Add periodic timer implementation.
[qemu/mini2440.git] / vl.c
blob02c3c9cf79bdff0bb47429cfc6e676b660099a57
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2007 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "vl.h"
26 #include <unistd.h>
27 #include <fcntl.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <errno.h>
31 #include <sys/time.h>
32 #include <zlib.h>
34 #ifndef _WIN32
35 #include <sys/times.h>
36 #include <sys/wait.h>
37 #include <termios.h>
38 #include <sys/poll.h>
39 #include <sys/mman.h>
40 #include <sys/ioctl.h>
41 #include <sys/socket.h>
42 #include <netinet/in.h>
43 #include <dirent.h>
44 #include <netdb.h>
45 #ifdef _BSD
46 #include <sys/stat.h>
47 #ifndef __APPLE__
48 #include <libutil.h>
49 #endif
50 #else
51 #ifndef __sun__
52 #include <linux/if.h>
53 #include <linux/if_tun.h>
54 #include <pty.h>
55 #include <malloc.h>
56 #include <linux/rtc.h>
57 #include <linux/ppdev.h>
58 #include <linux/parport.h>
59 #else
60 #include <sys/stat.h>
61 #include <sys/ethernet.h>
62 #include <sys/sockio.h>
63 #include <arpa/inet.h>
64 #include <netinet/arp.h>
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #include <netinet/ip_icmp.h> // must come after ip.h
69 #include <netinet/udp.h>
70 #include <netinet/tcp.h>
71 #include <net/if.h>
72 #include <syslog.h>
73 #include <stropts.h>
74 #endif
75 #endif
76 #endif
78 #if defined(CONFIG_SLIRP)
79 #include "libslirp.h"
80 #endif
82 #ifdef _WIN32
83 #include <malloc.h>
84 #include <sys/timeb.h>
85 #include <windows.h>
86 #define getopt_long_only getopt_long
87 #define memalign(align, size) malloc(size)
88 #endif
90 #include "qemu_socket.h"
92 #ifdef CONFIG_SDL
93 #ifdef __APPLE__
94 #include <SDL/SDL.h>
95 #endif
96 #endif /* CONFIG_SDL */
98 #ifdef CONFIG_COCOA
99 #undef main
100 #define main qemu_main
101 #endif /* CONFIG_COCOA */
103 #include "disas.h"
105 #include "exec-all.h"
107 #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
108 #ifdef __sun__
109 #define SMBD_COMMAND "/usr/sfw/sbin/smbd"
110 #else
111 #define SMBD_COMMAND "/usr/sbin/smbd"
112 #endif
114 //#define DEBUG_UNUSED_IOPORT
115 //#define DEBUG_IOPORT
117 #define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
119 #ifdef TARGET_PPC
120 #define DEFAULT_RAM_SIZE 144
121 #else
122 #define DEFAULT_RAM_SIZE 128
123 #endif
124 /* in ms */
125 #define GUI_REFRESH_INTERVAL 30
127 /* Max number of USB devices that can be specified on the commandline. */
128 #define MAX_USB_CMDLINE 8
130 /* XXX: use a two level table to limit memory usage */
131 #define MAX_IOPORTS 65536
133 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
134 char phys_ram_file[1024];
135 void *ioport_opaque[MAX_IOPORTS];
136 IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
137 IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
138 /* Note: bs_table[MAX_DISKS] is a dummy block driver if none available
139 to store the VM snapshots */
140 BlockDriverState *bs_table[MAX_DISKS + 1], *fd_table[MAX_FD];
141 BlockDriverState *pflash_table[MAX_PFLASH];
142 BlockDriverState *sd_bdrv;
143 BlockDriverState *mtd_bdrv;
144 /* point to the block driver where the snapshots are managed */
145 BlockDriverState *bs_snapshots;
146 int vga_ram_size;
147 static DisplayState display_state;
148 int nographic;
149 const char* keyboard_layout = NULL;
150 int64_t ticks_per_sec;
151 int boot_device = 'c';
152 int ram_size;
153 int pit_min_timer_count = 0;
154 int nb_nics;
155 NICInfo nd_table[MAX_NICS];
156 QEMUTimer *gui_timer;
157 int vm_running;
158 int rtc_utc = 1;
159 int cirrus_vga_enabled = 1;
160 int vmsvga_enabled = 0;
161 #ifdef TARGET_SPARC
162 int graphic_width = 1024;
163 int graphic_height = 768;
164 int graphic_depth = 8;
165 #else
166 int graphic_width = 800;
167 int graphic_height = 600;
168 int graphic_depth = 15;
169 #endif
170 int full_screen = 0;
171 int no_frame = 0;
172 int no_quit = 0;
173 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
174 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
175 #ifdef TARGET_I386
176 int win2k_install_hack = 0;
177 #endif
178 int usb_enabled = 0;
179 static VLANState *first_vlan;
180 int smp_cpus = 1;
181 const char *vnc_display;
182 #if defined(TARGET_SPARC)
183 #define MAX_CPUS 16
184 #elif defined(TARGET_I386)
185 #define MAX_CPUS 255
186 #else
187 #define MAX_CPUS 1
188 #endif
189 int acpi_enabled = 1;
190 int fd_bootchk = 1;
191 int no_reboot = 0;
192 int cursor_hide = 1;
193 int graphic_rotate = 0;
194 int daemonize = 0;
195 const char *option_rom[MAX_OPTION_ROMS];
196 int nb_option_roms;
197 int semihosting_enabled = 0;
198 int autostart = 1;
199 const char *qemu_name;
200 #ifdef TARGET_SPARC
201 unsigned int nb_prom_envs = 0;
202 const char *prom_envs[MAX_PROM_ENVS];
203 #endif
205 /***********************************************************/
206 /* x86 ISA bus support */
208 target_phys_addr_t isa_mem_base = 0;
209 PicState2 *isa_pic;
211 uint32_t default_ioport_readb(void *opaque, uint32_t address)
213 #ifdef DEBUG_UNUSED_IOPORT
214 fprintf(stderr, "unused inb: port=0x%04x\n", address);
215 #endif
216 return 0xff;
219 void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
221 #ifdef DEBUG_UNUSED_IOPORT
222 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
223 #endif
226 /* default is to make two byte accesses */
227 uint32_t default_ioport_readw(void *opaque, uint32_t address)
229 uint32_t data;
230 data = ioport_read_table[0][address](ioport_opaque[address], address);
231 address = (address + 1) & (MAX_IOPORTS - 1);
232 data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
233 return data;
236 void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
238 ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
239 address = (address + 1) & (MAX_IOPORTS - 1);
240 ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
243 uint32_t default_ioport_readl(void *opaque, uint32_t address)
245 #ifdef DEBUG_UNUSED_IOPORT
246 fprintf(stderr, "unused inl: port=0x%04x\n", address);
247 #endif
248 return 0xffffffff;
251 void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
253 #ifdef DEBUG_UNUSED_IOPORT
254 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
255 #endif
258 void init_ioports(void)
260 int i;
262 for(i = 0; i < MAX_IOPORTS; i++) {
263 ioport_read_table[0][i] = default_ioport_readb;
264 ioport_write_table[0][i] = default_ioport_writeb;
265 ioport_read_table[1][i] = default_ioport_readw;
266 ioport_write_table[1][i] = default_ioport_writew;
267 ioport_read_table[2][i] = default_ioport_readl;
268 ioport_write_table[2][i] = default_ioport_writel;
272 /* size is the word size in byte */
273 int register_ioport_read(int start, int length, int size,
274 IOPortReadFunc *func, void *opaque)
276 int i, bsize;
278 if (size == 1) {
279 bsize = 0;
280 } else if (size == 2) {
281 bsize = 1;
282 } else if (size == 4) {
283 bsize = 2;
284 } else {
285 hw_error("register_ioport_read: invalid size");
286 return -1;
288 for(i = start; i < start + length; i += size) {
289 ioport_read_table[bsize][i] = func;
290 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
291 hw_error("register_ioport_read: invalid opaque");
292 ioport_opaque[i] = opaque;
294 return 0;
297 /* size is the word size in byte */
298 int register_ioport_write(int start, int length, int size,
299 IOPortWriteFunc *func, void *opaque)
301 int i, bsize;
303 if (size == 1) {
304 bsize = 0;
305 } else if (size == 2) {
306 bsize = 1;
307 } else if (size == 4) {
308 bsize = 2;
309 } else {
310 hw_error("register_ioport_write: invalid size");
311 return -1;
313 for(i = start; i < start + length; i += size) {
314 ioport_write_table[bsize][i] = func;
315 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
316 hw_error("register_ioport_write: invalid opaque");
317 ioport_opaque[i] = opaque;
319 return 0;
322 void isa_unassign_ioport(int start, int length)
324 int i;
326 for(i = start; i < start + length; i++) {
327 ioport_read_table[0][i] = default_ioport_readb;
328 ioport_read_table[1][i] = default_ioport_readw;
329 ioport_read_table[2][i] = default_ioport_readl;
331 ioport_write_table[0][i] = default_ioport_writeb;
332 ioport_write_table[1][i] = default_ioport_writew;
333 ioport_write_table[2][i] = default_ioport_writel;
337 /***********************************************************/
339 void cpu_outb(CPUState *env, int addr, int val)
341 #ifdef DEBUG_IOPORT
342 if (loglevel & CPU_LOG_IOPORT)
343 fprintf(logfile, "outb: %04x %02x\n", addr, val);
344 #endif
345 ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
346 #ifdef USE_KQEMU
347 if (env)
348 env->last_io_time = cpu_get_time_fast();
349 #endif
352 void cpu_outw(CPUState *env, int addr, int val)
354 #ifdef DEBUG_IOPORT
355 if (loglevel & CPU_LOG_IOPORT)
356 fprintf(logfile, "outw: %04x %04x\n", addr, val);
357 #endif
358 ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
359 #ifdef USE_KQEMU
360 if (env)
361 env->last_io_time = cpu_get_time_fast();
362 #endif
365 void cpu_outl(CPUState *env, int addr, int val)
367 #ifdef DEBUG_IOPORT
368 if (loglevel & CPU_LOG_IOPORT)
369 fprintf(logfile, "outl: %04x %08x\n", addr, val);
370 #endif
371 ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
372 #ifdef USE_KQEMU
373 if (env)
374 env->last_io_time = cpu_get_time_fast();
375 #endif
378 int cpu_inb(CPUState *env, int addr)
380 int val;
381 val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
382 #ifdef DEBUG_IOPORT
383 if (loglevel & CPU_LOG_IOPORT)
384 fprintf(logfile, "inb : %04x %02x\n", addr, val);
385 #endif
386 #ifdef USE_KQEMU
387 if (env)
388 env->last_io_time = cpu_get_time_fast();
389 #endif
390 return val;
393 int cpu_inw(CPUState *env, int addr)
395 int val;
396 val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
397 #ifdef DEBUG_IOPORT
398 if (loglevel & CPU_LOG_IOPORT)
399 fprintf(logfile, "inw : %04x %04x\n", addr, val);
400 #endif
401 #ifdef USE_KQEMU
402 if (env)
403 env->last_io_time = cpu_get_time_fast();
404 #endif
405 return val;
408 int cpu_inl(CPUState *env, int addr)
410 int val;
411 val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
412 #ifdef DEBUG_IOPORT
413 if (loglevel & CPU_LOG_IOPORT)
414 fprintf(logfile, "inl : %04x %08x\n", addr, val);
415 #endif
416 #ifdef USE_KQEMU
417 if (env)
418 env->last_io_time = cpu_get_time_fast();
419 #endif
420 return val;
423 /***********************************************************/
424 void hw_error(const char *fmt, ...)
426 va_list ap;
427 CPUState *env;
429 va_start(ap, fmt);
430 fprintf(stderr, "qemu: hardware error: ");
431 vfprintf(stderr, fmt, ap);
432 fprintf(stderr, "\n");
433 for(env = first_cpu; env != NULL; env = env->next_cpu) {
434 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
435 #ifdef TARGET_I386
436 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
437 #else
438 cpu_dump_state(env, stderr, fprintf, 0);
439 #endif
441 va_end(ap);
442 abort();
445 /***********************************************************/
446 /* keyboard/mouse */
448 static QEMUPutKBDEvent *qemu_put_kbd_event;
449 static void *qemu_put_kbd_event_opaque;
450 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
451 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
453 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
455 qemu_put_kbd_event_opaque = opaque;
456 qemu_put_kbd_event = func;
459 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
460 void *opaque, int absolute,
461 const char *name)
463 QEMUPutMouseEntry *s, *cursor;
465 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
466 if (!s)
467 return NULL;
469 s->qemu_put_mouse_event = func;
470 s->qemu_put_mouse_event_opaque = opaque;
471 s->qemu_put_mouse_event_absolute = absolute;
472 s->qemu_put_mouse_event_name = qemu_strdup(name);
473 s->next = NULL;
475 if (!qemu_put_mouse_event_head) {
476 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
477 return s;
480 cursor = qemu_put_mouse_event_head;
481 while (cursor->next != NULL)
482 cursor = cursor->next;
484 cursor->next = s;
485 qemu_put_mouse_event_current = s;
487 return s;
490 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
492 QEMUPutMouseEntry *prev = NULL, *cursor;
494 if (!qemu_put_mouse_event_head || entry == NULL)
495 return;
497 cursor = qemu_put_mouse_event_head;
498 while (cursor != NULL && cursor != entry) {
499 prev = cursor;
500 cursor = cursor->next;
503 if (cursor == NULL) // does not exist or list empty
504 return;
505 else if (prev == NULL) { // entry is head
506 qemu_put_mouse_event_head = cursor->next;
507 if (qemu_put_mouse_event_current == entry)
508 qemu_put_mouse_event_current = cursor->next;
509 qemu_free(entry->qemu_put_mouse_event_name);
510 qemu_free(entry);
511 return;
514 prev->next = entry->next;
516 if (qemu_put_mouse_event_current == entry)
517 qemu_put_mouse_event_current = prev;
519 qemu_free(entry->qemu_put_mouse_event_name);
520 qemu_free(entry);
523 void kbd_put_keycode(int keycode)
525 if (qemu_put_kbd_event) {
526 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
530 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
532 QEMUPutMouseEvent *mouse_event;
533 void *mouse_event_opaque;
534 int width;
536 if (!qemu_put_mouse_event_current) {
537 return;
540 mouse_event =
541 qemu_put_mouse_event_current->qemu_put_mouse_event;
542 mouse_event_opaque =
543 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
545 if (mouse_event) {
546 if (graphic_rotate) {
547 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
548 width = 0x7fff;
549 else
550 width = graphic_width;
551 mouse_event(mouse_event_opaque,
552 width - dy, dx, dz, buttons_state);
553 } else
554 mouse_event(mouse_event_opaque,
555 dx, dy, dz, buttons_state);
559 int kbd_mouse_is_absolute(void)
561 if (!qemu_put_mouse_event_current)
562 return 0;
564 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
567 void do_info_mice(void)
569 QEMUPutMouseEntry *cursor;
570 int index = 0;
572 if (!qemu_put_mouse_event_head) {
573 term_printf("No mouse devices connected\n");
574 return;
577 term_printf("Mouse devices available:\n");
578 cursor = qemu_put_mouse_event_head;
579 while (cursor != NULL) {
580 term_printf("%c Mouse #%d: %s\n",
581 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
582 index, cursor->qemu_put_mouse_event_name);
583 index++;
584 cursor = cursor->next;
588 void do_mouse_set(int index)
590 QEMUPutMouseEntry *cursor;
591 int i = 0;
593 if (!qemu_put_mouse_event_head) {
594 term_printf("No mouse devices connected\n");
595 return;
598 cursor = qemu_put_mouse_event_head;
599 while (cursor != NULL && index != i) {
600 i++;
601 cursor = cursor->next;
604 if (cursor != NULL)
605 qemu_put_mouse_event_current = cursor;
606 else
607 term_printf("Mouse at given index not found\n");
610 /* compute with 96 bit intermediate result: (a*b)/c */
611 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
613 union {
614 uint64_t ll;
615 struct {
616 #ifdef WORDS_BIGENDIAN
617 uint32_t high, low;
618 #else
619 uint32_t low, high;
620 #endif
621 } l;
622 } u, res;
623 uint64_t rl, rh;
625 u.ll = a;
626 rl = (uint64_t)u.l.low * (uint64_t)b;
627 rh = (uint64_t)u.l.high * (uint64_t)b;
628 rh += (rl >> 32);
629 res.l.high = rh / c;
630 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
631 return res.ll;
634 /***********************************************************/
635 /* real time host monotonic timer */
637 #define QEMU_TIMER_BASE 1000000000LL
639 #ifdef WIN32
641 static int64_t clock_freq;
643 static void init_get_clock(void)
645 LARGE_INTEGER freq;
646 int ret;
647 ret = QueryPerformanceFrequency(&freq);
648 if (ret == 0) {
649 fprintf(stderr, "Could not calibrate ticks\n");
650 exit(1);
652 clock_freq = freq.QuadPart;
655 static int64_t get_clock(void)
657 LARGE_INTEGER ti;
658 QueryPerformanceCounter(&ti);
659 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
662 #else
664 static int use_rt_clock;
666 static void init_get_clock(void)
668 use_rt_clock = 0;
669 #if defined(__linux__)
671 struct timespec ts;
672 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
673 use_rt_clock = 1;
676 #endif
679 static int64_t get_clock(void)
681 #if defined(__linux__)
682 if (use_rt_clock) {
683 struct timespec ts;
684 clock_gettime(CLOCK_MONOTONIC, &ts);
685 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
686 } else
687 #endif
689 /* XXX: using gettimeofday leads to problems if the date
690 changes, so it should be avoided. */
691 struct timeval tv;
692 gettimeofday(&tv, NULL);
693 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
697 #endif
699 /***********************************************************/
700 /* guest cycle counter */
702 static int64_t cpu_ticks_prev;
703 static int64_t cpu_ticks_offset;
704 static int64_t cpu_clock_offset;
705 static int cpu_ticks_enabled;
707 /* return the host CPU cycle counter and handle stop/restart */
708 int64_t cpu_get_ticks(void)
710 if (!cpu_ticks_enabled) {
711 return cpu_ticks_offset;
712 } else {
713 int64_t ticks;
714 ticks = cpu_get_real_ticks();
715 if (cpu_ticks_prev > ticks) {
716 /* Note: non increasing ticks may happen if the host uses
717 software suspend */
718 cpu_ticks_offset += cpu_ticks_prev - ticks;
720 cpu_ticks_prev = ticks;
721 return ticks + cpu_ticks_offset;
725 /* return the host CPU monotonic timer and handle stop/restart */
726 static int64_t cpu_get_clock(void)
728 int64_t ti;
729 if (!cpu_ticks_enabled) {
730 return cpu_clock_offset;
731 } else {
732 ti = get_clock();
733 return ti + cpu_clock_offset;
737 /* enable cpu_get_ticks() */
738 void cpu_enable_ticks(void)
740 if (!cpu_ticks_enabled) {
741 cpu_ticks_offset -= cpu_get_real_ticks();
742 cpu_clock_offset -= get_clock();
743 cpu_ticks_enabled = 1;
747 /* disable cpu_get_ticks() : the clock is stopped. You must not call
748 cpu_get_ticks() after that. */
749 void cpu_disable_ticks(void)
751 if (cpu_ticks_enabled) {
752 cpu_ticks_offset = cpu_get_ticks();
753 cpu_clock_offset = cpu_get_clock();
754 cpu_ticks_enabled = 0;
758 /***********************************************************/
759 /* timers */
761 #define QEMU_TIMER_REALTIME 0
762 #define QEMU_TIMER_VIRTUAL 1
764 struct QEMUClock {
765 int type;
766 /* XXX: add frequency */
769 struct QEMUTimer {
770 QEMUClock *clock;
771 int64_t expire_time;
772 QEMUTimerCB *cb;
773 void *opaque;
774 struct QEMUTimer *next;
777 QEMUClock *rt_clock;
778 QEMUClock *vm_clock;
780 static QEMUTimer *active_timers[2];
781 #ifdef _WIN32
782 static MMRESULT timerID;
783 static HANDLE host_alarm = NULL;
784 static unsigned int period = 1;
785 #else
786 /* frequency of the times() clock tick */
787 static int timer_freq;
788 #endif
790 QEMUClock *qemu_new_clock(int type)
792 QEMUClock *clock;
793 clock = qemu_mallocz(sizeof(QEMUClock));
794 if (!clock)
795 return NULL;
796 clock->type = type;
797 return clock;
800 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
802 QEMUTimer *ts;
804 ts = qemu_mallocz(sizeof(QEMUTimer));
805 ts->clock = clock;
806 ts->cb = cb;
807 ts->opaque = opaque;
808 return ts;
811 void qemu_free_timer(QEMUTimer *ts)
813 qemu_free(ts);
816 /* stop a timer, but do not dealloc it */
817 void qemu_del_timer(QEMUTimer *ts)
819 QEMUTimer **pt, *t;
821 /* NOTE: this code must be signal safe because
822 qemu_timer_expired() can be called from a signal. */
823 pt = &active_timers[ts->clock->type];
824 for(;;) {
825 t = *pt;
826 if (!t)
827 break;
828 if (t == ts) {
829 *pt = t->next;
830 break;
832 pt = &t->next;
836 /* modify the current timer so that it will be fired when current_time
837 >= expire_time. The corresponding callback will be called. */
838 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
840 QEMUTimer **pt, *t;
842 qemu_del_timer(ts);
844 /* add the timer in the sorted list */
845 /* NOTE: this code must be signal safe because
846 qemu_timer_expired() can be called from a signal. */
847 pt = &active_timers[ts->clock->type];
848 for(;;) {
849 t = *pt;
850 if (!t)
851 break;
852 if (t->expire_time > expire_time)
853 break;
854 pt = &t->next;
856 ts->expire_time = expire_time;
857 ts->next = *pt;
858 *pt = ts;
861 int qemu_timer_pending(QEMUTimer *ts)
863 QEMUTimer *t;
864 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
865 if (t == ts)
866 return 1;
868 return 0;
871 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
873 if (!timer_head)
874 return 0;
875 return (timer_head->expire_time <= current_time);
878 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
880 QEMUTimer *ts;
882 for(;;) {
883 ts = *ptimer_head;
884 if (!ts || ts->expire_time > current_time)
885 break;
886 /* remove timer from the list before calling the callback */
887 *ptimer_head = ts->next;
888 ts->next = NULL;
890 /* run the callback (the timer list can be modified) */
891 ts->cb(ts->opaque);
895 int64_t qemu_get_clock(QEMUClock *clock)
897 switch(clock->type) {
898 case QEMU_TIMER_REALTIME:
899 return get_clock() / 1000000;
900 default:
901 case QEMU_TIMER_VIRTUAL:
902 return cpu_get_clock();
906 static void init_timers(void)
908 init_get_clock();
909 ticks_per_sec = QEMU_TIMER_BASE;
910 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
911 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
914 /* save a timer */
915 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
917 uint64_t expire_time;
919 if (qemu_timer_pending(ts)) {
920 expire_time = ts->expire_time;
921 } else {
922 expire_time = -1;
924 qemu_put_be64(f, expire_time);
927 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
929 uint64_t expire_time;
931 expire_time = qemu_get_be64(f);
932 if (expire_time != -1) {
933 qemu_mod_timer(ts, expire_time);
934 } else {
935 qemu_del_timer(ts);
939 static void timer_save(QEMUFile *f, void *opaque)
941 if (cpu_ticks_enabled) {
942 hw_error("cannot save state if virtual timers are running");
944 qemu_put_be64s(f, &cpu_ticks_offset);
945 qemu_put_be64s(f, &ticks_per_sec);
946 qemu_put_be64s(f, &cpu_clock_offset);
949 static int timer_load(QEMUFile *f, void *opaque, int version_id)
951 if (version_id != 1 && version_id != 2)
952 return -EINVAL;
953 if (cpu_ticks_enabled) {
954 return -EINVAL;
956 qemu_get_be64s(f, &cpu_ticks_offset);
957 qemu_get_be64s(f, &ticks_per_sec);
958 if (version_id == 2) {
959 qemu_get_be64s(f, &cpu_clock_offset);
961 return 0;
964 #ifdef _WIN32
965 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
966 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
967 #else
968 static void host_alarm_handler(int host_signum)
969 #endif
971 #if 0
972 #define DISP_FREQ 1000
974 static int64_t delta_min = INT64_MAX;
975 static int64_t delta_max, delta_cum, last_clock, delta, ti;
976 static int count;
977 ti = qemu_get_clock(vm_clock);
978 if (last_clock != 0) {
979 delta = ti - last_clock;
980 if (delta < delta_min)
981 delta_min = delta;
982 if (delta > delta_max)
983 delta_max = delta;
984 delta_cum += delta;
985 if (++count == DISP_FREQ) {
986 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
987 muldiv64(delta_min, 1000000, ticks_per_sec),
988 muldiv64(delta_max, 1000000, ticks_per_sec),
989 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
990 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
991 count = 0;
992 delta_min = INT64_MAX;
993 delta_max = 0;
994 delta_cum = 0;
997 last_clock = ti;
999 #endif
1000 if (qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1001 qemu_get_clock(vm_clock)) ||
1002 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1003 qemu_get_clock(rt_clock))) {
