/etc} and
1058 configure properly @code{sudo} so that the command @code{ifconfig}
1059 contained in @file{qemu-ifup} can be executed as root. You must verify
1060 that your host kernel supports the TAP network interfaces: the
1061 device @file{/dev/net/tun} must be present.
1063 See @ref{direct_linux_boot} to have an example of network use with a
1064 Linux distribution and @ref{sec_invocation} to have examples of
1065 command lines using the TAP network interfaces.
1067 @subsection Using the user mode network stack
1069 By using the option @option{-net user} (default configuration if no
1070 @option{-net} option is specified), QEMU uses a completely user mode
1071 network stack (you don't need root priviledge to use the virtual
1072 network). The virtual network configuration is the following:
1074 @example
1076          QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1077                            |          (10.0.2.2)
1078                            |
1079                            ---->  DNS server (10.0.2.3)
1080                            |     
1081                            ---->  SMB server (10.0.2.4)
1082 @end example
1084 The QEMU VM behaves as if it was behind a firewall which blocks all
1085 incoming connections. You can use a DHCP client to automatically
1086 configure the network in the QEMU VM. The DHCP server assign addresses
1087 to the hosts starting from 10.0.2.15.
1089 In order to check that the user mode network is working, you can ping
1090 the address 10.0.2.2 and verify that you got an address in the range
1091 10.0.2.x from the QEMU virtual DHCP server.
1093 Note that @code{ping} is not supported reliably to the internet as it
1094 would require root priviledges. It means you can only ping the local
1095 router (10.0.2.2).
1097 When using the built-in TFTP server, the router is also the TFTP
1098 server.
1100 When using the @option{-redir} option, TCP or UDP connections can be
1101 redirected from the host to the guest. It allows for example to
1102 redirect X11, telnet or SSH connections.
1104 @subsection Connecting VLANs between QEMU instances
1106 Using the @option{-net socket} option, it is possible to make VLANs
1107 that span several QEMU instances. See @ref{sec_invocation} to have a
1108 basic example.
1110 @node direct_linux_boot
1111 @section Direct Linux Boot
1113 This section explains how to launch a Linux kernel inside QEMU without
1114 having to make a full bootable image. It is very useful for fast Linux
1115 kernel testing. The QEMU network configuration is also explained.
1117 @enumerate
1118 @item
1119 Download the archive @file{linux-test-xxx.tar.gz} containing a Linux
1120 kernel and a disk image. 
1122 @item Optional: If you want network support (for example to launch X11 examples), you
1123 must copy the script @file{qemu-ifup} in @file{/etc} and configure
1124 properly @code{sudo} so that the command @code{ifconfig} contained in
1125 @file{qemu-ifup} can be executed as root. You must verify that your host
1126 kernel supports the TUN/TAP network interfaces: the device
1127 @file{/dev/net/tun} must be present.
1129 When network is enabled, there is a virtual network connection between
1130 the host kernel and the emulated kernel. The emulated kernel is seen
1131 from the host kernel at IP address 172.20.0.2 and the host kernel is
1132 seen from the emulated kernel at IP address 172.20.0.1.
1134 @item Launch @code{qemu.sh}. You should have the following output:
1136 @smallexample
1137 > ./qemu.sh 
1138 Connected to host network interface: tun0
1139 Linux version 2.4.21 (bellard@@voyager.localdomain) (gcc version 3.2.2 20030222 @/(Red Hat @/Linux 3.2.2-5)) #5 Tue Nov 11 18:18:53 CET 2003
1140 BIOS-provided physical RAM map:
1141  BIOS-e801: 0000000000000000 - 000000000009f000 (usable)
1142  BIOS-e801: 0000000000100000 - 0000000002000000 (usable)
1143 32MB LOWMEM available.
1144 On node 0 totalpages: 8192
1145 zone(0): 4096 pages.
1146 zone(1): 4096 pages.
1147 zone(2): 0 pages.
