Fix va_list reuse in cpu_abort.
[qemu/mini2440.git] / exec.c
blob046e967395d62e8f83994ac31c8b249e8e491ade
1 /*
2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "config.h"
21 #ifdef _WIN32
22 #include <windows.h>
23 #else
24 #include <sys/types.h>
25 #include <sys/mman.h>
26 #endif
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdarg.h>
30 #include <string.h>
31 #include <errno.h>
32 #include <unistd.h>
33 #include <inttypes.h>
35 #include "cpu.h"
36 #include "exec-all.h"
37 #if defined(CONFIG_USER_ONLY)
38 #include <qemu.h>
39 #endif
41 //#define DEBUG_TB_INVALIDATE
42 //#define DEBUG_FLUSH
43 //#define DEBUG_TLB
44 //#define DEBUG_UNASSIGNED
46 /* make various TB consistency checks */
47 //#define DEBUG_TB_CHECK
48 //#define DEBUG_TLB_CHECK
50 //#define DEBUG_IOPORT
51 //#define DEBUG_SUBPAGE
53 #if !defined(CONFIG_USER_ONLY)
54 /* TB consistency checks only implemented for usermode emulation. */
55 #undef DEBUG_TB_CHECK
56 #endif
58 /* threshold to flush the translated code buffer */
59 #define CODE_GEN_BUFFER_MAX_SIZE (CODE_GEN_BUFFER_SIZE - CODE_GEN_MAX_SIZE)
61 #define SMC_BITMAP_USE_THRESHOLD 10
63 #define MMAP_AREA_START 0x00000000
64 #define MMAP_AREA_END 0xa8000000
66 #if defined(TARGET_SPARC64)
67 #define TARGET_PHYS_ADDR_SPACE_BITS 41
68 #elif defined(TARGET_SPARC)
69 #define TARGET_PHYS_ADDR_SPACE_BITS 36
70 #elif defined(TARGET_ALPHA)
71 #define TARGET_PHYS_ADDR_SPACE_BITS 42
72 #define TARGET_VIRT_ADDR_SPACE_BITS 42
73 #elif defined(TARGET_PPC64)
74 #define TARGET_PHYS_ADDR_SPACE_BITS 42
75 #else
76 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
77 #define TARGET_PHYS_ADDR_SPACE_BITS 32
78 #endif
80 TranslationBlock tbs[CODE_GEN_MAX_BLOCKS];
81 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
82 int nb_tbs;
83 /* any access to the tbs or the page table must use this lock */
84 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
86 uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE] __attribute__((aligned (32)));
87 uint8_t *code_gen_ptr;
89 int phys_ram_size;
90 int phys_ram_fd;
91 uint8_t *phys_ram_base;
92 uint8_t *phys_ram_dirty;
93 static ram_addr_t phys_ram_alloc_offset = 0;
95 CPUState *first_cpu;
96 /* current CPU in the current thread. It is only valid inside
97 cpu_exec() */
98 CPUState *cpu_single_env;
100 typedef struct PageDesc {
101 /* list of TBs intersecting this ram page */
102 TranslationBlock *first_tb;
103 /* in order to optimize self modifying code, we count the number
104 of lookups we do to a given page to use a bitmap */
105 unsigned int code_write_count;
106 uint8_t *code_bitmap;
107 #if defined(CONFIG_USER_ONLY)
108 unsigned long flags;
109 #endif
110 } PageDesc;
112 typedef struct PhysPageDesc {
113 /* offset in host memory of the page + io_index in the low 12 bits */
114 uint32_t phys_offset;
115 } PhysPageDesc;
117 #define L2_BITS 10
118 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
119 /* XXX: this is a temporary hack for alpha target.
120 * In the future, this is to be replaced by a multi-level table
121 * to actually be able to handle the complete 64 bits address space.
123 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
124 #else
125 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
126 #endif
128 #define L1_SIZE (1 << L1_BITS)
129 #define L2_SIZE (1 << L2_BITS)
131 static void io_mem_init(void);
133 unsigned long qemu_real_host_page_size;
134 unsigned long qemu_host_page_bits;
135 unsigned long qemu_host_page_size;
136 unsigned long qemu_host_page_mask;
138 /* XXX: for system emulation, it could just be an array */
139 static PageDesc *l1_map[L1_SIZE];
140 PhysPageDesc **l1_phys_map;
142 /* io memory support */
143 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
144 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
145 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
146 static int io_mem_nb;
147 #if defined(CONFIG_SOFTMMU)
148 static int io_mem_watch;
149 #endif
151 /* log support */
152 char *logfilename = "/tmp/qemu.log";
153 FILE *logfile;
154 int loglevel;
155 static int log_append = 0;
157 /* statistics */
158 static int tlb_flush_count;
159 static int tb_flush_count;
160 static int tb_phys_invalidate_count;
162 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
163 typedef struct subpage_t {
164 target_phys_addr_t base;
165 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE];
166 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE];
167 void *opaque[TARGET_PAGE_SIZE];
168 } subpage_t;
170 static void page_init(void)
172 /* NOTE: we can always suppose that qemu_host_page_size >=
173 TARGET_PAGE_SIZE */
174 #ifdef _WIN32
176 SYSTEM_INFO system_info;
177 DWORD old_protect;
179 GetSystemInfo(&system_info);
180 qemu_real_host_page_size = system_info.dwPageSize;
182 VirtualProtect(code_gen_buffer, sizeof(code_gen_buffer),
183 PAGE_EXECUTE_READWRITE, &old_protect);
185 #else
186 qemu_real_host_page_size = getpagesize();
188 unsigned long start, end;
190 start = (unsigned long)code_gen_buffer;
191 start &= ~(qemu_real_host_page_size - 1);
193 end = (unsigned long)code_gen_buffer + sizeof(code_gen_buffer);
194 end += qemu_real_host_page_size - 1;
195 end &= ~(qemu_real_host_page_size - 1);
197 mprotect((void *)start, end - start,
198 PROT_READ | PROT_WRITE | PROT_EXEC);
200 #endif
202 if (qemu_host_page_size == 0)
203 qemu_host_page_size = qemu_real_host_page_size;
204 if (qemu_host_page_size < TARGET_PAGE_SIZE)
205 qemu_host_page_size = TARGET_PAGE_SIZE;
206 qemu_host_page_bits = 0;
207 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
208 qemu_host_page_bits++;
209 qemu_host_page_mask = ~(qemu_host_page_size - 1);
210 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
211 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
214 static inline PageDesc *page_find_alloc(unsigned int index)
216 PageDesc **lp, *p;
218 lp = &l1_map[index >> L2_BITS];
219 p = *lp;
220 if (!p) {
221 /* allocate if not found */
222 p = qemu_malloc(sizeof(PageDesc) * L2_SIZE);
223 memset(p, 0, sizeof(PageDesc) * L2_SIZE);
224 *lp = p;
226 return p + (index & (L2_SIZE - 1));
229 static inline PageDesc *page_find(unsigned int index)
231 PageDesc *p;
233 p = l1_map[index >> L2_BITS];
234 if (!p)
235 return 0;
236 return p + (index & (L2_SIZE - 1));
239 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
241 void **lp, **p;
242 PhysPageDesc *pd;
244 p = (void **)l1_phys_map;
245 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
247 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
248 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
249 #endif
250 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
251 p = *lp;
252 if (!p) {
253 /* allocate if not found */
254 if (!alloc)
255 return NULL;
256 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
257 memset(p, 0, sizeof(void *) * L1_SIZE);
258 *lp = p;
260 #endif
261 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
262 pd = *lp;
263 if (!pd) {
264 int i;
265 /* allocate if not found */
266 if (!alloc)
267 return NULL;
268 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
269 *lp = pd;
270 for (i = 0; i < L2_SIZE; i++)
271 pd[i].phys_offset = IO_MEM_UNASSIGNED;
273 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
276 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
278 return phys_page_find_alloc(index, 0);
281 #if !defined(CONFIG_USER_ONLY)
282 static void tlb_protect_code(ram_addr_t ram_addr);
283 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
284 target_ulong vaddr);
285 #endif
287 void cpu_exec_init(CPUState *env)
289 CPUState **penv;
290 int cpu_index;
292 if (!code_gen_ptr) {
293 code_gen_ptr = code_gen_buffer;
294 page_init();
295 io_mem_init();
297 env->next_cpu = NULL;
298 penv = &first_cpu;
299 cpu_index = 0;
300 while (*penv != NULL) {
301 penv = (CPUState **)&(*penv)->next_cpu;
302 cpu_index++;
304 env->cpu_index = cpu_index;
305 env->nb_watchpoints = 0;
306 *penv = env;
309 static inline void invalidate_page_bitmap(PageDesc *p)
311 if (p->code_bitmap) {
312 qemu_free(p->code_bitmap);
313 p->code_bitmap = NULL;
315 p->code_write_count = 0;
318 /* set to NULL all the 'first_tb' fields in all PageDescs */
319 static void page_flush_tb(void)
321 int i, j;
322 PageDesc *p;
324 for(i = 0; i < L1_SIZE; i++) {
325 p = l1_map[i];
326 if (p) {
327 for(j = 0; j < L2_SIZE; j++) {
328 p->first_tb = NULL;
329 invalidate_page_bitmap(p);
330 p++;
336 /* flush all the translation blocks */
337 /* XXX: tb_flush is currently not thread safe */
338 void tb_flush(CPUState *env1)
340 CPUState *env;
341 #if defined(DEBUG_FLUSH)
342 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
343 (unsigned long)(code_gen_ptr - code_gen_buffer),
344 nb_tbs, nb_tbs > 0 ?