1004 #ifdef _WIN32
1005 SetEvent(host_alarm);
1006 #endif
1007 CPUState *env = cpu_single_env;
1008 if (env) {
1009 /* stop the currently executing cpu because a timer occured */
1010 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1011 #ifdef USE_KQEMU
1012 if (env->kqemu_enabled) {
1013 kqemu_cpu_interrupt(env);
1015 #endif
1020 #ifndef _WIN32
1022 #if defined(__linux__)
1024 #define RTC_FREQ 1024
1026 static int rtc_fd;
1028 static int start_rtc_timer(void)
1030 rtc_fd = open("/dev/rtc", O_RDONLY);
1031 if (rtc_fd < 0)
1032 return -1;
1033 if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1034 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1035 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1036 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1037 goto fail;
1039 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1040 fail:
1041 close(rtc_fd);
1042 return -1;
1044 pit_min_timer_count = PIT_FREQ / RTC_FREQ;
1045 return 0;
1048 #else
1050 static int start_rtc_timer(void)
1052 return -1;
1055 #endif /* !defined(__linux__) */
1057 #endif /* !defined(_WIN32) */
1059 static void init_timer_alarm(void)
1061 #ifdef _WIN32
1063 int count=0;
1064 TIMECAPS tc;
1066 ZeroMemory(&tc, sizeof(TIMECAPS));
1067 timeGetDevCaps(&tc, sizeof(TIMECAPS));
1068 if (period < tc.wPeriodMin)
1069 period = tc.wPeriodMin;
1070 timeBeginPeriod(period);
1071 timerID = timeSetEvent(1, // interval (ms)
1072 period, // resolution
1073 host_alarm_handler, // function
1074 (DWORD)&count, // user parameter
1075 TIME_PERIODIC | TIME_CALLBACK_FUNCTION);
1076 if( !timerID ) {
1077 perror("failed timer alarm");
1078 exit(1);
1080 host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1081 if (!host_alarm) {
1082 perror("failed CreateEvent");
1083 exit(1);
1085 qemu_add_wait_object(host_alarm, NULL, NULL);
1087 pit_min_timer_count = ((uint64_t)10000 * PIT_FREQ) / 1000000;
1088 #else
1090 struct sigaction act;
1091 struct itimerval itv;
1093 /* get times() syscall frequency */
1094 timer_freq = sysconf(_SC_CLK_TCK);
1096 /* timer signal */
1097 sigfillset(&act.sa_mask);
1098 act.sa_flags = 0;
1099 #if defined (TARGET_I386) && defined(USE_CODE_COPY)
1100 act.sa_flags |= SA_ONSTACK;
1101 #endif
1102 act.sa_handler = host_alarm_handler;
1103 sigaction(SIGALRM, &act, NULL);
1105 itv.it_interval.tv_sec = 0;
1106 itv.it_interval.tv_usec = 999; /* for i386 kernel 2.6 to get 1 ms */
1107 itv.it_value.tv_sec = 0;
1108 itv.it_value.tv_usec = 10 * 1000;
1109 setitimer(ITIMER_REAL, &itv, NULL);
1110 /* we probe the tick duration of the kernel to inform the user if
1111 the emulated kernel requested a too high timer frequency */
1112 getitimer(ITIMER_REAL, &itv);
1114 #if defined(__linux__)
1115 /* XXX: force /dev/rtc usage because even 2.6 kernels may not
1116 have timers with 1 ms resolution. The correct solution will
1117 be to use the POSIX real time timers available in recent
1118 2.6 kernels */
1119 if (itv.it_interval.tv_usec > 1000 || 1) {
1120 /* try to use /dev/rtc to have a faster timer */
1121 if (start_rtc_timer() < 0)
1122 goto use_itimer;
1123 /* disable itimer */
1124 itv.it_interval.tv_sec = 0;
1125 itv.it_interval.tv_usec = 0;
1126 itv.it_value.tv_sec = 0;
1127 itv.it_value.tv_usec = 0;
1128 setitimer(ITIMER_REAL, &itv, NULL);
1130 /* use the RTC */
1131 sigaction(SIGIO, &act, NULL);
1132 fcntl(rtc_fd, F_SETFL, O_ASYNC);
1133 fcntl(rtc_fd, F_SETOWN, getpid());
1134 } else
1135 #endif /* defined(__linux__) */
1137 use_itimer:
1138 pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec *
1139 PIT_FREQ) / 1000000;
1142 #endif
1145 void quit_timers(void)
1147 #ifdef _WIN32
1148 timeKillEvent(timerID);
1149 timeEndPeriod(period);
1150 if (host_alarm) {
1151 CloseHandle(host_alarm);
1152 host_alarm = NULL;
1154 #endif
1157 /***********************************************************/
1158 /* character device */
1160 static void qemu_chr_event(CharDriverState *s, int event)
1162 if (!s->chr_event)
1163 return;
1164 s->chr_event(s->handler_opaque, event);
1167 static void qemu_chr_reset_bh(void *opaque)
1169 CharDriverState *s = opaque;
1170 qemu_chr_event(s, CHR_EVENT_RESET);
1171 qemu_bh_delete(s->bh);
1172 s->bh = NULL;
1175 void qemu_chr_reset(CharDriverState *s)
1177 if (s->bh == NULL) {
1178 s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1179 qemu_bh_schedule(s->bh);
1183 int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1185 return s->chr_write(s, buf, len);
1188 int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1190 if (!s->chr_ioctl)
1191 return -ENOTSUP;
1192 return s->chr_ioctl(s, cmd, arg);
1195 int qemu_chr_can_read(CharDriverState *s)
1197 if (!s->chr_can_read)
1198 return 0;
1199 return s->chr_can_read(s->handler_opaque);
1202 void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1204 s->chr_read(s->handler_opaque, buf, len);
1208 void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1210 char buf[4096];
1211 va_list ap;
1212 va_start(ap, fmt);
1213 vsnprintf(buf, sizeof(buf), fmt, ap);
1214 qemu_chr_write(s, buf, strlen(buf));
1215 va_end(ap);
1218 void qemu_chr_send_event(CharDriverState *s, int event)
1220 if (s->chr_send_event)
1221 s->chr_send_event(s, event);
1224 void qemu_chr_add_handlers(CharDriverState *s,
1225 IOCanRWHandler *fd_can_read,
1226 IOReadHandler *fd_read,
1227 IOEventHandler *fd_event,
1228 void *opaque)
1230 s->chr_can_read = fd_can_read;
1231 s->chr_read = fd_read;
1232 s->chr_event = fd_event;
1233 s->handler_opaque = opaque;
1234 if (s->chr_update_read_handler)
1235 s->chr_update_read_handler(s);
1238 static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1240 return len;
1243 static CharDriverState *qemu_chr_open_null(void)
1245 CharDriverState *chr;
1247 chr = qemu_mallocz(sizeof(CharDriverState));
1248 if (!chr)
1249 return NULL;
1250 chr->chr_write = null_chr_write;
1251 return chr;
1254 /* MUX driver for serial I/O splitting */
1255 static int term_timestamps;
1256 static int64_t term_timestamps_start;
1257 #define MAX_MUX 4
1258 typedef struct {
1259 IOCanRWHandler *chr_can_read[MAX_MUX];
1260 IOReadHandler *chr_read[MAX_MUX];
1261 IOEventHandler *chr_event[MAX_MUX];
1262 void *ext_opaque[MAX_MUX];
1263 CharDriverState *drv;
1264 int mux_cnt;
1265 int term_got_escape;
1266 int max_size;
1267 } MuxDriver;
1270 static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1272 MuxDriver *d = chr->opaque;
1273 int ret;
1274 if (!term_timestamps) {
1275 ret = d->drv->chr_write(d->drv, buf, len);
1276 } else {
1277 int i;
1279 ret = 0;
1280 for(i = 0; i < len; i++) {
1281 ret += d->drv->chr_write(d->drv, buf+i, 1);
1282 if (buf[i] == '\n') {
1283 char buf1[64];
1284 int64_t ti;
1285 int secs;
1287 ti = get_clock();
1288 if (term_timestamps_start == -1)
1289 term_timestamps_start = ti;
1290 ti -= term_timestamps_start;
1291 secs = ti / 1000000000;
1292 snprintf(buf1, sizeof(buf1),
1293 "[%02d:%02d:%02d.%03d] ",
1294 secs / 3600,
1295 (secs / 60) % 60,
1296 secs % 60,
1297 (int)((ti / 1000000) % 1000));
1298 d->drv->chr_write(d->drv, buf1, strlen(buf1));
1302 return ret;
1305 static char *mux_help[] = {
1306 "% h print this help\n\r",
1307 "% x exit emulator\n\r",
1308 "% s save disk data back to file (if -snapshot)\n\r",
1309 "% t toggle console timestamps\n\r"
1310 "% b send break (magic sysrq)\n\r",
1311 "% c switch between console and monitor\n\r",
1312 "% % sends %\n\r",
1313 NULL
1316 static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1317 static void mux_print_help(CharDriverState *chr)
1319 int i, j;
1320 char ebuf[15] = "Escape-Char";
1321 char cbuf[50] = "\n\r";
1323 if (term_escape_char > 0 && term_escape_char < 26) {
1324 sprintf(cbuf,"\n\r");
1325 sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1326 } else {
1327 sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r", term_escape_char);
1329 chr->chr_write(chr, cbuf, strlen(cbuf));
1330 for (i = 0; mux_help[i] != NULL; i++) {
1331 for (j=0; mux_help[i][j] != '\0'; j++) {
1332 if (mux_help[i][j] == '%')
1333 chr->chr_write(chr, ebuf, strlen(ebuf));
1334 else
1335 chr->chr_write(chr, &mux_help[i][j], 1);
1340 static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1342 if (d->term_got_escape) {
1343 d->term_got_escape = 0;
1344 if (ch == term_escape_char)
1345 goto send_char;
1346 switch(ch) {
1347 case '?':
1348 case 'h':
1349 mux_print_help(chr);
1350 break;
1351 case 'x':
1353 char *term = "QEMU: Terminated\n\r";
1354 chr->chr_write(chr,term,strlen(term));
1355 exit(0);
1356 break;
1358 case 's':
1360 int i;
1361 for (i = 0; i < MAX_DISKS; i++) {
1362 if (bs_table[i])
1363 bdrv_commit(bs_table[i]);
1366 break;
1367 case 'b':
1368 qemu_chr_event(chr, CHR_EVENT_BREAK);
1369 break;
1370 case 'c':
1371 /* Switch to the next registered device */
1372 chr->focus++;
1373 if (chr->focus >= d->mux_cnt)
1374 chr->focus = 0;
1375 break;
1376 case 't':
1377 term_timestamps = !term_timestamps;
1378 term_timestamps_start = -1;
1379 break;
1381 } else if (ch == term_escape_char) {
1382 d->term_got_escape = 1;
1383 } else {
1384 send_char:
1385 return 1;
1387 return 0;
1390 static int mux_chr_can_read(void *opaque)
1392 CharDriverState *chr = opaque;
1393 MuxDriver *d = chr->opaque;
1394 if (d->chr_can_read[chr->focus])
1395 return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1396 return 0;
1399 static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1401 CharDriverState *chr = opaque;
1402 MuxDriver *d = chr->opaque;
1403 int i;
1404 for(i = 0; i < size; i++)
1405 if (mux_proc_byte(chr, d, buf[i]))
1406 d->chr_read[chr->focus](d->ext_opaque[chr->focus], &buf[i], 1);
1409 static void mux_chr_event(void *opaque, int event)
1411 CharDriverState *chr = opaque;
1412 MuxDriver *d = chr->opaque;
1413 int i;
1415 /* Send the event to all registered listeners */
1416 for (i = 0; i < d->mux_cnt; i++)
1417 if (d->chr_event[i])
1418 d->chr_event[i](d->ext_opaque[i], event);
1421 static void mux_chr_update_read_handler(CharDriverState *chr)
1423 MuxDriver *d = chr->opaque;
1425 if (d->mux_cnt >= MAX_MUX) {
1426 fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1427 return;
1429 d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1430 d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1431 d->chr_read[d->mux_cnt] = chr->chr_read;
1432 d->chr_event[d->mux_cnt] = chr->chr_event;
1433 /* Fix up the real driver with mux routines */
1434 if (d->mux_cnt == 0) {
1435 qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1436 mux_chr_event, chr);
1438 chr->focus = d->mux_cnt;
1439 d->mux_cnt++;
1442 CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1444 CharDriverState *chr;
1445 MuxDriver *d;
1447 chr = qemu_mallocz(sizeof(CharDriverState));
1448 if (!chr)
1449 return NULL;
1450 d = qemu_mallocz(sizeof(MuxDriver));
1451 if (!d) {
1452 free(chr);
1453 return NULL;
1456 chr->opaque = d;
1457 d->drv = drv;
1458 chr->focus = -1;
1459 chr->chr_write = mux_chr_write;
1460 chr->chr_update_read_handler = mux_chr_update_read_handler;
1461 return chr;
1465 #ifdef _WIN32
1467 static void socket_cleanup(void)
1469 WSACleanup();
1472 static int socket_init(void)
1474 WSADATA Data;
1475 int ret, err;
1477 ret = WSAStartup(MAKEWORD(2,2), &Data);
1478 if (ret != 0) {
1479 err = WSAGetLastError();
1480 fprintf(stderr, "WSAStartup: %d\n", err);
1481 return -1;
1483 atexit(socket_cleanup);
1484 return 0;
1487 static int send_all(int fd, const uint8_t *buf, int len1)
1489 int ret, len;
1491 len = len1;
1492 while (len > 0) {
1493 ret = send(fd, buf, len, 0);
1494 if (ret < 0) {
1495 int errno;
1496 errno = WSAGetLastError();
1497 if (errno != WSAEWOULDBLOCK) {
1498 return -1;
1500 } else if (ret == 0) {
1501 break;
1502 } else {
1503 buf += ret;
1504 len -= ret;
1507 return len1 - len;
1510 void socket_set_nonblock(int fd)
1512 unsigned long opt = 1;
1513 ioctlsocket(fd, FIONBIO, &opt);
1516 #else
1518 static int unix_write(int fd, const uint8_t *buf, int len1)
1520 int ret, len;
1522 len = len1;
1523 while (len > 0) {
1524 ret = write(fd, buf, len);
1525 if (ret < 0) {
1526 if (errno != EINTR && errno != EAGAIN)
1527 return -1;
1528 } else if (ret == 0) {
1529 break;
1530 } else {
1531 buf += ret;
1532 len -= ret;
1535 return len1 - len;
1538 static inline int send_all(int fd, const uint8_t *buf, int len1)
1540 return unix_write(fd, buf, len1);
1543 void socket_set_nonblock(int fd)
1545 fcntl(fd, F_SETFL, O_NONBLOCK);
1547 #endif /* !_WIN32 */
1549 #ifndef _WIN32
1551 typedef struct {
1552 int fd_in, fd_out;
1553 int max_size;
1554 } FDCharDriver;
1556 #define STDIO_MAX_CLIENTS 1
1557 static int stdio_nb_clients = 0;
1559 static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1561 FDCharDriver *s = chr->opaque;
1562 return unix_write(s->fd_out, buf, len);
1565 static int fd_chr_read_poll(void *opaque)
1567 CharDriverState *chr = opaque;
1568 FDCharDriver *s = chr->opaque;
1570 s->max_size = qemu_chr_can_read(chr);
1571 return s->max_size;
1574 static void fd_chr_read(void *opaque)
1576 CharDriverState *chr = opaque;
1577 FDCharDriver *s = chr->opaque;
1578 int size, len;
1579 uint8_t buf[1024];
1581 len = sizeof(buf);
1582 if (len > s->max_size)
1583 len = s->max_size;
1584 if (len == 0)
1585 return;
1586 size = read(s->fd_in, buf, len);
1587 if (size == 0) {
1588 /* FD has been closed. Remove it from the active list. */
1589 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
1590 return;
1592 if (size > 0) {
1593 qemu_chr_read(chr, buf, size);
1597 static void fd_chr_update_read_handler(CharDriverState *chr)
1599 FDCharDriver *s = chr->opaque;
1601 if (s->fd_in >= 0) {
1602 if (nographic && s->fd_in == 0) {
1603 } else {
1604 qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
1605 fd_chr_read, NULL, chr);
1610 /* open a character device to a unix fd */
1611 static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
1613 CharDriverState *chr;
1614 FDCharDriver *s;
1616 chr = qemu_mallocz(sizeof(CharDriverState));
1617 if (!chr)
1618 return NULL;
1619 s = qemu_mallocz(sizeof(FDCharDriver));
1620 if (!s) {
1621 free(chr);
1622 return NULL;
1624 s->fd_in = fd_in;
1625 s->fd_out = fd_out;
1626 chr->opaque = s;
1627 chr->chr_write = fd_chr_write;
1628 chr->chr_update_read_handler = fd_chr_update_read_handler;
1630 qemu_chr_reset(chr);
1632 return chr;
1635 static CharDriverState *qemu_chr_open_file_out(const char *file_out)
1637 int fd_out;
1639 fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666);
1640 if (fd_out < 0)
1641 return NULL;
1642 return qemu_chr_open_fd(-1, fd_out);
1645 static CharDriverState *qemu_chr_open_pipe(const char *filename)
1647 int fd_in, fd_out;
1648 char filename_in[256], filename_out[256];
1650 snprintf(filename_in, 256, "%s.in", filename);
1651 snprintf(filename_out, 256, "%s.out", filename);
1652 fd_in = open(filename_in, O_RDWR | O_BINARY);
1653 fd_out = open(filename_out, O_RDWR | O_BINARY);
1654 if (fd_in < 0 || fd_out < 0) {
1655 if (fd_in >= 0)
1656 close(fd_in);
1657 if (fd_out >= 0)
1658 close(fd_out);
1659 fd_in = fd_out = open(filename, O_RDWR | O_BINARY);
1660 if (fd_in < 0)
1661 return NULL;
1663 return qemu_chr_open_fd(fd_in, fd_out);
1667 /* for STDIO, we handle the case where several clients use it
1668 (nographic mode) */
1670 #define TERM_FIFO_MAX_SIZE 1
1672 static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
1673 static int term_fifo_size;
1675 static int stdio_read_poll(void *opaque)
1677 CharDriverState *chr = opaque;
1679 /* try to flush the queue if needed */
1680 if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
1681 qemu_chr_read(chr, term_fifo, 1);
1682 term_fifo_size = 0;
1684 /* see if we can absorb more chars */
1685 if (term_fifo_size == 0)
1686 return 1;
1687 else
1688 return 0;
1691 static void stdio_read(void *opaque)
1693 int size;
1694 uint8_t buf[1];
1695 CharDriverState *chr = opaque;
1697 size = read(0, buf, 1);
1698 if (size == 0) {
1699 /* stdin has been closed. Remove it from the active list. */
1700 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
1701 return;
1703 if (size > 0) {
1704 if (qemu_chr_can_read(chr) > 0) {
1705 qemu_chr_read(chr, buf, 1);
1706 } else if (term_fifo_size == 0) {
1707 term_fifo[term_fifo_size++] = buf[0];
1712 /* init terminal so that we can grab keys */
1713 static struct termios oldtty;
1714 static int old_fd0_flags;
1716 static void term_exit(void)
1718 tcsetattr (0, TCSANOW, &oldtty);
1719 fcntl(0, F_SETFL, old_fd0_flags);
1722 static void term_init(void)
1724 struct termios tty;
1726 tcgetattr (0, &tty);
1727 oldtty = tty;
1728 old_fd0_flags = fcntl(0, F_GETFL);
1730 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1731 |INLCR|IGNCR|ICRNL|IXON);
1732 tty.c_oflag |= OPOST;
1733 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
1734 /* if graphical mode, we allow Ctrl-C handling */
1735 if (nographic)
1736 tty.c_lflag &= ~ISIG;
1737 tty.c_cflag &= ~(CSIZE|PARENB);
1738 tty.c_cflag |= CS8;
1739 tty.c_cc[VMIN] = 1;
1740 tty.c_cc[VTIME] = 0;
1742 tcsetattr (0, TCSANOW, &tty);
1744 atexit(term_exit);
1746 fcntl(0, F_SETFL, O_NONBLOCK);
1749 static CharDriverState *qemu_chr_open_stdio(void)
1751 CharDriverState *chr;
1753 if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
1754 return NULL;
1755 chr = qemu_chr_open_fd(0, 1);
1756 qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
1757 stdio_nb_clients++;
1758 term_init();
1760 return chr;
1763 #if defined(__linux__)
1764 static CharDriverState *qemu_chr_open_pty(void)
1766 struct termios tty;
1767 char slave_name[1024];
1768 int master_fd, slave_fd;
1770 /* Not satisfying */
1771 if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
1772 return NULL;
1775 /* Disabling local echo and line-buffered output */
1776 tcgetattr (master_fd, &tty);
1777 tty.c_lflag &= ~(ECHO|ICANON|ISIG);
1778 tty.c_cc[VMIN] = 1;
1779 tty.c_cc[VTIME] = 0;
1780 tcsetattr (master_fd, TCSAFLUSH, &tty);
1782 fprintf(stderr, "char device redirected to %s\n", slave_name);
1783 return qemu_chr_open_fd(master_fd, master_fd);
1786 static void tty_serial_init(int fd, int speed,
1787 int parity, int data_bits, int stop_bits)
1789 struct termios tty;
1790 speed_t spd;
1792 #if 0
1793 printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
1794 speed, parity, data_bits, stop_bits);
1795 #endif
1796 tcgetattr (fd, &tty);
1798 switch(speed) {
1799 case 50:
1800 spd = B50;
1801 break;
1802 case 75:
1803 spd = B75;
1804 break;
1805 case 300:
1806 spd = B300;
1807 break;
1808 case 600:
1809 spd = B600;
1810 break;
1811 case 1200:
1812 spd = B1200;
1813 break;
1814 case 2400:
1815 spd = B2400;
1816 break;
1817 case 4800:
1818 spd = B4800;
1819 break;
1820 case 9600:
1821 spd = B9600;
1822 break;
1823 case 19200:
1824 spd = B19200;
1825 break;
1826 case 38400:
1827 spd = B38400;
1828 break;
1829 case 57600:
1830 spd = B57600;
1831 break;
1832 default:
1833 case 115200:
1834 spd = B115200;
1835 break;
1838 cfsetispeed(&tty, spd);
1839 cfsetospeed(&tty, spd);
1841 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1842 |INLCR|IGNCR|ICRNL|IXON);
1843 tty.c_oflag |= OPOST;
1844 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
1845 tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
1846 switch(data_bits) {
1847 default:
1848 case 8:
1849 tty.c_cflag |= CS8;
1850 break;
1851 case 7:
1852 tty.c_cflag |= CS7;
1853 break;
1854 case 6:
1855 tty.c_cflag |= CS6;
1856 break;
1857 case 5:
1858 tty.c_cflag |= CS5;
1859 break;
1861 switch(parity) {
1862 default:
1863 case 'N':
1864 break;
1865 case 'E':
1866 tty.c_cflag |= PARENB;
1867 break;
1868 case 'O':
1869 tty.c_cflag |= PARENB | PARODD;
1870 break;
1872 if (stop_bits == 2)
1873 tty.c_cflag |= CSTOPB;
1875 tcsetattr (fd, TCSANOW, &tty);
1878 static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
1880 FDCharDriver *s = chr->opaque;
1882 switch(cmd) {
1883 case CHR_IOCTL_SERIAL_SET_PARAMS:
1885 QEMUSerialSetParams *ssp = arg;
1886 tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
1887 ssp->data_bits, ssp->stop_bits);
1889 break;
1890 case CHR_IOCTL_SERIAL_SET_BREAK:
1892 int enable = *(int *)arg;
1893 if (enable)
1894 tcsendbreak(s->fd_in, 1);
1896 break;
1897 default:
1898 return -ENOTSUP;
1900 return 0;
1903 static CharDriverState *qemu_chr_open_tty(const char *filename)
1905 CharDriverState *chr;
1906 int fd;
1908 fd = open(filename, O_RDWR | O_NONBLOCK);
1909 if (fd < 0)
1910 return NULL;
1911 fcntl(fd, F_SETFL, O_NONBLOCK);
1912 tty_serial_init(fd, 115200, 'N', 8, 1);
1913 chr = qemu_chr_open_fd(fd, fd);
1914 if (!chr)
1915 return NULL;
1916 chr->chr_ioctl = tty_serial_ioctl;
1917 qemu_chr_reset(chr);
1918 return chr;
1921 typedef struct {
1922 int fd;
1923 int mode;
1924 } ParallelCharDriver;
1926 static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
1928 if (s->mode != mode) {
1929 int m = mode;
1930 if (ioctl(s->fd, PPSETMODE, &m) < 0)
1931 return 0;
1932 s->mode = mode;
1934 return 1;
1937 static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
1939 ParallelCharDriver *drv = chr->opaque;
1940 int fd = drv->fd;
1941 uint8_t b;
1943 switch(cmd) {
1944 case CHR_IOCTL_PP_READ_DATA:
1945 if (ioctl(fd, PPRDATA, &b) < 0)
1946 return -ENOTSUP;
1947 *(uint8_t *)arg = b;
1948 break;
1949 case CHR_IOCTL_PP_WRITE_DATA:
1950 b = *(uint8_t *)arg;
1951 if (ioctl(fd, PPWDATA, &b) < 0)
1952 return -ENOTSUP;
1953 break;
1954 case CHR_IOCTL_PP_READ_CONTROL:
1955 if (ioctl(fd, PPRCONTROL, &b) < 0)
1956 return -ENOTSUP;
1957 /* Linux gives only the lowest bits, and no way to know data
1958 direction! For better compatibility set the fixed upper
1959 bits. */
1960 *(uint8_t *)arg = b | 0xc0;
1961 break;
1962 case CHR_IOCTL_PP_WRITE_CONTROL:
1963 b = *(uint8_t *)arg;
1964 if (ioctl(fd, PPWCONTROL, &b) < 0)
1965 return -ENOTSUP;
1966 break;
1967 case CHR_IOCTL_PP_READ_STATUS:
1968 if (ioctl(fd, PPRSTATUS, &b) < 0)
1969 return -ENOTSUP;
1970 *(uint8_t *)arg = b;
1971 break;
1972 case CHR_IOCTL_PP_EPP_READ_ADDR:
1973 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
1974 struct ParallelIOArg *parg = arg;
1975 int n = read(fd, parg->buffer, parg->count);
1976 if (n != parg->count) {
1977 return -EIO;
1980 break;
1981 case CHR_IOCTL_PP_EPP_READ:
1982 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
1983 struct ParallelIOArg *parg = arg;
1984 int n = read(fd, parg->buffer, parg->count);
1985 if (n != parg->count) {
1986 return -EIO;
1989 break;
1990 case CHR_IOCTL_PP_EPP_WRITE_ADDR:
1991 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
1992 struct ParallelIOArg *parg = arg;
1993 int n = write(fd, parg->buffer, parg->count);
1994 if (n != parg->count) {
1995 return -EIO;
1998 break;
1999 case CHR_IOCTL_PP_EPP_WRITE:
2000 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2001 struct ParallelIOArg *parg = arg;
2002 int n = write(fd, parg->buffer, parg->count);
2003 if (n != parg->count) {
2004 return -EIO;
2007 break;
2008 default:
2009 return -ENOTSUP;
2011 return 0;
2014 static void pp_close(CharDriverState *chr)
2016 ParallelCharDriver *drv = chr->opaque;
2017 int fd = drv->fd;
2019 pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2020 ioctl(fd, PPRELEASE);
2021 close(fd);
2022 qemu_free(drv);
2025 static CharDriverState *qemu_chr_open_pp(const char *filename)
2027 CharDriverState *chr;
2028 ParallelCharDriver *drv;
2029 int fd;
2031 fd = open(filename, O_RDWR);
2032 if (fd < 0)
2033 return NULL;
2035 if (ioctl(fd, PPCLAIM) < 0) {
2036 close(fd);