1148 Kernel command line: root=/dev/hda sb=0x220,5,1,5 ide2=noprobe ide3=noprobe ide4=noprobe @/ide5=noprobe console=ttyS0
1149 ide_setup: ide2=noprobe
1150 ide_setup: ide3=noprobe
1151 ide_setup: ide4=noprobe
1152 ide_setup: ide5=noprobe
1153 Initializing CPU#0
1154 Detected 2399.621 MHz processor.
1155 Console: colour EGA 80x25
1156 Calibrating delay loop... 4744.80 BogoMIPS
1157 Memory: 28872k/32768k available (1210k kernel code, 3508k reserved, 266k data, 64k init, @/0k highmem)
1158 Dentry cache hash table entries: 4096 (order: 3, 32768 bytes)
1159 Inode cache hash table entries: 2048 (order: 2, 16384 bytes)
1160 Mount cache hash table entries: 512 (order: 0, 4096 bytes)
1161 Buffer-cache hash table entries: 1024 (order: 0, 4096 bytes)
1162 Page-cache hash table entries: 8192 (order: 3, 32768 bytes)
1163 CPU: Intel Pentium Pro stepping 03
1164 Checking 'hlt' instruction... OK.
1165 POSIX conformance testing by UNIFIX
1166 Linux NET4.0 for Linux 2.4
1167 Based upon Swansea University Computer Society NET3.039
1168 Initializing RT netlink socket
1169 apm: BIOS not found.
1170 Starting kswapd
1171 Journalled Block Device driver loaded
1172 Detected PS/2 Mouse Port.
1173 pty: 256 Unix98 ptys configured
1174 Serial driver version 5.05c (2001-07-08) with no serial options enabled
1175 ttyS00 at 0x03f8 (irq = 4) is a 16450
1176 ne.c:v1.10 9/23/94 Donald Becker (becker@@scyld.com)
1177 Last modified Nov 1, 2000 by Paul Gortmaker
1178 NE*000 ethercard probe at 0x300: 52 54 00 12 34 56
1179 eth0: NE2000 found at 0x300, using IRQ 9.
1180 RAMDISK driver initialized: 16 RAM disks of 4096K size 1024 blocksize
1181 Uniform Multi-Platform E-IDE driver Revision: 7.00beta4-2.4
1182 ide: Assuming 50MHz system bus speed for PIO modes; override with idebus=xx
1183 hda: QEMU HARDDISK, ATA DISK drive
1184 ide0 at 0x1f0-0x1f7,0x3f6 on irq 14
1185 hda: attached ide-disk driver.
1186 hda: 20480 sectors (10 MB) w/256KiB Cache, CHS=20/16/63
1187 Partition check:
1188  hda:
1189 Soundblaster audio driver Copyright (C) by Hannu Savolainen 1993-1996
1190 NET4: Linux TCP/IP 1.0 for NET4.0
1191 IP Protocols: ICMP, UDP, TCP, IGMP
1192 IP: routing cache hash table of 512 buckets, 4Kbytes
1193 TCP: Hash tables configured (established 2048 bind 4096)
1194 NET4: Unix domain sockets 1.0/SMP for Linux NET4.0.
1195 EXT2-fs warning: mounting unchecked fs, running e2fsck is recommended
1196 VFS: Mounted root (ext2 filesystem).
1197 Freeing unused kernel memory: 64k freed
1199 Linux version 2.4.21 (bellard@@voyager.localdomain) (gcc version 3.2.2 20030222 @/(Red Hat @/Linux 3.2.2-5)) #5 Tue Nov 11 18:18:53 CET 2003
1201 QEMU Linux test distribution (based on Redhat 9)
1203 Type 'exit' to halt the system
1205 sh-2.05b# 
1206 @end smallexample
1208 @item
1209 Then you can play with the kernel inside the virtual serial console. You
1210 can launch @code{ls} for example. Type @key{Ctrl-a h} to have an help
1211 about the keys you can type inside the virtual serial console. In
1212 particular, use @key{Ctrl-a x} to exit QEMU and use @key{Ctrl-a b} as
1213 the Magic SysRq key.
1215 @item 
1216 If the network is enabled, launch the script @file{/etc/linuxrc} in the
1217 emulator (don't forget the leading dot):
1218 @example
1219 . /etc/linuxrc
1220 @end example
1222 Then enable X11 connections on your PC from the emulated Linux: 
1223 @example
1224 xhost +172.20.0.2
1225 @end example
1227 You can now launch @file{xterm} or @file{xlogo} and verify that you have
1228 a real Virtual Linux system !
1230 @end enumerate
1232 NOTES:
1233 @enumerate
1234 @item 
1235 A 2.5.74 kernel is also included in the archive. Just
1236 replace the bzImage in qemu.sh to try it.
