Fix warning about unused shm_regions
[qemu/mini2440.git] / hw / omap1.c
blob89b6278742e85c1ef9a54f0501a3efd87b9ecaec
1 /*
2 * TI OMAP processors emulation.
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
19 * MA 02111-1307 USA
21 #include "hw.h"
22 #include "arm-misc.h"
23 #include "omap.h"
24 #include "sysemu.h"
25 #include "qemu-timer.h"
26 #include "qemu-char.h"
27 #include "soc_dma.h"
28 /* We use pc-style serial ports. */
29 #include "pc.h"
31 /* Should signal the TCMI/GPMC */
32 uint32_t omap_badwidth_read8(void *opaque, target_phys_addr_t addr)
34 uint8_t ret;
36 OMAP_8B_REG(addr);
37 cpu_physical_memory_read(addr, (void *) &ret, 1);
38 return ret;
41 void omap_badwidth_write8(void *opaque, target_phys_addr_t addr,
42 uint32_t value)
44 uint8_t val8 = value;
46 OMAP_8B_REG(addr);
47 cpu_physical_memory_write(addr, (void *) &val8, 1);
50 uint32_t omap_badwidth_read16(void *opaque, target_phys_addr_t addr)
52 uint16_t ret;
54 OMAP_16B_REG(addr);
55 cpu_physical_memory_read(addr, (void *) &ret, 2);
56 return ret;
59 void omap_badwidth_write16(void *opaque, target_phys_addr_t addr,
60 uint32_t value)
62 uint16_t val16 = value;
64 OMAP_16B_REG(addr);
65 cpu_physical_memory_write(addr, (void *) &val16, 2);
68 uint32_t omap_badwidth_read32(void *opaque, target_phys_addr_t addr)
70 uint32_t ret;
72 OMAP_32B_REG(addr);
73 cpu_physical_memory_read(addr, (void *) &ret, 4);
74 return ret;
77 void omap_badwidth_write32(void *opaque, target_phys_addr_t addr,
78 uint32_t value)
80 OMAP_32B_REG(addr);
81 cpu_physical_memory_write(addr, (void *) &value, 4);
84 /* Interrupt Handlers */
85 struct omap_intr_handler_bank_s {
86 uint32_t irqs;
87 uint32_t inputs;
88 uint32_t mask;
89 uint32_t fiq;
90 uint32_t sens_edge;
91 uint32_t swi;
92 unsigned char priority[32];
95 struct omap_intr_handler_s {
96 qemu_irq *pins;
97 qemu_irq parent_intr[2];
98 unsigned char nbanks;
99 int level_only;
101 /* state */
102 uint32_t new_agr[2];
103 int sir_intr[2];
104 int autoidle;
105 uint32_t mask;
106 struct omap_intr_handler_bank_s bank[];
109 static void omap_inth_sir_update(struct omap_intr_handler_s *s, int is_fiq)
111 int i, j, sir_intr, p_intr, p, f;
112 uint32_t level;
113 sir_intr = 0;
114 p_intr = 255;
116 /* Find the interrupt line with the highest dynamic priority.
117 * Note: 0 denotes the hightest priority.
118 * If all interrupts have the same priority, the default order is IRQ_N,
119 * IRQ_N-1,...,IRQ_0. */
120 for (j = 0; j < s->nbanks; ++j) {
121 level = s->bank[j].irqs & ~s->bank[j].mask &
122 (is_fiq ? s->bank[j].fiq : ~s->bank[j].fiq);
123 for (f = ffs(level), i = f - 1, level >>= f - 1; f; i += f,
124 level >>= f) {
125 p = s->bank[j].priority[i];
126 if (p <= p_intr) {
127 p_intr = p;
128 sir_intr = 32 * j + i;
130 f = ffs(level >> 1);
133 s->sir_intr[is_fiq] = sir_intr;
136 static inline void omap_inth_update(struct omap_intr_handler_s *s, int is_fiq)
138 int i;
139 uint32_t has_intr = 0;
141 for (i = 0; i < s->nbanks; ++i)
142 has_intr |= s->bank[i].irqs & ~s->bank[i].mask &
143 (is_fiq ? s->bank[i].fiq : ~s->bank[i].fiq);
145 if (s->new_agr[is_fiq] & has_intr & s->mask) {
146 s->new_agr[is_fiq] = 0;
147 omap_inth_sir_update(s, is_fiq);
148 qemu_set_irq(s->parent_intr[is_fiq], 1);
152 #define INT_FALLING_EDGE 0
153 #define INT_LOW_LEVEL 1
155 static void omap_set_intr(void *opaque, int irq, int req)
157 struct omap_intr_handler_s *ih = (struct omap_intr_handler_s *) opaque;
158 uint32_t rise;
160 struct omap_intr_handler_bank_s *bank = &ih->bank[irq >> 5];
161 int n = irq & 31;
163 if (req) {
164 rise = ~bank->irqs & (1 << n);
165 if (~bank->sens_edge & (1 << n))
166 rise &= ~bank->inputs;
168 bank->inputs |= (1 << n);
169 if (rise) {
170 bank->irqs |= rise;
171 omap_inth_update(ih, 0);
172 omap_inth_update(ih, 1);
174 } else {
175 rise = bank->sens_edge & bank->irqs & (1 << n);
176 bank->irqs &= ~rise;
177 bank->inputs &= ~(1 << n);
181 /* Simplified version with no edge detection */
182 static void omap_set_intr_noedge(void *opaque, int irq, int req)
184 struct omap_intr_handler_s *ih = (struct omap_intr_handler_s *) opaque;
185 uint32_t rise;
187 struct omap_intr_handler_bank_s *bank = &ih->bank[irq >> 5];
188 int n = irq & 31;
190 if (req) {
191 rise = ~bank->inputs & (1 << n);
192 if (rise) {
193 bank->irqs |= bank->inputs |= rise;
194 omap_inth_update(ih, 0);
195 omap_inth_update(ih, 1);
197 } else
198 bank->irqs = (bank->inputs &= ~(1 << n)) | bank->swi;
201 static uint32_t omap_inth_read(void *opaque, target_phys_addr_t addr)
203 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
204 int i, offset = addr;
205 int bank_no = offset >> 8;
206 int line_no;
207 struct omap_intr_handler_bank_s *bank = &s->bank[bank_no];
208 offset &= 0xff;
210 switch (offset) {
211 case 0x00: /* ITR */
212 return bank->irqs;
214 case 0x04: /* MIR */
215 return bank->mask;
217 case 0x10: /* SIR_IRQ_CODE */
218 case 0x14: /* SIR_FIQ_CODE */
219 if (bank_no != 0)
220 break;
221 line_no = s->sir_intr[(offset - 0x10) >> 2];
222 bank = &s->bank[line_no >> 5];
223 i = line_no & 31;
224 if (((bank->sens_edge >> i) & 1) == INT_FALLING_EDGE)
225 bank->irqs &= ~(1 << i);
226 return line_no;
228 case 0x18: /* CONTROL_REG */
229 if (bank_no != 0)
230 break;
231 return 0;
233 case 0x1c: /* ILR0 */
234 case 0x20: /* ILR1 */
235 case 0x24: /* ILR2 */
236 case 0x28: /* ILR3 */
237 case 0x2c: /* ILR4 */
238 case 0x30: /* ILR5 */
239 case 0x34: /* ILR6 */
240 case 0x38: /* ILR7 */
241 case 0x3c: /* ILR8 */
242 case 0x40: /* ILR9 */
243 case 0x44: /* ILR10 */
244 case 0x48: /* ILR11 */
245 case 0x4c: /* ILR12 */
246 case 0x50: /* ILR13 */
247 case 0x54: /* ILR14 */
248 case 0x58: /* ILR15 */
249 case 0x5c: /* ILR16 */
250 case 0x60: /* ILR17 */
251 case 0x64: /* ILR18 */
252 case 0x68: /* ILR19 */
253 case 0x6c: /* ILR20 */
254 case 0x70: /* ILR21 */
255 case 0x74: /* ILR22 */
256 case 0x78: /* ILR23 */
257 case 0x7c: /* ILR24 */
258 case 0x80: /* ILR25 */
259 case 0x84: /* ILR26 */
260 case 0x88: /* ILR27 */
261 case 0x8c: /* ILR28 */
262 case 0x90: /* ILR29 */
263 case 0x94: /* ILR30 */
264 case 0x98: /* ILR31 */
265 i = (offset - 0x1c) >> 2;
266 return (bank->priority[i] << 2) |
267 (((bank->sens_edge >> i) & 1) << 1) |
268 ((bank->fiq >> i) & 1);
270 case 0x9c: /* ISR */
271 return 0x00000000;
274 OMAP_BAD_REG(addr);
275 return 0;
278 static void omap_inth_write(void *opaque, target_phys_addr_t addr,
279 uint32_t value)
281 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
282 int i, offset = addr;
283 int bank_no = offset >> 8;
284 struct omap_intr_handler_bank_s *bank = &s->bank[bank_no];
285 offset &= 0xff;
287 switch (offset) {
288 case 0x00: /* ITR */
289 /* Important: ignore the clearing if the IRQ is level-triggered and
290 the input bit is 1 */
291 bank->irqs &= value | (bank->inputs & bank->sens_edge);
292 return;
294 case 0x04: /* MIR */
295 bank->mask = value;
296 omap_inth_update(s, 0);
297 omap_inth_update(s, 1);
298 return;
300 case 0x10: /* SIR_IRQ_CODE */
301 case 0x14: /* SIR_FIQ_CODE */
302 OMAP_RO_REG(addr);
303 break;
305 case 0x18: /* CONTROL_REG */
306 if (bank_no != 0)
307 break;
308 if (value & 2) {
309 qemu_set_irq(s->parent_intr[1], 0);
310 s->new_agr[1] = ~0;
311 omap_inth_update(s, 1);
313 if (value & 1) {
314 qemu_set_irq(s->parent_intr[0], 0);
315 s->new_agr[0] = ~0;
316 omap_inth_update(s, 0);
318 return;
320 case 0x1c: /* ILR0 */
321 case 0x20: /* ILR1 */
322 case 0x24: /* ILR2 */
323 case 0x28: /* ILR3 */
324 case 0x2c: /* ILR4 */
325 case 0x30: /* ILR5 */
326 case 0x34: /* ILR6 */
327 case 0x38: /* ILR7 */
328 case 0x3c: /* ILR8 */
329 case 0x40: /* ILR9 */
330 case 0x44: /* ILR10 */
331 case 0x48: /* ILR11 */
332 case 0x4c: /* ILR12 */
333 case 0x50: /* ILR13 */
334 case 0x54: /* ILR14 */
335 case 0x58: /* ILR15 */
336 case 0x5c: /* ILR16 */
337 case 0x60: /* ILR17 */
338 case 0x64: /* ILR18 */
339 case 0x68: /* ILR19 */
340 case 0x6c: /* ILR20 */
341 case 0x70: /* ILR21 */
342 case 0x74: /* ILR22 */
343 case 0x78: /* ILR23 */
344 case 0x7c: /* ILR24 */
345 case 0x80: /* ILR25 */
346 case 0x84: /* ILR26 */
347 case 0x88: /* ILR27 */
348 case 0x8c: /* ILR28 */
349 case 0x90: /* ILR29 */
350 case 0x94: /* ILR30 */
351 case 0x98: /* ILR31 */
352 i = (offset - 0x1c) >> 2;
353 bank->priority[i] = (value >> 2) & 0x1f;
354 bank->sens_edge &= ~(1 << i);
355 bank->sens_edge |= ((value >> 1) & 1) << i;
356 bank->fiq &= ~(1 << i);
357 bank->fiq |= (value & 1) << i;
358 return;
360 case 0x9c: /* ISR */
361 for (i = 0; i < 32; i ++)
362 if (value & (1 << i)) {
363 omap_set_intr(s, 32 * bank_no + i, 1);
364 return;
366 return;
368 OMAP_BAD_REG(addr);
371 static CPUReadMemoryFunc *omap_inth_readfn[] = {
372 omap_badwidth_read32,
373 omap_badwidth_read32,
374 omap_inth_read,
377 static CPUWriteMemoryFunc *omap_inth_writefn[] = {
378 omap_inth_write,
379 omap_inth_write,
380 omap_inth_write,
383 void omap_inth_reset(struct omap_intr_handler_s *s)
385 int i;
387 for (i = 0; i < s->nbanks; ++i){
388 s->bank[i].irqs = 0x00000000;
389 s->bank[i].mask = 0xffffffff;
390 s->bank[i].sens_edge = 0x00000000;
391 s->bank[i].fiq = 0x00000000;