2037 return NULL;
2040 drv = qemu_mallocz(sizeof(ParallelCharDriver));
2041 if (!drv) {
2042 close(fd);
2043 return NULL;
2045 drv->fd = fd;
2046 drv->mode = IEEE1284_MODE_COMPAT;
2048 chr = qemu_mallocz(sizeof(CharDriverState));
2049 if (!chr) {
2050 qemu_free(drv);
2051 close(fd);
2052 return NULL;
2054 chr->chr_write = null_chr_write;
2055 chr->chr_ioctl = pp_ioctl;
2056 chr->chr_close = pp_close;
2057 chr->opaque = drv;
2059 qemu_chr_reset(chr);
2061 return chr;
2064 #else
2065 static CharDriverState *qemu_chr_open_pty(void)
2067 return NULL;
2069 #endif
2071 #endif /* !defined(_WIN32) */
2073 #ifdef _WIN32
2074 typedef struct {
2075 int max_size;
2076 HANDLE hcom, hrecv, hsend;
2077 OVERLAPPED orecv, osend;
2078 BOOL fpipe;
2079 DWORD len;
2080 } WinCharState;
2082 #define NSENDBUF 2048
2083 #define NRECVBUF 2048
2084 #define MAXCONNECT 1
2085 #define NTIMEOUT 5000
2087 static int win_chr_poll(void *opaque);
2088 static int win_chr_pipe_poll(void *opaque);
2090 static void win_chr_close(CharDriverState *chr)
2092 WinCharState *s = chr->opaque;
2094 if (s->hsend) {
2095 CloseHandle(s->hsend);
2096 s->hsend = NULL;
2098 if (s->hrecv) {
2099 CloseHandle(s->hrecv);
2100 s->hrecv = NULL;
2102 if (s->hcom) {
2103 CloseHandle(s->hcom);
2104 s->hcom = NULL;
2106 if (s->fpipe)
2107 qemu_del_polling_cb(win_chr_pipe_poll, chr);
2108 else
2109 qemu_del_polling_cb(win_chr_poll, chr);
2112 static int win_chr_init(CharDriverState *chr, const char *filename)
2114 WinCharState *s = chr->opaque;
2115 COMMCONFIG comcfg;
2116 COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2117 COMSTAT comstat;
2118 DWORD size;
2119 DWORD err;
2121 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2122 if (!s->hsend) {
2123 fprintf(stderr, "Failed CreateEvent\n");
2124 goto fail;
2126 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2127 if (!s->hrecv) {
2128 fprintf(stderr, "Failed CreateEvent\n");
2129 goto fail;
2132 s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2133 OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2134 if (s->hcom == INVALID_HANDLE_VALUE) {
2135 fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2136 s->hcom = NULL;
2137 goto fail;
2140 if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2141 fprintf(stderr, "Failed SetupComm\n");
2142 goto fail;
2145 ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2146 size = sizeof(COMMCONFIG);
2147 GetDefaultCommConfig(filename, &comcfg, &size);
2148 comcfg.dcb.DCBlength = sizeof(DCB);
2149 CommConfigDialog(filename, NULL, &comcfg);
2151 if (!SetCommState(s->hcom, &comcfg.dcb)) {
2152 fprintf(stderr, "Failed SetCommState\n");
2153 goto fail;
2156 if (!SetCommMask(s->hcom, EV_ERR)) {
2157 fprintf(stderr, "Failed SetCommMask\n");
2158 goto fail;
2161 cto.ReadIntervalTimeout = MAXDWORD;
2162 if (!SetCommTimeouts(s->hcom, &cto)) {
2163 fprintf(stderr, "Failed SetCommTimeouts\n");
2164 goto fail;
2167 if (!ClearCommError(s->hcom, &err, &comstat)) {
2168 fprintf(stderr, "Failed ClearCommError\n");
2169 goto fail;
2171 qemu_add_polling_cb(win_chr_poll, chr);
2172 return 0;
2174 fail:
2175 win_chr_close(chr);
2176 return -1;
2179 static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2181 WinCharState *s = chr->opaque;
2182 DWORD len, ret, size, err;
2184 len = len1;
2185 ZeroMemory(&s->osend, sizeof(s->osend));
2186 s->osend.hEvent = s->hsend;
2187 while (len > 0) {
2188 if (s->hsend)
2189 ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2190 else
2191 ret = WriteFile(s->hcom, buf, len, &size, NULL);
2192 if (!ret) {
2193 err = GetLastError();
2194 if (err == ERROR_IO_PENDING) {
2195 ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2196 if (ret) {
2197 buf += size;
2198 len -= size;
2199 } else {
2200 break;
2202 } else {
2203 break;
2205 } else {
2206 buf += size;
2207 len -= size;
2210 return len1 - len;
2213 static int win_chr_read_poll(CharDriverState *chr)
2215 WinCharState *s = chr->opaque;
2217 s->max_size = qemu_chr_can_read(chr);
2218 return s->max_size;
2221 static void win_chr_readfile(CharDriverState *chr)
2223 WinCharState *s = chr->opaque;
2224 int ret, err;
2225 uint8_t buf[1024];
2226 DWORD size;
2228 ZeroMemory(&s->orecv, sizeof(s->orecv));
2229 s->orecv.hEvent = s->hrecv;
2230 ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2231 if (!ret) {
2232 err = GetLastError();
2233 if (err == ERROR_IO_PENDING) {
2234 ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2238 if (size > 0) {
2239 qemu_chr_read(chr, buf, size);
2243 static void win_chr_read(CharDriverState *chr)
2245 WinCharState *s = chr->opaque;
2247 if (s->len > s->max_size)
2248 s->len = s->max_size;
2249 if (s->len == 0)
2250 return;
2252 win_chr_readfile(chr);
2255 static int win_chr_poll(void *opaque)
2257 CharDriverState *chr = opaque;
2258 WinCharState *s = chr->opaque;
2259 COMSTAT status;
2260 DWORD comerr;
2262 ClearCommError(s->hcom, &comerr, &status);
2263 if (status.cbInQue > 0) {
2264 s->len = status.cbInQue;
2265 win_chr_read_poll(chr);
2266 win_chr_read(chr);
2267 return 1;
2269 return 0;
2272 static CharDriverState *qemu_chr_open_win(const char *filename)
2274 CharDriverState *chr;
2275 WinCharState *s;
2277 chr = qemu_mallocz(sizeof(CharDriverState));
2278 if (!chr)
2279 return NULL;
2280 s = qemu_mallocz(sizeof(WinCharState));
2281 if (!s) {
2282 free(chr);
2283 return NULL;
2285 chr->opaque = s;
2286 chr->chr_write = win_chr_write;
2287 chr->chr_close = win_chr_close;
2289 if (win_chr_init(chr, filename) < 0) {
2290 free(s);
2291 free(chr);
2292 return NULL;
2294 qemu_chr_reset(chr);
2295 return chr;
2298 static int win_chr_pipe_poll(void *opaque)
2300 CharDriverState *chr = opaque;
2301 WinCharState *s = chr->opaque;
2302 DWORD size;
2304 PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2305 if (size > 0) {
2306 s->len = size;
2307 win_chr_read_poll(chr);
2308 win_chr_read(chr);
2309 return 1;
2311 return 0;
2314 static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2316 WinCharState *s = chr->opaque;
2317 OVERLAPPED ov;
2318 int ret;
2319 DWORD size;
2320 char openname[256];
2322 s->fpipe = TRUE;
2324 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2325 if (!s->hsend) {
2326 fprintf(stderr, "Failed CreateEvent\n");
2327 goto fail;
2329 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2330 if (!s->hrecv) {
2331 fprintf(stderr, "Failed CreateEvent\n");
2332 goto fail;
2335 snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2336 s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2337 PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2338 PIPE_WAIT,
2339 MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2340 if (s->hcom == INVALID_HANDLE_VALUE) {
2341 fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2342 s->hcom = NULL;
2343 goto fail;
2346 ZeroMemory(&ov, sizeof(ov));
2347 ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2348 ret = ConnectNamedPipe(s->hcom, &ov);
2349 if (ret) {
2350 fprintf(stderr, "Failed ConnectNamedPipe\n");
2351 goto fail;
2354 ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2355 if (!ret) {
2356 fprintf(stderr, "Failed GetOverlappedResult\n");
2357 if (ov.hEvent) {
2358 CloseHandle(ov.hEvent);
2359 ov.hEvent = NULL;
2361 goto fail;
2364 if (ov.hEvent) {
2365 CloseHandle(ov.hEvent);
2366 ov.hEvent = NULL;
2368 qemu_add_polling_cb(win_chr_pipe_poll, chr);
2369 return 0;
2371 fail:
2372 win_chr_close(chr);
2373 return -1;
2377 static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2379 CharDriverState *chr;
2380 WinCharState *s;
2382 chr = qemu_mallocz(sizeof(CharDriverState));
2383 if (!chr)
2384 return NULL;
2385 s = qemu_mallocz(sizeof(WinCharState));
2386 if (!s) {
2387 free(chr);
2388 return NULL;
2390 chr->opaque = s;
2391 chr->chr_write = win_chr_write;
2392 chr->chr_close = win_chr_close;
2394 if (win_chr_pipe_init(chr, filename) < 0) {
2395 free(s);
2396 free(chr);
2397 return NULL;
2399 qemu_chr_reset(chr);
2400 return chr;
2403 static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2405 CharDriverState *chr;
2406 WinCharState *s;
2408 chr = qemu_mallocz(sizeof(CharDriverState));
2409 if (!chr)
2410 return NULL;
2411 s = qemu_mallocz(sizeof(WinCharState));
2412 if (!s) {
2413 free(chr);
2414 return NULL;
2416 s->hcom = fd_out;
2417 chr->opaque = s;
2418 chr->chr_write = win_chr_write;
2419 qemu_chr_reset(chr);
2420 return chr;
2423 static CharDriverState *qemu_chr_open_win_con(const char *filename)
2425 return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
2428 static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2430 HANDLE fd_out;
2432 fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2433 OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2434 if (fd_out == INVALID_HANDLE_VALUE)
2435 return NULL;
2437 return qemu_chr_open_win_file(fd_out);
2439 #endif
2441 /***********************************************************/
2442 /* UDP Net console */
2444 typedef struct {
2445 int fd;
2446 struct sockaddr_in daddr;
2447 char buf[1024];
2448 int bufcnt;
2449 int bufptr;
2450 int max_size;
2451 } NetCharDriver;
2453 static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2455 NetCharDriver *s = chr->opaque;
2457 return sendto(s->fd, buf, len, 0,
2458 (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2461 static int udp_chr_read_poll(void *opaque)
2463 CharDriverState *chr = opaque;
2464 NetCharDriver *s = chr->opaque;
2466 s->max_size = qemu_chr_can_read(chr);
2468 /* If there were any stray characters in the queue process them
2469 * first
2471 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2472 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2473 s->bufptr++;
2474 s->max_size = qemu_chr_can_read(chr);
2476 return s->max_size;
2479 static void udp_chr_read(void *opaque)
2481 CharDriverState *chr = opaque;
2482 NetCharDriver *s = chr->opaque;
2484 if (s->max_size == 0)
2485 return;
2486 s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2487 s->bufptr = s->bufcnt;
2488 if (s->bufcnt <= 0)
2489 return;
2491 s->bufptr = 0;
2492 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2493 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2494 s->bufptr++;
2495 s->max_size = qemu_chr_can_read(chr);
2499 static void udp_chr_update_read_handler(CharDriverState *chr)
2501 NetCharDriver *s = chr->opaque;
2503 if (s->fd >= 0) {
2504 qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
2505 udp_chr_read, NULL, chr);
2509 int parse_host_port(struct sockaddr_in *saddr, const char *str);
2510 #ifndef _WIN32
2511 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
2512 #endif
2513 int parse_host_src_port(struct sockaddr_in *haddr,
2514 struct sockaddr_in *saddr,
2515 const char *str);
2517 static CharDriverState *qemu_chr_open_udp(const char *def)
2519 CharDriverState *chr = NULL;
2520 NetCharDriver *s = NULL;
2521 int fd = -1;
2522 struct sockaddr_in saddr;
2524 chr = qemu_mallocz(sizeof(CharDriverState));
2525 if (!chr)
2526 goto return_err;
2527 s = qemu_mallocz(sizeof(NetCharDriver));
2528 if (!s)
2529 goto return_err;
2531 fd = socket(PF_INET, SOCK_DGRAM, 0);
2532 if (fd < 0) {
2533 perror("socket(PF_INET, SOCK_DGRAM)");
2534 goto return_err;
2537 if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
2538 printf("Could not parse: %s\n", def);
2539 goto return_err;
2542 if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
2544 perror("bind");
2545 goto return_err;
2548 s->fd = fd;
2549 s->bufcnt = 0;
2550 s->bufptr = 0;
2551 chr->opaque = s;
2552 chr->chr_write = udp_chr_write;
2553 chr->chr_update_read_handler = udp_chr_update_read_handler;
2554 return chr;
2556 return_err:
2557 if (chr)
2558 free(chr);
2559 if (s)
2560 free(s);
2561 if (fd >= 0)
2562 closesocket(fd);
2563 return NULL;
2566 /***********************************************************/
2567 /* TCP Net console */
2569 typedef struct {
2570 int fd, listen_fd;
2571 int connected;
2572 int max_size;
2573 int do_telnetopt;
2574 int do_nodelay;
2575 int is_unix;
2576 } TCPCharDriver;
2578 static void tcp_chr_accept(void *opaque);
2580 static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2582 TCPCharDriver *s = chr->opaque;
2583 if (s->connected) {
2584 return send_all(s->fd, buf, len);
2585 } else {
2586 /* XXX: indicate an error ? */
2587 return len;
2591 static int tcp_chr_read_poll(void *opaque)
2593 CharDriverState *chr = opaque;
2594 TCPCharDriver *s = chr->opaque;
2595 if (!s->connected)
2596 return 0;
2597 s->max_size = qemu_chr_can_read(chr);
2598 return s->max_size;
2601 #define IAC 255
2602 #define IAC_BREAK 243
2603 static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
2604 TCPCharDriver *s,
2605 char *buf, int *size)
2607 /* Handle any telnet client's basic IAC options to satisfy char by
2608 * char mode with no echo. All IAC options will be removed from
2609 * the buf and the do_telnetopt variable will be used to track the
2610 * state of the width of the IAC information.
2612 * IAC commands come in sets of 3 bytes with the exception of the
2613 * "IAC BREAK" command and the double IAC.
2616 int i;
2617 int j = 0;
2619 for (i = 0; i < *size; i++) {
2620 if (s->do_telnetopt > 1) {
2621 if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
2622 /* Double IAC means send an IAC */
2623 if (j != i)
2624 buf[j] = buf[i];
2625 j++;
2626 s->do_telnetopt = 1;
2627 } else {
2628 if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
2629 /* Handle IAC break commands by sending a serial break */
2630 qemu_chr_event(chr, CHR_EVENT_BREAK);
2631 s->do_telnetopt++;
2633 s->do_telnetopt++;
2635 if (s->do_telnetopt >= 4) {
2636 s->do_telnetopt = 1;
2638 } else {
2639 if ((unsigned char)buf[i] == IAC) {
2640 s->do_telnetopt = 2;
2641 } else {
2642 if (j != i)
2643 buf[j] = buf[i];
2644 j++;
2648 *size = j;
2651 static void tcp_chr_read(void *opaque)
2653 CharDriverState *chr = opaque;
2654 TCPCharDriver *s = chr->opaque;
2655 uint8_t buf[1024];
2656 int len, size;
2658 if (!s->connected || s->max_size <= 0)
2659 return;
2660 len = sizeof(buf);
2661 if (len > s->max_size)
2662 len = s->max_size;
2663 size = recv(s->fd, buf, len, 0);
2664 if (size == 0) {
2665 /* connection closed */
2666 s->connected = 0;
2667 if (s->listen_fd >= 0) {
2668 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
2670 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
2671 closesocket(s->fd);
2672 s->fd = -1;
2673 } else if (size > 0) {
2674 if (s->do_telnetopt)
2675 tcp_chr_process_IAC_bytes(chr, s, buf, &size);
2676 if (size > 0)
2677 qemu_chr_read(chr, buf, size);
2681 static void tcp_chr_connect(void *opaque)
2683 CharDriverState *chr = opaque;
2684 TCPCharDriver *s = chr->opaque;
2686 s->connected = 1;
2687 qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
2688 tcp_chr_read, NULL, chr);
2689 qemu_chr_reset(chr);
2692 #define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
2693 static void tcp_chr_telnet_init(int fd)
2695 char buf[3];
2696 /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
2697 IACSET(buf, 0xff, 0xfb, 0x01); /* IAC WILL ECHO */
2698 send(fd, (char *)buf, 3, 0);
2699 IACSET(buf, 0xff, 0xfb, 0x03); /* IAC WILL Suppress go ahead */
2700 send(fd, (char *)buf, 3, 0);
2701 IACSET(buf, 0xff, 0xfb, 0x00); /* IAC WILL Binary */
2702 send(fd, (char *)buf, 3, 0);
2703 IACSET(buf, 0xff, 0xfd, 0x00); /* IAC DO Binary */
2704 send(fd, (char *)buf, 3, 0);
2707 static void socket_set_nodelay(int fd)
2709 int val = 1;
2710 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2713 static void tcp_chr_accept(void *opaque)
2715 CharDriverState *chr = opaque;
2716 TCPCharDriver *s = chr->opaque;
2717 struct sockaddr_in saddr;
2718 #ifndef _WIN32
2719 struct sockaddr_un uaddr;
2720 #endif
2721 struct sockaddr *addr;
2722 socklen_t len;
2723 int fd;
2725 for(;;) {
2726 #ifndef _WIN32
2727 if (s->is_unix) {
2728 len = sizeof(uaddr);
2729 addr = (struct sockaddr *)&uaddr;
2730 } else
2731 #endif
2733 len = sizeof(saddr);
2734 addr = (struct sockaddr *)&saddr;
2736 fd = accept(s->listen_fd, addr, &len);
2737 if (fd < 0 && errno != EINTR) {
2738 return;
2739 } else if (fd >= 0) {
2740 if (s->do_telnetopt)
2741 tcp_chr_telnet_init(fd);
2742 break;
2745 socket_set_nonblock(fd);
2746 if (s->do_nodelay)
2747 socket_set_nodelay(fd);
2748 s->fd = fd;
2749 qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
2750 tcp_chr_connect(chr);
2753 static void tcp_chr_close(CharDriverState *chr)
2755 TCPCharDriver *s = chr->opaque;
2756 if (s->fd >= 0)
2757 closesocket(s->fd);
2758 if (s->listen_fd >= 0)
2759 closesocket(s->listen_fd);
2760 qemu_free(s);
2763 static CharDriverState *qemu_chr_open_tcp(const char *host_str,
2764 int is_telnet,
2765 int is_unix)
2767 CharDriverState *chr = NULL;
2768 TCPCharDriver *s = NULL;
2769 int fd = -1, ret, err, val;
2770 int is_listen = 0;
2771 int is_waitconnect = 1;
2772 int do_nodelay = 0;
2773 const char *ptr;
2774 struct sockaddr_in saddr;
2775 #ifndef _WIN32
2776 struct sockaddr_un uaddr;
2777 #endif
2778 struct sockaddr *addr;
2779 socklen_t addrlen;
2781 #ifndef _WIN32
2782 if (is_unix) {
2783 addr = (struct sockaddr *)&uaddr;
2784 addrlen = sizeof(uaddr);
2785 if (parse_unix_path(&uaddr, host_str) < 0)
2786 goto fail;
2787 } else
2788 #endif
2790 addr = (struct sockaddr *)&saddr;
2791 addrlen = sizeof(saddr);
2792 if (parse_host_port(&saddr, host_str) < 0)
2793 goto fail;
2796 ptr = host_str;
2797 while((ptr = strchr(ptr,','))) {
2798 ptr++;
2799 if (!strncmp(ptr,"server",6)) {
2800 is_listen = 1;
2801 } else if (!strncmp(ptr,"nowait",6)) {
2802 is_waitconnect = 0;
2803 } else if (!strncmp(ptr,"nodelay",6)) {
2804 do_nodelay = 1;
2805 } else {
2806 printf("Unknown option: %s\n", ptr);
2807 goto fail;
2810 if (!is_listen)
2811 is_waitconnect = 0;
2813 chr = qemu_mallocz(sizeof(CharDriverState));
2814 if (!chr)
2815 goto fail;
2816 s = qemu_mallocz(sizeof(TCPCharDriver));
2817 if (!s)
2818 goto fail;
2820 #ifndef _WIN32
2821 if (is_unix)
2822 fd = socket(PF_UNIX, SOCK_STREAM, 0);
2823 else
2824 #endif
2825 fd = socket(PF_INET, SOCK_STREAM, 0);
2827 if (fd < 0)
2828 goto fail;
2830 if (!is_waitconnect)
2831 socket_set_nonblock(fd);
2833 s->connected = 0;
2834 s->fd = -1;
2835 s->listen_fd = -1;
2836 s->is_unix = is_unix;
2837 s->do_nodelay = do_nodelay && !is_unix;
2839 chr->opaque = s;
2840 chr->chr_write = tcp_chr_write;
2841 chr->chr_close = tcp_chr_close;
2843 if (is_listen) {
2844 /* allow fast reuse */
2845 #ifndef _WIN32
2846 if (is_unix) {
2847 char path[109];
2848 strncpy(path, uaddr.sun_path, 108);
2849 path[108] = 0;
2850 unlink(path);
2851 } else
2852 #endif
2854 val = 1;
2855 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
2858 ret = bind(fd, addr, addrlen);
2859 if (ret < 0)
2860 goto fail;
2862 ret = listen(fd, 0);
2863 if (ret < 0)
2864 goto fail;
2866 s->listen_fd = fd;
2867 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
2868 if (is_telnet)
2869 s->do_telnetopt = 1;
2870 } else {
2871 for(;;) {
2872 ret = connect(fd, addr, addrlen);
2873 if (ret < 0) {
2874 err = socket_error();
2875 if (err == EINTR || err == EWOULDBLOCK) {
2876 } else if (err == EINPROGRESS) {
2877 break;
2878 #ifdef _WIN32
2879 } else if (err == WSAEALREADY) {
2880 break;
2881 #endif
2882 } else {
2883 goto fail;
2885 } else {
2886 s->connected = 1;
2887 break;
2890 s->fd = fd;
2891 socket_set_nodelay(fd);
2892 if (s->connected)
2893 tcp_chr_connect(chr);
2894 else
2895 qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
2898 if (is_listen && is_waitconnect) {
2899 printf("QEMU waiting for connection on: %s\n", host_str);
2900 tcp_chr_accept(chr);
2901 socket_set_nonblock(s->listen_fd);
2904 return chr;
2905 fail:
2906 if (fd >= 0)
2907 closesocket(fd);
2908 qemu_free(s);
2909 qemu_free(chr);
2910 return NULL;
2913 CharDriverState *qemu_chr_open(const char *filename)
2915 const char *p;
2917 if (!strcmp(filename, "vc")) {
2918 return text_console_init(&display_state);
2919 } else if (!strcmp(filename, "null")) {
2920 return qemu_chr_open_null();
2921 } else
2922 if (strstart(filename, "tcp:", &p)) {
2923 return qemu_chr_open_tcp(p, 0, 0);
2924 } else
2925 if (strstart(filename, "telnet:", &p)) {
2926 return qemu_chr_open_tcp(p, 1, 0);
2927 } else
2928 if (strstart(filename, "udp:", &p)) {
2929 return qemu_chr_open_udp(p);
2930 } else
2931 if (strstart(filename, "mon:", &p)) {
2932 CharDriverState *drv = qemu_chr_open(p);
2933 if (drv) {
2934 drv = qemu_chr_open_mux(drv);
2935 monitor_init(drv, !nographic);
2936 return drv;
2938 printf("Unable to open driver: %s\n", p);
2939 return 0;
2940 } else
2941 #ifndef _WIN32
2942 if (strstart(filename, "unix:", &p)) {
2943 return qemu_chr_open_tcp(p, 0, 1);
2944 } else if (strstart(filename, "file:", &p)) {
2945 return qemu_chr_open_file_out(p);
2946 } else if (strstart(filename, "pipe:", &p)) {
2947 return qemu_chr_open_pipe(p);
2948 } else if (!strcmp(filename, "pty")) {
2949 return qemu_chr_open_pty();
2950 } else if (!strcmp(filename, "stdio")) {
2951 return qemu_chr_open_stdio();
2952 } else
2953 #endif
2954 #if defined(__linux__)
2955 if (strstart(filename, "/dev/parport", NULL)) {
2956 return qemu_chr_open_pp(filename);
2957 } else
2958 if (strstart(filename, "/dev/", NULL)) {
2959 return qemu_chr_open_tty(filename);
2960 } else
2961 #endif
2962 #ifdef _WIN32
2963 if (strstart(filename, "COM", NULL)) {
2964 return qemu_chr_open_win(filename);
2965 } else
2966 if (strstart(filename, "pipe:", &p)) {
2967 return qemu_chr_open_win_pipe(p);
2968 } else
2969 if (strstart(filename, "con:", NULL)) {
2970 return qemu_chr_open_win_con(filename);
2971 } else
2972 if (strstart(filename, "file:", &p)) {
2973 return qemu_chr_open_win_file_out(p);
2975 #endif
2977 return NULL;
2981 void qemu_chr_close(CharDriverState *chr)
2983 if (chr->chr_close)
2984 chr->chr_close(chr);
2987 /***********************************************************/
2988 /* network device redirectors */
2990 void hex_dump(FILE *f, const uint8_t *buf, int size)
2992 int len, i, j, c;
2994 for(i=0;i<size;i+=16) {
2995 len = size - i;
2996 if (len > 16)
2997 len = 16;
2998 fprintf(f, "%08x ", i);
2999 for(j=0;j<16;j++) {
3000 if (j < len)
3001 fprintf(f, " %02x", buf[i+j]);
3002 else
3003 fprintf(f, " ");
3005 fprintf(f, " ");
3006 for(j=0;j<len;j++) {
3007 c = buf[i+j];
3008 if (c < ' ' || c > '~')
3009 c = '.';
3010 fprintf(f, "%c", c);
3012 fprintf(f, "\n");
3016 static int parse_macaddr(uint8_t *macaddr, const char *p)
3018 int i;
3019 for(i = 0; i < 6; i++) {
3020 macaddr[i] = strtol(p, (char **)&p, 16);
3021 if (i == 5) {
3022 if (*p != '\0')
3023 return -1;
3024 } else {
3025 if (*p != ':')
3026 return -1;
3027 p++;
3030 return 0;
3033 static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3035 const char *p, *p1;
3036 int len;
3037 p = *pp;
3038 p1 = strchr(p, sep);
3039 if (!p1)
3040 return -1;
3041 len = p1 - p;
3042 p1++;
3043 if (buf_size > 0) {
3044 if (len > buf_size - 1)
3045 len = buf_size - 1;
3046 memcpy(buf, p, len);
3047 buf[len] = '\0';
3049 *pp = p1;
3050 return 0;
3053 int parse_host_src_port(struct sockaddr_in *haddr,
3054 struct sockaddr_in *saddr,
3055 const char *input_str)
3057 char *str = strdup(input_str);
3058 char *host_str = str;
3059 char *src_str;
3060 char *ptr;
3063 * Chop off any extra arguments at the end of the string which
3064 * would start with a comma, then fill in the src port information
3065 * if it was provided else use the "any address" and "any port".