1238 @item 
1239 In order to exit cleanly from qemu, you can do a @emph{shutdown} inside
1240 qemu. qemu will automatically exit when the Linux shutdown is done.
1242 @item 
1243 You can boot slightly faster by disabling the probe of non present IDE
1244 interfaces. To do so, add the following options on the kernel command
1245 line:
1246 @example
1247 ide1=noprobe ide2=noprobe ide3=noprobe ide4=noprobe ide5=noprobe
1248 @end example
1250 @item 
1251 The example disk image is a modified version of the one made by Kevin
1252 Lawton for the plex86 Project (@url{www.plex86.org}).
1254 @end enumerate
1256 @node pcsys_usb
1257 @section USB emulation
1259 QEMU emulates a PCI UHCI USB controller. You can virtually plug
1260 virtual USB devices or real host USB devices (experimental, works only
1261 on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1262 as neccessary to connect multiple USB devices.
1264 @menu
1265 * usb_devices::
1266 * host_usb_devices::
1267 @end menu
1268 @node usb_devices
1269 @subsection Connecting USB devices
1271 USB devices can be connected with the @option{-usbdevice} commandline option
1272 or the @code{usb_add} monitor command.  Available devices are:
1274 @table @var
1275 @item @code{mouse}
1276 Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1277 @item @code{tablet}
1278 Pointer device that uses abolsute coordinates (like a touchscreen).
1279 This means qemu is able to report the mouse position without having
1280 to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1281 @item @code{disk:file}
1282 Mass storage device based on @var{file} (@pxref{disk_images})
1283 @item @code{host:bus.addr}
1284 Pass through the host device identified by @var{bus.addr}
1285 (Linux only)
1286 @item @code{host:vendor_id:product_id}
1287 Pass through the host device identified by @var{vendor_id:product_id}
1288 (Linux only)
1289 @end table
1291 @node host_usb_devices
1292 @subsection Using host USB devices on a Linux host
1294 WARNING: this is an experimental feature. QEMU will slow down when
1295 using it. USB devices requiring real time streaming (i.e. USB Video
1296 Cameras) are not supported yet.
1298 @enumerate
1299 @item If you use an early Linux 2.4 kernel, verify that no Linux driver 
1300 is actually using the USB device. A simple way to do that is simply to
1301 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1302 to @file{mydriver.o.disabled}.
1304 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1305 @example
1306 ls /proc/bus/usb
1307 001  devices  drivers
1308 @end example
1310 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1311 @example
1312 chown -R myuid /proc/bus/usb
1313 @end example
1315 @item Launch QEMU and do in the monitor:
1316 @example 
1317 info usbhost
1318   Device 1.2, speed 480 Mb/s
1319     Class 00: USB device 1234:5678, USB DISK
1320 @end example
1321 You should see the list of the devices you can use (Never try to use
1322 hubs, it won't work).
1324 @item Add the device in QEMU by using:
1325 @example 
1326 usb_add host:1234:5678
1327 @end example
1329 Normally the guest OS should report that a new USB device is
1330 plugged. You can use the option @option{-usbdevice} to do the same.
1332 @item Now you can try to use the host USB device in QEMU.
1334 @end enumerate
1336 When relaunching QEMU, you may have to unplug and plug again the USB
1337 device to make it work again (this is a bug).
1339 @node gdb_usage
1340 @section GDB usage
1342 QEMU has a primitive support to work with gdb, so that you can do
1343 'Ctrl-C' while the virtual machine is running and inspect its state.
1345 In order to use gdb, launch qemu with the '-s' option. It will wait for a
1346 gdb connection:
1347 @example
1348 > qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1349        -append "root=/dev/hda"
1350 Connected to host network interface: tun0
1351 Waiting gdb connection on port 1234
1352 @end example
1354 Then launch gdb on the 'vmlinux' executable:
1355 @example
1356 > gdb vmlinux
1357 @end example
1359 In gdb, connect to QEMU:
1360 @example
1361 (gdb) target remote localhost:1234
1362 @end example
1364 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1365 @example
1366 (gdb) c
1367 @end example
1369 Here are some useful tips in order to use gdb on system code:
1371 @enumerate
1372 @item
1373 Use @code{info reg} to display all the CPU registers.
1374 @item
1375 Use @code{x/10i $eip} to display the code at the PC position.
1376 @item
1377 Use @code{set architecture i8086} to dump 16 bit code. Then use
1378 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1379 @end enumerate
1381 @node pcsys_os_specific
1382 @section Target OS specific information
1384 @subsection Linux
1386 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1387 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1388 color depth in the guest and the host OS.