392 s->bank[i].inputs = 0x00000000;
393 s->bank[i].swi = 0x00000000;
394 memset(s->bank[i].priority, 0, sizeof(s->bank[i].priority));
396 if (s->level_only)
397 s->bank[i].sens_edge = 0xffffffff;
400 s->new_agr[0] = ~0;
401 s->new_agr[1] = ~0;
402 s->sir_intr[0] = 0;
403 s->sir_intr[1] = 0;
404 s->autoidle = 0;
405 s->mask = ~0;
407 qemu_set_irq(s->parent_intr[0], 0);
408 qemu_set_irq(s->parent_intr[1], 0);
411 struct omap_intr_handler_s *omap_inth_init(target_phys_addr_t base,
412 unsigned long size, unsigned char nbanks, qemu_irq **pins,
413 qemu_irq parent_irq, qemu_irq parent_fiq, omap_clk clk)
415 int iomemtype;
416 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *)
417 qemu_mallocz(sizeof(struct omap_intr_handler_s) +
418 sizeof(struct omap_intr_handler_bank_s) * nbanks);
420 s->parent_intr[0] = parent_irq;
421 s->parent_intr[1] = parent_fiq;
422 s->nbanks = nbanks;
423 s->pins = qemu_allocate_irqs(omap_set_intr, s, nbanks * 32);
424 if (pins)
425 *pins = s->pins;
427 omap_inth_reset(s);
429 iomemtype = cpu_register_io_memory(0, omap_inth_readfn,
430 omap_inth_writefn, s);
431 cpu_register_physical_memory(base, size, iomemtype);
433 return s;
436 static uint32_t omap2_inth_read(void *opaque, target_phys_addr_t addr)
438 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
439 int offset = addr;
440 int bank_no, line_no;
441 struct omap_intr_handler_bank_s *bank = 0;
443 if ((offset & 0xf80) == 0x80) {
444 bank_no = (offset & 0x60) >> 5;
445 if (bank_no < s->nbanks) {
446 offset &= ~0x60;
447 bank = &s->bank[bank_no];
451 switch (offset) {
452 case 0x00: /* INTC_REVISION */
453 return 0x21;
455 case 0x10: /* INTC_SYSCONFIG */
456 return (s->autoidle >> 2) & 1;
458 case 0x14: /* INTC_SYSSTATUS */
459 return 1; /* RESETDONE */
461 case 0x40: /* INTC_SIR_IRQ */
462 return s->sir_intr[0];
464 case 0x44: /* INTC_SIR_FIQ */
465 return s->sir_intr[1];
467 case 0x48: /* INTC_CONTROL */
468 return (!s->mask) << 2; /* GLOBALMASK */
470 case 0x4c: /* INTC_PROTECTION */
471 return 0;
473 case 0x50: /* INTC_IDLE */
474 return s->autoidle & 3;
476 /* Per-bank registers */
477 case 0x80: /* INTC_ITR */
478 return bank->inputs;
480 case 0x84: /* INTC_MIR */
481 return bank->mask;
483 case 0x88: /* INTC_MIR_CLEAR */
484 case 0x8c: /* INTC_MIR_SET */
485 return 0;
487 case 0x90: /* INTC_ISR_SET */
488 return bank->swi;
490 case 0x94: /* INTC_ISR_CLEAR */
491 return 0;
493 case 0x98: /* INTC_PENDING_IRQ */
494 return bank->irqs & ~bank->mask & ~bank->fiq;
496 case 0x9c: /* INTC_PENDING_FIQ */
497 return bank->irqs & ~bank->mask & bank->fiq;
499 /* Per-line registers */
500 case 0x100 ... 0x300: /* INTC_ILR */
501 bank_no = (offset - 0x100) >> 7;
502 if (bank_no > s->nbanks)
503 break;
504 bank = &s->bank[bank_no];
505 line_no = (offset & 0x7f) >> 2;
506 return (bank->priority[line_no] << 2) |
507 ((bank->fiq >> line_no) & 1);
509 OMAP_BAD_REG(addr);
510 return 0;
513 static void omap2_inth_write(void *opaque, target_phys_addr_t addr,
514 uint32_t value)
516 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
517 int offset = addr;
518 int bank_no, line_no;
519 struct omap_intr_handler_bank_s *bank = 0;
521 if ((offset & 0xf80) == 0x80) {
522 bank_no = (offset & 0x60) >> 5;
523 if (bank_no < s->nbanks) {
524 offset &= ~0x60;
525 bank = &s->bank[bank_no];
529 switch (offset) {
530 case 0x10: /* INTC_SYSCONFIG */
531 s->autoidle &= 4;
532 s->autoidle |= (value & 1) << 2;
533 if (value & 2) /* SOFTRESET */
534 omap_inth_reset(s);
535 return;
537 case 0x48: /* INTC_CONTROL */
538 s->mask = (value & 4) ? 0 : ~0; /* GLOBALMASK */
539 if (value & 2) { /* NEWFIQAGR */
540 qemu_set_irq(s->parent_intr[1], 0);
541 s->new_agr[1] = ~0;
542 omap_inth_update(s, 1);
544 if (value & 1) { /* NEWIRQAGR */
545 qemu_set_irq(s->parent_intr[0], 0);
546 s->new_agr[0] = ~0;
547 omap_inth_update(s, 0);
549 return;
551 case 0x4c: /* INTC_PROTECTION */
552 /* TODO: Make a bitmap (or sizeof(char)map) of access privileges
553 * for every register, see Chapter 3 and 4 for privileged mode. */
554 if (value & 1)
555 fprintf(stderr, "%s: protection mode enable attempt\n",
556 __FUNCTION__);
557 return;
559 case 0x50: /* INTC_IDLE */
560 s->autoidle &= ~3;
561 s->autoidle |= value & 3;
562 return;
564 /* Per-bank registers */
565 case 0x84: /* INTC_MIR */
566 bank->mask = value;
567 omap_inth_update(s, 0);
568 omap_inth_update(s, 1);
569 return;
571 case 0x88: /* INTC_MIR_CLEAR */
572 bank->mask &= ~value;
573 omap_inth_update(s, 0);
574 omap_inth_update(s, 1);
575 return;
577 case 0x8c: /* INTC_MIR_SET */
578 bank->mask |= value;
579 return;
581 case 0x90: /* INTC_ISR_SET */
582 bank->irqs |= bank->swi |= value;
583 omap_inth_update(s, 0);
584 omap_inth_update(s, 1);
585 return;
587 case 0x94: /* INTC_ISR_CLEAR */
588 bank->swi &= ~value;
589 bank->irqs = bank->swi & bank->inputs;
590 return;
592 /* Per-line registers */
593 case 0x100 ... 0x300: /* INTC_ILR */
594 bank_no = (offset - 0x100) >> 7;
595 if (bank_no > s->nbanks)
596 break;
597 bank = &s->bank[bank_no];
598 line_no = (offset & 0x7f) >> 2;
599 bank->priority[line_no] = (value >> 2) & 0x3f;
600 bank->fiq &= ~(1 << line_no);
601 bank->fiq |= (value & 1) << line_no;
602 return;
604 case 0x00: /* INTC_REVISION */
605 case 0x14: /* INTC_SYSSTATUS */
606 case 0x40: /* INTC_SIR_IRQ */
607 case 0x44: /* INTC_SIR_FIQ */
608 case 0x80: /* INTC_ITR */
609 case 0x98: /* INTC_PENDING_IRQ */
610 case 0x9c: /* INTC_PENDING_FIQ */
611 OMAP_RO_REG(addr);
612 return;
614 OMAP_BAD_REG(addr);
617 static CPUReadMemoryFunc *omap2_inth_readfn[] = {
618 omap_badwidth_read32,
619 omap_badwidth_read32,
620 omap2_inth_read,
623 static CPUWriteMemoryFunc *omap2_inth_writefn[] = {
624 omap2_inth_write,
625 omap2_inth_write,
626 omap2_inth_write,
629 struct omap_intr_handler_s *omap2_inth_init(target_phys_addr_t base,
630 int size, int nbanks, qemu_irq **pins,
631 qemu_irq parent_irq, qemu_irq parent_fiq,
632 omap_clk fclk, omap_clk iclk)
634 int iomemtype;
635 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *)
636 qemu_mallocz(sizeof(struct omap_intr_handler_s) +
637 sizeof(struct omap_intr_handler_bank_s) * nbanks);
639 s->parent_intr[0] = parent_irq;
640 s->parent_intr[1] = parent_fiq;
641 s->nbanks = nbanks;
642 s->level_only = 1;
643 s->pins = qemu_allocate_irqs(omap_set_intr_noedge, s, nbanks * 32);
644 if (pins)
645 *pins = s->pins;
647 omap_inth_reset(s);
649 iomemtype = cpu_register_io_memory(0, omap2_inth_readfn,
650 omap2_inth_writefn, s);
651 cpu_register_physical_memory(base, size, iomemtype);
653 return s;
656 /* MPU OS timers */
657 struct omap_mpu_timer_s {
658 qemu_irq irq;
659 omap_clk clk;
660 uint32_t val;
661 int64_t time;
662 QEMUTimer *timer;
663 QEMUBH *tick;
664 int64_t rate;
665 int it_ena;
667 int enable;
668 int ptv;
669 int ar;
670 int st;
671 uint32_t reset_val;
674 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
676 uint64_t distance = qemu_get_clock(vm_clock) - timer->time;
678 if (timer->st && timer->enable && timer->rate)
679 return timer->val - muldiv64(distance >> (timer->ptv + 1),
680 timer->rate, ticks_per_sec);
681 else
682 return timer->val;
685 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
687 timer->val = omap_timer_read(timer);
688 timer->time = qemu_get_clock(vm_clock);
691 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
693 int64_t expires;
695 if (timer->enable && timer->st && timer->rate) {
696 timer->val = timer->reset_val; /* Should skip this on clk enable */
697 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
698 ticks_per_sec, timer->rate);
700 /* If timer expiry would be sooner than in about 1 ms and
701 * auto-reload isn't set, then fire immediately. This is a hack
702 * to make systems like PalmOS run in acceptable time. PalmOS
703 * sets the interval to a very low value and polls the status bit
704 * in a busy loop when it wants to sleep just a couple of CPU
705 * ticks. */
706 if (expires > (ticks_per_sec >> 10) || timer->ar)
707 qemu_mod_timer(timer->timer, timer->time + expires);
708 else
709 qemu_bh_schedule(timer->tick);
710 } else
711 qemu_del_timer(timer->timer);
714 static void omap_timer_fire(void *opaque)
716 struct omap_mpu_timer_s *timer = opaque;
718 if (!timer->ar) {
719 timer->val = 0;
720 timer->st = 0;
723 if (timer->it_ena)
724 /* Edge-triggered irq */
725 qemu_irq_pulse(timer->irq);
728 static void omap_timer_tick(void *opaque)
730 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
732 omap_timer_sync(timer);
733 omap_timer_fire(timer);
734 omap_timer_update(timer);
737 static void omap_timer_clk_update(void *opaque, int line, int on)
739 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
741 omap_timer_sync(timer);
742 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
743 omap_timer_update(timer);
746 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
748 omap_clk_adduser(timer->clk,
749 qemu_allocate_irqs(omap_timer_clk_update, timer, 1)[0]);
750 timer->rate = omap_clk_getrate(timer->clk);
753 static uint32_t omap_mpu_timer_read(void *opaque, target_phys_addr_t addr)
755 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
757 switch (addr) {