3067 if ((ptr = strchr(str,',')))
3068 *ptr = '\0';
3070 if ((src_str = strchr(input_str,'@'))) {
3071 *src_str = '\0';
3072 src_str++;
3075 if (parse_host_port(haddr, host_str) < 0)
3076 goto fail;
3078 if (!src_str || *src_str == '\0')
3079 src_str = ":0";
3081 if (parse_host_port(saddr, src_str) < 0)
3082 goto fail;
3084 free(str);
3085 return(0);
3087 fail:
3088 free(str);
3089 return -1;
3092 int parse_host_port(struct sockaddr_in *saddr, const char *str)
3094 char buf[512];
3095 struct hostent *he;
3096 const char *p, *r;
3097 int port;
3099 p = str;
3100 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3101 return -1;
3102 saddr->sin_family = AF_INET;
3103 if (buf[0] == '\0') {
3104 saddr->sin_addr.s_addr = 0;
3105 } else {
3106 if (isdigit(buf[0])) {
3107 if (!inet_aton(buf, &saddr->sin_addr))
3108 return -1;
3109 } else {
3110 if ((he = gethostbyname(buf)) == NULL)
3111 return - 1;
3112 saddr->sin_addr = *(struct in_addr *)he->h_addr;
3115 port = strtol(p, (char **)&r, 0);
3116 if (r == p)
3117 return -1;
3118 saddr->sin_port = htons(port);
3119 return 0;
3122 #ifndef _WIN32
3123 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3125 const char *p;
3126 int len;
3128 len = MIN(108, strlen(str));
3129 p = strchr(str, ',');
3130 if (p)
3131 len = MIN(len, p - str);
3133 memset(uaddr, 0, sizeof(*uaddr));
3135 uaddr->sun_family = AF_UNIX;
3136 memcpy(uaddr->sun_path, str, len);
3138 return 0;
3140 #endif
3142 /* find or alloc a new VLAN */
3143 VLANState *qemu_find_vlan(int id)
3145 VLANState **pvlan, *vlan;
3146 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3147 if (vlan->id == id)
3148 return vlan;
3150 vlan = qemu_mallocz(sizeof(VLANState));
3151 if (!vlan)
3152 return NULL;
3153 vlan->id = id;
3154 vlan->next = NULL;
3155 pvlan = &first_vlan;
3156 while (*pvlan != NULL)
3157 pvlan = &(*pvlan)->next;
3158 *pvlan = vlan;
3159 return vlan;
3162 VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3163 IOReadHandler *fd_read,
3164 IOCanRWHandler *fd_can_read,
3165 void *opaque)
3167 VLANClientState *vc, **pvc;
3168 vc = qemu_mallocz(sizeof(VLANClientState));
3169 if (!vc)
3170 return NULL;
3171 vc->fd_read = fd_read;
3172 vc->fd_can_read = fd_can_read;
3173 vc->opaque = opaque;
3174 vc->vlan = vlan;
3176 vc->next = NULL;
3177 pvc = &vlan->first_client;
3178 while (*pvc != NULL)
3179 pvc = &(*pvc)->next;
3180 *pvc = vc;
3181 return vc;
3184 int qemu_can_send_packet(VLANClientState *vc1)
3186 VLANState *vlan = vc1->vlan;
3187 VLANClientState *vc;
3189 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3190 if (vc != vc1) {
3191 if (vc->fd_can_read && !vc->fd_can_read(vc->opaque))
3192 return 0;
3195 return 1;
3198 void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3200 VLANState *vlan = vc1->vlan;
3201 VLANClientState *vc;
3203 #if 0
3204 printf("vlan %d send:\n", vlan->id);
3205 hex_dump(stdout, buf, size);
3206 #endif
3207 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3208 if (vc != vc1) {
3209 vc->fd_read(vc->opaque, buf, size);
3214 #if defined(CONFIG_SLIRP)
3216 /* slirp network adapter */
3218 static int slirp_inited;
3219 static VLANClientState *slirp_vc;
3221 int slirp_can_output(void)
3223 return !slirp_vc || qemu_can_send_packet(slirp_vc);
3226 void slirp_output(const uint8_t *pkt, int pkt_len)
3228 #if 0
3229 printf("slirp output:\n");
3230 hex_dump(stdout, pkt, pkt_len);
3231 #endif
3232 if (!slirp_vc)
3233 return;
3234 qemu_send_packet(slirp_vc, pkt, pkt_len);
3237 static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3239 #if 0
3240 printf("slirp input:\n");
3241 hex_dump(stdout, buf, size);
3242 #endif
3243 slirp_input(buf, size);
3246 static int net_slirp_init(VLANState *vlan)
3248 if (!slirp_inited) {
3249 slirp_inited = 1;
3250 slirp_init();
3252 slirp_vc = qemu_new_vlan_client(vlan,
3253 slirp_receive, NULL, NULL);
3254 snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3255 return 0;
3258 static void net_slirp_redir(const char *redir_str)
3260 int is_udp;
3261 char buf[256], *r;
3262 const char *p;
3263 struct in_addr guest_addr;
3264 int host_port, guest_port;
3266 if (!slirp_inited) {
3267 slirp_inited = 1;
3268 slirp_init();
3271 p = redir_str;
3272 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3273 goto fail;
3274 if (!strcmp(buf, "tcp")) {
3275 is_udp = 0;
3276 } else if (!strcmp(buf, "udp")) {
3277 is_udp = 1;
3278 } else {
3279 goto fail;
3282 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3283 goto fail;
3284 host_port = strtol(buf, &r, 0);
3285 if (r == buf)
3286 goto fail;
3288 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3289 goto fail;
3290 if (buf[0] == '\0') {
3291 pstrcpy(buf, sizeof(buf), "10.0.2.15");
3293 if (!inet_aton(buf, &guest_addr))
3294 goto fail;
3296 guest_port = strtol(p, &r, 0);
3297 if (r == p)
3298 goto fail;
3300 if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3301 fprintf(stderr, "qemu: could not set up redirection\n");
3302 exit(1);
3304 return;
3305 fail:
3306 fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3307 exit(1);
3310 #ifndef _WIN32
3312 char smb_dir[1024];
3314 static void smb_exit(void)
3316 DIR *d;
3317 struct dirent *de;
3318 char filename[1024];
3320 /* erase all the files in the directory */
3321 d = opendir(smb_dir);
3322 for(;;) {
3323 de = readdir(d);
3324 if (!de)
3325 break;
3326 if (strcmp(de->d_name, ".") != 0 &&
3327 strcmp(de->d_name, "..") != 0) {
3328 snprintf(filename, sizeof(filename), "%s/%s",
3329 smb_dir, de->d_name);
3330 unlink(filename);
3333 closedir(d);
3334 rmdir(smb_dir);
3337 /* automatic user mode samba server configuration */
3338 void net_slirp_smb(const char *exported_dir)
3340 char smb_conf[1024];
3341 char smb_cmdline[1024];
3342 FILE *f;
3344 if (!slirp_inited) {
3345 slirp_inited = 1;
3346 slirp_init();
3349 /* XXX: better tmp dir construction */
3350 snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3351 if (mkdir(smb_dir, 0700) < 0) {
3352 fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3353 exit(1);
3355 snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3357 f = fopen(smb_conf, "w");
3358 if (!f) {
3359 fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3360 exit(1);
3362 fprintf(f,
3363 "[global]\n"
3364 "private dir=%s\n"
3365 "smb ports=0\n"
3366 "socket address=127.0.0.1\n"
3367 "pid directory=%s\n"
3368 "lock directory=%s\n"
3369 "log file=%s/log.smbd\n"
3370 "smb passwd file=%s/smbpasswd\n"
3371 "security = share\n"
3372 "[qemu]\n"
3373 "path=%s\n"
3374 "read only=no\n"
3375 "guest ok=yes\n",
3376 smb_dir,
3377 smb_dir,
3378 smb_dir,
3379 smb_dir,
3380 smb_dir,
3381 exported_dir
3383 fclose(f);
3384 atexit(smb_exit);
3386 snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3387 SMBD_COMMAND, smb_conf);
3389 slirp_add_exec(0, smb_cmdline, 4, 139);
3392 #endif /* !defined(_WIN32) */
3394 #endif /* CONFIG_SLIRP */
3396 #if !defined(_WIN32)
3398 typedef struct TAPState {
3399 VLANClientState *vc;
3400 int fd;
3401 } TAPState;
3403 static void tap_receive(void *opaque, const uint8_t *buf, int size)
3405 TAPState *s = opaque;
3406 int ret;
3407 for(;;) {
3408 ret = write(s->fd, buf, size);
3409 if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3410 } else {
3411 break;
3416 static void tap_send(void *opaque)
3418 TAPState *s = opaque;
3419 uint8_t buf[4096];
3420 int size;
3422 #ifdef __sun__
3423 struct strbuf sbuf;
3424 int f = 0;
3425 sbuf.maxlen = sizeof(buf);
3426 sbuf.buf = buf;
3427 size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
3428 #else
3429 size = read(s->fd, buf, sizeof(buf));
3430 #endif
3431 if (size > 0) {
3432 qemu_send_packet(s->vc, buf, size);
3436 /* fd support */
3438 static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3440 TAPState *s;
3442 s = qemu_mallocz(sizeof(TAPState));
3443 if (!s)
3444 return NULL;
3445 s->fd = fd;
3446 s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3447 qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3448 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3449 return s;
3452 #ifdef _BSD
3453 static int tap_open(char *ifname, int ifname_size)
3455 int fd;
3456 char *dev;
3457 struct stat s;
3459 fd = open("/dev/tap", O_RDWR);
3460 if (fd < 0) {
3461 fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
3462 return -1;
3465 fstat(fd, &s);
3466 dev = devname(s.st_rdev, S_IFCHR);
3467 pstrcpy(ifname, ifname_size, dev);
3469 fcntl(fd, F_SETFL, O_NONBLOCK);
3470 return fd;
3472 #elif defined(__sun__)
3473 #define TUNNEWPPA (('T'<<16) | 0x0001)
3475 * Allocate TAP device, returns opened fd.
3476 * Stores dev name in the first arg(must be large enough).
3478 int tap_alloc(char *dev)
3480 int tap_fd, if_fd, ppa = -1;
3481 static int ip_fd = 0;
3482 char *ptr;
3484 static int arp_fd = 0;
3485 int ip_muxid, arp_muxid;
3486 struct strioctl strioc_if, strioc_ppa;
3487 int link_type = I_PLINK;;
3488 struct lifreq ifr;
3489 char actual_name[32] = "";
3491 memset(&ifr, 0x0, sizeof(ifr));
3493 if( *dev ){
3494 ptr = dev;
3495 while( *ptr && !isdigit((int)*ptr) ) ptr++;
3496 ppa = atoi(ptr);
3499 /* Check if IP device was opened */
3500 if( ip_fd )
3501 close(ip_fd);
3503 if( (ip_fd = open("/dev/udp", O_RDWR, 0)) < 0){
3504 syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
3505 return -1;
3508 if( (tap_fd = open("/dev/tap", O_RDWR, 0)) < 0){
3509 syslog(LOG_ERR, "Can't open /dev/tap");
3510 return -1;
3513 /* Assign a new PPA and get its unit number. */
3514 strioc_ppa.ic_cmd = TUNNEWPPA;
3515 strioc_ppa.ic_timout = 0;
3516 strioc_ppa.ic_len = sizeof(ppa);
3517 strioc_ppa.ic_dp = (char *)&ppa;
3518 if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
3519 syslog (LOG_ERR, "Can't assign new interface");
3521 if( (if_fd = open("/dev/tap", O_RDWR, 0)) < 0){
3522 syslog(LOG_ERR, "Can't open /dev/tap (2)");
3523 return -1;
3525 if(ioctl(if_fd, I_PUSH, "ip") < 0){
3526 syslog(LOG_ERR, "Can't push IP module");
3527 return -1;
3530 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
3531 syslog(LOG_ERR, "Can't get flags\n");
3533 snprintf (actual_name, 32, "tap%d", ppa);
3534 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3536 ifr.lifr_ppa = ppa;
3537 /* Assign ppa according to the unit number returned by tun device */
3539 if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
3540 syslog (LOG_ERR, "Can't set PPA %d", ppa);
3541 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
3542 syslog (LOG_ERR, "Can't get flags\n");
3543 /* Push arp module to if_fd */
3544 if (ioctl (if_fd, I_PUSH, "arp") < 0)
3545 syslog (LOG_ERR, "Can't push ARP module (2)");
3547 /* Push arp module to ip_fd */
3548 if (ioctl (ip_fd, I_POP, NULL) < 0)
3549 syslog (LOG_ERR, "I_POP failed\n");
3550 if (ioctl (ip_fd, I_PUSH, "arp") < 0)
3551 syslog (LOG_ERR, "Can't push ARP module (3)\n");
3552 /* Open arp_fd */
3553 if ((arp_fd = open ("/dev/tap", O_RDWR, 0)) < 0)
3554 syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
3556 /* Set ifname to arp */
3557 strioc_if.ic_cmd = SIOCSLIFNAME;
3558 strioc_if.ic_timout = 0;
3559 strioc_if.ic_len = sizeof(ifr);
3560 strioc_if.ic_dp = (char *)&ifr;
3561 if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
3562 syslog (LOG_ERR, "Can't set ifname to arp\n");
3565 if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
3566 syslog(LOG_ERR, "Can't link TAP device to IP");
3567 return -1;
3570 if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
3571 syslog (LOG_ERR, "Can't link TAP device to ARP");
3573 close (if_fd);
3575 memset(&ifr, 0x0, sizeof(ifr));
3576 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3577 ifr.lifr_ip_muxid = ip_muxid;
3578 ifr.lifr_arp_muxid = arp_muxid;
3580 if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
3582 ioctl (ip_fd, I_PUNLINK , arp_muxid);
3583 ioctl (ip_fd, I_PUNLINK, ip_muxid);
3584 syslog (LOG_ERR, "Can't set multiplexor id");
3587 sprintf(dev, "tap%d", ppa);
3588 return tap_fd;
3591 static int tap_open(char *ifname, int ifname_size)
3593 char dev[10]="";
3594 int fd;
3595 if( (fd = tap_alloc(dev)) < 0 ){
3596 fprintf(stderr, "Cannot allocate TAP device\n");
3597 return -1;
3599 pstrcpy(ifname, ifname_size, dev);
3600 fcntl(fd, F_SETFL, O_NONBLOCK);
3601 return fd;
3603 #else
3604 static int tap_open(char *ifname, int ifname_size)
3606 struct ifreq ifr;
3607 int fd, ret;
3609 fd = open("/dev/net/tun", O_RDWR);
3610 if (fd < 0) {
3611 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
3612 return -1;
3614 memset(&ifr, 0, sizeof(ifr));
3615 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
3616 if (ifname[0] != '\0')
3617 pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
3618 else
3619 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
3620 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
3621 if (ret != 0) {
3622 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
3623 close(fd);
3624 return -1;
3626 pstrcpy(ifname, ifname_size, ifr.ifr_name);
3627 fcntl(fd, F_SETFL, O_NONBLOCK);
3628 return fd;
3630 #endif
3632 static int net_tap_init(VLANState *vlan, const char *ifname1,
3633 const char *setup_script)
3635 TAPState *s;
3636 int pid, status, fd;
3637 char *args[3];
3638 char **parg;
3639 char ifname[128];
3641 if (ifname1 != NULL)
3642 pstrcpy(ifname, sizeof(ifname), ifname1);
3643 else
3644 ifname[0] = '\0';
3645 fd = tap_open(ifname, sizeof(ifname));
3646 if (fd < 0)
3647 return -1;
3649 if (!setup_script || !strcmp(setup_script, "no"))
3650 setup_script = "";
3651 if (setup_script[0] != '\0') {
3652 /* try to launch network init script */
3653 pid = fork();
3654 if (pid >= 0) {
3655 if (pid == 0) {
3656 int open_max = sysconf (_SC_OPEN_MAX), i;
3657 for (i = 0; i < open_max; i++)
3658 if (i != STDIN_FILENO &&
3659 i != STDOUT_FILENO &&
3660 i != STDERR_FILENO &&
3661 i != fd)
3662 close(i);
3664 parg = args;
3665 *parg++ = (char *)setup_script;
3666 *parg++ = ifname;
3667 *parg++ = NULL;
3668 execv(setup_script, args);
3669 _exit(1);
3671 while (waitpid(pid, &status, 0) != pid);
3672 if (!WIFEXITED(status) ||
3673 WEXITSTATUS(status) != 0) {
3674 fprintf(stderr, "%s: could not launch network script\n",
3675 setup_script);
3676 return -1;
3680 s = net_tap_fd_init(vlan, fd);
3681 if (!s)
3682 return -1;
3683 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3684 "tap: ifname=%s setup_script=%s", ifname, setup_script);
3685 return 0;
3688 #endif /* !_WIN32 */
3690 /* network connection */
3691 typedef struct NetSocketState {
3692 VLANClientState *vc;
3693 int fd;
3694 int state; /* 0 = getting length, 1 = getting data */
3695 int index;
3696 int packet_len;
3697 uint8_t buf[4096];
3698 struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
3699 } NetSocketState;
3701 typedef struct NetSocketListenState {
3702 VLANState *vlan;
3703 int fd;
3704 } NetSocketListenState;
3706 /* XXX: we consider we can send the whole packet without blocking */
3707 static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
3709 NetSocketState *s = opaque;
3710 uint32_t len;
3711 len = htonl(size);
3713 send_all(s->fd, (const uint8_t *)&len, sizeof(len));
3714 send_all(s->fd, buf, size);
3717 static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
3719 NetSocketState *s = opaque;
3720 sendto(s->fd, buf, size, 0,
3721 (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
3724 static void net_socket_send(void *opaque)
3726 NetSocketState *s = opaque;
3727 int l, size, err;
3728 uint8_t buf1[4096];
3729 const uint8_t *buf;
3731 size = recv(s->fd, buf1, sizeof(buf1), 0);
3732 if (size < 0) {
3733 err = socket_error();
3734 if (err != EWOULDBLOCK)
3735 goto eoc;
3736 } else if (size == 0) {
3737 /* end of connection */
3738 eoc:
3739 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3740 closesocket(s->fd);
3741 return;
3743 buf = buf1;
3744 while (size > 0) {
3745 /* reassemble a packet from the network */
3746 switch(s->state) {
3747 case 0:
3748 l = 4 - s->index;
3749 if (l > size)
3750 l = size;
3751 memcpy(s->buf + s->index, buf, l);
3752 buf += l;
3753 size -= l;
3754 s->index += l;
3755 if (s->index == 4) {
3756 /* got length */
3757 s->packet_len = ntohl(*(uint32_t *)s->buf);
3758 s->index = 0;
3759 s->state = 1;
3761 break;
3762 case 1:
3763 l = s->packet_len - s->index;
3764 if (l > size)
3765 l = size;
3766 memcpy(s->buf + s->index, buf, l);
3767 s->index += l;
3768 buf += l;
3769 size -= l;
3770 if (s->index >= s->packet_len) {
3771 qemu_send_packet(s->vc, s->buf, s->packet_len);
3772 s->index = 0;
3773 s->state = 0;
3775 break;
3780 static void net_socket_send_dgram(void *opaque)
3782 NetSocketState *s = opaque;
3783 int size;
3785 size = recv(s->fd, s->buf, sizeof(s->buf), 0);
3786 if (size < 0)
3787 return;
3788 if (size == 0) {
3789 /* end of connection */
3790 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3791 return;
3793 qemu_send_packet(s->vc, s->buf, size);
3796 static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
3798 struct ip_mreq imr;
3799 int fd;
3800 int val, ret;
3801 if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
3802 fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
3803 inet_ntoa(mcastaddr->sin_addr),
3804 (int)ntohl(mcastaddr->sin_addr.s_addr));
3805 return -1;
3808 fd = socket(PF_INET, SOCK_DGRAM, 0);
3809 if (fd < 0) {
3810 perror("socket(PF_INET, SOCK_DGRAM)");
3811 return -1;
3814 val = 1;
3815 ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
3816 (const char *)&val, sizeof(val));
3817 if (ret < 0) {
3818 perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
3819 goto fail;
3822 ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
3823 if (ret < 0) {
3824 perror("bind");
3825 goto fail;
3828 /* Add host to multicast group */
3829 imr.imr_multiaddr = mcastaddr->sin_addr;
3830 imr.imr_interface.s_addr = htonl(INADDR_ANY);
3832 ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
3833 (const char *)&imr, sizeof(struct ip_mreq));
3834 if (ret < 0) {
3835 perror("setsockopt(IP_ADD_MEMBERSHIP)");
3836 goto fail;
3839 /* Force mcast msgs to loopback (eg. several QEMUs in same host */
3840 val = 1;
3841 ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
3842 (const char *)&val, sizeof(val));
3843 if (ret < 0) {
3844 perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
3845 goto fail;
3848 socket_set_nonblock(fd);
3849 return fd;
3850 fail:
3851 if (fd >= 0)
3852 closesocket(fd);
3853 return -1;
3856 static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
3857 int is_connected)
3859 struct sockaddr_in saddr;
3860 int newfd;
3861 socklen_t saddr_len;
3862 NetSocketState *s;
3864 /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
3865 * Because this may be "shared" socket from a "master" process, datagrams would be recv()
3866 * by ONLY ONE process: we must "clone" this dgram socket --jjo
3869 if (is_connected) {
3870 if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
3871 /* must be bound */
3872 if (saddr.sin_addr.s_addr==0) {
3873 fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
3874 fd);
3875 return NULL;
3877 /* clone dgram socket */
3878 newfd = net_socket_mcast_create(&saddr);
3879 if (newfd < 0) {
3880 /* error already reported by net_socket_mcast_create() */
3881 close(fd);
3882 return NULL;
3884 /* clone newfd to fd, close newfd */
3885 dup2(newfd, fd);
3886 close(newfd);
3888 } else {
3889 fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
3890 fd, strerror(errno));
3891 return NULL;
3895 s = qemu_mallocz(sizeof(NetSocketState));
3896 if (!s)
3897 return NULL;
3898 s->fd = fd;
3900 s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
3901 qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
3903 /* mcast: save bound address as dst */
3904 if (is_connected) s->dgram_dst=saddr;
3906 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3907 "socket: fd=%d (%s mcast=%s:%d)",
3908 fd, is_connected? "cloned" : "",
3909 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
3910 return s;
3913 static void net_socket_connect(void *opaque)
3915 NetSocketState *s = opaque;
3916 qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
3919 static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
3920 int is_connected)
3922 NetSocketState *s;
3923 s = qemu_mallocz(sizeof(NetSocketState));
3924 if (!s)
3925 return NULL;
3926 s->fd = fd;
3927 s->vc = qemu_new_vlan_client(vlan,
3928 net_socket_receive, NULL, s);
3929 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3930 "socket: fd=%d", fd);
3931 if (is_connected) {
3932 net_socket_connect(s);
3933 } else {
3934 qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
3936 return s;
3939 static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
3940 int is_connected)
3942 int so_type=-1, optlen=sizeof(so_type);
3944 if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type, &optlen)< 0) {
3945 fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
3946 return NULL;
3948 switch(so_type) {
3949 case SOCK_DGRAM:
3950 return net_socket_fd_init_dgram(vlan, fd, is_connected);
3951 case SOCK_STREAM:
3952 return net_socket_fd_init_stream(vlan, fd, is_connected);
3953 default:
3954 /* who knows ... this could be a eg. a pty, do warn and continue as stream */
3955 fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
3956 return net_socket_fd_init_stream(vlan, fd, is_connected);
3958 return NULL;
3961 static void net_socket_accept(void *opaque)
3963 NetSocketListenState *s = opaque;
3964 NetSocketState *s1;
3965 struct sockaddr_in saddr;
3966 socklen_t len;
3967 int fd;
3969 for(;;) {
3970 len = sizeof(saddr);
3971 fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
3972 if (fd < 0 && errno != EINTR) {
3973 return;
3974 } else if (fd >= 0) {
3975 break;
3978 s1 = net_socket_fd_init(s->vlan, fd, 1);
3979 if (!s1) {
3980 closesocket(fd);
3981 } else {
3982 snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
3983 "socket: connection from %s:%d",
3984 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
3988 static int net_socket_listen_init(VLANState *vlan, const char *host_str)
3990 NetSocketListenState *s;
3991 int fd, val, ret;
3992 struct sockaddr_in saddr;
3994 if (parse_host_port(&saddr, host_str) < 0)
3995 return -1;
3997 s = qemu_mallocz(sizeof(NetSocketListenState));
3998 if (!s)
3999 return -1;
4001 fd = socket(PF_INET, SOCK_STREAM, 0);
4002 if (fd < 0) {
4003 perror("socket");
4004 return -1;
4006 socket_set_nonblock(fd);
4008 /* allow fast reuse */
4009 val = 1;
4010 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4012 ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4013 if (ret < 0) {
4014 perror("bind");
4015 return -1;
4017 ret = listen(fd, 0);
4018 if (ret < 0) {
4019 perror("listen");
4020 return -1;
4022 s->vlan = vlan;
4023 s->fd = fd;
4024 qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
4025 return 0;
4028 static int net_socket_connect_init(VLANState *vlan, const char *host_str)
4030 NetSocketState *s;
4031 int fd, connected, ret, err;
4032 struct sockaddr_in saddr;
4034 if (parse_host_port(&saddr, host_str) < 0)
4035 return -1;
4037 fd = socket(PF_INET, SOCK_STREAM, 0);
4038 if (fd < 0) {
4039 perror("socket");
4040 return -1;
4042 socket_set_nonblock(fd);
4044 connected = 0;
4045 for(;;) {
4046 ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4047 if (ret < 0) {