1390 When using a 2.6 guest Linux kernel, you should add the option
1391 @code{clock=pit} on the kernel command line because the 2.6 Linux
1392 kernels make very strict real time clock checks by default that QEMU
1393 cannot simulate exactly.
1395 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1396 not activated because QEMU is slower with this patch. The QEMU
1397 Accelerator Module is also much slower in this case. Earlier Fedora
1398 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporte this
1399 patch by default. Newer kernels don't have it.
1401 @subsection Windows
1403 If you have a slow host, using Windows 95 is better as it gives the
1404 best speed. Windows 2000 is also a good choice.
1406 @subsubsection SVGA graphic modes support
1408 QEMU emulates a Cirrus Logic GD5446 Video
1409 card. All Windows versions starting from Windows 95 should recognize
1410 and use this graphic card. For optimal performances, use 16 bit color
1411 depth in the guest and the host OS.
1413 If you are using Windows XP as guest OS and if you want to use high
1414 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1415 1280x1024x16), then you should use the VESA VBE virtual graphic card
1416 (option @option{-std-vga}).
1418 @subsubsection CPU usage reduction
1420 Windows 9x does not correctly use the CPU HLT
1421 instruction. The result is that it takes host CPU cycles even when
1422 idle. You can install the utility from
1423 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1424 problem. Note that no such tool is needed for NT, 2000 or XP.
1426 @subsubsection Windows 2000 disk full problem
1428 Windows 2000 has a bug which gives a disk full problem during its
1429 installation. When installing it, use the @option{-win2k-hack} QEMU
1430 option to enable a specific workaround. After Windows 2000 is
1431 installed, you no longer need this option (this option slows down the
1432 IDE transfers).
1434 @subsubsection Windows 2000 shutdown
1436 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1437 can. It comes from the fact that Windows 2000 does not automatically
1438 use the APM driver provided by the BIOS.
1440 In order to correct that, do the following (thanks to Struan
1441 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1442 Add/Troubleshoot a device => Add a new device & Next => No, select the
1443 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1444 (again) a few times. Now the driver is installed and Windows 2000 now
1445 correctly instructs QEMU to shutdown at the appropriate moment. 
1447 @subsubsection Share a directory between Unix and Windows
1449 See @ref{sec_invocation} about the help of the option @option{-smb}.
1451 @subsubsection Windows XP security problems
1453 Some releases of Windows XP install correctly but give a security
1454 error when booting:
1455 @example
1456 A problem is preventing Windows from accurately checking the
1457 license for this computer. Error code: 0x800703e6.
1458 @end example
1459 The only known workaround is to boot in Safe mode
1460 without networking support. 
1462 Future QEMU releases are likely to correct this bug.
1464 @subsection MS-DOS and FreeDOS
1466 @subsubsection CPU usage reduction
1468 DOS does not correctly use the CPU HLT instruction. The result is that
1469 it takes host CPU cycles even when idle. You can install the utility
1470 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1471 problem.
1473 @node QEMU System emulator for non PC targets
1474 @chapter QEMU System emulator for non PC targets
1476 QEMU is a generic emulator and it emulates many non PC
1477 machines. Most of the options are similar to the PC emulator. The
1478 differences are mentionned in the following sections.
1480 @menu
1481 * QEMU PowerPC System emulator::
1482 * Sparc32 System emulator invocation::
1483 * Sparc64 System emulator invocation::
1484 * MIPS System emulator invocation::
1485 * ARM System emulator invocation::
1486 @end menu
1488 @node QEMU PowerPC System emulator
1489 @section QEMU PowerPC System emulator
1491 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1492 or PowerMac PowerPC system.