758 case 0x00: /* CNTL_TIMER */
759 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
761 case 0x04: /* LOAD_TIM */
762 break;
764 case 0x08: /* READ_TIM */
765 return omap_timer_read(s);
768 OMAP_BAD_REG(addr);
769 return 0;
772 static void omap_mpu_timer_write(void *opaque, target_phys_addr_t addr,
773 uint32_t value)
775 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
777 switch (addr) {
778 case 0x00: /* CNTL_TIMER */
779 omap_timer_sync(s);
780 s->enable = (value >> 5) & 1;
781 s->ptv = (value >> 2) & 7;
782 s->ar = (value >> 1) & 1;
783 s->st = value & 1;
784 omap_timer_update(s);
785 return;
787 case 0x04: /* LOAD_TIM */
788 s->reset_val = value;
789 return;
791 case 0x08: /* READ_TIM */
792 OMAP_RO_REG(addr);
793 break;
795 default:
796 OMAP_BAD_REG(addr);
800 static CPUReadMemoryFunc *omap_mpu_timer_readfn[] = {
801 omap_badwidth_read32,
802 omap_badwidth_read32,
803 omap_mpu_timer_read,
806 static CPUWriteMemoryFunc *omap_mpu_timer_writefn[] = {
807 omap_badwidth_write32,
808 omap_badwidth_write32,
809 omap_mpu_timer_write,
812 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
814 qemu_del_timer(s->timer);
815 s->enable = 0;
816 s->reset_val = 31337;
817 s->val = 0;
818 s->ptv = 0;
819 s->ar = 0;
820 s->st = 0;
821 s->it_ena = 1;
824 struct omap_mpu_timer_s *omap_mpu_timer_init(target_phys_addr_t base,
825 qemu_irq irq, omap_clk clk)
827 int iomemtype;
828 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
829 qemu_mallocz(sizeof(struct omap_mpu_timer_s));
831 s->irq = irq;
832 s->clk = clk;
833 s->timer = qemu_new_timer(vm_clock, omap_timer_tick, s);
834 s->tick = qemu_bh_new(omap_timer_fire, s);
835 omap_mpu_timer_reset(s);
836 omap_timer_clk_setup(s);
838 iomemtype = cpu_register_io_memory(0, omap_mpu_timer_readfn,
839 omap_mpu_timer_writefn, s);
840 cpu_register_physical_memory(base, 0x100, iomemtype);
842 return s;
845 /* Watchdog timer */
846 struct omap_watchdog_timer_s {
847 struct omap_mpu_timer_s timer;
848 uint8_t last_wr;
849 int mode;
850 int free;
851 int reset;
854 static uint32_t omap_wd_timer_read(void *opaque, target_phys_addr_t addr)
856 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
858 switch (addr) {
859 case 0x00: /* CNTL_TIMER */
860 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
861 (s->timer.st << 7) | (s->free << 1);
863 case 0x04: /* READ_TIMER */
864 return omap_timer_read(&s->timer);
866 case 0x08: /* TIMER_MODE */
867 return s->mode << 15;
870 OMAP_BAD_REG(addr);
871 return 0;
874 static void omap_wd_timer_write(void *opaque, target_phys_addr_t addr,
875 uint32_t value)
877 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
879 switch (addr) {
880 case 0x00: /* CNTL_TIMER */
881 omap_timer_sync(&s->timer);
882 s->timer.ptv = (value >> 9) & 7;
883 s->timer.ar = (value >> 8) & 1;
884 s->timer.st = (value >> 7) & 1;
885 s->free = (value >> 1) & 1;
886 omap_timer_update(&s->timer);
887 break;
889 case 0x04: /* LOAD_TIMER */
890 s->timer.reset_val = value & 0xffff;
891 break;
893 case 0x08: /* TIMER_MODE */
894 if (!s->mode && ((value >> 15) & 1))
895 omap_clk_get(s->timer.clk);
896 s->mode |= (value >> 15) & 1;
897 if (s->last_wr == 0xf5) {
898 if ((value & 0xff) == 0xa0) {
899 if (s->mode) {
900 s->mode = 0;
901 omap_clk_put(s->timer.clk);
903 } else {
904 /* XXX: on T|E hardware somehow this has no effect,
905 * on Zire 71 it works as specified. */
906 s->reset = 1;
907 qemu_system_reset_request();
910 s->last_wr = value & 0xff;
911 break;
913 default:
914 OMAP_BAD_REG(addr);
918 static CPUReadMemoryFunc *omap_wd_timer_readfn[] = {
919 omap_badwidth_read16,
920 omap_wd_timer_read,
921 omap_badwidth_read16,
924 static CPUWriteMemoryFunc *omap_wd_timer_writefn[] = {
925 omap_badwidth_write16,
926 omap_wd_timer_write,
927 omap_badwidth_write16,
930 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
932 qemu_del_timer(s->timer.timer);
933 if (!s->mode)
934 omap_clk_get(s->timer.clk);
935 s->mode = 1;
936 s->free = 1;
937 s->reset = 0;
938 s->timer.enable = 1;
939 s->timer.it_ena = 1;
940 s->timer.reset_val = 0xffff;
941 s->timer.val = 0;
942 s->timer.st = 0;
943 s->timer.ptv = 0;
944 s->timer.ar = 0;
945 omap_timer_update(&s->timer);
948 struct omap_watchdog_timer_s *omap_wd_timer_init(target_phys_addr_t base,
949 qemu_irq irq, omap_clk clk)
951 int iomemtype;
952 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
953 qemu_mallocz(sizeof(struct omap_watchdog_timer_s));
955 s->timer.irq = irq;
956 s->timer.clk = clk;
957 s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
958 omap_wd_timer_reset(s);
959 omap_timer_clk_setup(&s->timer);
961 iomemtype = cpu_register_io_memory(0, omap_wd_timer_readfn,
962 omap_wd_timer_writefn, s);
963 cpu_register_physical_memory(base, 0x100, iomemtype);
965 return s;
968 /* 32-kHz timer */
969 struct omap_32khz_timer_s {
970 struct omap_mpu_timer_s timer;
973 static uint32_t omap_os_timer_read(void *opaque, target_phys_addr_t addr)
975 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
976 int offset = addr & OMAP_MPUI_REG_MASK;
978 switch (offset) {
979 case 0x00: /* TVR */
980 return s->timer.reset_val;
982 case 0x04: /* TCR */
983 return omap_timer_read(&s->timer);
985 case 0x08: /* CR */
986 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
988 default:
989 break;
991 OMAP_BAD_REG(addr);
992 return 0;
995 static void omap_os_timer_write(void *opaque, target_phys_addr_t addr,
996 uint32_t value)
998 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
999 int offset = addr & OMAP_MPUI_REG_MASK;
1001 switch (offset) {
1002 case 0x00: /* TVR */
1003 s->timer.reset_val = value & 0x00ffffff;
1004 break;
1006 case 0x04: /* TCR */
1007 OMAP_RO_REG(addr);
1008 break;
1010 case 0x08: /* CR */
1011 s->timer.ar = (value >> 3) & 1;
1012 s->timer.it_ena = (value >> 2) & 1;
1013 if (s->timer.st != (value & 1) || (value & 2)) {
1014 omap_timer_sync(&s->timer);
1015 s->timer.enable = value & 1;
1016 s->timer.st = value & 1;
1017 omap_timer_update(&s->timer);
1019 break;
1021 default:
1022 OMAP_BAD_REG(addr);
1026 static CPUReadMemoryFunc *omap_os_timer_readfn[] = {
1027 omap_badwidth_read32,
1028 omap_badwidth_read32,
1029 omap_os_timer_read,
1032 static CPUWriteMemoryFunc *omap_os_timer_writefn[] = {
1033 omap_badwidth_write32,
1034 omap_badwidth_write32,
1035 omap_os_timer_write,
1038 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
1040 qemu_del_timer(s->timer.timer);
1041 s->timer.enable = 0;
1042 s->timer.it_ena = 0;
1043 s->timer.reset_val = 0x00ffffff;
1044 s->timer.val = 0;
1045 s->timer.st = 0;
1046 s->timer.ptv = 0;
1047 s->timer.ar = 1;
1050 struct omap_32khz_timer_s *omap_os_timer_init(target_phys_addr_t base,
1051 qemu_irq irq, omap_clk clk)
1053 int iomemtype;
1054 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
1055 qemu_mallocz(sizeof(struct omap_32khz_timer_s));
1057 s->timer.irq = irq;
1058 s->timer.clk = clk;
1059 s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
1060 omap_os_timer_reset(s);
1061 omap_timer_clk_setup(&s->timer);
1063 iomemtype = cpu_register_io_memory(0, omap_os_timer_readfn,
1064 omap_os_timer_writefn, s);
1065 cpu_register_physical_memory(base, 0x800, iomemtype);
1067 return s;
1070 /* Ultra Low-Power Device Module */
1071 static uint32_t omap_ulpd_pm_read(void *opaque, target_phys_addr_t addr)
1073 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1074 uint16_t ret;
1076 switch (addr) {
1077 case 0x14: /* IT_STATUS */
1078 ret = s->ulpd_pm_regs[addr >> 2];
1079 s->ulpd_pm_regs[addr >> 2] = 0;
1080 qemu_irq_lower(s->irq[1][OMAP_INT_GAUGE_32K]);
1081 return ret;
1083 case 0x18: /* Reserved */
1084 case 0x1c: /* Reserved */
1085 case 0x20: /* Reserved */
1086 case 0x28: /* Reserved */
1087 case 0x2c: /* Reserved */
1088 OMAP_BAD_REG(addr);
1089 case 0x00: /* COUNTER_32_LSB */
1090 case 0x04: /* COUNTER_32_MSB */
1091 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
1092 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
1093 case 0x10: /* GAUGING_CTRL */
1094 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
1095 case 0x30: /* CLOCK_CTRL */
1096 case 0x34: /* SOFT_REQ */
1097 case 0x38: /* COUNTER_32_FIQ */
1098 case 0x3c: /* DPLL_CTRL */
1099 case 0x40: /* STATUS_REQ */
1100 /* XXX: check clk::usecount state for every clock */
1101 case 0x48: /* LOCL_TIME */
1102 case 0x4c: /* APLL_CTRL */
1103 case 0x50: /* POWER_CTRL */
1104 return s->ulpd_pm_regs[addr >> 2];
1107 OMAP_BAD_REG(addr);
1108 return 0;
1111 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
1112 uint16_t diff, uint16_t value)
1114 if (diff & (1 << 4)) /* USB_MCLK_EN */
1115 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
1116 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
1117 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
1120 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
1121 uint16_t diff, uint16_t value)
1123 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
1124 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
1125 if (diff & (1 << 1)) /* SOFT_COM_REQ */
1126 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
1127 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