345 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
346 #endif
347 nb_tbs = 0;
349 for(env = first_cpu; env != NULL; env = env->next_cpu) {
350 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
353 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
354 page_flush_tb();
356 code_gen_ptr = code_gen_buffer;
357 /* XXX: flush processor icache at this point if cache flush is
358 expensive */
359 tb_flush_count++;
362 #ifdef DEBUG_TB_CHECK
364 static void tb_invalidate_check(target_ulong address)
366 TranslationBlock *tb;
367 int i;
368 address &= TARGET_PAGE_MASK;
369 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
370 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
371 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
372 address >= tb->pc + tb->size)) {
373 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
374 address, (long)tb->pc, tb->size);
380 /* verify that all the pages have correct rights for code */
381 static void tb_page_check(void)
383 TranslationBlock *tb;
384 int i, flags1, flags2;
386 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
387 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
388 flags1 = page_get_flags(tb->pc);
389 flags2 = page_get_flags(tb->pc + tb->size - 1);
390 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
391 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
392 (long)tb->pc, tb->size, flags1, flags2);
398 void tb_jmp_check(TranslationBlock *tb)
400 TranslationBlock *tb1;
401 unsigned int n1;
403 /* suppress any remaining jumps to this TB */
404 tb1 = tb->jmp_first;
405 for(;;) {
406 n1 = (long)tb1 & 3;
407 tb1 = (TranslationBlock *)((long)tb1 & ~3);
408 if (n1 == 2)
409 break;
410 tb1 = tb1->jmp_next[n1];
412 /* check end of list */
413 if (tb1 != tb) {
414 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
418 #endif
420 /* invalidate one TB */
421 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
422 int next_offset)
424 TranslationBlock *tb1;
425 for(;;) {
426 tb1 = *ptb;
427 if (tb1 == tb) {
428 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
429 break;
431 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
435 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
437 TranslationBlock *tb1;
438 unsigned int n1;
440 for(;;) {
441 tb1 = *ptb;
442 n1 = (long)tb1 & 3;
443 tb1 = (TranslationBlock *)((long)tb1 & ~3);
444 if (tb1 == tb) {
445 *ptb = tb1->page_next[n1];
446 break;
448 ptb = &tb1->page_next[n1];
452 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
454 TranslationBlock *tb1, **ptb;
455 unsigned int n1;
457 ptb = &tb->jmp_next[n];
458 tb1 = *ptb;
459 if (tb1) {
460 /* find tb(n) in circular list */
461 for(;;) {
462 tb1 = *ptb;
463 n1 = (long)tb1 & 3;
464 tb1 = (TranslationBlock *)((long)tb1 & ~3);
465 if (n1 == n && tb1 == tb)
466 break;
467 if (n1 == 2) {
468 ptb = &tb1->jmp_first;
469 } else {
470 ptb = &tb1->jmp_next[n1];
473 /* now we can suppress tb(n) from the list */
474 *ptb = tb->jmp_next[n];
476 tb->jmp_next[n] = NULL;
480 /* reset the jump entry 'n' of a TB so that it is not chained to
481 another TB */
482 static inline void tb_reset_jump(TranslationBlock *tb, int n)
484 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
487 static inline void tb_phys_invalidate(TranslationBlock *tb, unsigned int page_addr)
489 CPUState *env;
490 PageDesc *p;
491 unsigned int h, n1;
492 target_ulong phys_pc;
493 TranslationBlock *tb1, *tb2;
495 /* remove the TB from the hash list */
496 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
497 h = tb_phys_hash_func(phys_pc);
498 tb_remove(&tb_phys_hash[h], tb,
499 offsetof(TranslationBlock, phys_hash_next));
501 /* remove the TB from the page list */
502 if (tb->page_addr[0] != page_addr) {
503 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
504 tb_page_remove(&p->first_tb, tb);
505 invalidate_page_bitmap(p);
507 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
508 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
509 tb_page_remove(&p->first_tb, tb);
510 invalidate_page_bitmap(p);
513 tb_invalidated_flag = 1;
515 /* remove the TB from the hash list */
516 h = tb_jmp_cache_hash_func(tb->pc);
517 for(env = first_cpu; env != NULL; env = env->next_cpu) {
518 if (env->tb_jmp_cache[h] == tb)
519 env->tb_jmp_cache[h] = NULL;
522 /* suppress this TB from the two jump lists */
523 tb_jmp_remove(tb, 0);
524 tb_jmp_remove(tb, 1);
526 /* suppress any remaining jumps to this TB */
527 tb1 = tb->jmp_first;
528 for(;;) {
529 n1 = (long)tb1 & 3;
530 if (n1 == 2)
531 break;
532 tb1 = (TranslationBlock *)((long)tb1 & ~3);
533 tb2 = tb1->jmp_next[n1];
534 tb_reset_jump(tb1, n1);
535 tb1->jmp_next[n1] = NULL;
536 tb1 = tb2;
538 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
540 tb_phys_invalidate_count++;
543 static inline void set_bits(uint8_t *tab, int start, int len)
545 int end, mask, end1;
547 end = start + len;
548 tab += start >> 3;
549 mask = 0xff << (start & 7);
550 if ((start & ~7) == (end & ~7)) {
551 if (start < end) {
552 mask &= ~(0xff << (end & 7));
553 *tab |= mask;
555 } else {
556 *tab++ |= mask;
557 start = (start + 8) & ~7;
558 end1 = end & ~7;
559 while (start < end1) {
560 *tab++ = 0xff;
561 start += 8;
563 if (start < end) {
564 mask = ~(0xff << (end & 7));
565 *tab |= mask;
570 static void build_page_bitmap(PageDesc *p)
572 int n, tb_start, tb_end;
573 TranslationBlock *tb;
575 p->code_bitmap = qemu_malloc(TARGET_PAGE_SIZE / 8);
576 if (!p->code_bitmap)
577 return;
578 memset(p->code_bitmap, 0, TARGET_PAGE_SIZE / 8);
580 tb = p->first_tb;
581 while (tb != NULL) {
582 n = (long)tb & 3;
583 tb = (TranslationBlock *)((long)tb & ~3);
584 /* NOTE: this is subtle as a TB may span two physical pages */
585 if (n == 0) {
586 /* NOTE: tb_end may be after the end of the page, but
587 it is not a problem */
588 tb_start = tb->pc & ~TARGET_PAGE_MASK;
589 tb_end = tb_start + tb->size;
590 if (tb_end > TARGET_PAGE_SIZE)
591 tb_end = TARGET_PAGE_SIZE;
592 } else {
593 tb_start = 0;
594 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
596 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
597 tb = tb->page_next[n];
601 #ifdef TARGET_HAS_PRECISE_SMC
603 static void tb_gen_code(CPUState *env,
604 target_ulong pc, target_ulong cs_base, int flags,
605 int cflags)
607 TranslationBlock *tb;
608 uint8_t *tc_ptr;
609 target_ulong phys_pc, phys_page2, virt_page2;
610 int code_gen_size;
612 phys_pc = get_phys_addr_code(env, pc);
613 tb = tb_alloc(pc);
614 if (!tb) {
615 /* flush must be done */
616 tb_flush(env);
617 /* cannot fail at this point */
618 tb = tb_alloc(pc);
620 tc_ptr = code_gen_ptr;
621 tb->tc_ptr = tc_ptr;
622 tb->cs_base = cs_base;
623 tb->flags = flags;
624 tb->cflags = cflags;
625 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
626 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
628 /* check next page if needed */
629 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
630 phys_page2 = -1;
631 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
632 phys_page2 = get_phys_addr_code(env, virt_page2);
634 tb_link_phys(tb, phys_pc, phys_page2);
636 #endif
638 /* invalidate all TBs which intersect with the target physical page
639 starting in range [start;end[. NOTE: start and end must refer to
640 the same physical page. 'is_cpu_write_access' should be true if called
641 from a real cpu write access: the virtual CPU will exit the current
642 TB if code is modified inside this TB. */
643 void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
644 int is_cpu_write_access)
646 int n, current_tb_modified, current_tb_not_found, current_flags;
647 CPUState *env = cpu_single_env;
648 PageDesc *p;
649 TranslationBlock *tb, *tb_next, *current_tb, *saved_tb;
650 target_ulong tb_start, tb_end;
651 target_ulong current_pc, current_cs_base;
653 p = page_find(start >> TARGET_PAGE_BITS);
654 if (!p)
655 return;
656 if (!p->code_bitmap &&
657 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
658 is_cpu_write_access) {
659 /* build code bitmap */
660 build_page_bitmap(p);
663 /* we remove all the TBs in the range [start, end[ */
664 /* XXX: see if in some cases it could be faster to invalidate all the code */
665 current_tb_not_found = is_cpu_write_access;
666 current_tb_modified = 0;
667 current_tb = NULL; /* avoid warning */
668 current_pc = 0; /* avoid warning */
669 current_cs_base = 0; /* avoid warning */
670 current_flags = 0; /* avoid warning */
671 tb = p->first_tb;
672 while (tb != NULL) {
673 n = (long)tb & 3;
674 tb = (TranslationBlock *)((long)tb & ~3);
675 tb_next = tb->page_next[n];
676 /* NOTE: this is subtle as a TB may span two physical pages */
677 if (n == 0) {
678 /* NOTE: tb_end may be after the end of the page, but
679 it is not a problem */
680 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
681 tb_end = tb_start + tb->size;
682 } else {
683 tb_start = tb->page_addr[1];
684 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
686 if (!(tb_end <= start || tb_start >= end)) {
687 #ifdef TARGET_HAS_PRECISE_SMC
688 if (current_tb_not_found) {
689 current_tb_not_found = 0;
690 current_tb = NULL;
691 if (env->mem_write_pc) {
692 /* now we have a real cpu fault */
693 current_tb = tb_find_pc(env->mem_write_pc);
696 if (current_tb == tb &&
697 !(current_tb->cflags & CF_SINGLE_INSN)) {
698 /* If we are modifying the current TB, we must stop
699 its execution. We could be more precise by checking
700 that the modification is after the current PC, but it
701 would require a specialized function to partially
702 restore the CPU state */
704 current_tb_modified = 1;
705 cpu_restore_state(current_tb, env,
706 env->mem_write_pc, NULL);
707 #if defined(TARGET_I386)
708 current_flags = env->hflags;
709 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
710 current_cs_base = (target_ulong)env->segs[R_CS].base;
711 current_pc = current_cs_base + env->eip;
712 #else
713 #error unsupported CPU
714 #endif
716 #endif /* TARGET_HAS_PRECISE_SMC */
717 /* we need to do that to handle the case where a signal
718 occurs while doing tb_phys_invalidate() */
719 saved_tb = NULL;
720 if (env) {
721 saved_tb = env->current_tb;
722 env->current_tb = NULL;
724 tb_phys_invalidate(tb, -1);
725 if (env) {
726 env->current_tb = saved_tb;
727 if (env->interrupt_request && env->current_tb)
728 cpu_interrupt(env, env->interrupt_request);
