2 * QEMU Sparc32 DMA controller emulation
4 * Copyright (c) 2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
30 * This is the DMA controller part of chip STP2000 (Master I/O), also
31 * produced as NCR89C100. See
32 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
34 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/DMA2.txt
38 #define DPRINTF(fmt, args...) \
39 do { printf("DMA: " fmt , ##args); } while (0)
41 #define DPRINTF(fmt, args...)
45 #define DMA_MAXADDR (DMA_REGS * 4 - 1)
47 #define DMA_VER 0xa0000000
49 #define DMA_INTREN 0x10
50 #define DMA_WRITE_MEM 0x100
51 #define DMA_LOADED 0x04000000
52 #define DMA_RESET 0x80
54 typedef struct DMAState DMAState
;
57 uint32_t dmaregs
[DMA_REGS
];
58 qemu_irq espirq
, leirq
;
59 void *iommu
, *esp_opaque
, *lance_opaque
;
63 /* Note: on sparc, the lance 16 bit bus is swapped */
64 void ledma_memory_read(void *opaque
, target_phys_addr_t addr
,
65 uint8_t *buf
, int len
, int do_bswap
)
70 DPRINTF("DMA write, direction: %c, addr 0x%8.8x\n",
71 s
->dmaregs
[0] & DMA_WRITE_MEM
? 'w': 'r', s
->dmaregs
[1]);
72 addr
|= s
->dmaregs
[7];
74 sparc_iommu_memory_read(s
->iommu
, addr
, buf
, len
);
78 sparc_iommu_memory_read(s
->iommu
, addr
, buf
, len
);
79 for(i
= 0; i
< len
; i
+= 2) {
80 bswap16s((uint16_t *)(buf
+ i
));
85 void ledma_memory_write(void *opaque
, target_phys_addr_t addr
,
86 uint8_t *buf
, int len
, int do_bswap
)
92 DPRINTF("DMA read, direction: %c, addr 0x%8.8x\n",
93 s
->dmaregs
[0] & DMA_WRITE_MEM
? 'w': 'r', s
->dmaregs
[1]);
94 addr
|= s
->dmaregs
[7];
96 sparc_iommu_memory_write(s
->iommu
, addr
, buf
, len
);
102 if (l
> sizeof(tmp_buf
))
104 for(i
= 0; i
< l
; i
+= 2) {
105 tmp_buf
[i
>> 1] = bswap16(*(uint16_t *)(buf
+ i
));
107 sparc_iommu_memory_write(s
->iommu
, addr
, (uint8_t *)tmp_buf
, l
);
115 void espdma_raise_irq(void *opaque
)
117 DMAState
*s
= opaque
;
119 DPRINTF("Raise ESP IRQ\n");
120 s
->dmaregs
[0] |= DMA_INTR
;
121 qemu_irq_raise(s
->espirq
);
124 void espdma_clear_irq(void *opaque
)
126 DMAState
*s
= opaque
;
128 s
->dmaregs
[0] &= ~DMA_INTR
;
129 DPRINTF("Lower ESP IRQ\n");
130 qemu_irq_lower(s
->espirq
);
133 void espdma_memory_read(void *opaque
, uint8_t *buf
, int len
)
135 DMAState
*s
= opaque
;
137 DPRINTF("DMA read, direction: %c, addr 0x%8.8x\n",
138 s
->dmaregs
[0] & DMA_WRITE_MEM
? 'w': 'r', s
->dmaregs
[1]);
139 sparc_iommu_memory_read(s
->iommu
, s
->dmaregs
[1], buf
, len
);
140 s
->dmaregs
[0] |= DMA_INTR
;
141 s
->dmaregs
[1] += len
;
144 void espdma_memory_write(void *opaque
, uint8_t *buf
, int len
)
146 DMAState
*s
= opaque
;
148 DPRINTF("DMA write, direction: %c, addr 0x%8.8x\n",
149 s
->dmaregs
[0] & DMA_WRITE_MEM
? 'w': 'r', s
->dmaregs
[1]);
150 sparc_iommu_memory_write(s
->iommu
, s
->dmaregs
[1], buf
, len
);
151 s
->dmaregs
[0] |= DMA_INTR
;
152 s
->dmaregs
[1] += len
;
155 static uint32_t dma_mem_readl(void *opaque
, target_phys_addr_t addr
)
157 DMAState
*s
= opaque
;
160 saddr
= (addr
& DMA_MAXADDR
) >> 2;
161 DPRINTF("read dmareg[%d]: 0x%8.8x\n", saddr
, s
->dmaregs
[saddr
]);
163 return s
->dmaregs
[saddr
];
166 static void dma_mem_writel(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
168 DMAState
*s
= opaque
;
171 saddr
= (addr
& DMA_MAXADDR
) >> 2;
172 DPRINTF("write dmareg[%d]: 0x%8.8x -> 0x%8.8x\n", saddr
, s
->dmaregs
[saddr
], val
);
175 if (!(val
& DMA_INTREN
)) {
176 DPRINTF("Lower ESP IRQ\n");
177 qemu_irq_lower(s
->espirq
);
179 if (val
& DMA_RESET
) {
180 esp_reset(s
->esp_opaque
);
181 } else if (val
& 0x40) {
189 s
->dmaregs
[0] |= DMA_LOADED
;
192 /* ??? Should this mask out the lance IRQ? The NIC may re-assert
193 this IRQ unexpectedly. */
194 if (!(val
& DMA_INTREN
)) {
195 DPRINTF("Lower Lance IRQ\n");
196 qemu_irq_lower(s
->leirq
);
199 pcnet_h_reset(s
->lance_opaque
);
206 s
->dmaregs
[saddr
] = val
;
209 static CPUReadMemoryFunc
*dma_mem_read
[3] = {
215 static CPUWriteMemoryFunc
*dma_mem_write
[3] = {
221 static void dma_reset(void *opaque
)
223 DMAState
*s
= opaque
;
225 memset(s
->dmaregs
, 0, DMA_REGS
* 4);
226 s
->dmaregs
[0] = DMA_VER
;
227 s
->dmaregs
[4] = DMA_VER
;
230 static void dma_save(QEMUFile
*f
, void *opaque
)
232 DMAState
*s
= opaque
;
235 for (i
= 0; i
< DMA_REGS
; i
++)
236 qemu_put_be32s(f
, &s
->dmaregs
[i
]);
239 static int dma_load(QEMUFile
*f
, void *opaque
, int version_id
)
241 DMAState
*s
= opaque
;
246 for (i
= 0; i
< DMA_REGS
; i
++)
247 qemu_get_be32s(f
, &s
->dmaregs
[i
]);
252 void *sparc32_dma_init(target_phys_addr_t daddr
, qemu_irq espirq
,
253 qemu_irq leirq
, void *iommu
)
258 s
= qemu_mallocz(sizeof(DMAState
));
266 dma_io_memory
= cpu_register_io_memory(0, dma_mem_read
, dma_mem_write
, s
);
267 cpu_register_physical_memory(daddr
, 16 * 2, dma_io_memory
);
269 register_savevm("sparc32_dma", daddr
, 1, dma_save
, dma_load
, s
);
270 qemu_register_reset(dma_reset
, s
);
275 void sparc32_dma_set_reset_data(void *opaque
, void *esp_opaque
,
278 DMAState
*s
= opaque
;
280 s
->esp_opaque
= esp_opaque
;
281 s
->lance_opaque
= lance_opaque
;