1494 QEMU emulates the following PowerMac peripherals:
1496 @itemize @minus
1497 @item 
1498 UniNorth PCI Bridge 
1499 @item
1500 PCI VGA compatible card with VESA Bochs Extensions
1501 @item 
1502 2 PMAC IDE interfaces with hard disk and CD-ROM support
1503 @item 
1504 NE2000 PCI adapters
1505 @item
1506 Non Volatile RAM
1507 @item
1508 VIA-CUDA with ADB keyboard and mouse.
1509 @end itemize
1511 QEMU emulates the following PREP peripherals:
1513 @itemize @minus
1514 @item 
1515 PCI Bridge
1516 @item
1517 PCI VGA compatible card with VESA Bochs Extensions
1518 @item 
1519 2 IDE interfaces with hard disk and CD-ROM support
1520 @item
1521 Floppy disk
1522 @item 
1523 NE2000 network adapters
1524 @item
1525 Serial port
1526 @item
1527 PREP Non Volatile RAM
1528 @item
1529 PC compatible keyboard and mouse.
1530 @end itemize
1532 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1533 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1535 @c man begin OPTIONS
1537 The following options are specific to the PowerPC emulation:
1539 @table @option
1541 @item -g WxH[xDEPTH]  
1543 Set the initial VGA graphic mode. The default is 800x600x15.
1545 @end table
1547 @c man end 
1550 More information is available at
1551 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1553 @node Sparc32 System emulator invocation
1554 @section Sparc32 System emulator invocation
1556 Use the executable @file{qemu-system-sparc} to simulate a SparcStation 5
1557 (sun4m architecture). The emulation is somewhat complete.
1559 QEMU emulates the following sun4m peripherals:
1561 @itemize @minus
1562 @item
1563 IOMMU
1564 @item
1565 TCX Frame buffer
1566 @item 
1567 Lance (Am7990) Ethernet
1568 @item
1569 Non Volatile RAM M48T08
1570 @item
1571 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1572 and power/reset logic
1573 @item
1574 ESP SCSI controller with hard disk and CD-ROM support
1575 @item
1576 Floppy drive
1577 @end itemize
1579 The number of peripherals is fixed in the architecture.
1581 Since version 0.8.2, QEMU uses OpenBIOS
1582 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1583 firmware implementation. The goal is to implement a 100% IEEE
1584 1275-1994 (referred to as Open Firmware) compliant firmware.
1586 A sample Linux 2.6 series kernel and ram disk image are available on
1587 the QEMU web site. Please note that currently NetBSD, OpenBSD or
1588 Solaris kernels don't work.
1590 @c man begin OPTIONS
1592 The following options are specific to the Sparc emulation:
1594 @table @option
1596 @item -g WxH
1598 Set the initial TCX graphic mode. The default is 1024x768.
1600 @end table
1602 @c man end 
1604 @node Sparc64 System emulator invocation
1605 @section Sparc64 System emulator invocation
1607 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
1608 The emulator is not usable for anything yet.
1610 QEMU emulates the following sun4u peripherals:
1612 @itemize @minus
1613 @item
1614 UltraSparc IIi APB PCI Bridge 
1615 @item
1616 PCI VGA compatible card with VESA Bochs Extensions
1617 @item
1618 Non Volatile RAM M48T59
1619 @item
1620 PC-compatible serial ports
1621 @end itemize
1623 @node MIPS System emulator invocation
1624 @section MIPS System emulator invocation
1626 Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
1627 The emulator is able to boot a Linux kernel and to run a Linux Debian
1628 installation from NFS. The following devices are emulated:
1630 @itemize @minus
1631 @item 
1632 MIPS R4K CPU
1633 @item
1634 PC style serial port
1635 @item
1636 NE2000 network card
1637 @end itemize
1639 More information is available in the QEMU mailing-list archive.
1641 @node ARM System emulator invocation
1642 @section ARM System emulator invocation
1644 Use the executable @file{qemu-system-arm} to simulate a ARM
1645 machine. The ARM Integrator/CP board is emulated with the following
1646 devices:
1648 @itemize @minus
1649 @item
1650 ARM926E or ARM1026E CPU
1651 @item
1652 Two PL011 UARTs
1653 @item 
1654 SMC 91c111 Ethernet adapter
1655 @item
1656 PL110 LCD controller
1657 @item
1658 PL050 KMI with PS/2 keyboard and mouse.
1659 @end itemize
1661 The ARM Versatile baseboard is emulated with the following devices:
1663 @itemize @minus
1664 @item
1665 ARM926E CPU
1666 @item
1667 PL190 Vectored Interrupt Controller
1668 @item
1669 Four PL011 UARTs
1670 @item 
1671 SMC 91c111 Ethernet adapter
1672 @item
1673 PL110 LCD controller
1674 @item
1675 PL050 KMI with PS/2 keyboard and mouse.
1676 @item
1677 PCI host bridge.  Note the emulated PCI bridge only provides access to
1678 PCI memory space.  It does not provide access to PCI IO space.
1679 This means some devices (eg. ne2k_pci NIC) are not useable, and others
1680 (eg. rtl8139 NIC) are only useable when the guest drivers use the memory
1681 mapped control registers.