731 tb = tb_next;
733 #if !defined(CONFIG_USER_ONLY)
734 /* if no code remaining, no need to continue to use slow writes */
735 if (!p->first_tb) {
736 invalidate_page_bitmap(p);
737 if (is_cpu_write_access) {
738 tlb_unprotect_code_phys(env, start, env->mem_write_vaddr);
741 #endif
742 #ifdef TARGET_HAS_PRECISE_SMC
743 if (current_tb_modified) {
744 /* we generate a block containing just the instruction
745 modifying the memory. It will ensure that it cannot modify
746 itself */
747 env->current_tb = NULL;
748 tb_gen_code(env, current_pc, current_cs_base, current_flags,
749 CF_SINGLE_INSN);
750 cpu_resume_from_signal(env, NULL);
752 #endif
755 /* len must be <= 8 and start must be a multiple of len */
756 static inline void tb_invalidate_phys_page_fast(target_ulong start, int len)
758 PageDesc *p;
759 int offset, b;
760 #if 0
761 if (1) {
762 if (loglevel) {
763 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
764 cpu_single_env->mem_write_vaddr, len,
765 cpu_single_env->eip,
766 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
769 #endif
770 p = page_find(start >> TARGET_PAGE_BITS);
771 if (!p)
772 return;
773 if (p->code_bitmap) {
774 offset = start & ~TARGET_PAGE_MASK;
775 b = p->code_bitmap[offset >> 3] >> (offset & 7);
776 if (b & ((1 << len) - 1))
777 goto do_invalidate;
778 } else {
779 do_invalidate:
780 tb_invalidate_phys_page_range(start, start + len, 1);
784 #if !defined(CONFIG_SOFTMMU)
785 static void tb_invalidate_phys_page(target_ulong addr,
786 unsigned long pc, void *puc)
788 int n, current_flags, current_tb_modified;
789 target_ulong current_pc, current_cs_base;
790 PageDesc *p;
791 TranslationBlock *tb, *current_tb;
792 #ifdef TARGET_HAS_PRECISE_SMC
793 CPUState *env = cpu_single_env;
794 #endif
796 addr &= TARGET_PAGE_MASK;
797 p = page_find(addr >> TARGET_PAGE_BITS);
798 if (!p)
799 return;
800 tb = p->first_tb;
801 current_tb_modified = 0;
802 current_tb = NULL;
803 current_pc = 0; /* avoid warning */
804 current_cs_base = 0; /* avoid warning */
805 current_flags = 0; /* avoid warning */
806 #ifdef TARGET_HAS_PRECISE_SMC
807 if (tb && pc != 0) {
808 current_tb = tb_find_pc(pc);
810 #endif
811 while (tb != NULL) {
812 n = (long)tb & 3;
813 tb = (TranslationBlock *)((long)tb & ~3);
814 #ifdef TARGET_HAS_PRECISE_SMC
815 if (current_tb == tb &&
816 !(current_tb->cflags & CF_SINGLE_INSN)) {
817 /* If we are modifying the current TB, we must stop
818 its execution. We could be more precise by checking
819 that the modification is after the current PC, but it
820 would require a specialized function to partially
821 restore the CPU state */
823 current_tb_modified = 1;
824 cpu_restore_state(current_tb, env, pc, puc);
825 #if defined(TARGET_I386)
826 current_flags = env->hflags;
827 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
828 current_cs_base = (target_ulong)env->segs[R_CS].base;
829 current_pc = current_cs_base + env->eip;
830 #else
831 #error unsupported CPU
832 #endif
834 #endif /* TARGET_HAS_PRECISE_SMC */
835 tb_phys_invalidate(tb, addr);
836 tb = tb->page_next[n];
838 p->first_tb = NULL;
839 #ifdef TARGET_HAS_PRECISE_SMC
840 if (current_tb_modified) {
841 /* we generate a block containing just the instruction
842 modifying the memory. It will ensure that it cannot modify
843 itself */
844 env->current_tb = NULL;
845 tb_gen_code(env, current_pc, current_cs_base, current_flags,
846 CF_SINGLE_INSN);
847 cpu_resume_from_signal(env, puc);
849 #endif
851 #endif
853 /* add the tb in the target page and protect it if necessary */
854 static inline void tb_alloc_page(TranslationBlock *tb,
855 unsigned int n, target_ulong page_addr)
857 PageDesc *p;
858 TranslationBlock *last_first_tb;
860 tb->page_addr[n] = page_addr;
861 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
862 tb->page_next[n] = p->first_tb;
863 last_first_tb = p->first_tb;
864 p->first_tb = (TranslationBlock *)((long)tb | n);
865 invalidate_page_bitmap(p);
867 #if defined(TARGET_HAS_SMC) || 1
869 #if defined(CONFIG_USER_ONLY)
870 if (p->flags & PAGE_WRITE) {
871 target_ulong addr;
872 PageDesc *p2;
873 int prot;
875 /* force the host page as non writable (writes will have a
876 page fault + mprotect overhead) */
877 page_addr &= qemu_host_page_mask;
878 prot = 0;
879 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
880 addr += TARGET_PAGE_SIZE) {
882 p2 = page_find (addr >> TARGET_PAGE_BITS);
883 if (!p2)
884 continue;
885 prot |= p2->flags;
886 p2->flags &= ~PAGE_WRITE;
887 page_get_flags(addr);
889 mprotect(g2h(page_addr), qemu_host_page_size,
890 (prot & PAGE_BITS) & ~PAGE_WRITE);
891 #ifdef DEBUG_TB_INVALIDATE
892 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
893 page_addr);
894 #endif
896 #else
897 /* if some code is already present, then the pages are already
898 protected. So we handle the case where only the first TB is
899 allocated in a physical page */
900 if (!last_first_tb) {
901 tlb_protect_code(page_addr);
903 #endif
905 #endif /* TARGET_HAS_SMC */
908 /* Allocate a new translation block. Flush the translation buffer if
909 too many translation blocks or too much generated code. */
910 TranslationBlock *tb_alloc(target_ulong pc)
912 TranslationBlock *tb;
914 if (nb_tbs >= CODE_GEN_MAX_BLOCKS ||
915 (code_gen_ptr - code_gen_buffer) >= CODE_GEN_BUFFER_MAX_SIZE)
916 return NULL;
917 tb = &tbs[nb_tbs++];
918 tb->pc = pc;
919 tb->cflags = 0;
920 return tb;
923 /* add a new TB and link it to the physical page tables. phys_page2 is
924 (-1) to indicate that only one page contains the TB. */
925 void tb_link_phys(TranslationBlock *tb,
926 target_ulong phys_pc, target_ulong phys_page2)
928 unsigned int h;
929 TranslationBlock **ptb;
931 /* add in the physical hash table */
932 h = tb_phys_hash_func(phys_pc);
933 ptb = &tb_phys_hash[h];
934 tb->phys_hash_next = *ptb;
935 *ptb = tb;
937 /* add in the page list */
938 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
939 if (phys_page2 != -1)
940 tb_alloc_page(tb, 1, phys_page2);
941 else
942 tb->page_addr[1] = -1;
944 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
945 tb->jmp_next[0] = NULL;
946 tb->jmp_next[1] = NULL;
948 /* init original jump addresses */
949 if (tb->tb_next_offset[0] != 0xffff)
950 tb_reset_jump(tb, 0);
951 if (tb->tb_next_offset[1] != 0xffff)
952 tb_reset_jump(tb, 1);
954 #ifdef DEBUG_TB_CHECK
955 tb_page_check();
956 #endif
959 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
960 tb[1].tc_ptr. Return NULL if not found */
961 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
963 int m_min, m_max, m;
964 unsigned long v;
965 TranslationBlock *tb;
967 if (nb_tbs <= 0)
968 return NULL;
969 if (tc_ptr < (unsigned long)code_gen_buffer ||
970 tc_ptr >= (unsigned long)code_gen_ptr)
971 return NULL;
972 /* binary search (cf Knuth) */
973 m_min = 0;
974 m_max = nb_tbs - 1;
975 while (m_min <= m_max) {
976 m = (m_min + m_max) >> 1;
977 tb = &tbs[m];
978 v = (unsigned long)tb->tc_ptr;
979 if (v == tc_ptr)
980 return tb;
981 else if (tc_ptr < v) {
982 m_max = m - 1;
983 } else {
984 m_min = m + 1;
987 return &tbs[m_max];
990 static void tb_reset_jump_recursive(TranslationBlock *tb);
992 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
994 TranslationBlock *tb1, *tb_next, **ptb;
995 unsigned int n1;
997 tb1 = tb->jmp_next[n];
998 if (tb1 != NULL) {
999 /* find head of list */
1000 for(;;) {
1001 n1 = (long)tb1 & 3;
1002 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1003 if (n1 == 2)
1004 break;
1005 tb1 = tb1->jmp_next[n1];
1007 /* we are now sure now that tb jumps to tb1 */
1008 tb_next = tb1;
1010 /* remove tb from the jmp_first list */
1011 ptb = &tb_next->jmp_first;
1012 for(;;) {
1013 tb1 = *ptb;
1014 n1 = (long)tb1 & 3;
1015 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1016 if (n1 == n && tb1 == tb)
1017 break;
1018 ptb = &tb1->jmp_next[n1];
1020 *ptb = tb->jmp_next[n];
1021 tb->jmp_next[n] = NULL;
1023 /* suppress the jump to next tb in generated code */
1024 tb_reset_jump(tb, n);
1026 /* suppress jumps in the tb on which we could have jumped */
1027 tb_reset_jump_recursive(tb_next);
1031 static void tb_reset_jump_recursive(TranslationBlock *tb)
1033 tb_reset_jump_recursive2(tb, 0);
1034 tb_reset_jump_recursive2(tb, 1);
1037 #if defined(TARGET_HAS_ICE)
1038 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1040 target_phys_addr_t addr;
1041 target_ulong pd;
1042 ram_addr_t ram_addr;
1043 PhysPageDesc *p;
1045 addr = cpu_get_phys_page_debug(env, pc);
1046 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1047 if (!p) {
1048 pd = IO_MEM_UNASSIGNED;
1049 } else {
1050 pd = p->phys_offset;
1052 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1053 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1055 #endif
1057 /* Add a watchpoint. */
1058 int cpu_watchpoint_insert(CPUState *env, target_ulong addr)
1060 int i;
1062 for (i = 0; i < env->nb_watchpoints; i++) {
1063 if (addr == env->watchpoint[i].vaddr)
1064 return 0;
1066 if (env->nb_watchpoints >= MAX_WATCHPOINTS)
1067 return -1;
1069 i = env->nb_watchpoints++;
1070 env->watchpoint[i].vaddr = addr;
1071 tlb_flush_page(env, addr);
1072 /* FIXME: This flush is needed because of the hack to make memory ops
1073 terminate the TB. It can be removed once the proper IO trap and
1074 re-execute bits are in. */
1075 tb_flush(env);
1076 return i;
1079 /* Remove a watchpoint. */
1080 int cpu_watchpoint_remove(CPUState *env, target_ulong addr)
1082 int i;
1084 for (i = 0; i < env->nb_watchpoints; i++) {
1085 if (addr == env->watchpoint[i].vaddr) {
1086 env->nb_watchpoints--;
1087 env->watchpoint[i] = env->watchpoint[env->nb_watchpoints];
1088 tlb_flush_page(env, addr);
1089 return 0;
1092 return -1;
1095 /* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
1096 breakpoint is reached */
1097 int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
1099 #if defined(TARGET_HAS_ICE)
1100 int i;
1102 for(i = 0; i < env->nb_breakpoints; i++) {
1103 if (env->breakpoints[i] == pc)
1104 return 0;
1107 if (env->nb_breakpoints >= MAX_BREAKPOINTS)
1108 return -1;
1109 env->breakpoints[env->nb_breakpoints++] = pc;
1111 breakpoint_invalidate(env, pc);
1112 return 0;
1113 #else
1114 return -1;
1115 #endif
1118 /* remove a breakpoint */
1119 int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
1121 #if defined(TARGET_HAS_ICE)