1128 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
1129 if (diff & (1 << 3)) /* SOFT_USB_REQ */
1130 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
1133 static void omap_ulpd_pm_write(void *opaque, target_phys_addr_t addr,
1134 uint32_t value)
1136 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1137 int64_t now, ticks;
1138 int div, mult;
1139 static const int bypass_div[4] = { 1, 2, 4, 4 };
1140 uint16_t diff;
1142 switch (addr) {
1143 case 0x00: /* COUNTER_32_LSB */
1144 case 0x04: /* COUNTER_32_MSB */
1145 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
1146 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
1147 case 0x14: /* IT_STATUS */
1148 case 0x40: /* STATUS_REQ */
1149 OMAP_RO_REG(addr);
1150 break;
1152 case 0x10: /* GAUGING_CTRL */
1153 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
1154 if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
1155 now = qemu_get_clock(vm_clock);
1157 if (value & 1)
1158 s->ulpd_gauge_start = now;
1159 else {
1160 now -= s->ulpd_gauge_start;
1162 /* 32-kHz ticks */
1163 ticks = muldiv64(now, 32768, ticks_per_sec);
1164 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
1165 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
1166 if (ticks >> 32) /* OVERFLOW_32K */
1167 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
1169 /* High frequency ticks */
1170 ticks = muldiv64(now, 12000000, ticks_per_sec);
1171 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
1172 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
1173 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
1174 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
1176 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
1177 qemu_irq_raise(s->irq[1][OMAP_INT_GAUGE_32K]);
1180 s->ulpd_pm_regs[addr >> 2] = value;
1181 break;
1183 case 0x18: /* Reserved */
1184 case 0x1c: /* Reserved */
1185 case 0x20: /* Reserved */
1186 case 0x28: /* Reserved */
1187 case 0x2c: /* Reserved */
1188 OMAP_BAD_REG(addr);
1189 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
1190 case 0x38: /* COUNTER_32_FIQ */
1191 case 0x48: /* LOCL_TIME */
1192 case 0x50: /* POWER_CTRL */
1193 s->ulpd_pm_regs[addr >> 2] = value;
1194 break;
1196 case 0x30: /* CLOCK_CTRL */
1197 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
1198 s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
1199 omap_ulpd_clk_update(s, diff, value);
1200 break;
1202 case 0x34: /* SOFT_REQ */
1203 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
1204 s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
1205 omap_ulpd_req_update(s, diff, value);
1206 break;
1208 case 0x3c: /* DPLL_CTRL */
1209 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
1210 * omitted altogether, probably a typo. */
1211 /* This register has identical semantics with DPLL(1:3) control
1212 * registers, see omap_dpll_write() */
1213 diff = s->ulpd_pm_regs[addr >> 2] & value;
1214 s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
1215 if (diff & (0x3ff << 2)) {
1216 if (value & (1 << 4)) { /* PLL_ENABLE */
1217 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1218 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1219 } else {
1220 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1221 mult = 1;
1223 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
1226 /* Enter the desired mode. */
1227 s->ulpd_pm_regs[addr >> 2] =
1228 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
1229 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
1231 /* Act as if the lock is restored. */
1232 s->ulpd_pm_regs[addr >> 2] |= 2;
1233 break;
1235 case 0x4c: /* APLL_CTRL */
1236 diff = s->ulpd_pm_regs[addr >> 2] & value;
1237 s->ulpd_pm_regs[addr >> 2] = value & 0xf;
1238 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
1239 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
1240 (value & (1 << 0)) ? "apll" : "dpll4"));
1241 break;
1243 default:
1244 OMAP_BAD_REG(addr);
1248 static CPUReadMemoryFunc *omap_ulpd_pm_readfn[] = {
1249 omap_badwidth_read16,
1250 omap_ulpd_pm_read,
1251 omap_badwidth_read16,
1254 static CPUWriteMemoryFunc *omap_ulpd_pm_writefn[] = {
1255 omap_badwidth_write16,
1256 omap_ulpd_pm_write,
1257 omap_badwidth_write16,
1260 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
1262 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
1263 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
1264 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
1265 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
1266 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
1267 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
1268 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
1269 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
1270 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
1271 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
1272 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
1273 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
1274 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
1275 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
1276 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
1277 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
1278 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
1279 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
1280 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
1281 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
1282 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
1283 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
1284 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
1287 static void omap_ulpd_pm_init(target_phys_addr_t base,
1288 struct omap_mpu_state_s *mpu)
1290 int iomemtype = cpu_register_io_memory(0, omap_ulpd_pm_readfn,
1291 omap_ulpd_pm_writefn, mpu);
1293 cpu_register_physical_memory(base, 0x800, iomemtype);
1294 omap_ulpd_pm_reset(mpu);
1297 /* OMAP Pin Configuration */
1298 static uint32_t omap_pin_cfg_read(void *opaque, target_phys_addr_t addr)
1300 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1302 switch (addr) {
1303 case 0x00: /* FUNC_MUX_CTRL_0 */
1304 case 0x04: /* FUNC_MUX_CTRL_1 */
1305 case 0x08: /* FUNC_MUX_CTRL_2 */
1306 return s->func_mux_ctrl[addr >> 2];
1308 case 0x0c: /* COMP_MODE_CTRL_0 */
1309 return s->comp_mode_ctrl[0];
1311 case 0x10: /* FUNC_MUX_CTRL_3 */
1312 case 0x14: /* FUNC_MUX_CTRL_4 */
1313 case 0x18: /* FUNC_MUX_CTRL_5 */
1314 case 0x1c: /* FUNC_MUX_CTRL_6 */
1315 case 0x20: /* FUNC_MUX_CTRL_7 */
1316 case 0x24: /* FUNC_MUX_CTRL_8 */
1317 case 0x28: /* FUNC_MUX_CTRL_9 */
1318 case 0x2c: /* FUNC_MUX_CTRL_A */
1319 case 0x30: /* FUNC_MUX_CTRL_B */
1320 case 0x34: /* FUNC_MUX_CTRL_C */
1321 case 0x38: /* FUNC_MUX_CTRL_D */
1322 return s->func_mux_ctrl[(addr >> 2) - 1];
1324 case 0x40: /* PULL_DWN_CTRL_0 */
1325 case 0x44: /* PULL_DWN_CTRL_1 */
1326 case 0x48: /* PULL_DWN_CTRL_2 */
1327 case 0x4c: /* PULL_DWN_CTRL_3 */
1328 return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
1330 case 0x50: /* GATE_INH_CTRL_0 */
1331 return s->gate_inh_ctrl[0];
1333 case 0x60: /* VOLTAGE_CTRL_0 */
1334 return s->voltage_ctrl[0];
1336 case 0x70: /* TEST_DBG_CTRL_0 */
1337 return s->test_dbg_ctrl[0];
1339 case 0x80: /* MOD_CONF_CTRL_0 */
1340 return s->mod_conf_ctrl[0];
1343 OMAP_BAD_REG(addr);
1344 return 0;
1347 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
1348 uint32_t diff, uint32_t value)
1350 if (s->compat1509) {
1351 if (diff & (1 << 9)) /* BLUETOOTH */
1352 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
1353 (~value >> 9) & 1);
1354 if (diff & (1 << 7)) /* USB.CLKO */
1355 omap_clk_onoff(omap_findclk(s, "usb.clko"),
1356 (value >> 7) & 1);
1360 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
1361 uint32_t diff, uint32_t value)
1363 if (s->compat1509) {
1364 if (diff & (1 << 31)) /* MCBSP3_CLK_HIZ_DI */
1365 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"),
1366 (value >> 31) & 1);
1367 if (diff & (1 << 1)) /* CLK32K */
1368 omap_clk_onoff(omap_findclk(s, "clk32k_out"),
1369 (~value >> 1) & 1);
1373 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
1374 uint32_t diff, uint32_t value)
1376 if (diff & (1 << 31)) /* CONF_MOD_UART3_CLK_MODE_R */
1377 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
1378 omap_findclk(s, ((value >> 31) & 1) ?
1379 "ck_48m" : "armper_ck"));
1380 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
1381 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
1382 omap_findclk(s, ((value >> 30) & 1) ?
1383 "ck_48m" : "armper_ck"));
1384 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
1385 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
1386 omap_findclk(s, ((value >> 29) & 1) ?
1387 "ck_48m" : "armper_ck"));
1388 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
1389 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
1390 omap_findclk(s, ((value >> 23) & 1) ?
1391 "ck_48m" : "armper_ck"));
1392 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
1393 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
1394 omap_findclk(s, ((value >> 12) & 1) ?