1682 @item
1683 PCI OHCI USB controller.
1684 @item
1685 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1686 @end itemize
1688 A Linux 2.6 test image is available on the QEMU web site. More
1689 information is available in the QEMU mailing-list archive.
1691 @node QEMU Linux User space emulator 
1692 @chapter QEMU Linux User space emulator 
1694 @menu
1695 * Quick Start::
1696 * Wine launch::
1697 * Command line options::
1698 * Other binaries::
1699 @end menu
1701 @node Quick Start
1702 @section Quick Start
1704 In order to launch a Linux process, QEMU needs the process executable
1705 itself and all the target (x86) dynamic libraries used by it. 
1707 @itemize
1709 @item On x86, you can just try to launch any process by using the native
1710 libraries:
1712 @example 
1713 qemu-i386 -L / /bin/ls
1714 @end example
1716 @code{-L /} tells that the x86 dynamic linker must be searched with a
1717 @file{/} prefix.
1719 @item Since QEMU is also a linux process, you can launch qemu with qemu (NOTE: you can only do that if you compiled QEMU from the sources):
1721 @example 
1722 qemu-i386 -L / qemu-i386 -L / /bin/ls
1723 @end example
1725 @item On non x86 CPUs, you need first to download at least an x86 glibc
1726 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
1727 @code{LD_LIBRARY_PATH} is not set:
1729 @example
1730 unset LD_LIBRARY_PATH 
1731 @end example
1733 Then you can launch the precompiled @file{ls} x86 executable:
1735 @example
1736 qemu-i386 tests/i386/ls
1737 @end example
1738 You can look at @file{qemu-binfmt-conf.sh} so that
1739 QEMU is automatically launched by the Linux kernel when you try to
1740 launch x86 executables. It requires the @code{binfmt_misc} module in the
1741 Linux kernel.
1743 @item The x86 version of QEMU is also included. You can try weird things such as:
1744 @example
1745 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
1746           /usr/local/qemu-i386/bin/ls-i386
1747 @end example
1749 @end itemize
1751 @node Wine launch
1752 @section Wine launch
1754 @itemize
1756 @item Ensure that you have a working QEMU with the x86 glibc
1757 distribution (see previous section). In order to verify it, you must be
1758 able to do:
1760 @example
1761 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
1762 @end example
1764 @item Download the binary x86 Wine install
1765 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page). 
1767 @item Configure Wine on your account. Look at the provided script
1768 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1769 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
1771 @item Then you can try the example @file{putty.exe}:
1773 @example
1774 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
1775           /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1776 @end example
1778 @end itemize
1780 @node Command line options
1781 @section Command line options
1783 @example
1784 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
1785 @end example
1787 @table @option
1788 @item -h
1789 Print the help
1790 @item -L path   
1791 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
1792 @item -s size
1793 Set the x86 stack size in bytes (default=524288)
1794 @end table
1796 Debug options:
1798 @table @option
1799 @item -d
1800 Activate log (logfile=/tmp/qemu.log)
1801 @item -p pagesize
1802 Act as if the host page size was 'pagesize' bytes
1803 @end table
1805 @node Other binaries
1806 @section Other binaries
1808 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
1809 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
1810 configurations), and arm-uclinux bFLT format binaries.
1812 The binary format is detected automatically.
1814 @node compilation
1815 @chapter Compilation from the sources
1817 @menu
1818 * Linux/Unix::
1819 * Windows::
1820 * Cross compilation for Windows with Linux::
1821 * Mac OS X::
1822 @end menu
1824 @node Linux/Unix
1825 @section Linux/Unix
1827 @subsection Compilation
1829 First you must decompress the sources:
1830 @example
1831 cd /tmp
1832 tar zxvf qemu-x.y.z.tar.gz
1833 cd qemu-x.y.z
1834 @end example
1836 Then you configure QEMU and build it (usually no options are needed):
1837 @example
1838 ./configure
1839 make
1840 @end example
1842 Then type as root user:
1843 @example
1844 make install
1845 @end example
1846 to install QEMU in @file{/usr/local}.