4048 err = socket_error();
4049 if (err == EINTR || err == EWOULDBLOCK) {
4050 } else if (err == EINPROGRESS) {
4051 break;
4052 #ifdef _WIN32
4053 } else if (err == WSAEALREADY) {
4054 break;
4055 #endif
4056 } else {
4057 perror("connect");
4058 closesocket(fd);
4059 return -1;
4061 } else {
4062 connected = 1;
4063 break;
4066 s = net_socket_fd_init(vlan, fd, connected);
4067 if (!s)
4068 return -1;
4069 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4070 "socket: connect to %s:%d",
4071 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4072 return 0;
4075 static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4077 NetSocketState *s;
4078 int fd;
4079 struct sockaddr_in saddr;
4081 if (parse_host_port(&saddr, host_str) < 0)
4082 return -1;
4085 fd = net_socket_mcast_create(&saddr);
4086 if (fd < 0)
4087 return -1;
4089 s = net_socket_fd_init(vlan, fd, 0);
4090 if (!s)
4091 return -1;
4093 s->dgram_dst = saddr;
4095 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4096 "socket: mcast=%s:%d",
4097 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4098 return 0;
4102 static int get_param_value(char *buf, int buf_size,
4103 const char *tag, const char *str)
4105 const char *p;
4106 char *q;
4107 char option[128];
4109 p = str;
4110 for(;;) {
4111 q = option;
4112 while (*p != '\0' && *p != '=') {
4113 if ((q - option) < sizeof(option) - 1)
4114 *q++ = *p;
4115 p++;
4117 *q = '\0';
4118 if (*p != '=')
4119 break;
4120 p++;
4121 if (!strcmp(tag, option)) {
4122 q = buf;
4123 while (*p != '\0' && *p != ',') {
4124 if ((q - buf) < buf_size - 1)
4125 *q++ = *p;
4126 p++;
4128 *q = '\0';
4129 return q - buf;
4130 } else {
4131 while (*p != '\0' && *p != ',') {
4132 p++;
4135 if (*p != ',')
4136 break;
4137 p++;
4139 return 0;
4142 static int net_client_init(const char *str)
4144 const char *p;
4145 char *q;
4146 char device[64];
4147 char buf[1024];
4148 int vlan_id, ret;
4149 VLANState *vlan;
4151 p = str;
4152 q = device;
4153 while (*p != '\0' && *p != ',') {
4154 if ((q - device) < sizeof(device) - 1)
4155 *q++ = *p;
4156 p++;
4158 *q = '\0';
4159 if (*p == ',')
4160 p++;
4161 vlan_id = 0;
4162 if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4163 vlan_id = strtol(buf, NULL, 0);
4165 vlan = qemu_find_vlan(vlan_id);
4166 if (!vlan) {
4167 fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4168 return -1;
4170 if (!strcmp(device, "nic")) {
4171 NICInfo *nd;
4172 uint8_t *macaddr;
4174 if (nb_nics >= MAX_NICS) {
4175 fprintf(stderr, "Too Many NICs\n");
4176 return -1;
4178 nd = &nd_table[nb_nics];
4179 macaddr = nd->macaddr;
4180 macaddr[0] = 0x52;
4181 macaddr[1] = 0x54;
4182 macaddr[2] = 0x00;
4183 macaddr[3] = 0x12;
4184 macaddr[4] = 0x34;
4185 macaddr[5] = 0x56 + nb_nics;
4187 if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4188 if (parse_macaddr(macaddr, buf) < 0) {
4189 fprintf(stderr, "invalid syntax for ethernet address\n");
4190 return -1;
4193 if (get_param_value(buf, sizeof(buf), "model", p)) {
4194 nd->model = strdup(buf);
4196 nd->vlan = vlan;
4197 nb_nics++;
4198 ret = 0;
4199 } else
4200 if (!strcmp(device, "none")) {
4201 /* does nothing. It is needed to signal that no network cards
4202 are wanted */
4203 ret = 0;
4204 } else
4205 #ifdef CONFIG_SLIRP
4206 if (!strcmp(device, "user")) {
4207 if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4208 pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4210 ret = net_slirp_init(vlan);
4211 } else
4212 #endif
4213 #ifdef _WIN32
4214 if (!strcmp(device, "tap")) {
4215 char ifname[64];
4216 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4217 fprintf(stderr, "tap: no interface name\n");
4218 return -1;
4220 ret = tap_win32_init(vlan, ifname);
4221 } else
4222 #else
4223 if (!strcmp(device, "tap")) {
4224 char ifname[64];
4225 char setup_script[1024];
4226 int fd;
4227 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4228 fd = strtol(buf, NULL, 0);
4229 ret = -1;
4230 if (net_tap_fd_init(vlan, fd))
4231 ret = 0;
4232 } else {
4233 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4234 ifname[0] = '\0';
4236 if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4237 pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4239 ret = net_tap_init(vlan, ifname, setup_script);
4241 } else
4242 #endif
4243 if (!strcmp(device, "socket")) {
4244 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4245 int fd;
4246 fd = strtol(buf, NULL, 0);
4247 ret = -1;
4248 if (net_socket_fd_init(vlan, fd, 1))
4249 ret = 0;
4250 } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4251 ret = net_socket_listen_init(vlan, buf);
4252 } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4253 ret = net_socket_connect_init(vlan, buf);
4254 } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4255 ret = net_socket_mcast_init(vlan, buf);
4256 } else {
4257 fprintf(stderr, "Unknown socket options: %s\n", p);
4258 return -1;
4260 } else
4262 fprintf(stderr, "Unknown network device: %s\n", device);
4263 return -1;
4265 if (ret < 0) {
4266 fprintf(stderr, "Could not initialize device '%s'\n", device);
4269 return ret;
4272 void do_info_network(void)
4274 VLANState *vlan;
4275 VLANClientState *vc;
4277 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4278 term_printf("VLAN %d devices:\n", vlan->id);
4279 for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4280 term_printf(" %s\n", vc->info_str);
4284 /***********************************************************/
4285 /* USB devices */
4287 static USBPort *used_usb_ports;
4288 static USBPort *free_usb_ports;
4290 /* ??? Maybe change this to register a hub to keep track of the topology. */
4291 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
4292 usb_attachfn attach)
4294 port->opaque = opaque;
4295 port->index = index;
4296 port->attach = attach;
4297 port->next = free_usb_ports;
4298 free_usb_ports = port;
4301 static int usb_device_add(const char *devname)
4303 const char *p;
4304 USBDevice *dev;
4305 USBPort *port;
4307 if (!free_usb_ports)
4308 return -1;
4310 if (strstart(devname, "host:", &p)) {
4311 dev = usb_host_device_open(p);
4312 } else if (!strcmp(devname, "mouse")) {
4313 dev = usb_mouse_init();
4314 } else if (!strcmp(devname, "tablet")) {
4315 dev = usb_tablet_init();
4316 } else if (strstart(devname, "disk:", &p)) {
4317 dev = usb_msd_init(p);
4318 } else {
4319 return -1;
4321 if (!dev)
4322 return -1;
4324 /* Find a USB port to add the device to. */
4325 port = free_usb_ports;
4326 if (!port->next) {
4327 USBDevice *hub;
4329 /* Create a new hub and chain it on. */
4330 free_usb_ports = NULL;
4331 port->next = used_usb_ports;
4332 used_usb_ports = port;
4334 hub = usb_hub_init(VM_USB_HUB_SIZE);
4335 usb_attach(port, hub);
4336 port = free_usb_ports;
4339 free_usb_ports = port->next;
4340 port->next = used_usb_ports;
4341 used_usb_ports = port;
4342 usb_attach(port, dev);
4343 return 0;
4346 static int usb_device_del(const char *devname)
4348 USBPort *port;
4349 USBPort **lastp;
4350 USBDevice *dev;
4351 int bus_num, addr;
4352 const char *p;
4354 if (!used_usb_ports)
4355 return -1;
4357 p = strchr(devname, '.');
4358 if (!p)
4359 return -1;
4360 bus_num = strtoul(devname, NULL, 0);
4361 addr = strtoul(p + 1, NULL, 0);
4362 if (bus_num != 0)
4363 return -1;
4365 lastp = &used_usb_ports;
4366 port = used_usb_ports;
4367 while (port && port->dev->addr != addr) {
4368 lastp = &port->next;
4369 port = port->next;
4372 if (!port)
4373 return -1;
4375 dev = port->dev;
4376 *lastp = port->next;
4377 usb_attach(port, NULL);
4378 dev->handle_destroy(dev);
4379 port->next = free_usb_ports;
4380 free_usb_ports = port;
4381 return 0;
4384 void do_usb_add(const char *devname)
4386 int ret;
4387 ret = usb_device_add(devname);
4388 if (ret < 0)
4389 term_printf("Could not add USB device '%s'\n", devname);
4392 void do_usb_del(const char *devname)
4394 int ret;
4395 ret = usb_device_del(devname);
4396 if (ret < 0)
4397 term_printf("Could not remove USB device '%s'\n", devname);
4400 void usb_info(void)
4402 USBDevice *dev;
4403 USBPort *port;
4404 const char *speed_str;
4406 if (!usb_enabled) {
4407 term_printf("USB support not enabled\n");
4408 return;
4411 for (port = used_usb_ports; port; port = port->next) {
4412 dev = port->dev;
4413 if (!dev)
4414 continue;
4415 switch(dev->speed) {
4416 case USB_SPEED_LOW:
4417 speed_str = "1.5";
4418 break;
4419 case USB_SPEED_FULL:
4420 speed_str = "12";
4421 break;
4422 case USB_SPEED_HIGH:
4423 speed_str = "480";
4424 break;
4425 default:
4426 speed_str = "?";
4427 break;
4429 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
4430 0, dev->addr, speed_str, dev->devname);
4434 /***********************************************************/
4435 /* PCMCIA/Cardbus */
4437 static struct pcmcia_socket_entry_s {
4438 struct pcmcia_socket_s *socket;
4439 struct pcmcia_socket_entry_s *next;
4440 } *pcmcia_sockets = 0;
4442 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
4444 struct pcmcia_socket_entry_s *entry;
4446 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
4447 entry->socket = socket;
4448 entry->next = pcmcia_sockets;
4449 pcmcia_sockets = entry;
4452 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
4454 struct pcmcia_socket_entry_s *entry, **ptr;
4456 ptr = &pcmcia_sockets;
4457 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
4458 if (entry->socket == socket) {
4459 *ptr = entry->next;
4460 qemu_free(entry);
4464 void pcmcia_info(void)
4466 struct pcmcia_socket_entry_s *iter;
4467 if (!pcmcia_sockets)
4468 term_printf("No PCMCIA sockets\n");
4470 for (iter = pcmcia_sockets; iter; iter = iter->next)
4471 term_printf("%s: %s\n", iter->socket->slot_string,
4472 iter->socket->attached ? iter->socket->card_string :
4473 "Empty");
4476 /***********************************************************/
4477 /* dumb display */
4479 static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
4483 static void dumb_resize(DisplayState *ds, int w, int h)
4487 static void dumb_refresh(DisplayState *ds)
4489 vga_hw_update();
4492 void dumb_display_init(DisplayState *ds)
4494 ds->data = NULL;
4495 ds->linesize = 0;
4496 ds->depth = 0;
4497 ds->dpy_update = dumb_update;
4498 ds->dpy_resize = dumb_resize;
4499 ds->dpy_refresh = dumb_refresh;
4502 /***********************************************************/
4503 /* I/O handling */
4505 #define MAX_IO_HANDLERS 64
4507 typedef struct IOHandlerRecord {
4508 int fd;
4509 IOCanRWHandler *fd_read_poll;
4510 IOHandler *fd_read;
4511 IOHandler *fd_write;
4512 int deleted;
4513 void *opaque;
4514 /* temporary data */
4515 struct pollfd *ufd;
4516 struct IOHandlerRecord *next;
4517 } IOHandlerRecord;
4519 static IOHandlerRecord *first_io_handler;
4521 /* XXX: fd_read_poll should be suppressed, but an API change is
4522 necessary in the character devices to suppress fd_can_read(). */
4523 int qemu_set_fd_handler2(int fd,
4524 IOCanRWHandler *fd_read_poll,
4525 IOHandler *fd_read,
4526 IOHandler *fd_write,
4527 void *opaque)
4529 IOHandlerRecord **pioh, *ioh;
4531 if (!fd_read && !fd_write) {
4532 pioh = &first_io_handler;
4533 for(;;) {
4534 ioh = *pioh;
4535 if (ioh == NULL)
4536 break;
4537 if (ioh->fd == fd) {
4538 ioh->deleted = 1;
4539 break;
4541 pioh = &ioh->next;
4543 } else {
4544 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4545 if (ioh->fd == fd)
4546 goto found;
4548 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
4549 if (!ioh)
4550 return -1;
4551 ioh->next = first_io_handler;
4552 first_io_handler = ioh;
4553 found:
4554 ioh->fd = fd;
4555 ioh->fd_read_poll = fd_read_poll;
4556 ioh->fd_read = fd_read;
4557 ioh->fd_write = fd_write;
4558 ioh->opaque = opaque;
4559 ioh->deleted = 0;
4561 return 0;
4564 int qemu_set_fd_handler(int fd,
4565 IOHandler *fd_read,
4566 IOHandler *fd_write,
4567 void *opaque)
4569 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
4572 /***********************************************************/
4573 /* Polling handling */
4575 typedef struct PollingEntry {
4576 PollingFunc *func;
4577 void *opaque;
4578 struct PollingEntry *next;
4579 } PollingEntry;
4581 static PollingEntry *first_polling_entry;
4583 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
4585 PollingEntry **ppe, *pe;
4586 pe = qemu_mallocz(sizeof(PollingEntry));
4587 if (!pe)
4588 return -1;
4589 pe->func = func;
4590 pe->opaque = opaque;
4591 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
4592 *ppe = pe;
4593 return 0;
4596 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
4598 PollingEntry **ppe, *pe;
4599 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
4600 pe = *ppe;
4601 if (pe->func == func && pe->opaque == opaque) {
4602 *ppe = pe->next;
4603 qemu_free(pe);
4604 break;
4609 #ifdef _WIN32
4610 /***********************************************************/
4611 /* Wait objects support */
4612 typedef struct WaitObjects {
4613 int num;
4614 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
4615 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
4616 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
4617 } WaitObjects;
4619 static WaitObjects wait_objects = {0};
4621 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
4623 WaitObjects *w = &wait_objects;
4625 if (w->num >= MAXIMUM_WAIT_OBJECTS)
4626 return -1;
4627 w->events[w->num] = handle;
4628 w->func[w->num] = func;
4629 w->opaque[w->num] = opaque;
4630 w->num++;
4631 return 0;
4634 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
4636 int i, found;
4637 WaitObjects *w = &wait_objects;
4639 found = 0;
4640 for (i = 0; i < w->num; i++) {
4641 if (w->events[i] == handle)
4642 found = 1;
4643 if (found) {
4644 w->events[i] = w->events[i + 1];
4645 w->func[i] = w->func[i + 1];
4646 w->opaque[i] = w->opaque[i + 1];
4649 if (found)
4650 w->num--;
4652 #endif
4654 /***********************************************************/
4655 /* savevm/loadvm support */
4657 #define IO_BUF_SIZE 32768
4659 struct QEMUFile {
4660 FILE *outfile;
4661 BlockDriverState *bs;
4662 int is_file;
4663 int is_writable;
4664 int64_t base_offset;
4665 int64_t buf_offset; /* start of buffer when writing, end of buffer
4666 when reading */
4667 int buf_index;
4668 int buf_size; /* 0 when writing */
4669 uint8_t buf[IO_BUF_SIZE];
4672 QEMUFile *qemu_fopen(const char *filename, const char *mode)
4674 QEMUFile *f;
4676 f = qemu_mallocz(sizeof(QEMUFile));
4677 if (!f)
4678 return NULL;
4679 if (!strcmp(mode, "wb")) {
4680 f->is_writable = 1;
4681 } else if (!strcmp(mode, "rb")) {
4682 f->is_writable = 0;
4683 } else {
4684 goto fail;
4686 f->outfile = fopen(filename, mode);
4687 if (!f->outfile)
4688 goto fail;
4689 f->is_file = 1;
4690 return f;
4691 fail:
4692 if (f->outfile)
4693 fclose(f->outfile);
4694 qemu_free(f);
4695 return NULL;
4698 QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
4700 QEMUFile *f;
4702 f = qemu_mallocz(sizeof(QEMUFile));
4703 if (!f)
4704 return NULL;
4705 f->is_file = 0;
4706 f->bs = bs;
4707 f->is_writable = is_writable;
4708 f->base_offset = offset;
4709 return f;
4712 void qemu_fflush(QEMUFile *f)
4714 if (!f->is_writable)
4715 return;
4716 if (f->buf_index > 0) {
4717 if (f->is_file) {
4718 fseek(f->outfile, f->buf_offset, SEEK_SET);
4719 fwrite(f->buf, 1, f->buf_index, f->outfile);
4720 } else {
4721 bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
4722 f->buf, f->buf_index);
4724 f->buf_offset += f->buf_index;
4725 f->buf_index = 0;
4729 static void qemu_fill_buffer(QEMUFile *f)
4731 int len;
4733 if (f->is_writable)
4734 return;
4735 if (f->is_file) {
4736 fseek(f->outfile, f->buf_offset, SEEK_SET);
4737 len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
4738 if (len < 0)
4739 len = 0;
4740 } else {
4741 len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
4742 f->buf, IO_BUF_SIZE);
4743 if (len < 0)
4744 len = 0;
4746 f->buf_index = 0;
4747 f->buf_size = len;
4748 f->buf_offset += len;
4751 void qemu_fclose(QEMUFile *f)
4753 if (f->is_writable)
4754 qemu_fflush(f);
4755 if (f->is_file) {
4756 fclose(f->outfile);
4758 qemu_free(f);
4761 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
4763 int l;
4764 while (size > 0) {
4765 l = IO_BUF_SIZE - f->buf_index;
4766 if (l > size)
4767 l = size;
4768 memcpy(f->buf + f->buf_index, buf, l);
4769 f->buf_index += l;
4770 buf += l;
4771 size -= l;
4772 if (f->buf_index >= IO_BUF_SIZE)
4773 qemu_fflush(f);
4777 void qemu_put_byte(QEMUFile *f, int v)
4779 f->buf[f->buf_index++] = v;
4780 if (f->buf_index >= IO_BUF_SIZE)
4781 qemu_fflush(f);
4784 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
4786 int size, l;
4788 size = size1;
4789 while (size > 0) {
4790 l = f->buf_size - f->buf_index;
4791 if (l == 0) {
4792 qemu_fill_buffer(f);
4793 l = f->buf_size - f->buf_index;
4794 if (l == 0)
4795 break;
4797 if (l > size)
4798 l = size;
4799 memcpy(buf, f->buf + f->buf_index, l);
4800 f->buf_index += l;
4801 buf += l;
4802 size -= l;
4804 return size1 - size;
4807 int qemu_get_byte(QEMUFile *f)
4809 if (f->buf_index >= f->buf_size) {
4810 qemu_fill_buffer(f);
4811 if (f->buf_index >= f->buf_size)
4812 return 0;
4814 return f->buf[f->buf_index++];
4817 int64_t qemu_ftell(QEMUFile *f)
4819 return f->buf_offset - f->buf_size + f->buf_index;
4822 int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
4824 if (whence == SEEK_SET) {
4825 /* nothing to do */
4826 } else if (whence == SEEK_CUR) {
4827 pos += qemu_ftell(f);
4828 } else {
4829 /* SEEK_END not supported */
4830 return -1;
4832 if (f->is_writable) {
4833 qemu_fflush(f);
4834 f->buf_offset = pos;
4835 } else {
4836 f->buf_offset = pos;
4837 f->buf_index = 0;
4838 f->buf_size = 0;
4840 return pos;
4843 void qemu_put_be16(QEMUFile *f, unsigned int v)
4845 qemu_put_byte(f, v >> 8);
4846 qemu_put_byte(f, v);
4849 void qemu_put_be32(QEMUFile *f, unsigned int v)
4851 qemu_put_byte(f, v >> 24);
4852 qemu_put_byte(f, v >> 16);
4853 qemu_put_byte(f, v >> 8);
4854 qemu_put_byte(f, v);
4857 void qemu_put_be64(QEMUFile *f, uint64_t v)
4859 qemu_put_be32(f, v >> 32);
4860 qemu_put_be32(f, v);
4863 unsigned int qemu_get_be16(QEMUFile *f)
4865 unsigned int v;
4866 v = qemu_get_byte(f) << 8;
4867 v |= qemu_get_byte(f);
4868 return v;
4871 unsigned int qemu_get_be32(QEMUFile *f)
4873 unsigned int v;
4874 v = qemu_get_byte(f) << 24;
4875 v |= qemu_get_byte(f) << 16;
4876 v |= qemu_get_byte(f) << 8;
4877 v |= qemu_get_byte(f);
4878 return v;
4881 uint64_t qemu_get_be64(QEMUFile *f)
4883 uint64_t v;
4884 v = (uint64_t)qemu_get_be32(f) << 32;
4885 v |= qemu_get_be32(f);
4886 return v;
4889 typedef struct SaveStateEntry {
4890 char idstr[256];
4891 int instance_id;
4892 int version_id;
4893 SaveStateHandler *save_state;
4894 LoadStateHandler *load_state;
4895 void *opaque;
4896 struct SaveStateEntry *next;
4897 } SaveStateEntry;
4899 static SaveStateEntry *first_se;
4901 int register_savevm(const char *idstr,
4902 int instance_id,
4903 int version_id,
4904 SaveStateHandler *save_state,
4905 LoadStateHandler *load_state,
4906 void *opaque)
4908 SaveStateEntry *se, **pse;
4910 se = qemu_malloc(sizeof(SaveStateEntry));
4911 if (!se)
4912 return -1;
4913 pstrcpy(se->idstr, sizeof(se->idstr), idstr);
4914 se->instance_id = instance_id;
4915 se->version_id = version_id;
4916 se->save_state = save_state;
4917 se->load_state = load_state;
4918 se->opaque = opaque;
4919 se->next = NULL;
4921 /* add at the end of list */
4922 pse = &first_se;
4923 while (*pse != NULL)
4924 pse = &(*pse)->next;
4925 *pse = se;
4926 return 0;
4929 #define QEMU_VM_FILE_MAGIC 0x5145564d
4930 #define QEMU_VM_FILE_VERSION 0x00000002
4932 int qemu_savevm_state(QEMUFile *f)
4934 SaveStateEntry *se;
4935 int len, ret;
4936 int64_t cur_pos, len_pos, total_len_pos;
4938 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
4939 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
4940 total_len_pos = qemu_ftell(f);
4941 qemu_put_be64(f, 0); /* total size */
4943 for(se = first_se; se != NULL; se = se->next) {
4944 /* ID string */
4945 len = strlen(se->idstr);
4946 qemu_put_byte(f, len);
4947 qemu_put_buffer(f, se->idstr, len);
4949 qemu_put_be32(f, se->instance_id);
4950 qemu_put_be32(f, se->version_id);
4952 /* record size: filled later */
4953 len_pos = qemu_ftell(f);
4954 qemu_put_be32(f, 0);
4956 se->save_state(f, se->opaque);
4958 /* fill record size */
4959 cur_pos = qemu_ftell(f);
4960 len = cur_pos - len_pos - 4;
4961 qemu_fseek(f, len_pos, SEEK_SET);
4962 qemu_put_be32(f, len);
4963 qemu_fseek(f, cur_pos, SEEK_SET);
4965 cur_pos = qemu_ftell(f);
4966 qemu_fseek(f, total_len_pos, SEEK_SET);
4967 qemu_put_be64(f, cur_pos - total_len_pos - 8);
4968 qemu_fseek(f, cur_pos, SEEK_SET);
4970 ret = 0;
4971 return ret;
4974 static SaveStateEntry *find_se(const char *idstr, int instance_id)
4976 SaveStateEntry *se;
4978 for(se = first_se; se != NULL; se = se->next) {
4979 if (!strcmp(se->idstr, idstr) &&
4980 instance_id == se->instance_id)
4981 return se;
4983 return NULL;
4986 int qemu_loadvm_state(QEMUFile *f)
4988 SaveStateEntry *se;
4989 int len, ret, instance_id, record_len, version_id;
4990 int64_t total_len, end_pos, cur_pos;
4991 unsigned int v;
4992 char idstr[256];
4994 v = qemu_get_be32(f);
4995 if (v != QEMU_VM_FILE_MAGIC)
4996 goto fail;
4997 v = qemu_get_be32(f);
4998 if (v != QEMU_VM_FILE_VERSION) {
4999 fail:
5000 ret = -1;
5001 goto the_end;
5003 total_len = qemu_get_be64(f);
5004 end_pos = total_len + qemu_ftell(f);
5005 for(;;) {
5006 if (qemu_ftell(f) >= end_pos)
5007 break;
5008 len = qemu_get_byte(f);
5009 qemu_get_buffer(f, idstr, len);
5010 idstr[len] = '\0';
5011 instance_id = qemu_get_be32(f);
5012 version_id = qemu_get_be32(f);
5013 record_len = qemu_get_be32(f);
5014 #if 0
5015 printf("idstr=%s instance=0x%x version=%d len=%d\n",
5016 idstr, instance_id, version_id, record_len);
5017 #endif
5018 cur_pos = qemu_ftell(f);
5019 se = find_se(idstr, instance_id);
5020 if (!se) {
5021 fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
5022 instance_id, idstr);
5023 } else {
5024 ret = se->load_state(f, se->opaque, version_id);
5025 if (ret < 0) {
5026 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
5027 instance_id, idstr);
5030 /* always seek to exact end of record */
5031 qemu_fseek(f, cur_pos + record_len, SEEK_SET);
5033 ret = 0;
5034 the_end:
5035 return ret;
5038 /* device can contain snapshots */
5039 static int bdrv_can_snapshot(BlockDriverState *bs)
5041 return (bs &&
5042 !bdrv_is_removable(bs) &&
5043 !bdrv_is_read_only(bs));
5046 /* device must be snapshots in order to have a reliable snapshot */
5047 static int bdrv_has_snapshot(BlockDriverState *bs)
5049 return (bs &&
5050 !bdrv_is_removable(bs) &&
5051 !bdrv_is_read_only(bs));
5054 static BlockDriverState *get_bs_snapshots(void)
5056 BlockDriverState *bs;
5057 int i;
5059 if (bs_snapshots)
5060 return bs_snapshots;
5061 for(i = 0; i <= MAX_DISKS; i++) {
5062 bs = bs_table[i];
5063 if (bdrv_can_snapshot(bs))
5064 goto ok;
5066 return NULL;
5068 bs_snapshots = bs;
5069 return bs;
5072 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
5073 const char *name)
5075 QEMUSnapshotInfo *sn_tab, *sn;
5076 int nb_sns, i, ret;
5078 ret = -ENOENT;