1122 int i;
1123 for(i = 0; i < env->nb_breakpoints; i++) {
1124 if (env->breakpoints[i] == pc)
1125 goto found;
1127 return -1;
1128 found:
1129 env->nb_breakpoints--;
1130 if (i < env->nb_breakpoints)
1131 env->breakpoints[i] = env->breakpoints[env->nb_breakpoints];
1133 breakpoint_invalidate(env, pc);
1134 return 0;
1135 #else
1136 return -1;
1137 #endif
1140 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1141 CPU loop after each instruction */
1142 void cpu_single_step(CPUState *env, int enabled)
1144 #if defined(TARGET_HAS_ICE)
1145 if (env->singlestep_enabled != enabled) {
1146 env->singlestep_enabled = enabled;
1147 /* must flush all the translated code to avoid inconsistancies */
1148 /* XXX: only flush what is necessary */
1149 tb_flush(env);
1151 #endif
1154 /* enable or disable low levels log */
1155 void cpu_set_log(int log_flags)
1157 loglevel = log_flags;
1158 if (loglevel && !logfile) {
1159 logfile = fopen(logfilename, log_append ? "a" : "w");
1160 if (!logfile) {
1161 perror(logfilename);
1162 _exit(1);
1164 #if !defined(CONFIG_SOFTMMU)
1165 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1167 static uint8_t logfile_buf[4096];
1168 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1170 #else
1171 setvbuf(logfile, NULL, _IOLBF, 0);
1172 #endif
1173 log_append = 1;
1175 if (!loglevel && logfile) {
1176 fclose(logfile);
1177 logfile = NULL;
1181 void cpu_set_log_filename(const char *filename)
1183 logfilename = strdup(filename);
1184 if (logfile) {
1185 fclose(logfile);
1186 logfile = NULL;
1188 cpu_set_log(loglevel);
1191 /* mask must never be zero, except for A20 change call */
1192 void cpu_interrupt(CPUState *env, int mask)
1194 TranslationBlock *tb;
1195 static int interrupt_lock;
1197 env->interrupt_request |= mask;
1198 /* if the cpu is currently executing code, we must unlink it and
1199 all the potentially executing TB */
1200 tb = env->current_tb;
1201 if (tb && !testandset(&interrupt_lock)) {
1202 env->current_tb = NULL;
1203 tb_reset_jump_recursive(tb);
1204 interrupt_lock = 0;
1208 void cpu_reset_interrupt(CPUState *env, int mask)
1210 env->interrupt_request &= ~mask;
1213 CPULogItem cpu_log_items[] = {
1214 { CPU_LOG_TB_OUT_ASM, "out_asm",
1215 "show generated host assembly code for each compiled TB" },
1216 { CPU_LOG_TB_IN_ASM, "in_asm",
1217 "show target assembly code for each compiled TB" },
1218 { CPU_LOG_TB_OP, "op",
1219 "show micro ops for each compiled TB (only usable if 'in_asm' used)" },
1220 #ifdef TARGET_I386
1221 { CPU_LOG_TB_OP_OPT, "op_opt",
1222 "show micro ops after optimization for each compiled TB" },
1223 #endif
1224 { CPU_LOG_INT, "int",
1225 "show interrupts/exceptions in short format" },
1226 { CPU_LOG_EXEC, "exec",
1227 "show trace before each executed TB (lots of logs)" },
1228 { CPU_LOG_TB_CPU, "cpu",
1229 "show CPU state before block translation" },
1230 #ifdef TARGET_I386
1231 { CPU_LOG_PCALL, "pcall",
1232 "show protected mode far calls/returns/exceptions" },
1233 #endif
1234 #ifdef DEBUG_IOPORT
1235 { CPU_LOG_IOPORT, "ioport",
1236 "show all i/o ports accesses" },
1237 #endif
1238 { 0, NULL, NULL },
1241 static int cmp1(const char *s1, int n, const char *s2)
1243 if (strlen(s2) != n)
1244 return 0;
1245 return memcmp(s1, s2, n) == 0;
1248 /* takes a comma separated list of log masks. Return 0 if error. */
1249 int cpu_str_to_log_mask(const char *str)
1251 CPULogItem *item;
1252 int mask;
1253 const char *p, *p1;
1255 p = str;
1256 mask = 0;
1257 for(;;) {
1258 p1 = strchr(p, ',');
1259 if (!p1)
1260 p1 = p + strlen(p);
1261 if(cmp1(p,p1-p,"all")) {
1262 for(item = cpu_log_items; item->mask != 0; item++) {
1263 mask |= item->mask;
1265 } else {
1266 for(item = cpu_log_items; item->mask != 0; item++) {
1267 if (cmp1(p, p1 - p, item->name))
1268 goto found;
1270 return 0;
1272 found:
1273 mask |= item->mask;
1274 if (*p1 != ',')
1275 break;
1276 p = p1 + 1;
1278 return mask;
1281 void cpu_abort(CPUState *env, const char *fmt, ...)
1283 va_list ap;
1284 va_list ap2;
1286 va_start(ap, fmt);
1287 va_copy(ap2, ap);
1288 fprintf(stderr, "qemu: fatal: ");
1289 vfprintf(stderr, fmt, ap);
1290 fprintf(stderr, "\n");
1291 #ifdef TARGET_I386
1292 if(env->intercept & INTERCEPT_SVM_MASK) {
1293 /* most probably the virtual machine should not
1294 be shut down but rather caught by the VMM */
1295 vmexit(SVM_EXIT_SHUTDOWN, 0);
1297 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1298 #else
1299 cpu_dump_state(env, stderr, fprintf, 0);
1300 #endif
1301 if (logfile) {
1302 fprintf(logfile, "qemu: fatal: ");
1303 vfprintf(logfile, fmt, ap2);
1304 fprintf(logfile, "\n");
1305 #ifdef TARGET_I386
1306 cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1307 #else
1308 cpu_dump_state(env, logfile, fprintf, 0);
1309 #endif
1310 fflush(logfile);
1311 fclose(logfile);
1313 va_end(ap2);
1314 va_end(ap);
1315 abort();
1318 CPUState *cpu_copy(CPUState *env)
1320 #if 0
1321 /* XXX: broken, must be handled by each CPU */
1322 CPUState *new_env = cpu_init();
1323 /* preserve chaining and index */
1324 CPUState *next_cpu = new_env->next_cpu;
1325 int cpu_index = new_env->cpu_index;
1326 memcpy(new_env, env, sizeof(CPUState));
1327 new_env->next_cpu = next_cpu;
1328 new_env->cpu_index = cpu_index;
1329 return new_env;
1330 #else
1331 return NULL;
1332 #endif
1335 #if !defined(CONFIG_USER_ONLY)
1337 /* NOTE: if flush_global is true, also flush global entries (not
1338 implemented yet) */
1339 void tlb_flush(CPUState *env, int flush_global)
1341 int i;
1343 #if defined(DEBUG_TLB)
1344 printf("tlb_flush:\n");
1345 #endif
1346 /* must reset current TB so that interrupts cannot modify the
1347 links while we are modifying them */
1348 env->current_tb = NULL;
1350 for(i = 0; i < CPU_TLB_SIZE; i++) {
1351 env->tlb_table[0][i].addr_read = -1;
1352 env->tlb_table[0][i].addr_write = -1;
1353 env->tlb_table[0][i].addr_code = -1;
1354 env->tlb_table[1][i].addr_read = -1;
1355 env->tlb_table[1][i].addr_write = -1;
1356 env->tlb_table[1][i].addr_code = -1;
1357 #if (NB_MMU_MODES >= 3)
1358 env->tlb_table[2][i].addr_read = -1;
1359 env->tlb_table[2][i].addr_write = -1;
1360 env->tlb_table[2][i].addr_code = -1;
1361 #if (NB_MMU_MODES == 4)
1362 env->tlb_table[3][i].addr_read = -1;
1363 env->tlb_table[3][i].addr_write = -1;
1364 env->tlb_table[3][i].addr_code = -1;
1365 #endif
1366 #endif
1369 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1371 #if !defined(CONFIG_SOFTMMU)
1372 munmap((void *)MMAP_AREA_START, MMAP_AREA_END - MMAP_AREA_START);
1373 #endif
1374 #ifdef USE_KQEMU
1375 if (env->kqemu_enabled) {
1376 kqemu_flush(env, flush_global);
1378 #endif
1379 tlb_flush_count++;
1382 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1384 if (addr == (tlb_entry->addr_read &
1385 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1386 addr == (tlb_entry->addr_write &
1387 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1388 addr == (tlb_entry->addr_code &
1389 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1390 tlb_entry->addr_read = -1;
1391 tlb_entry->addr_write = -1;
1392 tlb_entry->addr_code = -1;
1396 void tlb_flush_page(CPUState *env, target_ulong addr)
1398 int i;
1399 TranslationBlock *tb;
1401 #if defined(DEBUG_TLB)
1402 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1403 #endif
1404 /* must reset current TB so that interrupts cannot modify the
1405 links while we are modifying them */
1406 env->current_tb = NULL;
1408 addr &= TARGET_PAGE_MASK;
1409 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1410 tlb_flush_entry(&env->tlb_table[0][i], addr);
1411 tlb_flush_entry(&env->tlb_table[1][i], addr);
1412 #if (NB_MMU_MODES >= 3)
1413 tlb_flush_entry(&env->tlb_table[2][i], addr);
1414 #if (NB_MMU_MODES == 4)
1415 tlb_flush_entry(&env->tlb_table[3][i], addr);
1416 #endif
1417 #endif
1419 /* Discard jump cache entries for any tb which might potentially
1420 overlap the flushed page. */
1421 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1422 memset (&env->tb_jmp_cache[i], 0, TB_JMP_PAGE_SIZE * sizeof(tb));
1424 i = tb_jmp_cache_hash_page(addr);
1425 memset (&env->tb_jmp_cache[i], 0, TB_JMP_PAGE_SIZE * sizeof(tb));
1427 #if !defined(CONFIG_SOFTMMU)
1428 if (addr < MMAP_AREA_END)
1429 munmap((void *)addr, TARGET_PAGE_SIZE);
1430 #endif
1431 #ifdef USE_KQEMU
1432 if (env->kqemu_enabled) {
1433 kqemu_flush_page(env, addr);
1435 #endif
1438 /* update the TLBs so that writes to code in the virtual page 'addr'
1439 can be detected */
1440 static void tlb_protect_code(ram_addr_t ram_addr)
1442 cpu_physical_memory_reset_dirty(ram_addr,
1443 ram_addr + TARGET_PAGE_SIZE,
1444 CODE_DIRTY_FLAG);
1447 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1448 tested for self modifying code */
1449 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1450 target_ulong vaddr)
1452 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1455 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1456 unsigned long start, unsigned long length)
1458 unsigned long addr;
1459 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1460 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1461 if ((addr - start) < length) {
1462 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
1467 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1468 int dirty_flags)
1470 CPUState *env;
1471 unsigned long length, start1;
1472 int i, mask, len;
1473 uint8_t *p;
1475 start &= TARGET_PAGE_MASK;
1476 end = TARGET_PAGE_ALIGN(end);
1478 length = end - start;
1479 if (length == 0)
1480 return;
1481 len = length >> TARGET_PAGE_BITS;
1482 #ifdef USE_KQEMU
1483 /* XXX: should not depend on cpu context */
1484 env = first_cpu;
1485 if (env->kqemu_enabled) {
1486 ram_addr_t addr;
1487 addr = start;
1488 for(i = 0; i < len; i++) {
1489 kqemu_set_notdirty(env, addr);
1490 addr += TARGET_PAGE_SIZE;
1493 #endif
1494 mask = ~dirty_flags;
1495 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1496 for(i = 0; i < len; i++)
1497 p[i] &= mask;
1499 /* we modify the TLB cache so that the dirty bit will be set again
1500 when accessing the range */
1501 start1 = start + (unsigned long)phys_ram_base;
1502 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1503 for(i = 0; i < CPU_TLB_SIZE; i++)
1504 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
1505 for(i = 0; i < CPU_TLB_SIZE; i++)