1395 "ck_48m" : "armper_ck"));
1396 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
1397 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
1400 static void omap_pin_cfg_write(void *opaque, target_phys_addr_t addr,
1401 uint32_t value)
1403 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1404 uint32_t diff;
1406 switch (addr) {
1407 case 0x00: /* FUNC_MUX_CTRL_0 */
1408 diff = s->func_mux_ctrl[addr >> 2] ^ value;
1409 s->func_mux_ctrl[addr >> 2] = value;
1410 omap_pin_funcmux0_update(s, diff, value);
1411 return;
1413 case 0x04: /* FUNC_MUX_CTRL_1 */
1414 diff = s->func_mux_ctrl[addr >> 2] ^ value;
1415 s->func_mux_ctrl[addr >> 2] = value;
1416 omap_pin_funcmux1_update(s, diff, value);
1417 return;
1419 case 0x08: /* FUNC_MUX_CTRL_2 */
1420 s->func_mux_ctrl[addr >> 2] = value;
1421 return;
1423 case 0x0c: /* COMP_MODE_CTRL_0 */
1424 s->comp_mode_ctrl[0] = value;
1425 s->compat1509 = (value != 0x0000eaef);
1426 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
1427 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
1428 return;
1430 case 0x10: /* FUNC_MUX_CTRL_3 */
1431 case 0x14: /* FUNC_MUX_CTRL_4 */
1432 case 0x18: /* FUNC_MUX_CTRL_5 */
1433 case 0x1c: /* FUNC_MUX_CTRL_6 */
1434 case 0x20: /* FUNC_MUX_CTRL_7 */
1435 case 0x24: /* FUNC_MUX_CTRL_8 */
1436 case 0x28: /* FUNC_MUX_CTRL_9 */
1437 case 0x2c: /* FUNC_MUX_CTRL_A */
1438 case 0x30: /* FUNC_MUX_CTRL_B */
1439 case 0x34: /* FUNC_MUX_CTRL_C */
1440 case 0x38: /* FUNC_MUX_CTRL_D */
1441 s->func_mux_ctrl[(addr >> 2) - 1] = value;
1442 return;
1444 case 0x40: /* PULL_DWN_CTRL_0 */
1445 case 0x44: /* PULL_DWN_CTRL_1 */
1446 case 0x48: /* PULL_DWN_CTRL_2 */
1447 case 0x4c: /* PULL_DWN_CTRL_3 */
1448 s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
1449 return;
1451 case 0x50: /* GATE_INH_CTRL_0 */
1452 s->gate_inh_ctrl[0] = value;
1453 return;
1455 case 0x60: /* VOLTAGE_CTRL_0 */
1456 s->voltage_ctrl[0] = value;
1457 return;
1459 case 0x70: /* TEST_DBG_CTRL_0 */
1460 s->test_dbg_ctrl[0] = value;
1461 return;
1463 case 0x80: /* MOD_CONF_CTRL_0 */
1464 diff = s->mod_conf_ctrl[0] ^ value;
1465 s->mod_conf_ctrl[0] = value;
1466 omap_pin_modconf1_update(s, diff, value);
1467 return;
1469 default:
1470 OMAP_BAD_REG(addr);
1474 static CPUReadMemoryFunc *omap_pin_cfg_readfn[] = {
1475 omap_badwidth_read32,
1476 omap_badwidth_read32,
1477 omap_pin_cfg_read,
1480 static CPUWriteMemoryFunc *omap_pin_cfg_writefn[] = {
1481 omap_badwidth_write32,
1482 omap_badwidth_write32,
1483 omap_pin_cfg_write,
1486 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
1488 /* Start in Compatibility Mode. */
1489 mpu->compat1509 = 1;
1490 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
1491 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
1492 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
1493 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
1494 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
1495 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
1496 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
1497 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
1498 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
1499 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
1502 static void omap_pin_cfg_init(target_phys_addr_t base,
1503 struct omap_mpu_state_s *mpu)
1505 int iomemtype = cpu_register_io_memory(0, omap_pin_cfg_readfn,
1506 omap_pin_cfg_writefn, mpu);
1508 cpu_register_physical_memory(base, 0x800, iomemtype);
1509 omap_pin_cfg_reset(mpu);
1512 /* Device Identification, Die Identification */
1513 static uint32_t omap_id_read(void *opaque, target_phys_addr_t addr)
1515 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1517 switch (addr) {
1518 case 0xfffe1800: /* DIE_ID_LSB */
1519 return 0xc9581f0e;
1520 case 0xfffe1804: /* DIE_ID_MSB */
1521 return 0xa8858bfa;
1523 case 0xfffe2000: /* PRODUCT_ID_LSB */
1524 return 0x00aaaafc;
1525 case 0xfffe2004: /* PRODUCT_ID_MSB */
1526 return 0xcafeb574;
1528 case 0xfffed400: /* JTAG_ID_LSB */
1529 switch (s->mpu_model) {
1530 case omap310:
1531 return 0x03310315;
1532 case omap1510:
1533 return 0x03310115;
1534 default:
1535 cpu_abort(cpu_single_env, "%s: bad mpu model\n", __FUNCTION__);
1537 break;
1539 case 0xfffed404: /* JTAG_ID_MSB */
1540 switch (s->mpu_model) {
1541 case omap310:
1542 return 0xfb57402f;
1543 case omap1510:
1544 return 0xfb47002f;
1545 default:
1546 cpu_abort(cpu_single_env, "%s: bad mpu model\n", __FUNCTION__);
1548 break;
1551 OMAP_BAD_REG(addr);
1552 return 0;
1555 static void omap_id_write(void *opaque, target_phys_addr_t addr,
1556 uint32_t value)
1558 OMAP_BAD_REG(addr);
1561 static CPUReadMemoryFunc *omap_id_readfn[] = {
1562 omap_badwidth_read32,
1563 omap_badwidth_read32,
1564 omap_id_read,
1567 static CPUWriteMemoryFunc *omap_id_writefn[] = {
1568 omap_badwidth_write32,
1569 omap_badwidth_write32,
1570 omap_id_write,
1573 static void omap_id_init(struct omap_mpu_state_s *mpu)
1575 int iomemtype = cpu_register_io_memory(0, omap_id_readfn,
1576 omap_id_writefn, mpu);
1577 cpu_register_physical_memory_offset(0xfffe1800, 0x800, iomemtype, 0xfffe1800);
1578 cpu_register_physical_memory_offset(0xfffed400, 0x100, iomemtype, 0xfffed400);
1579 if (!cpu_is_omap15xx(mpu))
1580 cpu_register_physical_memory_offset(0xfffe2000, 0x800, iomemtype, 0xfffe2000);
1583 /* MPUI Control (Dummy) */
1584 static uint32_t omap_mpui_read(void *opaque, target_phys_addr_t addr)
1586 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1588 switch (addr) {
1589 case 0x00: /* CTRL */
1590 return s->mpui_ctrl;
1591 case 0x04: /* DEBUG_ADDR */
1592 return 0x01ffffff;
1593 case 0x08: /* DEBUG_DATA */
1594 return 0xffffffff;
1595 case 0x0c: /* DEBUG_FLAG */
1596 return 0x00000800;
1597 case 0x10: /* STATUS */
1598 return 0x00000000;
1600 /* Not in OMAP310 */
1601 case 0x14: /* DSP_STATUS */
1602 case 0x18: /* DSP_BOOT_CONFIG */
1603 return 0x00000000;
1604 case 0x1c: /* DSP_MPUI_CONFIG */
1605 return 0x0000ffff;
1608 OMAP_BAD_REG(addr);
1609 return 0;
1612 static void omap_mpui_write(void *opaque, target_phys_addr_t addr,
1613 uint32_t value)
1615 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1617 switch (addr) {
1618 case 0x00: /* CTRL */
1619 s->mpui_ctrl = value & 0x007fffff;
1620 break;
1622 case 0x04: /* DEBUG_ADDR */
1623 case 0x08: /* DEBUG_DATA */
1624 case 0x0c: /* DEBUG_FLAG */
1625 case 0x10: /* STATUS */
1626 /* Not in OMAP310 */
1627 case 0x14: /* DSP_STATUS */
1628 OMAP_RO_REG(addr);
1629 case 0x18: /* DSP_BOOT_CONFIG */
1630 case 0x1c: /* DSP_MPUI_CONFIG */
1631 break;
1633 default:
1634 OMAP_BAD_REG(addr);
1638 static CPUReadMemoryFunc *omap_mpui_readfn[] = {
1639 omap_badwidth_read32,
1640 omap_badwidth_read32,
1641 omap_mpui_read,
1644 static CPUWriteMemoryFunc *omap_mpui_writefn[] = {
1645 omap_badwidth_write32,
1646 omap_badwidth_write32,
1647 omap_mpui_write,
1650 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1652 s->mpui_ctrl = 0x0003ff1b;
1655 static void omap_mpui_init(target_phys_addr_t base,
1656 struct omap_mpu_state_s *mpu)
1658 int iomemtype = cpu_register_io_memory(0, omap_mpui_readfn,
1659 omap_mpui_writefn, mpu);
1661 cpu_register_physical_memory(base, 0x100, iomemtype);
1663 omap_mpui_reset(mpu);
1666 /* TIPB Bridges */
1667 struct omap_tipb_bridge_s {
1668 qemu_irq abort;
1670 int width_intr;
1671 uint16_t control;
1672 uint16_t alloc;
1673 uint16_t buffer;
1674 uint16_t enh_control;
1677 static uint32_t omap_tipb_bridge_read(void *opaque, target_phys_addr_t addr)
1679 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1681 switch (addr) {
1682 case 0x00: /* TIPB_CNTL */
1683 return s->control;
1684 case 0x04: /* TIPB_BUS_ALLOC */
1685 return s->alloc;
1686 case 0x08: /* MPU_TIPB_CNTL */
1687 return s->buffer;
1688 case 0x0c: /* ENHANCED_TIPB_CNTL */
1689 return s->enh_control;
1690 case 0x10: /* ADDRESS_DBG */
1691 case 0x14: /* DATA_DEBUG_LOW */
1692 case 0x18: /* DATA_DEBUG_HIGH */
1693 return 0xffff;
1694 case 0x1c: /* DEBUG_CNTR_SIG */
1695 return 0x00f8;
1698 OMAP_BAD_REG(addr);
1699 return 0;
1702 static void omap_tipb_bridge_write(void *opaque, target_phys_addr_t addr,
1703 uint32_t value)
1705 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1707 switch (addr) {
1708 case 0x00: /* TIPB_CNTL */
1709 s->control = value & 0xffff;
1710 break;
1712 case 0x04: /* TIPB_BUS_ALLOC */
1713 s->alloc = value & 0x003f;
1714 break;
1716 case 0x08: /* MPU_TIPB_CNTL */
1717 s->buffer = value & 0x0003;
1718 break;
1720 case 0x0c: /* ENHANCED_TIPB_CNTL */
1721 s->width_intr = !(value & 2);
1722 s->enh_control = value & 0x000f;
1723 break;
1725 case 0x10: /* ADDRESS_DBG */
1726 case 0x14: /* DATA_DEBUG_LOW */
1727 case 0x18: /* DATA_DEBUG_HIGH */
1728 case 0x1c: /* DEBUG_CNTR_SIG */
1729 OMAP_RO_REG(addr);
1730 break;
1732 default:
1733 OMAP_BAD_REG(addr);
1737 static CPUReadMemoryFunc *omap_tipb_bridge_readfn[] = {
1738 omap_badwidth_read16,
1739 omap_tipb_bridge_read,
1740 omap_tipb_bridge_read,
1743 static CPUWriteMemoryFunc *omap_tipb_bridge_writefn[] = {
1744 omap_badwidth_write16,
1745 omap_tipb_bridge_write,
1746 omap_tipb_bridge_write,
1749 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1751 s->control = 0xffff;
1752 s->alloc = 0x0009;
1753 s->buffer = 0x0000;
1754 s->enh_control = 0x000f;
1757 struct omap_tipb_bridge_s *omap_tipb_bridge_init(target_phys_addr_t base,
1758 qemu_irq abort_irq, omap_clk clk)
1760 int iomemtype;
1761 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
1762 qemu_mallocz(sizeof(struct omap_tipb_bridge_s));
1764 s->abort = abort_irq;
1765 omap_tipb_bridge_reset(s);