5079 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5080 if (nb_sns < 0)
5081 return ret;
5082 for(i = 0; i < nb_sns; i++) {
5083 sn = &sn_tab[i];
5084 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
5085 *sn_info = *sn;
5086 ret = 0;
5087 break;
5090 qemu_free(sn_tab);
5091 return ret;
5094 void do_savevm(const char *name)
5096 BlockDriverState *bs, *bs1;
5097 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
5098 int must_delete, ret, i;
5099 BlockDriverInfo bdi1, *bdi = &bdi1;
5100 QEMUFile *f;
5101 int saved_vm_running;
5102 #ifdef _WIN32
5103 struct _timeb tb;
5104 #else
5105 struct timeval tv;
5106 #endif
5108 bs = get_bs_snapshots();
5109 if (!bs) {
5110 term_printf("No block device can accept snapshots\n");
5111 return;
5114 /* ??? Should this occur after vm_stop? */
5115 qemu_aio_flush();
5117 saved_vm_running = vm_running;
5118 vm_stop(0);
5120 must_delete = 0;
5121 if (name) {
5122 ret = bdrv_snapshot_find(bs, old_sn, name);
5123 if (ret >= 0) {
5124 must_delete = 1;
5127 memset(sn, 0, sizeof(*sn));
5128 if (must_delete) {
5129 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
5130 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
5131 } else {
5132 if (name)
5133 pstrcpy(sn->name, sizeof(sn->name), name);
5136 /* fill auxiliary fields */
5137 #ifdef _WIN32
5138 _ftime(&tb);
5139 sn->date_sec = tb.time;
5140 sn->date_nsec = tb.millitm * 1000000;
5141 #else
5142 gettimeofday(&tv, NULL);
5143 sn->date_sec = tv.tv_sec;
5144 sn->date_nsec = tv.tv_usec * 1000;
5145 #endif
5146 sn->vm_clock_nsec = qemu_get_clock(vm_clock);
5148 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5149 term_printf("Device %s does not support VM state snapshots\n",
5150 bdrv_get_device_name(bs));
5151 goto the_end;
5154 /* save the VM state */
5155 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
5156 if (!f) {
5157 term_printf("Could not open VM state file\n");
5158 goto the_end;
5160 ret = qemu_savevm_state(f);
5161 sn->vm_state_size = qemu_ftell(f);
5162 qemu_fclose(f);
5163 if (ret < 0) {
5164 term_printf("Error %d while writing VM\n", ret);
5165 goto the_end;
5168 /* create the snapshots */
5170 for(i = 0; i < MAX_DISKS; i++) {
5171 bs1 = bs_table[i];
5172 if (bdrv_has_snapshot(bs1)) {
5173 if (must_delete) {
5174 ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
5175 if (ret < 0) {
5176 term_printf("Error while deleting snapshot on '%s'\n",
5177 bdrv_get_device_name(bs1));
5180 ret = bdrv_snapshot_create(bs1, sn);
5181 if (ret < 0) {
5182 term_printf("Error while creating snapshot on '%s'\n",
5183 bdrv_get_device_name(bs1));
5188 the_end:
5189 if (saved_vm_running)
5190 vm_start();
5193 void do_loadvm(const char *name)
5195 BlockDriverState *bs, *bs1;
5196 BlockDriverInfo bdi1, *bdi = &bdi1;
5197 QEMUFile *f;
5198 int i, ret;
5199 int saved_vm_running;
5201 bs = get_bs_snapshots();
5202 if (!bs) {
5203 term_printf("No block device supports snapshots\n");
5204 return;
5207 /* Flush all IO requests so they don't interfere with the new state. */
5208 qemu_aio_flush();
5210 saved_vm_running = vm_running;
5211 vm_stop(0);
5213 for(i = 0; i <= MAX_DISKS; i++) {
5214 bs1 = bs_table[i];
5215 if (bdrv_has_snapshot(bs1)) {
5216 ret = bdrv_snapshot_goto(bs1, name);
5217 if (ret < 0) {
5218 if (bs != bs1)
5219 term_printf("Warning: ");
5220 switch(ret) {
5221 case -ENOTSUP:
5222 term_printf("Snapshots not supported on device '%s'\n",
5223 bdrv_get_device_name(bs1));
5224 break;
5225 case -ENOENT:
5226 term_printf("Could not find snapshot '%s' on device '%s'\n",
5227 name, bdrv_get_device_name(bs1));
5228 break;
5229 default:
5230 term_printf("Error %d while activating snapshot on '%s'\n",
5231 ret, bdrv_get_device_name(bs1));
5232 break;
5234 /* fatal on snapshot block device */
5235 if (bs == bs1)
5236 goto the_end;
5241 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5242 term_printf("Device %s does not support VM state snapshots\n",
5243 bdrv_get_device_name(bs));
5244 return;
5247 /* restore the VM state */
5248 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
5249 if (!f) {
5250 term_printf("Could not open VM state file\n");
5251 goto the_end;
5253 ret = qemu_loadvm_state(f);
5254 qemu_fclose(f);
5255 if (ret < 0) {
5256 term_printf("Error %d while loading VM state\n", ret);
5258 the_end:
5259 if (saved_vm_running)
5260 vm_start();
5263 void do_delvm(const char *name)
5265 BlockDriverState *bs, *bs1;
5266 int i, ret;
5268 bs = get_bs_snapshots();
5269 if (!bs) {
5270 term_printf("No block device supports snapshots\n");
5271 return;
5274 for(i = 0; i <= MAX_DISKS; i++) {
5275 bs1 = bs_table[i];
5276 if (bdrv_has_snapshot(bs1)) {
5277 ret = bdrv_snapshot_delete(bs1, name);
5278 if (ret < 0) {
5279 if (ret == -ENOTSUP)
5280 term_printf("Snapshots not supported on device '%s'\n",
5281 bdrv_get_device_name(bs1));
5282 else
5283 term_printf("Error %d while deleting snapshot on '%s'\n",
5284 ret, bdrv_get_device_name(bs1));
5290 void do_info_snapshots(void)
5292 BlockDriverState *bs, *bs1;
5293 QEMUSnapshotInfo *sn_tab, *sn;
5294 int nb_sns, i;
5295 char buf[256];
5297 bs = get_bs_snapshots();
5298 if (!bs) {
5299 term_printf("No available block device supports snapshots\n");
5300 return;
5302 term_printf("Snapshot devices:");
5303 for(i = 0; i <= MAX_DISKS; i++) {
5304 bs1 = bs_table[i];
5305 if (bdrv_has_snapshot(bs1)) {
5306 if (bs == bs1)
5307 term_printf(" %s", bdrv_get_device_name(bs1));
5310 term_printf("\n");
5312 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5313 if (nb_sns < 0) {
5314 term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
5315 return;
5317 term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
5318 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
5319 for(i = 0; i < nb_sns; i++) {
5320 sn = &sn_tab[i];
5321 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
5323 qemu_free(sn_tab);
5326 /***********************************************************/
5327 /* cpu save/restore */
5329 #if defined(TARGET_I386)
5331 static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
5333 qemu_put_be32(f, dt->selector);
5334 qemu_put_betl(f, dt->base);
5335 qemu_put_be32(f, dt->limit);
5336 qemu_put_be32(f, dt->flags);
5339 static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
5341 dt->selector = qemu_get_be32(f);
5342 dt->base = qemu_get_betl(f);
5343 dt->limit = qemu_get_be32(f);
5344 dt->flags = qemu_get_be32(f);
5347 void cpu_save(QEMUFile *f, void *opaque)
5349 CPUState *env = opaque;
5350 uint16_t fptag, fpus, fpuc, fpregs_format;
5351 uint32_t hflags;
5352 int i;
5354 for(i = 0; i < CPU_NB_REGS; i++)
5355 qemu_put_betls(f, &env->regs[i]);
5356 qemu_put_betls(f, &env->eip);
5357 qemu_put_betls(f, &env->eflags);
5358 hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
5359 qemu_put_be32s(f, &hflags);
5361 /* FPU */
5362 fpuc = env->fpuc;
5363 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
5364 fptag = 0;
5365 for(i = 0; i < 8; i++) {
5366 fptag |= ((!env->fptags[i]) << i);
5369 qemu_put_be16s(f, &fpuc);
5370 qemu_put_be16s(f, &fpus);
5371 qemu_put_be16s(f, &fptag);
5373 #ifdef USE_X86LDOUBLE
5374 fpregs_format = 0;
5375 #else
5376 fpregs_format = 1;
5377 #endif
5378 qemu_put_be16s(f, &fpregs_format);
5380 for(i = 0; i < 8; i++) {
5381 #ifdef USE_X86LDOUBLE
5383 uint64_t mant;
5384 uint16_t exp;
5385 /* we save the real CPU data (in case of MMX usage only 'mant'
5386 contains the MMX register */
5387 cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
5388 qemu_put_be64(f, mant);
5389 qemu_put_be16(f, exp);
5391 #else
5392 /* if we use doubles for float emulation, we save the doubles to
5393 avoid losing information in case of MMX usage. It can give
5394 problems if the image is restored on a CPU where long
5395 doubles are used instead. */
5396 qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
5397 #endif
5400 for(i = 0; i < 6; i++)
5401 cpu_put_seg(f, &env->segs[i]);
5402 cpu_put_seg(f, &env->ldt);
5403 cpu_put_seg(f, &env->tr);
5404 cpu_put_seg(f, &env->gdt);
5405 cpu_put_seg(f, &env->idt);
5407 qemu_put_be32s(f, &env->sysenter_cs);
5408 qemu_put_be32s(f, &env->sysenter_esp);
5409 qemu_put_be32s(f, &env->sysenter_eip);
5411 qemu_put_betls(f, &env->cr[0]);
5412 qemu_put_betls(f, &env->cr[2]);
5413 qemu_put_betls(f, &env->cr[3]);
5414 qemu_put_betls(f, &env->cr[4]);
5416 for(i = 0; i < 8; i++)
5417 qemu_put_betls(f, &env->dr[i]);
5419 /* MMU */
5420 qemu_put_be32s(f, &env->a20_mask);
5422 /* XMM */
5423 qemu_put_be32s(f, &env->mxcsr);
5424 for(i = 0; i < CPU_NB_REGS; i++) {
5425 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5426 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5429 #ifdef TARGET_X86_64
5430 qemu_put_be64s(f, &env->efer);
5431 qemu_put_be64s(f, &env->star);
5432 qemu_put_be64s(f, &env->lstar);
5433 qemu_put_be64s(f, &env->cstar);
5434 qemu_put_be64s(f, &env->fmask);
5435 qemu_put_be64s(f, &env->kernelgsbase);
5436 #endif
5437 qemu_put_be32s(f, &env->smbase);
5440 #ifdef USE_X86LDOUBLE
5441 /* XXX: add that in a FPU generic layer */
5442 union x86_longdouble {
5443 uint64_t mant;
5444 uint16_t exp;
5447 #define MANTD1(fp) (fp & ((1LL << 52) - 1))
5448 #define EXPBIAS1 1023
5449 #define EXPD1(fp) ((fp >> 52) & 0x7FF)
5450 #define SIGND1(fp) ((fp >> 32) & 0x80000000)
5452 static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
5454 int e;
5455 /* mantissa */
5456 p->mant = (MANTD1(temp) << 11) | (1LL << 63);
5457 /* exponent + sign */
5458 e = EXPD1(temp) - EXPBIAS1 + 16383;
5459 e |= SIGND1(temp) >> 16;
5460 p->exp = e;
5462 #endif
5464 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5466 CPUState *env = opaque;
5467 int i, guess_mmx;
5468 uint32_t hflags;
5469 uint16_t fpus, fpuc, fptag, fpregs_format;
5471 if (version_id != 3 && version_id != 4)
5472 return -EINVAL;
5473 for(i = 0; i < CPU_NB_REGS; i++)
5474 qemu_get_betls(f, &env->regs[i]);
5475 qemu_get_betls(f, &env->eip);
5476 qemu_get_betls(f, &env->eflags);
5477 qemu_get_be32s(f, &hflags);
5479 qemu_get_be16s(f, &fpuc);
5480 qemu_get_be16s(f, &fpus);
5481 qemu_get_be16s(f, &fptag);
5482 qemu_get_be16s(f, &fpregs_format);
5484 /* NOTE: we cannot always restore the FPU state if the image come
5485 from a host with a different 'USE_X86LDOUBLE' define. We guess
5486 if we are in an MMX state to restore correctly in that case. */
5487 guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
5488 for(i = 0; i < 8; i++) {
5489 uint64_t mant;
5490 uint16_t exp;
5492 switch(fpregs_format) {
5493 case 0:
5494 mant = qemu_get_be64(f);
5495 exp = qemu_get_be16(f);
5496 #ifdef USE_X86LDOUBLE
5497 env->fpregs[i].d = cpu_set_fp80(mant, exp);
5498 #else
5499 /* difficult case */
5500 if (guess_mmx)
5501 env->fpregs[i].mmx.MMX_Q(0) = mant;
5502 else
5503 env->fpregs[i].d = cpu_set_fp80(mant, exp);
5504 #endif
5505 break;
5506 case 1:
5507 mant = qemu_get_be64(f);
5508 #ifdef USE_X86LDOUBLE
5510 union x86_longdouble *p;
5511 /* difficult case */
5512 p = (void *)&env->fpregs[i];
5513 if (guess_mmx) {
5514 p->mant = mant;
5515 p->exp = 0xffff;
5516 } else {
5517 fp64_to_fp80(p, mant);
5520 #else
5521 env->fpregs[i].mmx.MMX_Q(0) = mant;
5522 #endif
5523 break;
5524 default:
5525 return -EINVAL;
5529 env->fpuc = fpuc;
5530 /* XXX: restore FPU round state */
5531 env->fpstt = (fpus >> 11) & 7;
5532 env->fpus = fpus & ~0x3800;
5533 fptag ^= 0xff;
5534 for(i = 0; i < 8; i++) {
5535 env->fptags[i] = (fptag >> i) & 1;
5538 for(i = 0; i < 6; i++)
5539 cpu_get_seg(f, &env->segs[i]);
5540 cpu_get_seg(f, &env->ldt);
5541 cpu_get_seg(f, &env->tr);
5542 cpu_get_seg(f, &env->gdt);
5543 cpu_get_seg(f, &env->idt);
5545 qemu_get_be32s(f, &env->sysenter_cs);
5546 qemu_get_be32s(f, &env->sysenter_esp);
5547 qemu_get_be32s(f, &env->sysenter_eip);
5549 qemu_get_betls(f, &env->cr[0]);
5550 qemu_get_betls(f, &env->cr[2]);
5551 qemu_get_betls(f, &env->cr[3]);
5552 qemu_get_betls(f, &env->cr[4]);
5554 for(i = 0; i < 8; i++)
5555 qemu_get_betls(f, &env->dr[i]);
5557 /* MMU */
5558 qemu_get_be32s(f, &env->a20_mask);
5560 qemu_get_be32s(f, &env->mxcsr);
5561 for(i = 0; i < CPU_NB_REGS; i++) {
5562 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5563 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5566 #ifdef TARGET_X86_64
5567 qemu_get_be64s(f, &env->efer);
5568 qemu_get_be64s(f, &env->star);
5569 qemu_get_be64s(f, &env->lstar);
5570 qemu_get_be64s(f, &env->cstar);
5571 qemu_get_be64s(f, &env->fmask);
5572 qemu_get_be64s(f, &env->kernelgsbase);
5573 #endif
5574 if (version_id >= 4)
5575 qemu_get_be32s(f, &env->smbase);
5577 /* XXX: compute hflags from scratch, except for CPL and IIF */
5578 env->hflags = hflags;
5579 tlb_flush(env, 1);
5580 return 0;
5583 #elif defined(TARGET_PPC)
5584 void cpu_save(QEMUFile *f, void *opaque)
5588 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5590 return 0;
5593 #elif defined(TARGET_MIPS)
5594 void cpu_save(QEMUFile *f, void *opaque)
5598 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5600 return 0;
5603 #elif defined(TARGET_SPARC)
5604 void cpu_save(QEMUFile *f, void *opaque)
5606 CPUState *env = opaque;
5607 int i;
5608 uint32_t tmp;
5610 for(i = 0; i < 8; i++)
5611 qemu_put_betls(f, &env->gregs[i]);
5612 for(i = 0; i < NWINDOWS * 16; i++)
5613 qemu_put_betls(f, &env->regbase[i]);
5615 /* FPU */
5616 for(i = 0; i < TARGET_FPREGS; i++) {
5617 union {
5618 float32 f;
5619 uint32_t i;
5620 } u;
5621 u.f = env->fpr[i];
5622 qemu_put_be32(f, u.i);
5625 qemu_put_betls(f, &env->pc);
5626 qemu_put_betls(f, &env->npc);
5627 qemu_put_betls(f, &env->y);
5628 tmp = GET_PSR(env);
5629 qemu_put_be32(f, tmp);
5630 qemu_put_betls(f, &env->fsr);
5631 qemu_put_betls(f, &env->tbr);
5632 #ifndef TARGET_SPARC64
5633 qemu_put_be32s(f, &env->wim);
5634 /* MMU */
5635 for(i = 0; i < 16; i++)
5636 qemu_put_be32s(f, &env->mmuregs[i]);
5637 #endif
5640 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5642 CPUState *env = opaque;
5643 int i;
5644 uint32_t tmp;
5646 for(i = 0; i < 8; i++)
5647 qemu_get_betls(f, &env->gregs[i]);
5648 for(i = 0; i < NWINDOWS * 16; i++)
5649 qemu_get_betls(f, &env->regbase[i]);
5651 /* FPU */
5652 for(i = 0; i < TARGET_FPREGS; i++) {
5653 union {
5654 float32 f;
5655 uint32_t i;
5656 } u;
5657 u.i = qemu_get_be32(f);
5658 env->fpr[i] = u.f;
5661 qemu_get_betls(f, &env->pc);
5662 qemu_get_betls(f, &env->npc);
5663 qemu_get_betls(f, &env->y);
5664 tmp = qemu_get_be32(f);
5665 env->cwp = 0; /* needed to ensure that the wrapping registers are
5666 correctly updated */
5667 PUT_PSR(env, tmp);
5668 qemu_get_betls(f, &env->fsr);
5669 qemu_get_betls(f, &env->tbr);
5670 #ifndef TARGET_SPARC64
5671 qemu_get_be32s(f, &env->wim);
5672 /* MMU */
5673 for(i = 0; i < 16; i++)
5674 qemu_get_be32s(f, &env->mmuregs[i]);
5675 #endif
5676 tlb_flush(env, 1);
5677 return 0;
5680 #elif defined(TARGET_ARM)
5682 /* ??? Need to implement these. */
5683 void cpu_save(QEMUFile *f, void *opaque)
5687 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5689 return 0;
5692 #else
5694 #warning No CPU save/restore functions
5696 #endif
5698 /***********************************************************/
5699 /* ram save/restore */
5701 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
5703 int v;
5705 v = qemu_get_byte(f);
5706 switch(v) {
5707 case 0:
5708 if (qemu_get_buffer(f, buf, len) != len)
5709 return -EIO;
5710 break;
5711 case 1:
5712 v = qemu_get_byte(f);
5713 memset(buf, v, len);
5714 break;
5715 default:
5716 return -EINVAL;
5718 return 0;
5721 static int ram_load_v1(QEMUFile *f, void *opaque)
5723 int i, ret;
5725 if (qemu_get_be32(f) != phys_ram_size)
5726 return -EINVAL;
5727 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
5728 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
5729 if (ret)
5730 return ret;
5732 return 0;
5735 #define BDRV_HASH_BLOCK_SIZE 1024
5736 #define IOBUF_SIZE 4096
5737 #define RAM_CBLOCK_MAGIC 0xfabe
5739 typedef struct RamCompressState {
5740 z_stream zstream;
5741 QEMUFile *f;
5742 uint8_t buf[IOBUF_SIZE];
5743 } RamCompressState;
5745 static int ram_compress_open(RamCompressState *s, QEMUFile *f)
5747 int ret;
5748 memset(s, 0, sizeof(*s));
5749 s->f = f;
5750 ret = deflateInit2(&s->zstream, 1,
5751 Z_DEFLATED, 15,
5752 9, Z_DEFAULT_STRATEGY);
5753 if (ret != Z_OK)
5754 return -1;
5755 s->zstream.avail_out = IOBUF_SIZE;
5756 s->zstream.next_out = s->buf;
5757 return 0;
5760 static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
5762 qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
5763 qemu_put_be16(s->f, len);
5764 qemu_put_buffer(s->f, buf, len);
5767 static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
5769 int ret;
5771 s->zstream.avail_in = len;
5772 s->zstream.next_in = (uint8_t *)buf;
5773 while (s->zstream.avail_in > 0) {
5774 ret = deflate(&s->zstream, Z_NO_FLUSH);
5775 if (ret != Z_OK)
5776 return -1;
5777 if (s->zstream.avail_out == 0) {
5778 ram_put_cblock(s, s->buf, IOBUF_SIZE);
5779 s->zstream.avail_out = IOBUF_SIZE;
5780 s->zstream.next_out = s->buf;
5783 return 0;
5786 static void ram_compress_close(RamCompressState *s)
5788 int len, ret;
5790 /* compress last bytes */
5791 for(;;) {
5792 ret = deflate(&s->zstream, Z_FINISH);
5793 if (ret == Z_OK || ret == Z_STREAM_END) {
5794 len = IOBUF_SIZE - s->zstream.avail_out;
5795 if (len > 0) {
5796 ram_put_cblock(s, s->buf, len);
5798 s->zstream.avail_out = IOBUF_SIZE;
5799 s->zstream.next_out = s->buf;
5800 if (ret == Z_STREAM_END)
5801 break;
5802 } else {
5803 goto fail;
5806 fail:
5807 deflateEnd(&s->zstream);
5810 typedef struct RamDecompressState {
5811 z_stream zstream;
5812 QEMUFile *f;
5813 uint8_t buf[IOBUF_SIZE];
5814 } RamDecompressState;
5816 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
5818 int ret;
5819 memset(s, 0, sizeof(*s));
5820 s->f = f;
5821 ret = inflateInit(&s->zstream);
5822 if (ret != Z_OK)
5823 return -1;
5824 return 0;
5827 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
5829 int ret, clen;
5831 s->zstream.avail_out = len;
5832 s->zstream.next_out = buf;
5833 while (s->zstream.avail_out > 0) {
5834 if (s->zstream.avail_in == 0) {
5835 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
5836 return -1;
5837 clen = qemu_get_be16(s->f);
5838 if (clen > IOBUF_SIZE)
5839 return -1;
5840 qemu_get_buffer(s->f, s->buf, clen);
5841 s->zstream.avail_in = clen;
5842 s->zstream.next_in = s->buf;
5844 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
5845 if (ret != Z_OK && ret != Z_STREAM_END) {
5846 return -1;
5849 return 0;
5852 static void ram_decompress_close(RamDecompressState *s)
5854 inflateEnd(&s->zstream);
5857 static void ram_save(QEMUFile *f, void *opaque)
5859 int i;
5860 RamCompressState s1, *s = &s1;
5861 uint8_t buf[10];
5863 qemu_put_be32(f, phys_ram_size);
5864 if (ram_compress_open(s, f) < 0)
5865 return;
5866 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
5867 #if 0
5868 if (tight_savevm_enabled) {
5869 int64_t sector_num;
5870 int j;
5872 /* find if the memory block is available on a virtual
5873 block device */
5874 sector_num = -1;
5875 for(j = 0; j < MAX_DISKS; j++) {
5876 if (bs_table[j]) {
5877 sector_num = bdrv_hash_find(bs_table[j],
5878 phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
5879 if (sector_num >= 0)
5880 break;
5883 if (j == MAX_DISKS)
5884 goto normal_compress;
5885 buf[0] = 1;
5886 buf[1] = j;
5887 cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
5888 ram_compress_buf(s, buf, 10);
5889 } else
5890 #endif
5892 // normal_compress:
5893 buf[0] = 0;
5894 ram_compress_buf(s, buf, 1);
5895 ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
5898 ram_compress_close(s);
5901 static int ram_load(QEMUFile *f, void *opaque, int version_id)
5903 RamDecompressState s1, *s = &s1;
5904 uint8_t buf[10];
5905 int i;
5907 if (version_id == 1)
5908 return ram_load_v1(f, opaque);
5909 if (version_id != 2)
5910 return -EINVAL;
5911 if (qemu_get_be32(f) != phys_ram_size)
5912 return -EINVAL;
5913 if (ram_decompress_open(s, f) < 0)
5914 return -EINVAL;
5915 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
5916 if (ram_decompress_buf(s, buf, 1) < 0) {
5917 fprintf(stderr, "Error while reading ram block header\n");
5918 goto error;
5920 if (buf[0] == 0) {
5921 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
5922 fprintf(stderr, "Error while reading ram block address=0x%08x", i);
5923 goto error;
5925 } else
5926 #if 0
5927 if (buf[0] == 1) {
5928 int bs_index;
5929 int64_t sector_num;
5931 ram_decompress_buf(s, buf + 1, 9);
5932 bs_index = buf[1];
5933 sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
5934 if (bs_index >= MAX_DISKS || bs_table[bs_index] == NULL) {
5935 fprintf(stderr, "Invalid block device index %d\n", bs_index);
5936 goto error;
5938 if (bdrv_read(bs_table[bs_index], sector_num, phys_ram_base + i,
5939 BDRV_HASH_BLOCK_SIZE / 512) < 0) {
5940 fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
5941 bs_index, sector_num);
5942 goto error;
5944 } else
5945 #endif
5947 error:
5948 printf("Error block header\n");
5949 return -EINVAL;
5952 ram_decompress_close(s);
5953 return 0;
5956 /***********************************************************/
5957 /* bottom halves (can be seen as timers which expire ASAP) */
5959 struct QEMUBH {
5960 QEMUBHFunc *cb;
5961 void *opaque;
5962 int scheduled;
5963 QEMUBH *next;
5966 static QEMUBH *first_bh = NULL;
5968 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
5970 QEMUBH *bh;
5971 bh = qemu_mallocz(sizeof(QEMUBH));
5972 if (!bh)
5973 return NULL;
5974 bh->cb = cb;
5975 bh->opaque = opaque;
5976 return bh;
5979 int qemu_bh_poll(void)
5981 QEMUBH *bh, **pbh;
5982 int ret;
5984 ret = 0;
5985 for(;;) {
5986 pbh = &first_bh;
5987 bh = *pbh;
5988 if (!bh)
5989 break;
5990 ret = 1;
5991 *pbh = bh->next;
5992 bh->scheduled = 0;
5993 bh->cb(bh->opaque);
5995 return ret;
5998 void qemu_bh_schedule(QEMUBH *bh)
6000 CPUState *env = cpu_single_env;
6001 if (bh->scheduled)
6002 return;
6003 bh->scheduled = 1;
6004 bh->next = first_bh;
6005 first_bh = bh;
6007 /* stop the currently executing CPU to execute the BH ASAP */
6008 if (env) {
6009 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
6013 void qemu_bh_cancel(QEMUBH *bh)
6015 QEMUBH **pbh;
6016 if (bh->scheduled) {
6017 pbh = &first_bh;
6018 while (*pbh != bh)
6019 pbh = &(*pbh)->next;
6020 *pbh = bh->next;
6021 bh->scheduled = 0;
6025 void qemu_bh_delete(QEMUBH *bh)
6027 qemu_bh_cancel(bh);
6028 qemu_free(bh);
6031 /***********************************************************/
6032 /* machine registration */
6034 QEMUMachine *first_machine = NULL;
6036 int qemu_register_machine(QEMUMachine *m)
6038 QEMUMachine **pm;
6039 pm = &first_machine;
6040 while (*pm != NULL)
6041 pm = &(*pm)->next;
6042 m->next = NULL;
6043 *pm = m;
6044 return 0;
6047 QEMUMachine *find_machine(const char *name)
6049 QEMUMachine *m;
6051 for(m = first_machine; m != NULL; m = m->next) {
6052 if (!strcmp(m->name, name))
6053 return m;
6055 return NULL;
6058 /***********************************************************/
6059 /* main execution loop */
6061 void gui_update(void *opaque)
6063 display_state.dpy_refresh(&display_state);
6064 qemu_mod_timer(gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