1506 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
1507 #if (NB_MMU_MODES >= 3)
1508 for(i = 0; i < CPU_TLB_SIZE; i++)
1509 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1510 #if (NB_MMU_MODES == 4)
1511 for(i = 0; i < CPU_TLB_SIZE; i++)
1512 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1513 #endif
1514 #endif
1517 #if !defined(CONFIG_SOFTMMU)
1518 /* XXX: this is expensive */
1520 VirtPageDesc *p;
1521 int j;
1522 target_ulong addr;
1524 for(i = 0; i < L1_SIZE; i++) {
1525 p = l1_virt_map[i];
1526 if (p) {
1527 addr = i << (TARGET_PAGE_BITS + L2_BITS);
1528 for(j = 0; j < L2_SIZE; j++) {
1529 if (p->valid_tag == virt_valid_tag &&
1530 p->phys_addr >= start && p->phys_addr < end &&
1531 (p->prot & PROT_WRITE)) {
1532 if (addr < MMAP_AREA_END) {
1533 mprotect((void *)addr, TARGET_PAGE_SIZE,
1534 p->prot & ~PROT_WRITE);
1537 addr += TARGET_PAGE_SIZE;
1538 p++;
1543 #endif
1546 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1548 ram_addr_t ram_addr;
1550 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1551 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
1552 tlb_entry->addend - (unsigned long)phys_ram_base;
1553 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1554 tlb_entry->addr_write |= IO_MEM_NOTDIRTY;
1559 /* update the TLB according to the current state of the dirty bits */
1560 void cpu_tlb_update_dirty(CPUState *env)
1562 int i;
1563 for(i = 0; i < CPU_TLB_SIZE; i++)
1564 tlb_update_dirty(&env->tlb_table[0][i]);
1565 for(i = 0; i < CPU_TLB_SIZE; i++)
1566 tlb_update_dirty(&env->tlb_table[1][i]);
1567 #if (NB_MMU_MODES >= 3)
1568 for(i = 0; i < CPU_TLB_SIZE; i++)
1569 tlb_update_dirty(&env->tlb_table[2][i]);
1570 #if (NB_MMU_MODES == 4)
1571 for(i = 0; i < CPU_TLB_SIZE; i++)
1572 tlb_update_dirty(&env->tlb_table[3][i]);
1573 #endif
1574 #endif
1577 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry,
1578 unsigned long start)
1580 unsigned long addr;
1581 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_NOTDIRTY) {
1582 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1583 if (addr == start) {
1584 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_RAM;
1589 /* update the TLB corresponding to virtual page vaddr and phys addr
1590 addr so that it is no longer dirty */
1591 static inline void tlb_set_dirty(CPUState *env,
1592 unsigned long addr, target_ulong vaddr)
1594 int i;
1596 addr &= TARGET_PAGE_MASK;
1597 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1598 tlb_set_dirty1(&env->tlb_table[0][i], addr);
1599 tlb_set_dirty1(&env->tlb_table[1][i], addr);
1600 #if (NB_MMU_MODES >= 3)
1601 tlb_set_dirty1(&env->tlb_table[2][i], addr);
1602 #if (NB_MMU_MODES == 4)
1603 tlb_set_dirty1(&env->tlb_table[3][i], addr);
1604 #endif
1605 #endif
1608 /* add a new TLB entry. At most one entry for a given virtual address
1609 is permitted. Return 0 if OK or 2 if the page could not be mapped
1610 (can only happen in non SOFTMMU mode for I/O pages or pages
1611 conflicting with the host address space). */
1612 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1613 target_phys_addr_t paddr, int prot,
1614 int mmu_idx, int is_softmmu)
1616 PhysPageDesc *p;
1617 unsigned long pd;
1618 unsigned int index;
1619 target_ulong address;
1620 target_phys_addr_t addend;
1621 int ret;
1622 CPUTLBEntry *te;
1623 int i;
1625 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1626 if (!p) {
1627 pd = IO_MEM_UNASSIGNED;
1628 } else {
1629 pd = p->phys_offset;
1631 #if defined(DEBUG_TLB)
1632 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1633 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
1634 #endif
1636 ret = 0;
1637 #if !defined(CONFIG_SOFTMMU)
1638 if (is_softmmu)
1639 #endif
1641 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1642 /* IO memory case */
1643 address = vaddr | pd;
1644 addend = paddr;
1645 } else {
1646 /* standard memory */
1647 address = vaddr;
1648 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1651 /* Make accesses to pages with watchpoints go via the
1652 watchpoint trap routines. */
1653 for (i = 0; i < env->nb_watchpoints; i++) {
1654 if (vaddr == (env->watchpoint[i].vaddr & TARGET_PAGE_MASK)) {
1655 if (address & ~TARGET_PAGE_MASK) {
1656 env->watchpoint[i].addend = 0;
1657 address = vaddr | io_mem_watch;
1658 } else {
1659 env->watchpoint[i].addend = pd - paddr +
1660 (unsigned long) phys_ram_base;
1661 /* TODO: Figure out how to make read watchpoints coexist
1662 with code. */
1663 pd = (pd & TARGET_PAGE_MASK) | io_mem_watch | IO_MEM_ROMD;
1668 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1669 addend -= vaddr;
1670 te = &env->tlb_table[mmu_idx][index];
1671 te->addend = addend;
1672 if (prot & PAGE_READ) {
1673 te->addr_read = address;
1674 } else {
1675 te->addr_read = -1;
1677 if (prot & PAGE_EXEC) {
1678 te->addr_code = address;
1679 } else {
1680 te->addr_code = -1;
1682 if (prot & PAGE_WRITE) {
1683 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1684 (pd & IO_MEM_ROMD)) {
1685 /* write access calls the I/O callback */
1686 te->addr_write = vaddr |
1687 (pd & ~(TARGET_PAGE_MASK | IO_MEM_ROMD));
1688 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1689 !cpu_physical_memory_is_dirty(pd)) {
1690 te->addr_write = vaddr | IO_MEM_NOTDIRTY;
1691 } else {
1692 te->addr_write = address;
1694 } else {
1695 te->addr_write = -1;
1698 #if !defined(CONFIG_SOFTMMU)
1699 else {
1700 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM) {
1701 /* IO access: no mapping is done as it will be handled by the
1702 soft MMU */
1703 if (!(env->hflags & HF_SOFTMMU_MASK))
1704 ret = 2;
1705 } else {
1706 void *map_addr;
1708 if (vaddr >= MMAP_AREA_END) {
1709 ret = 2;
1710 } else {
1711 if (prot & PROT_WRITE) {
1712 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1713 #if defined(TARGET_HAS_SMC) || 1
1714 first_tb ||
1715 #endif
1716 ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1717 !cpu_physical_memory_is_dirty(pd))) {
1718 /* ROM: we do as if code was inside */
1719 /* if code is present, we only map as read only and save the
1720 original mapping */
1721 VirtPageDesc *vp;
1723 vp = virt_page_find_alloc(vaddr >> TARGET_PAGE_BITS, 1);
1724 vp->phys_addr = pd;
1725 vp->prot = prot;
1726 vp->valid_tag = virt_valid_tag;
1727 prot &= ~PAGE_WRITE;
1730 map_addr = mmap((void *)vaddr, TARGET_PAGE_SIZE, prot,
1731 MAP_SHARED | MAP_FIXED, phys_ram_fd, (pd & TARGET_PAGE_MASK));
1732 if (map_addr == MAP_FAILED) {
1733 cpu_abort(env, "mmap failed when mapped physical address 0x%08x to virtual address 0x%08x\n",
1734 paddr, vaddr);
1739 #endif
1740 return ret;
1743 /* called from signal handler: invalidate the code and unprotect the
1744 page. Return TRUE if the fault was succesfully handled. */
1745 int page_unprotect(target_ulong addr, unsigned long pc, void *puc)
1747 #if !defined(CONFIG_SOFTMMU)
1748 VirtPageDesc *vp;
1750 #if defined(DEBUG_TLB)
1751 printf("page_unprotect: addr=0x%08x\n", addr);
1752 #endif
1753 addr &= TARGET_PAGE_MASK;
1755 /* if it is not mapped, no need to worry here */
1756 if (addr >= MMAP_AREA_END)
1757 return 0;
1758 vp = virt_page_find(addr >> TARGET_PAGE_BITS);
1759 if (!vp)
1760 return 0;
1761 /* NOTE: in this case, validate_tag is _not_ tested as it
1762 validates only the code TLB */
1763 if (vp->valid_tag != virt_valid_tag)
1764 return 0;
1765 if (!(vp->prot & PAGE_WRITE))
1766 return 0;
1767 #if defined(DEBUG_TLB)
1768 printf("page_unprotect: addr=0x%08x phys_addr=0x%08x prot=%x\n",
1769 addr, vp->phys_addr, vp->prot);
1770 #endif
1771 if (mprotect((void *)addr, TARGET_PAGE_SIZE, vp->prot) < 0)
1772 cpu_abort(cpu_single_env, "error mprotect addr=0x%lx prot=%d\n",
1773 (unsigned long)addr, vp->prot);
1774 /* set the dirty bit */
1775 phys_ram_dirty[vp->phys_addr >> TARGET_PAGE_BITS] = 0xff;
1776 /* flush the code inside */
1777 tb_invalidate_phys_page(vp->phys_addr, pc, puc);
1778 return 1;
1779 #else
1780 return 0;
1781 #endif
1784 #else
1786 void tlb_flush(CPUState *env, int flush_global)
1790 void tlb_flush_page(CPUState *env, target_ulong addr)
1794 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1795 target_phys_addr_t paddr, int prot,
1796 int mmu_idx, int is_softmmu)
1798 return 0;
1801 /* dump memory mappings */
1802 void page_dump(FILE *f)
1804 unsigned long start, end;
1805 int i, j, prot, prot1;
1806 PageDesc *p;
1808 fprintf(f, "%-8s %-8s %-8s %s\n",
1809 "start", "end", "size", "prot");
1810 start = -1;
1811 end = -1;
1812 prot = 0;
1813 for(i = 0; i <= L1_SIZE; i++) {
1814 if (i < L1_SIZE)
1815 p = l1_map[i];
1816 else
1817 p = NULL;
1818 for(j = 0;j < L2_SIZE; j++) {
1819 if (!p)
1820 prot1 = 0;
1821 else
1822 prot1 = p[j].flags;
1823 if (prot1 != prot) {
1824 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
1825 if (start != -1) {
1826 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
1827 start, end, end - start,
1828 prot & PAGE_READ ? 'r' : '-',
1829 prot & PAGE_WRITE ? 'w' : '-',
1830 prot & PAGE_EXEC ? 'x' : '-');
1832 if (prot1 != 0)
1833 start = end;
1834 else
1835 start = -1;
1836 prot = prot1;
1838 if (!p)
1839 break;
1844 int page_get_flags(target_ulong address)
1846 PageDesc *p;
1848 p = page_find(address >> TARGET_PAGE_BITS);
1849 if (!p)
1850 return 0;
1851 return p->flags;
1854 /* modify the flags of a page and invalidate the code if
1855 necessary. The flag PAGE_WRITE_ORG is positionned automatically
1856 depending on PAGE_WRITE */
1857 void page_set_flags(target_ulong start, target_ulong end, int flags)
1859 PageDesc *p;
1860 target_ulong addr;
1862 start = start & TARGET_PAGE_MASK;
1863 end = TARGET_PAGE_ALIGN(end);
1864 if (flags & PAGE_WRITE)
1865 flags |= PAGE_WRITE_ORG;
1866 spin_lock(&tb_lock);
1867 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
1868 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
1869 /* if the write protection is set, then we invalidate the code
1870 inside */
1871 if (!(p->flags & PAGE_WRITE) &&
1872 (flags & PAGE_WRITE) &&
1873 p->first_tb) {
1874 tb_invalidate_phys_page(addr, 0, NULL);
1876 p->flags = flags;
1878 spin_unlock(&tb_lock);
1881 int page_check_range(target_ulong start, target_ulong len, int flags)
1883 PageDesc *p;
1884 target_ulong end;
1885 target_ulong addr;
1887 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
1888 start = start & TARGET_PAGE_MASK;