1767 iomemtype = cpu_register_io_memory(0, omap_tipb_bridge_readfn,
1768 omap_tipb_bridge_writefn, s);
1769 cpu_register_physical_memory(base, 0x100, iomemtype);
1771 return s;
1774 /* Dummy Traffic Controller's Memory Interface */
1775 static uint32_t omap_tcmi_read(void *opaque, target_phys_addr_t addr)
1777 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1778 uint32_t ret;
1780 switch (addr) {
1781 case 0x00: /* IMIF_PRIO */
1782 case 0x04: /* EMIFS_PRIO */
1783 case 0x08: /* EMIFF_PRIO */
1784 case 0x0c: /* EMIFS_CONFIG */
1785 case 0x10: /* EMIFS_CS0_CONFIG */
1786 case 0x14: /* EMIFS_CS1_CONFIG */
1787 case 0x18: /* EMIFS_CS2_CONFIG */
1788 case 0x1c: /* EMIFS_CS3_CONFIG */
1789 case 0x24: /* EMIFF_MRS */
1790 case 0x28: /* TIMEOUT1 */
1791 case 0x2c: /* TIMEOUT2 */
1792 case 0x30: /* TIMEOUT3 */
1793 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1794 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1795 return s->tcmi_regs[addr >> 2];
1797 case 0x20: /* EMIFF_SDRAM_CONFIG */
1798 ret = s->tcmi_regs[addr >> 2];
1799 s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1800 /* XXX: We can try using the VGA_DIRTY flag for this */
1801 return ret;
1804 OMAP_BAD_REG(addr);
1805 return 0;
1808 static void omap_tcmi_write(void *opaque, target_phys_addr_t addr,
1809 uint32_t value)
1811 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1813 switch (addr) {
1814 case 0x00: /* IMIF_PRIO */
1815 case 0x04: /* EMIFS_PRIO */
1816 case 0x08: /* EMIFF_PRIO */
1817 case 0x10: /* EMIFS_CS0_CONFIG */
1818 case 0x14: /* EMIFS_CS1_CONFIG */
1819 case 0x18: /* EMIFS_CS2_CONFIG */
1820 case 0x1c: /* EMIFS_CS3_CONFIG */
1821 case 0x20: /* EMIFF_SDRAM_CONFIG */
1822 case 0x24: /* EMIFF_MRS */
1823 case 0x28: /* TIMEOUT1 */
1824 case 0x2c: /* TIMEOUT2 */
1825 case 0x30: /* TIMEOUT3 */
1826 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1827 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1828 s->tcmi_regs[addr >> 2] = value;
1829 break;
1830 case 0x0c: /* EMIFS_CONFIG */
1831 s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1832 break;
1834 default:
1835 OMAP_BAD_REG(addr);
1839 static CPUReadMemoryFunc *omap_tcmi_readfn[] = {
1840 omap_badwidth_read32,
1841 omap_badwidth_read32,
1842 omap_tcmi_read,
1845 static CPUWriteMemoryFunc *omap_tcmi_writefn[] = {
1846 omap_badwidth_write32,
1847 omap_badwidth_write32,
1848 omap_tcmi_write,
1851 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1853 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1854 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1855 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1856 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1857 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1858 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1859 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1860 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1861 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1862 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1863 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1864 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1865 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1866 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1867 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1870 static void omap_tcmi_init(target_phys_addr_t base,
1871 struct omap_mpu_state_s *mpu)
1873 int iomemtype = cpu_register_io_memory(0, omap_tcmi_readfn,
1874 omap_tcmi_writefn, mpu);
1876 cpu_register_physical_memory(base, 0x100, iomemtype);
1877 omap_tcmi_reset(mpu);
1880 /* Digital phase-locked loops control */
1881 static uint32_t omap_dpll_read(void *opaque, target_phys_addr_t addr)
1883 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1885 if (addr == 0x00) /* CTL_REG */
1886 return s->mode;
1888 OMAP_BAD_REG(addr);
1889 return 0;
1892 static void omap_dpll_write(void *opaque, target_phys_addr_t addr,
1893 uint32_t value)
1895 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1896 uint16_t diff;
1897 static const int bypass_div[4] = { 1, 2, 4, 4 };
1898 int div, mult;
1900 if (addr == 0x00) { /* CTL_REG */
1901 /* See omap_ulpd_pm_write() too */
1902 diff = s->mode & value;
1903 s->mode = value & 0x2fff;
1904 if (diff & (0x3ff << 2)) {
1905 if (value & (1 << 4)) { /* PLL_ENABLE */
1906 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1907 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1908 } else {
1909 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1910 mult = 1;
1912 omap_clk_setrate(s->dpll, div, mult);
1915 /* Enter the desired mode. */
1916 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1918 /* Act as if the lock is restored. */
1919 s->mode |= 2;
1920 } else {
1921 OMAP_BAD_REG(addr);
1925 static CPUReadMemoryFunc *omap_dpll_readfn[] = {
1926 omap_badwidth_read16,
1927 omap_dpll_read,
1928 omap_badwidth_read16,
1931 static CPUWriteMemoryFunc *omap_dpll_writefn[] = {
1932 omap_badwidth_write16,
1933 omap_dpll_write,
1934 omap_badwidth_write16,
1937 static void omap_dpll_reset(struct dpll_ctl_s *s)
1939 s->mode = 0x2002;
1940 omap_clk_setrate(s->dpll, 1, 1);
1943 static void omap_dpll_init(struct dpll_ctl_s *s, target_phys_addr_t base,
1944 omap_clk clk)
1946 int iomemtype = cpu_register_io_memory(0, omap_dpll_readfn,
1947 omap_dpll_writefn, s);
1949 s->dpll = clk;
1950 omap_dpll_reset(s);
1952 cpu_register_physical_memory(base, 0x100, iomemtype);
1955 /* UARTs */
1956 struct omap_uart_s {
1957 target_phys_addr_t base;
1958 SerialState *serial; /* TODO */
1959 struct omap_target_agent_s *ta;
1960 omap_clk fclk;
1961 qemu_irq irq;
1963 uint8_t eblr;
1964 uint8_t syscontrol;
1965 uint8_t wkup;
1966 uint8_t cfps;
1967 uint8_t mdr[2];
1968 uint8_t scr;
1969 uint8_t clksel;
1972 void omap_uart_reset(struct omap_uart_s *s)
1974 s->eblr = 0x00;
1975 s->syscontrol = 0;
1976 s->wkup = 0x3f;
1977 s->cfps = 0x69;
1978 s->clksel = 0;
1981 struct omap_uart_s *omap_uart_init(target_phys_addr_t base,
1982 qemu_irq irq, omap_clk fclk, omap_clk iclk,
1983 qemu_irq txdma, qemu_irq rxdma, CharDriverState *chr)
1985 struct omap_uart_s *s = (struct omap_uart_s *)
1986 qemu_mallocz(sizeof(struct omap_uart_s));
1988 s->base = base;
1989 s->fclk = fclk;
1990 s->irq = irq;
1991 s->serial = serial_mm_init(base, 2, irq, omap_clk_getrate(fclk)/16,
1992 chr ?: qemu_chr_open("null", "null"), 1);
1994 return s;
1997 static uint32_t omap_uart_read(void *opaque, target_phys_addr_t addr)
1999 struct omap_uart_s *s = (struct omap_uart_s *) opaque;
2001 addr &= 0xff;
2002 switch (addr) {
2003 case 0x20: /* MDR1 */
2004 return s->mdr[0];
2005 case 0x24: /* MDR2 */
2006 return s->mdr[1];
2007 case 0x40: /* SCR */
2008 return s->scr;
2009 case 0x44: /* SSR */
2010 return 0x0;
2011 case 0x48: /* EBLR (OMAP2) */
2012 return s->eblr;
2013 case 0x4C: /* OSC_12M_SEL (OMAP1) */
2014 return s->clksel;
2015 case 0x50: /* MVR */
2016 return 0x30;
2017 case 0x54: /* SYSC (OMAP2) */
2018 return s->syscontrol;
2019 case 0x58: /* SYSS (OMAP2) */
2020 return 1;
2021 case 0x5c: /* WER (OMAP2) */
2022 return s->wkup;
2023 case 0x60: /* CFPS (OMAP2) */
2024 return s->cfps;
2027 OMAP_BAD_REG(addr);
2028 return 0;
2031 static void omap_uart_write(void *opaque, target_phys_addr_t addr,
2032 uint32_t value)
2034 struct omap_uart_s *s = (struct omap_uart_s *) opaque;
2036 addr &= 0xff;
2037 switch (addr) {
2038 case 0x20: /* MDR1 */
2039 s->mdr[0] = value & 0x7f;
2040 break;
2041 case 0x24: /* MDR2 */
2042 s->mdr[1] = value & 0xff;
2043 break;
2044 case 0x40: /* SCR */
2045 s->scr = value & 0xff;
2046 break;
2047 case 0x48: /* EBLR (OMAP2) */
2048 s->eblr = value & 0xff;
2049 break;
2050 case 0x4C: /* OSC_12M_SEL (OMAP1) */
2051 s->clksel = value & 1;
2052 break;
2053 case 0x44: /* SSR */
2054 case 0x50: /* MVR */
2055 case 0x58: /* SYSS (OMAP2) */
2056 OMAP_RO_REG(addr);
2057 break;
2058 case 0x54: /* SYSC (OMAP2) */
2059 s->syscontrol = value & 0x1d;
2060 if (value & 2)
2061 omap_uart_reset(s);
2062 break;
2063 case 0x5c: /* WER (OMAP2) */
2064 s->wkup = value & 0x7f;
2065 break;
2066 case 0x60: /* CFPS (OMAP2) */
2067 s->cfps = value & 0xff;
2068 break;
2069 default:
2070 OMAP_BAD_REG(addr);
2074 static CPUReadMemoryFunc *omap_uart_readfn[] = {
2075 omap_uart_read,
2076 omap_uart_read,
2077 omap_badwidth_read8,
2080 static CPUWriteMemoryFunc *omap_uart_writefn[] = {
2081 omap_uart_write,
2082 omap_uart_write,
2083 omap_badwidth_write8,
2086 struct omap_uart_s *omap2_uart_init(struct omap_target_agent_s *ta,
2087 qemu_irq irq, omap_clk fclk, omap_clk iclk,
2088 qemu_irq txdma, qemu_irq rxdma, CharDriverState *chr)
2090 target_phys_addr_t base = omap_l4_attach(ta, 0, 0);
2091 struct omap_uart_s *s = omap_uart_init(base, irq,
2092 fclk, iclk, txdma, rxdma, chr);
2093 int iomemtype = cpu_register_io_memory(0, omap_uart_readfn,
2094 omap_uart_writefn, s);
2096 s->ta = ta;
2098 cpu_register_physical_memory(base + 0x20, 0x100, iomemtype);
2100 return s;
2103 void omap_uart_attach(struct omap_uart_s *s, CharDriverState *chr)
2105 /* TODO: Should reuse or destroy current s->serial */
2106 s->serial = serial_mm_init(s->base, 2, s->irq,
2107 omap_clk_getrate(s->fclk) / 16,
2108 chr ?: qemu_chr_open("null", "null"), 1);
2111 /* MPU Clock/Reset/Power Mode Control */
2112 static uint32_t omap_clkm_read(void *opaque, target_phys_addr_t addr)
2114 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2116 switch (addr) {
2117 case 0x00: /* ARM_CKCTL */
2118 return s->clkm.arm_ckctl;
2120 case 0x04: /* ARM_IDLECT1 */
2121 return s->clkm.arm_idlect1;