6067 struct vm_change_state_entry {
6068 VMChangeStateHandler *cb;
6069 void *opaque;
6070 LIST_ENTRY (vm_change_state_entry) entries;
6073 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
6075 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
6076 void *opaque)
6078 VMChangeStateEntry *e;
6080 e = qemu_mallocz(sizeof (*e));
6081 if (!e)
6082 return NULL;
6084 e->cb = cb;
6085 e->opaque = opaque;
6086 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
6087 return e;
6090 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
6092 LIST_REMOVE (e, entries);
6093 qemu_free (e);
6096 static void vm_state_notify(int running)
6098 VMChangeStateEntry *e;
6100 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
6101 e->cb(e->opaque, running);
6105 /* XXX: support several handlers */
6106 static VMStopHandler *vm_stop_cb;
6107 static void *vm_stop_opaque;
6109 int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
6111 vm_stop_cb = cb;
6112 vm_stop_opaque = opaque;
6113 return 0;
6116 void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
6118 vm_stop_cb = NULL;
6121 void vm_start(void)
6123 if (!vm_running) {
6124 cpu_enable_ticks();
6125 vm_running = 1;
6126 vm_state_notify(1);
6130 void vm_stop(int reason)
6132 if (vm_running) {
6133 cpu_disable_ticks();
6134 vm_running = 0;
6135 if (reason != 0) {
6136 if (vm_stop_cb) {
6137 vm_stop_cb(vm_stop_opaque, reason);
6140 vm_state_notify(0);
6144 /* reset/shutdown handler */
6146 typedef struct QEMUResetEntry {
6147 QEMUResetHandler *func;
6148 void *opaque;
6149 struct QEMUResetEntry *next;
6150 } QEMUResetEntry;
6152 static QEMUResetEntry *first_reset_entry;
6153 static int reset_requested;
6154 static int shutdown_requested;
6155 static int powerdown_requested;
6157 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
6159 QEMUResetEntry **pre, *re;
6161 pre = &first_reset_entry;
6162 while (*pre != NULL)
6163 pre = &(*pre)->next;
6164 re = qemu_mallocz(sizeof(QEMUResetEntry));
6165 re->func = func;
6166 re->opaque = opaque;
6167 re->next = NULL;
6168 *pre = re;
6171 static void qemu_system_reset(void)
6173 QEMUResetEntry *re;
6175 /* reset all devices */
6176 for(re = first_reset_entry; re != NULL; re = re->next) {
6177 re->func(re->opaque);
6181 void qemu_system_reset_request(void)
6183 if (no_reboot) {
6184 shutdown_requested = 1;
6185 } else {
6186 reset_requested = 1;
6188 if (cpu_single_env)
6189 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6192 void qemu_system_shutdown_request(void)
6194 shutdown_requested = 1;
6195 if (cpu_single_env)
6196 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6199 void qemu_system_powerdown_request(void)
6201 powerdown_requested = 1;
6202 if (cpu_single_env)
6203 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6206 void main_loop_wait(int timeout)
6208 IOHandlerRecord *ioh;
6209 fd_set rfds, wfds, xfds;
6210 int ret, nfds;
6211 #ifdef _WIN32
6212 int ret2, i;
6213 #endif
6214 struct timeval tv;
6215 PollingEntry *pe;
6218 /* XXX: need to suppress polling by better using win32 events */
6219 ret = 0;
6220 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
6221 ret |= pe->func(pe->opaque);
6223 #ifdef _WIN32
6224 if (ret == 0) {
6225 int err;
6226 WaitObjects *w = &wait_objects;
6228 ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
6229 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
6230 if (w->func[ret - WAIT_OBJECT_0])
6231 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
6233 /* Check for additional signaled events */
6234 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
6236 /* Check if event is signaled */
6237 ret2 = WaitForSingleObject(w->events[i], 0);
6238 if(ret2 == WAIT_OBJECT_0) {
6239 if (w->func[i])
6240 w->func[i](w->opaque[i]);
6241 } else if (ret2 == WAIT_TIMEOUT) {
6242 } else {
6243 err = GetLastError();
6244 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
6247 } else if (ret == WAIT_TIMEOUT) {
6248 } else {
6249 err = GetLastError();
6250 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
6253 #endif
6254 /* poll any events */
6255 /* XXX: separate device handlers from system ones */
6256 nfds = -1;
6257 FD_ZERO(&rfds);
6258 FD_ZERO(&wfds);
6259 FD_ZERO(&xfds);
6260 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6261 if (ioh->deleted)
6262 continue;
6263 if (ioh->fd_read &&
6264 (!ioh->fd_read_poll ||
6265 ioh->fd_read_poll(ioh->opaque) != 0)) {
6266 FD_SET(ioh->fd, &rfds);
6267 if (ioh->fd > nfds)
6268 nfds = ioh->fd;
6270 if (ioh->fd_write) {
6271 FD_SET(ioh->fd, &wfds);
6272 if (ioh->fd > nfds)
6273 nfds = ioh->fd;
6277 tv.tv_sec = 0;
6278 #ifdef _WIN32
6279 tv.tv_usec = 0;
6280 #else
6281 tv.tv_usec = timeout * 1000;
6282 #endif
6283 #if defined(CONFIG_SLIRP)
6284 if (slirp_inited) {
6285 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
6287 #endif
6288 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
6289 if (ret > 0) {
6290 IOHandlerRecord **pioh;
6292 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6293 if (ioh->deleted)
6294 continue;
6295 if (FD_ISSET(ioh->fd, &rfds)) {
6296 ioh->fd_read(ioh->opaque);
6298 if (FD_ISSET(ioh->fd, &wfds)) {
6299 ioh->fd_write(ioh->opaque);
6303 /* remove deleted IO handlers */
6304 pioh = &first_io_handler;
6305 while (*pioh) {
6306 ioh = *pioh;
6307 if (ioh->deleted) {
6308 *pioh = ioh->next;
6309 qemu_free(ioh);
6310 } else
6311 pioh = &ioh->next;
6314 #if defined(CONFIG_SLIRP)
6315 if (slirp_inited) {
6316 if (ret < 0) {
6317 FD_ZERO(&rfds);
6318 FD_ZERO(&wfds);
6319 FD_ZERO(&xfds);
6321 slirp_select_poll(&rfds, &wfds, &xfds);
6323 #endif
6324 qemu_aio_poll();
6326 if (vm_running) {
6327 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
6328 qemu_get_clock(vm_clock));
6329 /* run dma transfers, if any */
6330 DMA_run();
6333 /* real time timers */
6334 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
6335 qemu_get_clock(rt_clock));
6337 /* Check bottom-halves last in case any of the earlier events triggered
6338 them. */
6339 qemu_bh_poll();
6343 static CPUState *cur_cpu;
6345 int main_loop(void)
6347 int ret, timeout;
6348 #ifdef CONFIG_PROFILER
6349 int64_t ti;
6350 #endif
6351 CPUState *env;
6353 cur_cpu = first_cpu;
6354 for(;;) {
6355 if (vm_running) {
6357 env = cur_cpu;
6358 for(;;) {
6359 /* get next cpu */
6360 env = env->next_cpu;
6361 if (!env)
6362 env = first_cpu;
6363 #ifdef CONFIG_PROFILER
6364 ti = profile_getclock();
6365 #endif
6366 ret = cpu_exec(env);
6367 #ifdef CONFIG_PROFILER
6368 qemu_time += profile_getclock() - ti;
6369 #endif
6370 if (ret == EXCP_HLT) {
6371 /* Give the next CPU a chance to run. */
6372 cur_cpu = env;
6373 continue;
6375 if (ret != EXCP_HALTED)
6376 break;
6377 /* all CPUs are halted ? */
6378 if (env == cur_cpu)
6379 break;
6381 cur_cpu = env;
6383 if (shutdown_requested) {
6384 ret = EXCP_INTERRUPT;
6385 break;
6387 if (reset_requested) {
6388 reset_requested = 0;
6389 qemu_system_reset();
6390 ret = EXCP_INTERRUPT;
6392 if (powerdown_requested) {
6393 powerdown_requested = 0;
6394 qemu_system_powerdown();
6395 ret = EXCP_INTERRUPT;
6397 if (ret == EXCP_DEBUG) {
6398 vm_stop(EXCP_DEBUG);
6400 /* If all cpus are halted then wait until the next IRQ */
6401 /* XXX: use timeout computed from timers */
6402 if (ret == EXCP_HALTED)
6403 timeout = 10;
6404 else
6405 timeout = 0;
6406 } else {
6407 timeout = 10;
6409 #ifdef CONFIG_PROFILER
6410 ti = profile_getclock();
6411 #endif
6412 main_loop_wait(timeout);
6413 #ifdef CONFIG_PROFILER
6414 dev_time += profile_getclock() - ti;
6415 #endif
6417 cpu_disable_ticks();
6418 return ret;
6421 void help(void)
6423 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2007 Fabrice Bellard\n"
6424 "usage: %s [options] [disk_image]\n"
6425 "\n"
6426 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
6427 "\n"
6428 "Standard options:\n"
6429 "-M machine select emulated machine (-M ? for list)\n"
6430 "-cpu cpu select CPU (-cpu ? for list)\n"
6431 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
6432 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
6433 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
6434 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
6435 "-mtdblock file use 'file' as on-board Flash memory image\n"
6436 "-sd file use 'file' as SecureDigital card image\n"
6437 "-pflash file use 'file' as a parallel flash image\n"
6438 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
6439 "-snapshot write to temporary files instead of disk image files\n"
6440 #ifdef CONFIG_SDL
6441 "-no-frame open SDL window without a frame and window decorations\n"
6442 "-no-quit disable SDL window close capability\n"
6443 #endif
6444 #ifdef TARGET_I386
6445 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
6446 #endif
6447 "-m megs set virtual RAM size to megs MB [default=%d]\n"
6448 "-smp n set the number of CPUs to 'n' [default=1]\n"
6449 "-nographic disable graphical output and redirect serial I/Os to console\n"
6450 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n"
6451 #ifndef _WIN32
6452 "-k language use keyboard layout (for example \"fr\" for French)\n"
6453 #endif
6454 #ifdef HAS_AUDIO
6455 "-audio-help print list of audio drivers and their options\n"
6456 "-soundhw c1,... enable audio support\n"
6457 " and only specified sound cards (comma separated list)\n"
6458 " use -soundhw ? to get the list of supported cards\n"
6459 " use -soundhw all to enable all of them\n"
6460 #endif
6461 "-localtime set the real time clock to local time [default=utc]\n"
6462 "-full-screen start in full screen\n"
6463 #ifdef TARGET_I386
6464 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
6465 #endif
6466 "-usb enable the USB driver (will be the default soon)\n"
6467 "-usbdevice name add the host or guest USB device 'name'\n"
6468 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
6469 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
6470 #endif
6471 "-name string set the name of the guest\n"
6472 "\n"
6473 "Network options:\n"
6474 "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
6475 " create a new Network Interface Card and connect it to VLAN 'n'\n"
6476 #ifdef CONFIG_SLIRP
6477 "-net user[,vlan=n][,hostname=host]\n"
6478 " connect the user mode network stack to VLAN 'n' and send\n"
6479 " hostname 'host' to DHCP clients\n"
6480 #endif
6481 #ifdef _WIN32
6482 "-net tap[,vlan=n],ifname=name\n"
6483 " connect the host TAP network interface to VLAN 'n'\n"
6484 #else
6485 "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file]\n"
6486 " connect the host TAP network interface to VLAN 'n' and use\n"
6487 " the network script 'file' (default=%s);\n"
6488 " use 'script=no' to disable script execution;\n"
6489 " use 'fd=h' to connect to an already opened TAP interface\n"
6490 #endif
6491 "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
6492 " connect the vlan 'n' to another VLAN using a socket connection\n"
6493 "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
6494 " connect the vlan 'n' to multicast maddr and port\n"
6495 "-net none use it alone to have zero network devices; if no -net option\n"
6496 " is provided, the default is '-net nic -net user'\n"
6497 "\n"
6498 #ifdef CONFIG_SLIRP
6499 "-tftp dir allow tftp access to files in dir [-net user]\n"
6500 "-bootp file advertise file in BOOTP replies\n"
6501 #ifndef _WIN32
6502 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
6503 #endif
6504 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
6505 " redirect TCP or UDP connections from host to guest [-net user]\n"
6506 #endif
6507 "\n"
6508 "Linux boot specific:\n"
6509 "-kernel bzImage use 'bzImage' as kernel image\n"
6510 "-append cmdline use 'cmdline' as kernel command line\n"
6511 "-initrd file use 'file' as initial ram disk\n"
6512 "\n"
6513 "Debug/Expert options:\n"
6514 "-monitor dev redirect the monitor to char device 'dev'\n"
6515 "-serial dev redirect the serial port to char device 'dev'\n"
6516 "-parallel dev redirect the parallel port to char device 'dev'\n"
6517 "-pidfile file Write PID to 'file'\n"
6518 "-S freeze CPU at startup (use 'c' to start execution)\n"
6519 "-s wait gdb connection to port\n"
6520 "-p port set gdb connection port [default=%s]\n"
6521 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
6522 "-hdachs c,h,s[,t] force hard disk 0 physical geometry and the optional BIOS\n"
6523 " translation (t=none or lba) (usually qemu can guess them)\n"
6524 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
6525 #ifdef USE_KQEMU
6526 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
6527 "-no-kqemu disable KQEMU kernel module usage\n"
6528 #endif
6529 #ifdef USE_CODE_COPY
6530 "-no-code-copy disable code copy acceleration\n"
6531 #endif
6532 #ifdef TARGET_I386
6533 "-std-vga simulate a standard VGA card with VESA Bochs Extensions\n"
6534 " (default is CL-GD5446 PCI VGA)\n"
6535 "-no-acpi disable ACPI\n"
6536 #endif
6537 "-no-reboot exit instead of rebooting\n"
6538 "-loadvm file start right away with a saved state (loadvm in monitor)\n"
6539 "-vnc display start a VNC server on display\n"
6540 #ifndef _WIN32
6541 "-daemonize daemonize QEMU after initializing\n"
6542 #endif
6543 "-option-rom rom load a file, rom, into the option ROM space\n"
6544 #ifdef TARGET_SPARC
6545 "-prom-env variable=value set OpenBIOS nvram variables\n"
6546 #endif
6547 "\n"
6548 "During emulation, the following keys are useful:\n"
6549 "ctrl-alt-f toggle full screen\n"
6550 "ctrl-alt-n switch to virtual console 'n'\n"
6551 "ctrl-alt toggle mouse and keyboard grab\n"
6552 "\n"
6553 "When using -nographic, press 'ctrl-a h' to get some help.\n"
6555 "qemu",
6556 DEFAULT_RAM_SIZE,
6557 #ifndef _WIN32
6558 DEFAULT_NETWORK_SCRIPT,
6559 #endif
6560 DEFAULT_GDBSTUB_PORT,
6561 "/tmp/qemu.log");
6562 exit(1);
6565 #define HAS_ARG 0x0001
6567 enum {
6568 QEMU_OPTION_h,
6570 QEMU_OPTION_M,
6571 QEMU_OPTION_cpu,
6572 QEMU_OPTION_fda,
6573 QEMU_OPTION_fdb,
6574 QEMU_OPTION_hda,
6575 QEMU_OPTION_hdb,
6576 QEMU_OPTION_hdc,
6577 QEMU_OPTION_hdd,
6578 QEMU_OPTION_cdrom,
6579 QEMU_OPTION_mtdblock,
6580 QEMU_OPTION_sd,
6581 QEMU_OPTION_pflash,
6582 QEMU_OPTION_boot,
6583 QEMU_OPTION_snapshot,
6584 #ifdef TARGET_I386
6585 QEMU_OPTION_no_fd_bootchk,
6586 #endif
6587 QEMU_OPTION_m,
6588 QEMU_OPTION_nographic,
6589 QEMU_OPTION_portrait,
6590 #ifdef HAS_AUDIO
6591 QEMU_OPTION_audio_help,
6592 QEMU_OPTION_soundhw,
6593 #endif
6595 QEMU_OPTION_net,
6596 QEMU_OPTION_tftp,
6597 QEMU_OPTION_bootp,
6598 QEMU_OPTION_smb,
6599 QEMU_OPTION_redir,
6601 QEMU_OPTION_kernel,
6602 QEMU_OPTION_append,
6603 QEMU_OPTION_initrd,
6605 QEMU_OPTION_S,
6606 QEMU_OPTION_s,
6607 QEMU_OPTION_p,
6608 QEMU_OPTION_d,
6609 QEMU_OPTION_hdachs,
6610 QEMU_OPTION_L,
6611 QEMU_OPTION_no_code_copy,
6612 QEMU_OPTION_k,
6613 QEMU_OPTION_localtime,
6614 QEMU_OPTION_cirrusvga,
6615 QEMU_OPTION_vmsvga,
6616 QEMU_OPTION_g,
6617 QEMU_OPTION_std_vga,
6618 QEMU_OPTION_echr,
6619 QEMU_OPTION_monitor,
6620 QEMU_OPTION_serial,
6621 QEMU_OPTION_parallel,
6622 QEMU_OPTION_loadvm,
6623 QEMU_OPTION_full_screen,
6624 QEMU_OPTION_no_frame,
6625 QEMU_OPTION_no_quit,
6626 QEMU_OPTION_pidfile,
6627 QEMU_OPTION_no_kqemu,
6628 QEMU_OPTION_kernel_kqemu,
6629 QEMU_OPTION_win2k_hack,
6630 QEMU_OPTION_usb,
6631 QEMU_OPTION_usbdevice,
6632 QEMU_OPTION_smp,
6633 QEMU_OPTION_vnc,
6634 QEMU_OPTION_no_acpi,
6635 QEMU_OPTION_no_reboot,
6636 QEMU_OPTION_show_cursor,
6637 QEMU_OPTION_daemonize,
6638 QEMU_OPTION_option_rom,
6639 QEMU_OPTION_semihosting,
6640 QEMU_OPTION_name,
6641 QEMU_OPTION_prom_env,
6644 typedef struct QEMUOption {
6645 const char *name;
6646 int flags;
6647 int index;
6648 } QEMUOption;
6650 const QEMUOption qemu_options[] = {
6651 { "h", 0, QEMU_OPTION_h },
6652 { "help", 0, QEMU_OPTION_h },
6654 { "M", HAS_ARG, QEMU_OPTION_M },
6655 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
6656 { "fda", HAS_ARG, QEMU_OPTION_fda },
6657 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
6658 { "hda", HAS_ARG, QEMU_OPTION_hda },
6659 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
6660 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
6661 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
6662 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
6663 { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
6664 { "sd", HAS_ARG, QEMU_OPTION_sd },
6665 { "pflash", HAS_ARG, QEMU_OPTION_pflash },
6666 { "boot", HAS_ARG, QEMU_OPTION_boot },
6667 { "snapshot", 0, QEMU_OPTION_snapshot },
6668 #ifdef TARGET_I386
6669 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
6670 #endif
6671 { "m", HAS_ARG, QEMU_OPTION_m },
6672 { "nographic", 0, QEMU_OPTION_nographic },
6673 { "portrait", 0, QEMU_OPTION_portrait },
6674 { "k", HAS_ARG, QEMU_OPTION_k },
6675 #ifdef HAS_AUDIO
6676 { "audio-help", 0, QEMU_OPTION_audio_help },
6677 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
6678 #endif
6680 { "net", HAS_ARG, QEMU_OPTION_net},
6681 #ifdef CONFIG_SLIRP
6682 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
6683 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
6684 #ifndef _WIN32
6685 { "smb", HAS_ARG, QEMU_OPTION_smb },
6686 #endif
6687 { "redir", HAS_ARG, QEMU_OPTION_redir },
6688 #endif
6690 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
6691 { "append", HAS_ARG, QEMU_OPTION_append },
6692 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
6694 { "S", 0, QEMU_OPTION_S },
6695 { "s", 0, QEMU_OPTION_s },
6696 { "p", HAS_ARG, QEMU_OPTION_p },
6697 { "d", HAS_ARG, QEMU_OPTION_d },
6698 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
6699 { "L", HAS_ARG, QEMU_OPTION_L },
6700 { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
6701 #ifdef USE_KQEMU
6702 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
6703 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
6704 #endif
6705 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
6706 { "g", 1, QEMU_OPTION_g },
6707 #endif
6708 { "localtime", 0, QEMU_OPTION_localtime },
6709 { "std-vga", 0, QEMU_OPTION_std_vga },
6710 { "echr", 1, QEMU_OPTION_echr },
6711 { "monitor", 1, QEMU_OPTION_monitor },
6712 { "serial", 1, QEMU_OPTION_serial },
6713 { "parallel", 1, QEMU_OPTION_parallel },
6714 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
6715 { "full-screen", 0, QEMU_OPTION_full_screen },
6716 #ifdef CONFIG_SDL
6717 { "no-frame", 0, QEMU_OPTION_no_frame },
6718 { "no-quit", 0, QEMU_OPTION_no_quit },
6719 #endif
6720 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
6721 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
6722 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
6723 { "smp", HAS_ARG, QEMU_OPTION_smp },
6724 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
6726 /* temporary options */
6727 { "usb", 0, QEMU_OPTION_usb },
6728 { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
6729 { "vmwarevga", 0, QEMU_OPTION_vmsvga },
6730 { "no-acpi", 0, QEMU_OPTION_no_acpi },
6731 { "no-reboot", 0, QEMU_OPTION_no_reboot },
6732 { "show-cursor", 0, QEMU_OPTION_show_cursor },
6733 { "daemonize", 0, QEMU_OPTION_daemonize },
6734 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
6735 #if defined(TARGET_ARM)
6736 { "semihosting", 0, QEMU_OPTION_semihosting },
6737 #endif
6738 { "name", HAS_ARG, QEMU_OPTION_name },
6739 #if defined(TARGET_SPARC)
6740 { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
6741 #endif
6742 { NULL },
6745 #if defined (TARGET_I386) && defined(USE_CODE_COPY)
6747 /* this stack is only used during signal handling */
6748 #define SIGNAL_STACK_SIZE 32768
6750 static uint8_t *signal_stack;
6752 #endif
6754 /* password input */
6756 int qemu_key_check(BlockDriverState *bs, const char *name)
6758 char password[256];
6759 int i;
6761 if (!bdrv_is_encrypted(bs))
6762 return 0;
6764 term_printf("%s is encrypted.\n", name);
6765 for(i = 0; i < 3; i++) {
6766 monitor_readline("Password: ", 1, password, sizeof(password));
6767 if (bdrv_set_key(bs, password) == 0)
6768 return 0;
6769 term_printf("invalid password\n");
6771 return -EPERM;
6774 static BlockDriverState *get_bdrv(int index)
6776 BlockDriverState *bs;
6778 if (index < 4) {
6779 bs = bs_table[index];
6780 } else if (index < 6) {
6781 bs = fd_table[index - 4];
6782 } else {
6783 bs = NULL;
6785 return bs;
6788 static void read_passwords(void)
6790 BlockDriverState *bs;
6791 int i;
6793 for(i = 0; i < 6; i++) {
6794 bs = get_bdrv(i);
6795 if (bs)
6796 qemu_key_check(bs, bdrv_get_device_name(bs));
6800 /* XXX: currently we cannot use simultaneously different CPUs */
6801 void register_machines(void)
6803 #if defined(TARGET_I386)
6804 qemu_register_machine(&pc_machine);
6805 qemu_register_machine(&isapc_machine);
6806 #elif defined(TARGET_PPC)
6807 qemu_register_machine(&heathrow_machine);
6808 qemu_register_machine(&core99_machine);
6809 qemu_register_machine(&prep_machine);
6810 qemu_register_machine(&ref405ep_machine);
6811 qemu_register_machine(&taihu_machine);
6812 #elif defined(TARGET_MIPS)
6813 qemu_register_machine(&mips_machine);
6814 qemu_register_machine(&mips_malta_machine);
6815 qemu_register_machine(&mips_pica61_machine);
6816 #elif defined(TARGET_SPARC)
6817 #ifdef TARGET_SPARC64
6818 qemu_register_machine(&sun4u_machine);
6819 #else
6820 qemu_register_machine(&ss5_machine);
6821 qemu_register_machine(&ss10_machine);
6822 #endif
6823 #elif defined(TARGET_ARM)
6824 qemu_register_machine(&integratorcp_machine);
6825 qemu_register_machine(&versatilepb_machine);
6826 qemu_register_machine(&versatileab_machine);
6827 qemu_register_machine(&realview_machine);
6828 qemu_register_machine(&akitapda_machine);
6829 qemu_register_machine(&spitzpda_machine);
6830 qemu_register_machine(&borzoipda_machine);
6831 qemu_register_machine(&terrierpda_machine);
6832 #elif defined(TARGET_SH4)
6833 qemu_register_machine(&shix_machine);
6834 #elif defined(TARGET_ALPHA)
6835 /* XXX: TODO */
6836 #else
6837 #error unsupported CPU
6838 #endif
6841 #ifdef HAS_AUDIO
6842 struct soundhw soundhw[] = {
6843 #ifdef HAS_AUDIO_CHOICE
6844 #ifdef TARGET_I386
6846 "pcspk",
6847 "PC speaker",
6850 { .init_isa = pcspk_audio_init }
6852 #endif
6854 "sb16",
6855 "Creative Sound Blaster 16",
6858 { .init_isa = SB16_init }
6861 #ifdef CONFIG_ADLIB
6863 "adlib",
6864 #ifdef HAS_YMF262
6865 "Yamaha YMF262 (OPL3)",
6866 #else
6867 "Yamaha YM3812 (OPL2)",
6868 #endif
6871 { .init_isa = Adlib_init }
6873 #endif
6875 #ifdef CONFIG_GUS
6877 "gus",
6878 "Gravis Ultrasound GF1",
6881 { .init_isa = GUS_init }
6883 #endif
6886 "es1370",
6887 "ENSONIQ AudioPCI ES1370",
6890 { .init_pci = es1370_init }
6892 #endif
6894 { NULL, NULL, 0, 0, { NULL } }
6897 static void select_soundhw (const char *optarg)
6899 struct soundhw *c;
6901 if (*optarg == '?') {
6902 show_valid_cards:
6904 printf ("Valid sound card names (comma separated):\n");
6905 for (c = soundhw; c->name; ++c) {
6906 printf ("%-11s %s\n", c->name, c->descr);
6908 printf ("\n-soundhw all will enable all of the above\n");
6909 exit (*optarg != '?');
6911 else {
6912 size_t l;
6913 const char *p;
6914 char *e;
6915 int bad_card = 0;
6917 if (!strcmp (optarg, "all")) {
6918 for (c = soundhw; c->name; ++c) {
6919 c->enabled = 1;
6921 return;
6924 p = optarg;
6925 while (*p) {
6926 e = strchr (p, ',');