1848 @subsection Tested tool versions
1850 In order to compile QEMU succesfully, it is very important that you
1851 have the right tools. The most important one is gcc. I cannot guaranty
1852 that QEMU works if you do not use a tested gcc version. Look at
1853 'configure' and 'Makefile' if you want to make a different gcc
1854 version work.
1856 @example
1857 host      gcc      binutils      glibc    linux       distribution
1858 ----------------------------------------------------------------------
1859 x86       3.2      2.13.2        2.1.3    2.4.18
1860           2.96     2.11.93.0.2   2.2.5    2.4.18      Red Hat 7.3
1861           3.2.2    2.13.90.0.18  2.3.2    2.4.20      Red Hat 9
1863 PowerPC   3.3 [4]  2.13.90.0.18  2.3.1    2.4.20briq
1864           3.2
1866 Alpha     3.3 [1]  2.14.90.0.4   2.2.5    2.2.20 [2]  Debian 3.0
1868 Sparc32   2.95.4   2.12.90.0.1   2.2.5    2.4.18      Debian 3.0
1870 ARM       2.95.4   2.12.90.0.1   2.2.5    2.4.9 [3]   Debian 3.0
1872 [1] On Alpha, QEMU needs the gcc 'visibility' attribute only available
1873     for gcc version >= 3.3.
1874 [2] Linux >= 2.4.20 is necessary for precise exception support
1875     (untested).
1876 [3] 2.4.9-ac10-rmk2-np1-cerf2
1878 [4] gcc 2.95.x generates invalid code when using too many register
1879 variables. You must use gcc 3.x on PowerPC.
1880 @end example
1882 @node Windows
1883 @section Windows
1885 @itemize
1886 @item Install the current versions of MSYS and MinGW from
1887 @url{http://www.mingw.org/}. You can find detailed installation
1888 instructions in the download section and the FAQ.
1890 @item Download 
1891 the MinGW development library of SDL 1.2.x
1892 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
1893 @url{http://www.libsdl.org}. Unpack it in a temporary place, and
1894 unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
1895 directory. Edit the @file{sdl-config} script so that it gives the
1896 correct SDL directory when invoked.
1898 @item Extract the current version of QEMU.
1900 @item Start the MSYS shell (file @file{msys.bat}).
1902 @item Change to the QEMU directory. Launch @file{./configure} and 
1903 @file{make}.  If you have problems using SDL, verify that
1904 @file{sdl-config} can be launched from the MSYS command line.
1906 @item You can install QEMU in @file{Program Files/Qemu} by typing 
1907 @file{make install}. Don't forget to copy @file{SDL.dll} in
1908 @file{Program Files/Qemu}.
1910 @end itemize
1912 @node Cross compilation for Windows with Linux
1913 @section Cross compilation for Windows with Linux
1915 @itemize
1916 @item
1917 Install the MinGW cross compilation tools available at
1918 @url{http://www.mingw.org/}.
1920 @item 
1921 Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
1922 unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
1923 variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
1924 the QEMU configuration script.
1926 @item 
1927 Configure QEMU for Windows cross compilation:
1928 @example
1929 ./configure --enable-mingw32
1930 @end example
1931 If necessary, you can change the cross-prefix according to the prefix
1932 choosen for the MinGW tools with --cross-prefix. You can also use
1933 --prefix to set the Win32 install path.
1935 @item You can install QEMU in the installation directory by typing 
1936 @file{make install}. Don't forget to copy @file{SDL.dll} in the
1937 installation directory. 
1939 @end itemize
1941 Note: Currently, Wine does not seem able to launch
1942 QEMU for Win32.
1944 @node Mac OS X
1945 @section Mac OS X
1947 The Mac OS X patches are not fully merged in QEMU, so you should look
1948 at the QEMU mailing list archive to have all the necessary
1949 information.
1951 @node Index
1952 @chapter Index
1953 @printindex cp
1955 @bye