2123 case 0x08: /* ARM_IDLECT2 */
2124 return s->clkm.arm_idlect2;
2126 case 0x0c: /* ARM_EWUPCT */
2127 return s->clkm.arm_ewupct;
2129 case 0x10: /* ARM_RSTCT1 */
2130 return s->clkm.arm_rstct1;
2132 case 0x14: /* ARM_RSTCT2 */
2133 return s->clkm.arm_rstct2;
2135 case 0x18: /* ARM_SYSST */
2136 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
2138 case 0x1c: /* ARM_CKOUT1 */
2139 return s->clkm.arm_ckout1;
2141 case 0x20: /* ARM_CKOUT2 */
2142 break;
2145 OMAP_BAD_REG(addr);
2146 return 0;
2149 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
2150 uint16_t diff, uint16_t value)
2152 omap_clk clk;
2154 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
2155 if (value & (1 << 14))
2156 /* Reserved */;
2157 else {
2158 clk = omap_findclk(s, "arminth_ck");
2159 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
2162 if (diff & (1 << 12)) { /* ARM_TIMXO */
2163 clk = omap_findclk(s, "armtim_ck");
2164 if (value & (1 << 12))
2165 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
2166 else
2167 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
2169 /* XXX: en_dspck */
2170 if (diff & (3 << 10)) { /* DSPMMUDIV */
2171 clk = omap_findclk(s, "dspmmu_ck");
2172 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
2174 if (diff & (3 << 8)) { /* TCDIV */
2175 clk = omap_findclk(s, "tc_ck");
2176 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
2178 if (diff & (3 << 6)) { /* DSPDIV */
2179 clk = omap_findclk(s, "dsp_ck");
2180 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
2182 if (diff & (3 << 4)) { /* ARMDIV */
2183 clk = omap_findclk(s, "arm_ck");
2184 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
2186 if (diff & (3 << 2)) { /* LCDDIV */
2187 clk = omap_findclk(s, "lcd_ck");
2188 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
2190 if (diff & (3 << 0)) { /* PERDIV */
2191 clk = omap_findclk(s, "armper_ck");
2192 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
2196 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
2197 uint16_t diff, uint16_t value)
2199 omap_clk clk;
2201 if (value & (1 << 11)) /* SETARM_IDLE */
2202 cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
2203 if (!(value & (1 << 10))) /* WKUP_MODE */
2204 qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
2206 #define SET_CANIDLE(clock, bit) \
2207 if (diff & (1 << bit)) { \
2208 clk = omap_findclk(s, clock); \
2209 omap_clk_canidle(clk, (value >> bit) & 1); \
2211 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
2212 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
2213 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
2214 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
2215 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
2216 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
2217 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
2218 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
2219 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
2220 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
2221 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
2222 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
2223 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
2224 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
2227 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
2228 uint16_t diff, uint16_t value)
2230 omap_clk clk;
2232 #define SET_ONOFF(clock, bit) \
2233 if (diff & (1 << bit)) { \
2234 clk = omap_findclk(s, clock); \
2235 omap_clk_onoff(clk, (value >> bit) & 1); \
2237 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
2238 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
2239 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
2240 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
2241 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
2242 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
2243 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
2244 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
2245 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
2246 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
2247 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
2250 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
2251 uint16_t diff, uint16_t value)
2253 omap_clk clk;
2255 if (diff & (3 << 4)) { /* TCLKOUT */
2256 clk = omap_findclk(s, "tclk_out");
2257 switch ((value >> 4) & 3) {
2258 case 1:
2259 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
2260 omap_clk_onoff(clk, 1);
2261 break;
2262 case 2:
2263 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
2264 omap_clk_onoff(clk, 1);
2265 break;
2266 default:
2267 omap_clk_onoff(clk, 0);
2270 if (diff & (3 << 2)) { /* DCLKOUT */
2271 clk = omap_findclk(s, "dclk_out");
2272 switch ((value >> 2) & 3) {
2273 case 0:
2274 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
2275 break;
2276 case 1:
2277 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
2278 break;
2279 case 2:
2280 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
2281 break;
2282 case 3:
2283 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
2284 break;
2287 if (diff & (3 << 0)) { /* ACLKOUT */
2288 clk = omap_findclk(s, "aclk_out");
2289 switch ((value >> 0) & 3) {
2290 case 1:
2291 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
2292 omap_clk_onoff(clk, 1);
2293 break;
2294 case 2:
2295 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
2296 omap_clk_onoff(clk, 1);
2297 break;
2298 case 3:
2299 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
2300 omap_clk_onoff(clk, 1);
2301 break;
2302 default:
2303 omap_clk_onoff(clk, 0);
2308 static void omap_clkm_write(void *opaque, target_phys_addr_t addr,
2309 uint32_t value)
2311 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2312 uint16_t diff;
2313 omap_clk clk;
2314 static const char *clkschemename[8] = {
2315 "fully synchronous", "fully asynchronous", "synchronous scalable",
2316 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
2319 switch (addr) {
2320 case 0x00: /* ARM_CKCTL */
2321 diff = s->clkm.arm_ckctl ^ value;
2322 s->clkm.arm_ckctl = value & 0x7fff;
2323 omap_clkm_ckctl_update(s, diff, value);
2324 return;
2326 case 0x04: /* ARM_IDLECT1 */
2327 diff = s->clkm.arm_idlect1 ^ value;
2328 s->clkm.arm_idlect1 = value & 0x0fff;
2329 omap_clkm_idlect1_update(s, diff, value);
2330 return;
2332 case 0x08: /* ARM_IDLECT2 */
2333 diff = s->clkm.arm_idlect2 ^ value;
2334 s->clkm.arm_idlect2 = value & 0x07ff;
2335 omap_clkm_idlect2_update(s, diff, value);
2336 return;
2338 case 0x0c: /* ARM_EWUPCT */
2339 diff = s->clkm.arm_ewupct ^ value;
2340 s->clkm.arm_ewupct = value & 0x003f;
2341 return;
2343 case 0x10: /* ARM_RSTCT1 */
2344 diff = s->clkm.arm_rstct1 ^ value;
2345 s->clkm.arm_rstct1 = value & 0x0007;
2346 if (value & 9) {
2347 qemu_system_reset_request();
2348 s->clkm.cold_start = 0xa;
2350 if (diff & ~value & 4) { /* DSP_RST */
2351 omap_mpui_reset(s);
2352 omap_tipb_bridge_reset(s->private_tipb);
2353 omap_tipb_bridge_reset(s->public_tipb);
2355 if (diff & 2) { /* DSP_EN */
2356 clk = omap_findclk(s, "dsp_ck");
2357 omap_clk_canidle(clk, (~value >> 1) & 1);
2359 return;
2361 case 0x14: /* ARM_RSTCT2 */
2362 s->clkm.arm_rstct2 = value & 0x0001;
2363 return;
2365 case 0x18: /* ARM_SYSST */
2366 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
2367 s->clkm.clocking_scheme = (value >> 11) & 7;
2368 printf("%s: clocking scheme set to %s\n", __FUNCTION__,
2369 clkschemename[s->clkm.clocking_scheme]);
2371 s->clkm.cold_start &= value & 0x3f;
2372 return;
2374 case 0x1c: /* ARM_CKOUT1 */
2375 diff = s->clkm.arm_ckout1 ^ value;
2376 s->clkm.arm_ckout1 = value & 0x003f;
2377 omap_clkm_ckout1_update(s, diff, value);
2378 return;
2380 case 0x20: /* ARM_CKOUT2 */
2381 default:
2382 OMAP_BAD_REG(addr);
2386 static CPUReadMemoryFunc *omap_clkm_readfn[] = {
2387 omap_badwidth_read16,
2388 omap_clkm_read,
2389 omap_badwidth_read16,
2392 static CPUWriteMemoryFunc *omap_clkm_writefn[] = {
2393 omap_badwidth_write16,
2394 omap_clkm_write,
2395 omap_badwidth_write16,
2398 static uint32_t omap_clkdsp_read(void *opaque, target_phys_addr_t addr)
2400 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2402 switch (addr) {
2403 case 0x04: /* DSP_IDLECT1 */
2404 return s->clkm.dsp_idlect1;
2406 case 0x08: /* DSP_IDLECT2 */
2407 return s->clkm.dsp_idlect2;
2409 case 0x14: /* DSP_RSTCT2 */
2410 return s->clkm.dsp_rstct2;
2412 case 0x18: /* DSP_SYSST */
2413 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
2414 (s->env->halted << 6); /* Quite useless... */
2417 OMAP_BAD_REG(addr);
2418 return 0;
2421 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
2422 uint16_t diff, uint16_t value)
2424 omap_clk clk;
2426 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
2429 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
2430 uint16_t diff, uint16_t value)
2432 omap_clk clk;
2434 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
2437 static void omap_clkdsp_write(void *opaque, target_phys_addr_t addr,
2438 uint32_t value)
2440 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2441 uint16_t diff;
2443 switch (addr) {
2444 case 0x04: /* DSP_IDLECT1 */
2445 diff = s->clkm.dsp_idlect1 ^ value;
2446 s->clkm.dsp_idlect1 = value & 0x01f7;
2447 omap_clkdsp_idlect1_update(s, diff, value);
2448 break;
2450 case 0x08: /* DSP_IDLECT2 */
2451 s->clkm.dsp_idlect2 = value & 0x0037;
2452 diff = s->clkm.dsp_idlect1 ^ value;
2453 omap_clkdsp_idlect2_update(s, diff, value);
2454 break;
2456 case 0x14: /* DSP_RSTCT2 */
2457 s->clkm.dsp_rstct2 = value & 0x0001;