6927 l = !e ? strlen (p) : (size_t) (e - p);
6929 for (c = soundhw; c->name; ++c) {
6930 if (!strncmp (c->name, p, l)) {
6931 c->enabled = 1;
6932 break;
6936 if (!c->name) {
6937 if (l > 80) {
6938 fprintf (stderr,
6939 "Unknown sound card name (too big to show)\n");
6941 else {
6942 fprintf (stderr, "Unknown sound card name `%.*s'\n",
6943 (int) l, p);
6945 bad_card = 1;
6947 p += l + (e != NULL);
6950 if (bad_card)
6951 goto show_valid_cards;
6954 #endif
6956 #ifdef _WIN32
6957 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
6959 exit(STATUS_CONTROL_C_EXIT);
6960 return TRUE;
6962 #endif
6964 #define MAX_NET_CLIENTS 32
6966 int main(int argc, char **argv)
6968 #ifdef CONFIG_GDBSTUB
6969 int use_gdbstub;
6970 const char *gdbstub_port;
6971 #endif
6972 int i, cdrom_index, pflash_index;
6973 int snapshot, linux_boot;
6974 const char *initrd_filename;
6975 const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
6976 const char *pflash_filename[MAX_PFLASH];
6977 const char *sd_filename;
6978 const char *mtd_filename;
6979 const char *kernel_filename, *kernel_cmdline;
6980 DisplayState *ds = &display_state;
6981 int cyls, heads, secs, translation;
6982 char net_clients[MAX_NET_CLIENTS][256];
6983 int nb_net_clients;
6984 int optind;
6985 const char *r, *optarg;
6986 CharDriverState *monitor_hd;
6987 char monitor_device[128];
6988 char serial_devices[MAX_SERIAL_PORTS][128];
6989 int serial_device_index;
6990 char parallel_devices[MAX_PARALLEL_PORTS][128];
6991 int parallel_device_index;
6992 const char *loadvm = NULL;
6993 QEMUMachine *machine;
6994 const char *cpu_model;
6995 char usb_devices[MAX_USB_CMDLINE][128];
6996 int usb_devices_index;
6997 int fds[2];
6998 const char *pid_file = NULL;
7000 LIST_INIT (&vm_change_state_head);
7001 #ifndef _WIN32
7003 struct sigaction act;
7004 sigfillset(&act.sa_mask);
7005 act.sa_flags = 0;
7006 act.sa_handler = SIG_IGN;
7007 sigaction(SIGPIPE, &act, NULL);
7009 #else
7010 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
7011 /* Note: cpu_interrupt() is currently not SMP safe, so we force
7012 QEMU to run on a single CPU */
7014 HANDLE h;
7015 DWORD mask, smask;
7016 int i;
7017 h = GetCurrentProcess();
7018 if (GetProcessAffinityMask(h, &mask, &smask)) {
7019 for(i = 0; i < 32; i++) {
7020 if (mask & (1 << i))
7021 break;
7023 if (i != 32) {
7024 mask = 1 << i;
7025 SetProcessAffinityMask(h, mask);
7029 #endif
7031 register_machines();
7032 machine = first_machine;
7033 cpu_model = NULL;
7034 initrd_filename = NULL;
7035 for(i = 0; i < MAX_FD; i++)
7036 fd_filename[i] = NULL;
7037 for(i = 0; i < MAX_DISKS; i++)
7038 hd_filename[i] = NULL;
7039 for(i = 0; i < MAX_PFLASH; i++)
7040 pflash_filename[i] = NULL;
7041 pflash_index = 0;
7042 sd_filename = NULL;
7043 mtd_filename = NULL;
7044 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
7045 vga_ram_size = VGA_RAM_SIZE;
7046 #ifdef CONFIG_GDBSTUB
7047 use_gdbstub = 0;
7048 gdbstub_port = DEFAULT_GDBSTUB_PORT;
7049 #endif
7050 snapshot = 0;
7051 nographic = 0;
7052 kernel_filename = NULL;
7053 kernel_cmdline = "";
7054 #ifdef TARGET_PPC
7055 cdrom_index = 1;
7056 #else
7057 cdrom_index = 2;
7058 #endif
7059 cyls = heads = secs = 0;
7060 translation = BIOS_ATA_TRANSLATION_AUTO;
7061 pstrcpy(monitor_device, sizeof(monitor_device), "vc");
7063 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "vc");
7064 for(i = 1; i < MAX_SERIAL_PORTS; i++)
7065 serial_devices[i][0] = '\0';
7066 serial_device_index = 0;
7068 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "vc");
7069 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
7070 parallel_devices[i][0] = '\0';
7071 parallel_device_index = 0;
7073 usb_devices_index = 0;
7075 nb_net_clients = 0;
7077 nb_nics = 0;
7078 /* default mac address of the first network interface */
7080 optind = 1;
7081 for(;;) {
7082 if (optind >= argc)
7083 break;
7084 r = argv[optind];
7085 if (r[0] != '-') {
7086 hd_filename[0] = argv[optind++];
7087 } else {
7088 const QEMUOption *popt;
7090 optind++;
7091 /* Treat --foo the same as -foo. */
7092 if (r[1] == '-')
7093 r++;
7094 popt = qemu_options;
7095 for(;;) {
7096 if (!popt->name) {
7097 fprintf(stderr, "%s: invalid option -- '%s'\n",
7098 argv[0], r);
7099 exit(1);
7101 if (!strcmp(popt->name, r + 1))
7102 break;
7103 popt++;
7105 if (popt->flags & HAS_ARG) {
7106 if (optind >= argc) {
7107 fprintf(stderr, "%s: option '%s' requires an argument\n",
7108 argv[0], r);
7109 exit(1);
7111 optarg = argv[optind++];
7112 } else {
7113 optarg = NULL;
7116 switch(popt->index) {
7117 case QEMU_OPTION_M:
7118 machine = find_machine(optarg);
7119 if (!machine) {
7120 QEMUMachine *m;
7121 printf("Supported machines are:\n");
7122 for(m = first_machine; m != NULL; m = m->next) {
7123 printf("%-10s %s%s\n",
7124 m->name, m->desc,
7125 m == first_machine ? " (default)" : "");
7127 exit(1);
7129 break;
7130 case QEMU_OPTION_cpu:
7131 /* hw initialization will check this */
7132 if (optarg[0] == '?') {
7133 #if defined(TARGET_PPC)
7134 ppc_cpu_list(stdout, &fprintf);
7135 #elif defined(TARGET_ARM)
7136 arm_cpu_list();
7137 #elif defined(TARGET_MIPS)
7138 mips_cpu_list(stdout, &fprintf);
7139 #elif defined(TARGET_SPARC)
7140 sparc_cpu_list(stdout, &fprintf);
7141 #endif
7142 exit(1);
7143 } else {
7144 cpu_model = optarg;
7146 break;
7147 case QEMU_OPTION_initrd:
7148 initrd_filename = optarg;
7149 break;
7150 case QEMU_OPTION_hda:
7151 case QEMU_OPTION_hdb:
7152 case QEMU_OPTION_hdc:
7153 case QEMU_OPTION_hdd:
7155 int hd_index;
7156 hd_index = popt->index - QEMU_OPTION_hda;
7157 hd_filename[hd_index] = optarg;
7158 if (hd_index == cdrom_index)
7159 cdrom_index = -1;
7161 break;
7162 case QEMU_OPTION_mtdblock:
7163 mtd_filename = optarg;
7164 break;
7165 case QEMU_OPTION_sd:
7166 sd_filename = optarg;
7167 break;
7168 case QEMU_OPTION_pflash:
7169 if (pflash_index >= MAX_PFLASH) {
7170 fprintf(stderr, "qemu: too many parallel flash images\n");
7171 exit(1);
7173 pflash_filename[pflash_index++] = optarg;
7174 break;
7175 case QEMU_OPTION_snapshot:
7176 snapshot = 1;
7177 break;
7178 case QEMU_OPTION_hdachs:
7180 const char *p;
7181 p = optarg;
7182 cyls = strtol(p, (char **)&p, 0);
7183 if (cyls < 1 || cyls > 16383)
7184 goto chs_fail;
7185 if (*p != ',')
7186 goto chs_fail;
7187 p++;
7188 heads = strtol(p, (char **)&p, 0);
7189 if (heads < 1 || heads > 16)
7190 goto chs_fail;
7191 if (*p != ',')
7192 goto chs_fail;
7193 p++;
7194 secs = strtol(p, (char **)&p, 0);
7195 if (secs < 1 || secs > 63)
7196 goto chs_fail;
7197 if (*p == ',') {
7198 p++;
7199 if (!strcmp(p, "none"))
7200 translation = BIOS_ATA_TRANSLATION_NONE;
7201 else if (!strcmp(p, "lba"))
7202 translation = BIOS_ATA_TRANSLATION_LBA;
7203 else if (!strcmp(p, "auto"))
7204 translation = BIOS_ATA_TRANSLATION_AUTO;
7205 else
7206 goto chs_fail;
7207 } else if (*p != '\0') {
7208 chs_fail:
7209 fprintf(stderr, "qemu: invalid physical CHS format\n");
7210 exit(1);
7213 break;
7214 case QEMU_OPTION_nographic:
7215 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "stdio");
7216 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "null");
7217 pstrcpy(monitor_device, sizeof(monitor_device), "stdio");
7218 nographic = 1;
7219 break;
7220 case QEMU_OPTION_portrait:
7221 graphic_rotate = 1;
7222 break;
7223 case QEMU_OPTION_kernel:
7224 kernel_filename = optarg;
7225 break;
7226 case QEMU_OPTION_append:
7227 kernel_cmdline = optarg;
7228 break;
7229 case QEMU_OPTION_cdrom:
7230 if (cdrom_index >= 0) {
7231 hd_filename[cdrom_index] = optarg;
7233 break;
7234 case QEMU_OPTION_boot:
7235 boot_device = optarg[0];
7236 if (boot_device != 'a' &&
7237 #if defined(TARGET_SPARC) || defined(TARGET_I386)
7238 // Network boot
7239 boot_device != 'n' &&
7240 #endif
7241 boot_device != 'c' && boot_device != 'd') {
7242 fprintf(stderr, "qemu: invalid boot device '%c'\n", boot_device);
7243 exit(1);
7245 break;
7246 case QEMU_OPTION_fda:
7247 fd_filename[0] = optarg;
7248 break;
7249 case QEMU_OPTION_fdb:
7250 fd_filename[1] = optarg;
7251 break;
7252 #ifdef TARGET_I386
7253 case QEMU_OPTION_no_fd_bootchk:
7254 fd_bootchk = 0;
7255 break;
7256 #endif
7257 case QEMU_OPTION_no_code_copy:
7258 code_copy_enabled = 0;
7259 break;
7260 case QEMU_OPTION_net:
7261 if (nb_net_clients >= MAX_NET_CLIENTS) {
7262 fprintf(stderr, "qemu: too many network clients\n");
7263 exit(1);
7265 pstrcpy(net_clients[nb_net_clients],
7266 sizeof(net_clients[0]),
7267 optarg);
7268 nb_net_clients++;
7269 break;
7270 #ifdef CONFIG_SLIRP
7271 case QEMU_OPTION_tftp:
7272 tftp_prefix = optarg;
7273 break;
7274 case QEMU_OPTION_bootp:
7275 bootp_filename = optarg;
7276 break;
7277 #ifndef _WIN32
7278 case QEMU_OPTION_smb:
7279 net_slirp_smb(optarg);
7280 break;
7281 #endif
7282 case QEMU_OPTION_redir:
7283 net_slirp_redir(optarg);
7284 break;
7285 #endif
7286 #ifdef HAS_AUDIO
7287 case QEMU_OPTION_audio_help:
7288 AUD_help ();
7289 exit (0);
7290 break;
7291 case QEMU_OPTION_soundhw:
7292 select_soundhw (optarg);
7293 break;
7294 #endif
7295 case QEMU_OPTION_h:
7296 help();
7297 break;
7298 case QEMU_OPTION_m:
7299 ram_size = atoi(optarg) * 1024 * 1024;
7300 if (ram_size <= 0)
7301 help();
7302 if (ram_size > PHYS_RAM_MAX_SIZE) {
7303 fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
7304 PHYS_RAM_MAX_SIZE / (1024 * 1024));
7305 exit(1);
7307 break;
7308 case QEMU_OPTION_d:
7310 int mask;
7311 CPULogItem *item;
7313 mask = cpu_str_to_log_mask(optarg);
7314 if (!mask) {
7315 printf("Log items (comma separated):\n");
7316 for(item = cpu_log_items; item->mask != 0; item++) {
7317 printf("%-10s %s\n", item->name, item->help);
7319 exit(1);
7321 cpu_set_log(mask);
7323 break;
7324 #ifdef CONFIG_GDBSTUB
7325 case QEMU_OPTION_s:
7326 use_gdbstub = 1;
7327 break;
7328 case QEMU_OPTION_p:
7329 gdbstub_port = optarg;
7330 break;
7331 #endif
7332 case QEMU_OPTION_L:
7333 bios_dir = optarg;
7334 break;
7335 case QEMU_OPTION_S:
7336 autostart = 0;
7337 break;
7338 case QEMU_OPTION_k:
7339 keyboard_layout = optarg;
7340 break;
7341 case QEMU_OPTION_localtime:
7342 rtc_utc = 0;
7343 break;
7344 case QEMU_OPTION_cirrusvga:
7345 cirrus_vga_enabled = 1;
7346 vmsvga_enabled = 0;
7347 break;
7348 case QEMU_OPTION_vmsvga:
7349 cirrus_vga_enabled = 0;
7350 vmsvga_enabled = 1;
7351 break;
7352 case QEMU_OPTION_std_vga:
7353 cirrus_vga_enabled = 0;
7354 vmsvga_enabled = 0;
7355 break;
7356 case QEMU_OPTION_g:
7358 const char *p;
7359 int w, h, depth;
7360 p = optarg;
7361 w = strtol(p, (char **)&p, 10);
7362 if (w <= 0) {
7363 graphic_error:
7364 fprintf(stderr, "qemu: invalid resolution or depth\n");
7365 exit(1);
7367 if (*p != 'x')
7368 goto graphic_error;
7369 p++;
7370 h = strtol(p, (char **)&p, 10);
7371 if (h <= 0)
7372 goto graphic_error;
7373 if (*p == 'x') {
7374 p++;
7375 depth = strtol(p, (char **)&p, 10);
7376 if (depth != 8 && depth != 15 && depth != 16 &&
7377 depth != 24 && depth != 32)
7378 goto graphic_error;
7379 } else if (*p == '\0') {
7380 depth = graphic_depth;
7381 } else {
7382 goto graphic_error;
7385 graphic_width = w;
7386 graphic_height = h;
7387 graphic_depth = depth;
7389 break;
7390 case QEMU_OPTION_echr:
7392 char *r;
7393 term_escape_char = strtol(optarg, &r, 0);
7394 if (r == optarg)
7395 printf("Bad argument to echr\n");
7396 break;
7398 case QEMU_OPTION_monitor:
7399 pstrcpy(monitor_device, sizeof(monitor_device), optarg);
7400 break;
7401 case QEMU_OPTION_serial:
7402 if (serial_device_index >= MAX_SERIAL_PORTS) {
7403 fprintf(stderr, "qemu: too many serial ports\n");
7404 exit(1);
7406 pstrcpy(serial_devices[serial_device_index],
7407 sizeof(serial_devices[0]), optarg);
7408 serial_device_index++;
7409 break;
7410 case QEMU_OPTION_parallel:
7411 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
7412 fprintf(stderr, "qemu: too many parallel ports\n");
7413 exit(1);
7415 pstrcpy(parallel_devices[parallel_device_index],
7416 sizeof(parallel_devices[0]), optarg);
7417 parallel_device_index++;
7418 break;
7419 case QEMU_OPTION_loadvm:
7420 loadvm = optarg;
7421 break;
7422 case QEMU_OPTION_full_screen:
7423 full_screen = 1;
7424 break;
7425 #ifdef CONFIG_SDL
7426 case QEMU_OPTION_no_frame:
7427 no_frame = 1;
7428 break;
7429 case QEMU_OPTION_no_quit:
7430 no_quit = 1;
7431 break;
7432 #endif
7433 case QEMU_OPTION_pidfile:
7434 pid_file = optarg;
7435 break;
7436 #ifdef TARGET_I386
7437 case QEMU_OPTION_win2k_hack:
7438 win2k_install_hack = 1;
7439 break;
7440 #endif
7441 #ifdef USE_KQEMU
7442 case QEMU_OPTION_no_kqemu:
7443 kqemu_allowed = 0;
7444 break;
7445 case QEMU_OPTION_kernel_kqemu:
7446 kqemu_allowed = 2;
7447 break;
7448 #endif
7449 case QEMU_OPTION_usb:
7450 usb_enabled = 1;
7451 break;
7452 case QEMU_OPTION_usbdevice:
7453 usb_enabled = 1;
7454 if (usb_devices_index >= MAX_USB_CMDLINE) {
7455 fprintf(stderr, "Too many USB devices\n");
7456 exit(1);
7458 pstrcpy(usb_devices[usb_devices_index],
7459 sizeof(usb_devices[usb_devices_index]),
7460 optarg);
7461 usb_devices_index++;
7462 break;
7463 case QEMU_OPTION_smp:
7464 smp_cpus = atoi(optarg);
7465 if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
7466 fprintf(stderr, "Invalid number of CPUs\n");
7467 exit(1);
7469 break;
7470 case QEMU_OPTION_vnc:
7471 vnc_display = optarg;
7472 break;
7473 case QEMU_OPTION_no_acpi:
7474 acpi_enabled = 0;
7475 break;
7476 case QEMU_OPTION_no_reboot:
7477 no_reboot = 1;
7478 break;
7479 case QEMU_OPTION_show_cursor:
7480 cursor_hide = 0;
7481 break;
7482 case QEMU_OPTION_daemonize:
7483 daemonize = 1;
7484 break;
7485 case QEMU_OPTION_option_rom:
7486 if (nb_option_roms >= MAX_OPTION_ROMS) {
7487 fprintf(stderr, "Too many option ROMs\n");
7488 exit(1);
7490 option_rom[nb_option_roms] = optarg;
7491 nb_option_roms++;
7492 break;
7493 case QEMU_OPTION_semihosting:
7494 semihosting_enabled = 1;
7495 break;
7496 case QEMU_OPTION_name:
7497 qemu_name = optarg;
7498 break;
7499 #ifdef TARGET_SPARC
7500 case QEMU_OPTION_prom_env:
7501 if (nb_prom_envs >= MAX_PROM_ENVS) {
7502 fprintf(stderr, "Too many prom variables\n");
7503 exit(1);
7505 prom_envs[nb_prom_envs] = optarg;
7506 nb_prom_envs++;
7507 break;
7508 #endif
7513 #ifndef _WIN32
7514 if (daemonize && !nographic && vnc_display == NULL) {
7515 fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
7516 daemonize = 0;
7519 if (daemonize) {
7520 pid_t pid;
7522 if (pipe(fds) == -1)
7523 exit(1);
7525 pid = fork();
7526 if (pid > 0) {
7527 uint8_t status;
7528 ssize_t len;
7530 close(fds[1]);
7532 again:
7533 len = read(fds[0], &status, 1);
7534 if (len == -1 && (errno == EINTR))
7535 goto again;
7537 if (len != 1)
7538 exit(1);
7539 else if (status == 1) {
7540 fprintf(stderr, "Could not acquire pidfile\n");
7541 exit(1);
7542 } else
7543 exit(0);
7544 } else if (pid < 0)
7545 exit(1);
7547 setsid();
7549 pid = fork();
7550 if (pid > 0)
7551 exit(0);
7552 else if (pid < 0)
7553 exit(1);
7555 umask(027);
7556 chdir("/");
7558 signal(SIGTSTP, SIG_IGN);
7559 signal(SIGTTOU, SIG_IGN);
7560 signal(SIGTTIN, SIG_IGN);
7562 #endif
7564 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
7565 if (daemonize) {
7566 uint8_t status = 1;
7567 write(fds[1], &status, 1);
7568 } else
7569 fprintf(stderr, "Could not acquire pid file\n");
7570 exit(1);
7573 #ifdef USE_KQEMU
7574 if (smp_cpus > 1)
7575 kqemu_allowed = 0;
7576 #endif
7577 linux_boot = (kernel_filename != NULL);
7579 if (!linux_boot &&
7580 boot_device != 'n' &&
7581 hd_filename[0] == '\0' &&
7582 (cdrom_index >= 0 && hd_filename[cdrom_index] == '\0') &&
7583 fd_filename[0] == '\0')
7584 help();
7586 /* boot to floppy or the default cd if no hard disk defined yet */
7587 if (hd_filename[0] == '\0' && boot_device == 'c') {
7588 if (fd_filename[0] != '\0')
7589 boot_device = 'a';
7590 else
7591 boot_device = 'd';
7594 setvbuf(stdout, NULL, _IOLBF, 0);
7596 init_timers();
7597 init_timer_alarm();
7598 qemu_aio_init();
7600 #ifdef _WIN32
7601 socket_init();
7602 #endif
7604 /* init network clients */
7605 if (nb_net_clients == 0) {
7606 /* if no clients, we use a default config */
7607 pstrcpy(net_clients[0], sizeof(net_clients[0]),
7608 "nic");
7609 pstrcpy(net_clients[1], sizeof(net_clients[0]),
7610 "user");
7611 nb_net_clients = 2;
7614 for(i = 0;i < nb_net_clients; i++) {
7615 if (net_client_init(net_clients[i]) < 0)
7616 exit(1);
7619 #ifdef TARGET_I386
7620 if (boot_device == 'n') {
7621 for (i = 0; i < nb_nics; i++) {
7622 const char *model = nd_table[i].model;
7623 char buf[1024];
7624 if (model == NULL)
7625 model = "ne2k_pci";
7626 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
7627 if (get_image_size(buf) > 0) {
7628 option_rom[nb_option_roms] = strdup(buf);
7629 nb_option_roms++;
7630 break;
7633 if (i == nb_nics) {
7634 fprintf(stderr, "No valid PXE rom found for network device\n");
7635 exit(1);
7637 boot_device = 'c'; /* to prevent confusion by the BIOS */
7639 #endif
7641 /* init the memory */
7642 phys_ram_size = ram_size + vga_ram_size + MAX_BIOS_SIZE;
7644 phys_ram_base = qemu_vmalloc(phys_ram_size);
7645 if (!phys_ram_base) {
7646 fprintf(stderr, "Could not allocate physical memory\n");
7647 exit(1);
7650 /* we always create the cdrom drive, even if no disk is there */
7651 bdrv_init();
7652 if (cdrom_index >= 0) {
7653 bs_table[cdrom_index] = bdrv_new("cdrom");
7654 bdrv_set_type_hint(bs_table[cdrom_index], BDRV_TYPE_CDROM);
7657 /* open the virtual block devices */
7658 for(i = 0; i < MAX_DISKS; i++) {
7659 if (hd_filename[i]) {
7660 if (!bs_table[i]) {
7661 char buf[64];
7662 snprintf(buf, sizeof(buf), "hd%c", i + 'a');
7663 bs_table[i] = bdrv_new(buf);
7665 if (bdrv_open(bs_table[i], hd_filename[i], snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7666 fprintf(stderr, "qemu: could not open hard disk image '%s'\n",
7667 hd_filename[i]);
7668 exit(1);
7670 if (i == 0 && cyls != 0) {
7671 bdrv_set_geometry_hint(bs_table[i], cyls, heads, secs);
7672 bdrv_set_translation_hint(bs_table[i], translation);
7677 /* we always create at least one floppy disk */
7678 fd_table[0] = bdrv_new("fda");
7679 bdrv_set_type_hint(fd_table[0], BDRV_TYPE_FLOPPY);
7681 for(i = 0; i < MAX_FD; i++) {
7682 if (fd_filename[i]) {
7683 if (!fd_table[i]) {
7684 char buf[64];
7685 snprintf(buf, sizeof(buf), "fd%c", i + 'a');
7686 fd_table[i] = bdrv_new(buf);
7687 bdrv_set_type_hint(fd_table[i], BDRV_TYPE_FLOPPY);
7689 if (fd_filename[i][0] != '\0') {
7690 if (bdrv_open(fd_table[i], fd_filename[i],
7691 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7692 fprintf(stderr, "qemu: could not open floppy disk image '%s'\n",
7693 fd_filename[i]);
7694 exit(1);
7700 /* Open the virtual parallel flash block devices */
7701 for(i = 0; i < MAX_PFLASH; i++) {
7702 if (pflash_filename[i]) {
7703 if (!pflash_table[i]) {
7704 char buf[64];
7705 snprintf(buf, sizeof(buf), "fl%c", i + 'a');
7706 pflash_table[i] = bdrv_new(buf);
7708 if (bdrv_open(pflash_table[i], pflash_filename[i],
7709 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7710 fprintf(stderr, "qemu: could not open flash image '%s'\n",
7711 pflash_filename[i]);
7712 exit(1);
7717 sd_bdrv = bdrv_new ("sd");
7718 /* FIXME: This isn't really a floppy, but it's a reasonable
7719 approximation. */
7720 bdrv_set_type_hint(sd_bdrv, BDRV_TYPE_FLOPPY);
7721 if (sd_filename) {
7722 if (bdrv_open(sd_bdrv, sd_filename,
7723 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7724 fprintf(stderr, "qemu: could not open SD card image %s\n",
7725 sd_filename);
7726 } else
7727 qemu_key_check(sd_bdrv, sd_filename);
7730 if (mtd_filename) {
7731 mtd_bdrv = bdrv_new ("mtd");
7732 if (bdrv_open(mtd_bdrv, mtd_filename,
7733 snapshot ? BDRV_O_SNAPSHOT : 0) < 0 ||
7734 qemu_key_check(mtd_bdrv, mtd_filename)) {
7735 fprintf(stderr, "qemu: could not open Flash image %s\n",
7736 mtd_filename);
7737 bdrv_delete(mtd_bdrv);
7738 mtd_bdrv = 0;
7742 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
7743 register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
7745 init_ioports();
7747 /* terminal init */
7748 if (nographic) {
7749 dumb_display_init(ds);
7750 } else if (vnc_display != NULL) {
7751 vnc_display_init(ds, vnc_display);
7752 } else {
7753 #if defined(CONFIG_SDL)
7754 sdl_display_init(ds, full_screen, no_frame);
7755 #elif defined(CONFIG_COCOA)
7756 cocoa_display_init(ds, full_screen);
7757 #else
7758 dumb_display_init(ds);
7759 #endif
7762 /* Maintain compatibility with multiple stdio monitors */
7763 if (!strcmp(monitor_device,"stdio")) {
7764 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
7765 if (!strcmp(serial_devices[i],"mon:stdio")) {
7766 monitor_device[0] = '\0';
7767 break;
7768 } else if (!strcmp(serial_devices[i],"stdio")) {
7769 monitor_device[0] = '\0';
7770 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "mon:stdio");
7771 break;
7775 if (monitor_device[0] != '\0') {
7776 monitor_hd = qemu_chr_open(monitor_device);
7777 if (!monitor_hd) {
7778 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
7779 exit(1);
7781 monitor_init(monitor_hd, !nographic);
7784 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
7785 const char *devname = serial_devices[i];
7786 if (devname[0] != '\0' && strcmp(devname, "none")) {
7787 serial_hds[i] = qemu_chr_open(devname);
7788 if (!serial_hds[i]) {
7789 fprintf(stderr, "qemu: could not open serial device '%s'\n",
7790 devname);
7791 exit(1);
7793 if (!strcmp(devname, "vc"))
7794 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
7798 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
7799 const char *devname = parallel_devices[i];
7800 if (devname[0] != '\0' && strcmp(devname, "none")) {
7801 parallel_hds[i] = qemu_chr_open(devname);
7802 if (!parallel_hds[i]) {
7803 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
7804 devname);
7805 exit(1);
7807 if (!strcmp(devname, "vc"))
7808 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
7812 machine->init(ram_size, vga_ram_size, boot_device,
7813 ds, fd_filename, snapshot,
7814 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
7816 /* init USB devices */
7817 if (usb_enabled) {
7818 for(i = 0; i < usb_devices_index; i++) {
7819 if (usb_device_add(usb_devices[i]) < 0) {
7820 fprintf(stderr, "Warning: could not add USB device %s\n",
7821 usb_devices[i]);
7826 gui_timer = qemu_new_timer(rt_clock, gui_update, NULL);
7827 qemu_mod_timer(gui_timer, qemu_get_clock(rt_clock));
7829 #ifdef CONFIG_GDBSTUB
7830 if (use_gdbstub) {
7831 /* XXX: use standard host:port notation and modify options
7832 accordingly. */
7833 if (gdbserver_start(gdbstub_port) < 0) {
7834 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
7835 gdbstub_port);
7836 exit(1);
7838 } else
7839 #endif
7840 if (loadvm)
7841 do_loadvm(loadvm);
7844 /* XXX: simplify init */
7845 read_passwords();
7846 if (autostart) {
7847 vm_start();
7851 if (daemonize) {
7852 uint8_t status = 0;
7853 ssize_t len;
7854 int fd;
7856 again1:
7857 len = write(fds[1], &status, 1);
7858 if (len == -1 && (errno == EINTR))
7859 goto again1;
7861 if (len != 1)
7862 exit(1);
7864 fd = open("/dev/null", O_RDWR);
7865 if (fd == -1)
7866 exit(1);
7868 dup2(fd, 0);
7869 dup2(fd, 1);
7870 dup2(fd, 2);
7872 close(fd);
7875 main_loop();
7876 quit_timers();
7877 return 0;