1890 if( end < start )
1891 /* we've wrapped around */
1892 return -1;
1893 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
1894 p = page_find(addr >> TARGET_PAGE_BITS);
1895 if( !p )
1896 return -1;
1897 if( !(p->flags & PAGE_VALID) )
1898 return -1;
1900 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
1901 return -1;
1902 if (flags & PAGE_WRITE) {
1903 if (!(p->flags & PAGE_WRITE_ORG))
1904 return -1;
1905 /* unprotect the page if it was put read-only because it
1906 contains translated code */
1907 if (!(p->flags & PAGE_WRITE)) {
1908 if (!page_unprotect(addr, 0, NULL))
1909 return -1;
1911 return 0;
1914 return 0;
1917 /* called from signal handler: invalidate the code and unprotect the
1918 page. Return TRUE if the fault was succesfully handled. */
1919 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
1921 unsigned int page_index, prot, pindex;
1922 PageDesc *p, *p1;
1923 target_ulong host_start, host_end, addr;
1925 host_start = address & qemu_host_page_mask;
1926 page_index = host_start >> TARGET_PAGE_BITS;
1927 p1 = page_find(page_index);
1928 if (!p1)
1929 return 0;
1930 host_end = host_start + qemu_host_page_size;
1931 p = p1;
1932 prot = 0;
1933 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
1934 prot |= p->flags;
1935 p++;
1937 /* if the page was really writable, then we change its
1938 protection back to writable */
1939 if (prot & PAGE_WRITE_ORG) {
1940 pindex = (address - host_start) >> TARGET_PAGE_BITS;
1941 if (!(p1[pindex].flags & PAGE_WRITE)) {
1942 mprotect((void *)g2h(host_start), qemu_host_page_size,
1943 (prot & PAGE_BITS) | PAGE_WRITE);
1944 p1[pindex].flags |= PAGE_WRITE;
1945 /* and since the content will be modified, we must invalidate
1946 the corresponding translated code. */
1947 tb_invalidate_phys_page(address, pc, puc);
1948 #ifdef DEBUG_TB_CHECK
1949 tb_invalidate_check(address);
1950 #endif
1951 return 1;
1954 return 0;
1957 static inline void tlb_set_dirty(CPUState *env,
1958 unsigned long addr, target_ulong vaddr)
1961 #endif /* defined(CONFIG_USER_ONLY) */
1963 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1964 int memory);
1965 static void *subpage_init (target_phys_addr_t base, uint32_t *phys,
1966 int orig_memory);
1967 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
1968 need_subpage) \
1969 do { \
1970 if (addr > start_addr) \
1971 start_addr2 = 0; \
1972 else { \
1973 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
1974 if (start_addr2 > 0) \
1975 need_subpage = 1; \
1978 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
1979 end_addr2 = TARGET_PAGE_SIZE - 1; \
1980 else { \
1981 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
1982 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
1983 need_subpage = 1; \
1985 } while (0)
1987 /* register physical memory. 'size' must be a multiple of the target
1988 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
1989 io memory page */
1990 void cpu_register_physical_memory(target_phys_addr_t start_addr,
1991 unsigned long size,
1992 unsigned long phys_offset)
1994 target_phys_addr_t addr, end_addr;
1995 PhysPageDesc *p;
1996 CPUState *env;
1997 unsigned long orig_size = size;
1998 void *subpage;
2000 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2001 end_addr = start_addr + (target_phys_addr_t)size;
2002 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2003 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2004 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2005 unsigned long orig_memory = p->phys_offset;
2006 target_phys_addr_t start_addr2, end_addr2;
2007 int need_subpage = 0;
2009 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2010 need_subpage);
2011 if (need_subpage) {
2012 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2013 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2014 &p->phys_offset, orig_memory);
2015 } else {
2016 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2017 >> IO_MEM_SHIFT];
2019 subpage_register(subpage, start_addr2, end_addr2, phys_offset);
2020 } else {
2021 p->phys_offset = phys_offset;
2022 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2023 (phys_offset & IO_MEM_ROMD))
2024 phys_offset += TARGET_PAGE_SIZE;
2026 } else {
2027 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2028 p->phys_offset = phys_offset;
2029 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2030 (phys_offset & IO_MEM_ROMD))
2031 phys_offset += TARGET_PAGE_SIZE;
2032 else {
2033 target_phys_addr_t start_addr2, end_addr2;
2034 int need_subpage = 0;
2036 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2037 end_addr2, need_subpage);
2039 if (need_subpage) {
2040 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2041 &p->phys_offset, IO_MEM_UNASSIGNED);
2042 subpage_register(subpage, start_addr2, end_addr2,
2043 phys_offset);
2049 /* since each CPU stores ram addresses in its TLB cache, we must
2050 reset the modified entries */
2051 /* XXX: slow ! */
2052 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2053 tlb_flush(env, 1);
2057 /* XXX: temporary until new memory mapping API */
2058 uint32_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2060 PhysPageDesc *p;
2062 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2063 if (!p)
2064 return IO_MEM_UNASSIGNED;
2065 return p->phys_offset;
2068 /* XXX: better than nothing */
2069 ram_addr_t qemu_ram_alloc(unsigned int size)
2071 ram_addr_t addr;
2072 if ((phys_ram_alloc_offset + size) >= phys_ram_size) {
2073 fprintf(stderr, "Not enough memory (requested_size = %u, max memory = %d)\n",
2074 size, phys_ram_size);
2075 abort();
2077 addr = phys_ram_alloc_offset;
2078 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2079 return addr;
2082 void qemu_ram_free(ram_addr_t addr)
2086 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2088 #ifdef DEBUG_UNASSIGNED
2089 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2090 #endif
2091 #ifdef TARGET_SPARC
2092 do_unassigned_access(addr, 0, 0, 0);
2093 #elif TARGET_CRIS
2094 do_unassigned_access(addr, 0, 0, 0);
2095 #endif
2096 return 0;
2099 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2101 #ifdef DEBUG_UNASSIGNED
2102 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2103 #endif
2104 #ifdef TARGET_SPARC
2105 do_unassigned_access(addr, 1, 0, 0);
2106 #elif TARGET_CRIS
2107 do_unassigned_access(addr, 1, 0, 0);
2108 #endif
2111 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2112 unassigned_mem_readb,
2113 unassigned_mem_readb,
2114 unassigned_mem_readb,
2117 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2118 unassigned_mem_writeb,
2119 unassigned_mem_writeb,
2120 unassigned_mem_writeb,
2123 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2125 unsigned long ram_addr;
2126 int dirty_flags;
2127 ram_addr = addr - (unsigned long)phys_ram_base;
2128 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2129 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2130 #if !defined(CONFIG_USER_ONLY)
2131 tb_invalidate_phys_page_fast(ram_addr, 1);
2132 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2133 #endif
2135 stb_p((uint8_t *)(long)addr, val);
2136 #ifdef USE_KQEMU
2137 if (cpu_single_env->kqemu_enabled &&
2138 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2139 kqemu_modify_page(cpu_single_env, ram_addr);
2140 #endif
2141 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2142 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2143 /* we remove the notdirty callback only if the code has been
2144 flushed */
2145 if (dirty_flags == 0xff)
2146 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
2149 static void notdirty_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2151 unsigned long ram_addr;
2152 int dirty_flags;
2153 ram_addr = addr - (unsigned long)phys_ram_base;
2154 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2155 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2156 #if !defined(CONFIG_USER_ONLY)
2157 tb_invalidate_phys_page_fast(ram_addr, 2);
2158 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2159 #endif
2161 stw_p((uint8_t *)(long)addr, val);
2162 #ifdef USE_KQEMU
2163 if (cpu_single_env->kqemu_enabled &&
2164 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2165 kqemu_modify_page(cpu_single_env, ram_addr);
2166 #endif
2167 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2168 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2169 /* we remove the notdirty callback only if the code has been
2170 flushed */
2171 if (dirty_flags == 0xff)
2172 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
2175 static void notdirty_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2177 unsigned long ram_addr;
2178 int dirty_flags;
2179 ram_addr = addr - (unsigned long)phys_ram_base;
2180 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2181 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2182 #if !defined(CONFIG_USER_ONLY)
2183 tb_invalidate_phys_page_fast(ram_addr, 4);
2184 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2185 #endif
2187 stl_p((uint8_t *)(long)addr, val);
2188 #ifdef USE_KQEMU
2189 if (cpu_single_env->kqemu_enabled &&
2190 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2191 kqemu_modify_page(cpu_single_env, ram_addr);
2192 #endif
2193 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2194 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2195 /* we remove the notdirty callback only if the code has been
2196 flushed */
2197 if (dirty_flags == 0xff)
2198 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
2201 static CPUReadMemoryFunc *error_mem_read[3] = {
2202 NULL, /* never used */
2203 NULL, /* never used */
2204 NULL, /* never used */
2207 static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2208 notdirty_mem_writeb,
2209 notdirty_mem_writew,
2210 notdirty_mem_writel,
2213 #if defined(CONFIG_SOFTMMU)
2214 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2215 so these check for a hit then pass through to the normal out-of-line
2216 phys routines. */
2217 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2219 return ldub_phys(addr);
2222 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2224 return lduw_phys(addr);
2227 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2229 return ldl_phys(addr);
2232 /* Generate a debug exception if a watchpoint has been hit.
2233 Returns the real physical address of the access. addr will be a host
2234 address in case of a RAM location. */
2235 static target_ulong check_watchpoint(target_phys_addr_t addr)
2237 CPUState *env = cpu_single_env;
2238 target_ulong watch;
2239 target_ulong retaddr;
2240 int i;
2242 retaddr = addr;
2243 for (i = 0; i < env->nb_watchpoints; i++) {
2244 watch = env->watchpoint[i].vaddr;
2245 if (((env->mem_write_vaddr ^ watch) & TARGET_PAGE_MASK) == 0) {
2246 retaddr = addr - env->watchpoint[i].addend;
2247 if (((addr ^ watch) & ~TARGET_PAGE_MASK) == 0) {
2248 cpu_single_env->watchpoint_hit = i + 1;
2249 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_DEBUG);
2250 break;
2254 return retaddr;
2257 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2258 uint32_t val)
2260 addr = check_watchpoint(addr);
2261 stb_phys(addr, val);
2264 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2265 uint32_t val)
2267 addr = check_watchpoint(addr);
2268 stw_phys(addr, val);
2271 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2272 uint32_t val)
2274 addr = check_watchpoint(addr);
2275 stl_phys(addr, val);
2278 static CPUReadMemoryFunc *watch_mem_read[3] = {
2279 watch_mem_readb,
2280 watch_mem_readw,
2281 watch_mem_readl,
2284 static CPUWriteMemoryFunc *watch_mem_write[3] = {
2285 watch_mem_writeb,
2286 watch_mem_writew,
2287 watch_mem_writel,
2289 #endif
2291 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2292 unsigned int len)
2294 CPUReadMemoryFunc **mem_read;
2295 uint32_t ret;
2296 unsigned int idx;
2298 idx = SUBPAGE_IDX(addr - mmio->base);
2299 #if defined(DEBUG_SUBPAGE)
2300 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2301 mmio, len, addr, idx);
2302 #endif
2303 mem_read = mmio->mem_read[idx];
2304 ret = (*mem_read[len])(mmio->opaque[idx], addr);
2306 return ret;
2309 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2310 uint32_t value, unsigned int len)
2312 CPUWriteMemoryFunc **mem_write;
2313 unsigned int idx;
2315 idx = SUBPAGE_IDX(addr - mmio->base);
2316 #if defined(DEBUG_SUBPAGE)
2317 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2318 mmio, len, addr, idx, value);
2319 #endif
2320 mem_write = mmio->mem_write[idx];
2321 (*mem_write[len])(mmio->opaque[idx], addr, value);
2324 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2326 #if defined(DEBUG_SUBPAGE)
2327 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2328 #endif
2330 return subpage_readlen(opaque, addr, 0);
2333 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2334 uint32_t value)
2336 #if defined(DEBUG_SUBPAGE)
2337 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2338 #endif
2339 subpage_writelen(opaque, addr, value, 0);
2342 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2344 #if defined(DEBUG_SUBPAGE)
2345 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2346 #endif
2348 return subpage_readlen(opaque, addr, 1);
2351 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2352 uint32_t value)
2354 #if defined(DEBUG_SUBPAGE)
2355 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2356 #endif
2357 subpage_writelen(opaque, addr, value, 1);
2360 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2362 #if defined(DEBUG_SUBPAGE)
2363 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2364 #endif
2366 return subpage_readlen(opaque, addr, 2);
2369 static void subpage_writel (void *opaque,
2370 target_phys_addr_t addr, uint32_t value)
2372 #if defined(DEBUG_SUBPAGE)
2373 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2374 #endif
2375 subpage_writelen(opaque, addr, value, 2);
2378 static CPUReadMemoryFunc *subpage_read[] = {
2379 &subpage_readb,
2380 &subpage_readw,
2381 &subpage_readl,
2384 static CPUWriteMemoryFunc *subpage_write[] = {
2385 &subpage_writeb,
2386 &subpage_writew,
2387 &subpage_writel,
2390 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2391 int memory)
2393 int idx, eidx;
2395 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2396 return -1;
2397 idx = SUBPAGE_IDX(start);
2398 eidx = SUBPAGE_IDX(end);
2399 #if defined(DEBUG_SUBPAGE)
2400 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2401 mmio, start, end, idx, eidx, memory);
2402 #endif
2403 memory >>= IO_MEM_SHIFT;
2404 for (; idx <= eidx; idx++) {
2405 mmio->mem_read[idx] = io_mem_read[memory];
2406 mmio->mem_write[idx] = io_mem_write[memory];
2407 mmio->opaque[idx] = io_mem_opaque[memory];
2410 return 0;
2413 static void *subpage_init (target_phys_addr_t base, uint32_t *phys,
2414 int orig_memory)
2416 subpage_t *mmio;
2417 int subpage_memory;
2419 mmio = qemu_mallocz(sizeof(subpage_t));
2420 if (mmio != NULL) {
2421 mmio->base = base;
2422 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2423 #if defined(DEBUG_SUBPAGE)
2424 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2425 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2426 #endif
2427 *phys = subpage_memory | IO_MEM_SUBPAGE;
2428 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory);
2431 return mmio;
2434 static void io_mem_init(void)
2436 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
2437 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
2438 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
2439 io_mem_nb = 5;
2441 #if defined(CONFIG_SOFTMMU)
2442 io_mem_watch = cpu_register_io_memory(-1, watch_mem_read,
2443 watch_mem_write, NULL);
2444 #endif
2445 /* alloc dirty bits array */
2446 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
2447 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
2450 /* mem_read and mem_write are arrays of functions containing the
2451 function to access byte (index 0), word (index 1) and dword (index
2452 2). All functions must be supplied. If io_index is non zero, the
2453 corresponding io zone is modified. If it is zero, a new io zone is
2454 allocated. The return value can be used with
2455 cpu_register_physical_memory(). (-1) is returned if error. */
2456 int cpu_register_io_memory(int io_index,
2457 CPUReadMemoryFunc **mem_read,
2458 CPUWriteMemoryFunc **mem_write,
2459 void *opaque)
2461 int i;
2463 if (io_index <= 0) {
2464 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
2465 return -1;
2466 io_index = io_mem_nb++;
2467 } else {
2468 if (io_index >= IO_MEM_NB_ENTRIES)
2469 return -1;
2472 for(i = 0;i < 3; i++) {
2473 io_mem_read[io_index][i] = mem_read[i];
2474 io_mem_write[io_index][i] = mem_write[i];
2476 io_mem_opaque[io_index] = opaque;
2477 return io_index << IO_MEM_SHIFT;
2480 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2482 return io_mem_write[io_index >> IO_MEM_SHIFT];
2485 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2487 return io_mem_read[io_index >> IO_MEM_SHIFT];
2490 /* physical memory access (slow version, mainly for debug) */
2491 #if defined(CONFIG_USER_ONLY)
2492 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2493 int len, int is_write)
2495 int l, flags;
2496 target_ulong page;
2497 void * p;
2499 while (len > 0) {
2500 page = addr & TARGET_PAGE_MASK;
2501 l = (page + TARGET_PAGE_SIZE) - addr;
2502 if (l > len)
2503 l = len;
2504 flags = page_get_flags(page);
2505 if (!(flags & PAGE_VALID))
2506 return;
2507 if (is_write) {
2508 if (!(flags & PAGE_WRITE))
2509 return;
2510 /* XXX: this code should not depend on lock_user */
2511 if (!(p = lock_user(VERIFY_WRITE, addr, len, 0)))
2512 /* FIXME - should this return an error rather than just fail? */
2513 return;
2514 memcpy(p, buf, len);
2515 unlock_user(p, addr, len);
2516 } else {
2517 if (!(flags & PAGE_READ))
2518 return;
2519 /* XXX: this code should not depend on lock_user */
2520 if (!(p = lock_user(VERIFY_READ, addr, len, 1)))
2521 /* FIXME - should this return an error rather than just fail? */
2522 return;
2523 memcpy(buf, p, len);
2524 unlock_user(p, addr, 0);
2526 len -= l;
2527 buf += l;
2528 addr += l;
2532 #else
2533 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2534 int len, int is_write)
2536 int l, io_index;
2537 uint8_t *ptr;
2538 uint32_t val;
2539 target_phys_addr_t page;
2540 unsigned long pd;
2541 PhysPageDesc *p;
2543 while (len > 0) {
2544 page = addr & TARGET_PAGE_MASK;
2545 l = (page + TARGET_PAGE_SIZE) - addr;
2546 if (l > len)
2547 l = len;
2548 p = phys_page_find(page >> TARGET_PAGE_BITS);
2549 if (!p) {
2550 pd = IO_MEM_UNASSIGNED;
2551 } else {
2552 pd = p->phys_offset;
2555 if (is_write) {
2556 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2557 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2558 /* XXX: could force cpu_single_env to NULL to avoid
2559 potential bugs */
2560 if (l >= 4 && ((addr & 3) == 0)) {
2561 /* 32 bit write access */
2562 val = ldl_p(buf);
2563 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2564 l = 4;
2565 } else if (l >= 2 && ((addr & 1) == 0)) {
2566 /* 16 bit write access */
2567 val = lduw_p(buf);
2568 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
2569 l = 2;
2570 } else {
2571 /* 8 bit write access */
2572 val = ldub_p(buf);
2573 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
2574 l = 1;
2576 } else {
2577 unsigned long addr1;
2578 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2579 /* RAM case */
2580 ptr = phys_ram_base + addr1;
2581 memcpy(ptr, buf, l);
2582 if (!cpu_physical_memory_is_dirty(addr1)) {
2583 /* invalidate code */
2584 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2585 /* set dirty bit */
2586 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2587 (0xff & ~CODE_DIRTY_FLAG);
2590 } else {
2591 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2592 !(pd & IO_MEM_ROMD)) {
2593 /* I/O case */
2594 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2595 if (l >= 4 && ((addr & 3) == 0)) {
2596 /* 32 bit read access */
2597 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2598 stl_p(buf, val);
2599 l = 4;
2600 } else if (l >= 2 && ((addr & 1) == 0)) {
2601 /* 16 bit read access */
2602 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
2603 stw_p(buf, val);
2604 l = 2;
2605 } else {
2606 /* 8 bit read access */
2607 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
2608 stb_p(buf, val);
2609 l = 1;
2611 } else {
2612 /* RAM case */
2613 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2614 (addr & ~TARGET_PAGE_MASK);
2615 memcpy(buf, ptr, l);
2618 len -= l;
2619 buf += l;
2620 addr += l;
2624 /* used for ROM loading : can write in RAM and ROM */
2625 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
2626 const uint8_t *buf, int len)
2628 int l;
2629 uint8_t *ptr;
2630 target_phys_addr_t page;
2631 unsigned long pd;
2632 PhysPageDesc *p;
2634 while (len > 0) {
2635 page = addr & TARGET_PAGE_MASK;
2636 l = (page + TARGET_PAGE_SIZE) - addr;
2637 if (l > len)
2638 l = len;
2639 p = phys_page_find(page >> TARGET_PAGE_BITS);
2640 if (!p) {
2641 pd = IO_MEM_UNASSIGNED;
2642 } else {
2643 pd = p->phys_offset;
2646 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2647 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
2648 !(pd & IO_MEM_ROMD)) {
2649 /* do nothing */
2650 } else {
2651 unsigned long addr1;
2652 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2653 /* ROM/RAM case */
2654 ptr = phys_ram_base + addr1;
2655 memcpy(ptr, buf, l);
2657 len -= l;
2658 buf += l;
2659 addr += l;
2664 /* warning: addr must be aligned */
2665 uint32_t ldl_phys(target_phys_addr_t addr)
2667 int io_index;
2668 uint8_t *ptr;
2669 uint32_t val;
2670 unsigned long pd;
2671 PhysPageDesc *p;
2673 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2674 if (!p) {
2675 pd = IO_MEM_UNASSIGNED;
2676 } else {
2677 pd = p->phys_offset;
2680 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2681 !(pd & IO_MEM_ROMD)) {
2682 /* I/O case */
2683 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2684 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2685 } else {
2686 /* RAM case */
2687 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2688 (addr & ~TARGET_PAGE_MASK);
2689 val = ldl_p(ptr);
2691 return val;
2694 /* warning: addr must be aligned */
2695 uint64_t ldq_phys(target_phys_addr_t addr)
2697 int io_index;
2698 uint8_t *ptr;
2699 uint64_t val;
2700 unsigned long pd;
2701 PhysPageDesc *p;
2703 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2704 if (!p) {
2705 pd = IO_MEM_UNASSIGNED;
2706 } else {
2707 pd = p->phys_offset;
2710 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2711 !(pd & IO_MEM_ROMD)) {
2712 /* I/O case */
2713 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2714 #ifdef TARGET_WORDS_BIGENDIAN
2715 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
2716 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
2717 #else
2718 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2719 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
2720 #endif
2721 } else {
2722 /* RAM case */
2723 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2724 (addr & ~TARGET_PAGE_MASK);
2725 val = ldq_p(ptr);
2727 return val;
2730 /* XXX: optimize */
2731 uint32_t ldub_phys(target_phys_addr_t addr)
2733 uint8_t val;
2734 cpu_physical_memory_read(addr, &val, 1);
2735 return val;
2738 /* XXX: optimize */
2739 uint32_t lduw_phys(target_phys_addr_t addr)
2741 uint16_t val;
2742 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
2743 return tswap16(val);
2746 /* warning: addr must be aligned. The ram page is not masked as dirty
2747 and the code inside is not invalidated. It is useful if the dirty
2748 bits are used to track modified PTEs */
2749 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
2751 int io_index;
2752 uint8_t *ptr;
2753 unsigned long pd;
2754 PhysPageDesc *p;
2756 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2757 if (!p) {
2758 pd = IO_MEM_UNASSIGNED;
2759 } else {
2760 pd = p->phys_offset;
2763 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2764 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2765 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2766 } else {
2767 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2768 (addr & ~TARGET_PAGE_MASK);
2769 stl_p(ptr, val);
2773 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
2775 int io_index;
2776 uint8_t *ptr;
2777 unsigned long pd;
2778 PhysPageDesc *p;
2780 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2781 if (!p) {
2782 pd = IO_MEM_UNASSIGNED;
2783 } else {
2784 pd = p->phys_offset;
2787 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2788 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2789 #ifdef TARGET_WORDS_BIGENDIAN
2790 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
2791 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
2792 #else
2793 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2794 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
2795 #endif
2796 } else {
2797 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2798 (addr & ~TARGET_PAGE_MASK);
2799 stq_p(ptr, val);
2803 /* warning: addr must be aligned */
2804 void stl_phys(target_phys_addr_t addr, uint32_t val)
2806 int io_index;
2807 uint8_t *ptr;
2808 unsigned long pd;
2809 PhysPageDesc *p;
2811 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2812 if (!p) {
2813 pd = IO_MEM_UNASSIGNED;
2814 } else {
2815 pd = p->phys_offset;
2818 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2819 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2820 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2821 } else {
2822 unsigned long addr1;
2823 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2824 /* RAM case */
2825 ptr = phys_ram_base + addr1;
2826 stl_p(ptr, val);
2827 if (!cpu_physical_memory_is_dirty(addr1)) {
2828 /* invalidate code */
2829 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2830 /* set dirty bit */
2831 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2832 (0xff & ~CODE_DIRTY_FLAG);
2837 /* XXX: optimize */
2838 void stb_phys(target_phys_addr_t addr, uint32_t val)
2840 uint8_t v = val;
2841 cpu_physical_memory_write(addr, &v, 1);
2844 /* XXX: optimize */
2845 void stw_phys(target_phys_addr_t addr, uint32_t val)
2847 uint16_t v = tswap16(val);
2848 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
2851 /* XXX: optimize */
2852 void stq_phys(target_phys_addr_t addr, uint64_t val)
2854 val = tswap64(val);
2855 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
2858 #endif
2860 /* virtual memory access for debug */
2861 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
2862 uint8_t *buf, int len, int is_write)
2864 int l;
2865 target_phys_addr_t phys_addr;
2866 target_ulong page;
2868 while (len > 0) {
2869 page = addr & TARGET_PAGE_MASK;
2870 phys_addr = cpu_get_phys_page_debug(env, page);
2871 /* if no physical page mapped, return an error */
2872 if (phys_addr == -1)
2873 return -1;
2874 l = (page + TARGET_PAGE_SIZE) - addr;
2875 if (l > len)
2876 l = len;
2877 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
2878 buf, l, is_write);
2879 len -= l;
2880 buf += l;
2881 addr += l;
2883 return 0;
2886 void dump_exec_info(FILE *f,
2887 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
2889 int i, target_code_size, max_target_code_size;
2890 int direct_jmp_count, direct_jmp2_count, cross_page;
2891 TranslationBlock *tb;
2893 target_code_size = 0;
2894 max_target_code_size = 0;
2895 cross_page = 0;
2896 direct_jmp_count = 0;
2897 direct_jmp2_count = 0;
2898 for(i = 0; i < nb_tbs; i++) {
2899 tb = &tbs[i];
2900 target_code_size += tb->size;
2901 if (tb->size > max_target_code_size)
2902 max_target_code_size = tb->size;
2903 if (tb->page_addr[1] != -1)
2904 cross_page++;
2905 if (tb->tb_next_offset[0] != 0xffff) {
2906 direct_jmp_count++;
2907 if (tb->tb_next_offset[1] != 0xffff) {
2908 direct_jmp2_count++;
2912 /* XXX: avoid using doubles ? */
2913 cpu_fprintf(f, "TB count %d\n", nb_tbs);
2914 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
2915 nb_tbs ? target_code_size / nb_tbs : 0,
2916 max_target_code_size);
2917 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
2918 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
2919 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
2920 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
2921 cross_page,
2922 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
2923 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
2924 direct_jmp_count,
2925 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
2926 direct_jmp2_count,
2927 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
2928 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
2929 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
2930 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
2933 #if !defined(CONFIG_USER_ONLY)
2935 #define MMUSUFFIX _cmmu
2936 #define GETPC() NULL
2937 #define env cpu_single_env
2938 #define SOFTMMU_CODE_ACCESS
2940 #define SHIFT 0
2941 #include "softmmu_template.h"
2943 #define SHIFT 1
2944 #include "softmmu_template.h"
2946 #define SHIFT 2
2947 #include "softmmu_template.h"
2949 #define SHIFT 3
2950 #include "softmmu_template.h"
2952 #undef env
2954 #endif