2458 break;
2460 case 0x18: /* DSP_SYSST */
2461 s->clkm.cold_start &= value & 0x3f;
2462 break;
2464 default:
2465 OMAP_BAD_REG(addr);
2469 static CPUReadMemoryFunc *omap_clkdsp_readfn[] = {
2470 omap_badwidth_read16,
2471 omap_clkdsp_read,
2472 omap_badwidth_read16,
2475 static CPUWriteMemoryFunc *omap_clkdsp_writefn[] = {
2476 omap_badwidth_write16,
2477 omap_clkdsp_write,
2478 omap_badwidth_write16,
2481 static void omap_clkm_reset(struct omap_mpu_state_s *s)
2483 if (s->wdt && s->wdt->reset)
2484 s->clkm.cold_start = 0x6;
2485 s->clkm.clocking_scheme = 0;
2486 omap_clkm_ckctl_update(s, ~0, 0x3000);
2487 s->clkm.arm_ckctl = 0x3000;
2488 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
2489 s->clkm.arm_idlect1 = 0x0400;
2490 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
2491 s->clkm.arm_idlect2 = 0x0100;
2492 s->clkm.arm_ewupct = 0x003f;
2493 s->clkm.arm_rstct1 = 0x0000;
2494 s->clkm.arm_rstct2 = 0x0000;
2495 s->clkm.arm_ckout1 = 0x0015;
2496 s->clkm.dpll1_mode = 0x2002;
2497 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
2498 s->clkm.dsp_idlect1 = 0x0040;
2499 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
2500 s->clkm.dsp_idlect2 = 0x0000;
2501 s->clkm.dsp_rstct2 = 0x0000;
2504 static void omap_clkm_init(target_phys_addr_t mpu_base,
2505 target_phys_addr_t dsp_base, struct omap_mpu_state_s *s)
2507 int iomemtype[2] = {
2508 cpu_register_io_memory(0, omap_clkm_readfn, omap_clkm_writefn, s),
2509 cpu_register_io_memory(0, omap_clkdsp_readfn, omap_clkdsp_writefn, s),
2512 s->clkm.arm_idlect1 = 0x03ff;
2513 s->clkm.arm_idlect2 = 0x0100;
2514 s->clkm.dsp_idlect1 = 0x0002;
2515 omap_clkm_reset(s);
2516 s->clkm.cold_start = 0x3a;
2518 cpu_register_physical_memory(mpu_base, 0x100, iomemtype[0]);
2519 cpu_register_physical_memory(dsp_base, 0x1000, iomemtype[1]);
2522 /* MPU I/O */
2523 struct omap_mpuio_s {
2524 qemu_irq irq;
2525 qemu_irq kbd_irq;
2526 qemu_irq *in;
2527 qemu_irq handler[16];
2528 qemu_irq wakeup;
2530 uint16_t inputs;
2531 uint16_t outputs;
2532 uint16_t dir;
2533 uint16_t edge;
2534 uint16_t mask;
2535 uint16_t ints;
2537 uint16_t debounce;
2538 uint16_t latch;
2539 uint8_t event;
2541 uint8_t buttons[5];
2542 uint8_t row_latch;
2543 uint8_t cols;
2544 int kbd_mask;
2545 int clk;
2548 static void omap_mpuio_set(void *opaque, int line, int level)
2550 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2551 uint16_t prev = s->inputs;
2553 if (level)
2554 s->inputs |= 1 << line;
2555 else
2556 s->inputs &= ~(1 << line);
2558 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
2559 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
2560 s->ints |= 1 << line;
2561 qemu_irq_raise(s->irq);
2562 /* TODO: wakeup */
2564 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
2565 (s->event >> 1) == line) /* PIN_SELECT */
2566 s->latch = s->inputs;
2570 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
2572 int i;
2573 uint8_t *row, rows = 0, cols = ~s->cols;
2575 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
2576 if (*row & cols)
2577 rows |= i;
2579 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
2580 s->row_latch = ~rows;
2583 static uint32_t omap_mpuio_read(void *opaque, target_phys_addr_t addr)
2585 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2586 int offset = addr & OMAP_MPUI_REG_MASK;
2587 uint16_t ret;
2589 switch (offset) {
2590 case 0x00: /* INPUT_LATCH */
2591 return s->inputs;
2593 case 0x04: /* OUTPUT_REG */
2594 return s->outputs;
2596 case 0x08: /* IO_CNTL */
2597 return s->dir;
2599 case 0x10: /* KBR_LATCH */
2600 return s->row_latch;
2602 case 0x14: /* KBC_REG */
2603 return s->cols;
2605 case 0x18: /* GPIO_EVENT_MODE_REG */
2606 return s->event;
2608 case 0x1c: /* GPIO_INT_EDGE_REG */
2609 return s->edge;
2611 case 0x20: /* KBD_INT */
2612 return (~s->row_latch & 0x1f) && !s->kbd_mask;
2614 case 0x24: /* GPIO_INT */
2615 ret = s->ints;
2616 s->ints &= s->mask;
2617 if (ret)
2618 qemu_irq_lower(s->irq);
2619 return ret;
2621 case 0x28: /* KBD_MASKIT */
2622 return s->kbd_mask;
2624 case 0x2c: /* GPIO_MASKIT */
2625 return s->mask;
2627 case 0x30: /* GPIO_DEBOUNCING_REG */
2628 return s->debounce;
2630 case 0x34: /* GPIO_LATCH_REG */
2631 return s->latch;
2634 OMAP_BAD_REG(addr);
2635 return 0;
2638 static void omap_mpuio_write(void *opaque, target_phys_addr_t addr,
2639 uint32_t value)
2641 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2642 int offset = addr & OMAP_MPUI_REG_MASK;
2643 uint16_t diff;
2644 int ln;
2646 switch (offset) {
2647 case 0x04: /* OUTPUT_REG */
2648 diff = (s->outputs ^ value) & ~s->dir;
2649 s->outputs = value;
2650 while ((ln = ffs(diff))) {
2651 ln --;
2652 if (s->handler[ln])
2653 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2654 diff &= ~(1 << ln);
2656 break;
2658 case 0x08: /* IO_CNTL */
2659 diff = s->outputs & (s->dir ^ value);
2660 s->dir = value;
2662 value = s->outputs & ~s->dir;
2663 while ((ln = ffs(diff))) {
2664 ln --;
2665 if (s->handler[ln])
2666 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2667 diff &= ~(1 << ln);
2669 break;
2671 case 0x14: /* KBC_REG */
2672 s->cols = value;
2673 omap_mpuio_kbd_update(s);
2674 break;
2676 case 0x18: /* GPIO_EVENT_MODE_REG */
2677 s->event = value & 0x1f;
2678 break;
2680 case 0x1c: /* GPIO_INT_EDGE_REG */
2681 s->edge = value;
2682 break;
2684 case 0x28: /* KBD_MASKIT */
2685 s->kbd_mask = value & 1;
2686 omap_mpuio_kbd_update(s);
2687 break;
2689 case 0x2c: /* GPIO_MASKIT */
2690 s->mask = value;
2691 break;
2693 case 0x30: /* GPIO_DEBOUNCING_REG */
2694 s->debounce = value & 0x1ff;
2695 break;
2697 case 0x00: /* INPUT_LATCH */
2698 case 0x10: /* KBR_LATCH */
2699 case 0x20: /* KBD_INT */
2700 case 0x24: /* GPIO_INT */
2701 case 0x34: /* GPIO_LATCH_REG */
2702 OMAP_RO_REG(addr);
2703 return;
2705 default:
2706 OMAP_BAD_REG(addr);
2707 return;
2711 static CPUReadMemoryFunc *omap_mpuio_readfn[] = {
2712 omap_badwidth_read16,
2713 omap_mpuio_read,
2714 omap_badwidth_read16,
2717 static CPUWriteMemoryFunc *omap_mpuio_writefn[] = {
2718 omap_badwidth_write16,
2719 omap_mpuio_write,
2720 omap_badwidth_write16,
2723 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2725 s->inputs = 0;
2726 s->outputs = 0;
2727 s->dir = ~0;
2728 s->event = 0;
2729 s->edge = 0;
2730 s->kbd_mask = 0;
2731 s->mask = 0;
2732 s->debounce = 0;
2733 s->latch = 0;
2734 s->ints = 0;
2735 s->row_latch = 0x1f;
2736 s->clk = 1;
2739 static void omap_mpuio_onoff(void *opaque, int line, int on)
2741 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2743 s->clk = on;
2744 if (on)
2745 omap_mpuio_kbd_update(s);
2748 struct omap_mpuio_s *omap_mpuio_init(target_phys_addr_t base,
2749 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2750 omap_clk clk)
2752 int iomemtype;
2753 struct omap_mpuio_s *s = (struct omap_mpuio_s *)
2754 qemu_mallocz(sizeof(struct omap_mpuio_s));
2756 s->irq = gpio_int;
2757 s->kbd_irq = kbd_int;
2758 s->wakeup = wakeup;
2759 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2760 omap_mpuio_reset(s);
2762 iomemtype = cpu_register_io_memory(0, omap_mpuio_readfn,
2763 omap_mpuio_writefn, s);
2764 cpu_register_physical_memory(base, 0x800, iomemtype);
2766 omap_clk_adduser(clk, qemu_allocate_irqs(omap_mpuio_onoff, s, 1)[0]);
2768 return s;
2771 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2773 return s->in;
2776 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2778 if (line >= 16 || line < 0)
2779 cpu_abort(cpu_single_env, "%s: No GPIO line %i\n", __FUNCTION__, line);
2780 s->handler[line] = handler;
2783 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2785 if (row >= 5 || row < 0)
2786 cpu_abort(cpu_single_env, "%s: No key %i-%i\n",
2787 __FUNCTION__, col, row);
2789 if (down)
2790 s->buttons[row] |= 1 << col;
2791 else
2792 s->buttons[row] &= ~(1 << col);
2794 omap_mpuio_kbd_update(s);
2797 /* General-Purpose I/O */
2798 struct omap_gpio_s {
2799 qemu_irq irq;
2800 qemu_irq *in;
2801 qemu_irq handler[16];
2803 uint16_t inputs;
2804 uint16_t outputs;
2805 uint16_t dir;
2806 uint16_t edge;
2807 uint16_t mask;
2808 uint16_t ints;
2809 uint16_t pins;
2812 static void omap_gpio_set(void *opaque, int line, int level)
2814 struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
2815 uint16_t prev = s->inputs;
2817 if (level)
2818 s->inputs |= 1 << line;
2819 else
2820 s->inputs &= ~(1 << line);
2822 if (((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) &
2823 (1 << line) & s->dir & ~s->mask) {
2824 s->ints |= 1 << line;
2825 qemu_irq_raise(s->irq);
2829 static uint32_t omap_gpio_read(void *opaque, target_phys_addr_t addr)
2831 struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
2832 int offset = addr & OMAP_MPUI_REG_MASK;
2834 switch (offset) {
2835 case 0x00: /* DATA_INPUT */
2836 return s->inputs & s->pins;
2838 case 0x04: /* DATA_OUTPUT */
2839 return s->outputs;
2841 case 0x08: /* DIRECTION_CONTROL */
2842 return s->dir;
2844 case 0x0c: /* INTERRUPT_CONTROL */
2845 return s->edge;
2847 case 0x10: /* INTERRUPT_MASK */
2848 return s->mask;
2850 case 0x14: /* INTERRUPT_STATUS */
2851 return s->ints;
2853 case 0x18: /* PIN_CONTROL (not in OMAP310) */
2854 OMAP_BAD_REG(addr);
2855 return s->pins;
2858 OMAP_BAD_REG(addr);
2859 return 0;
2862 static void omap_gpio_write(void *opaque, target_phys_addr_t addr,
2863 uint32_t value)
2865 struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
2866 int offset = addr & OMAP_MPUI_REG_MASK;
2867 uint16_t diff;
2868 int ln;
2870 switch (offset) {
2871 case 0x00: /* DATA_INPUT */
2872 OMAP_RO_REG(addr);
2873 return;
2875 case 0x04: /* DATA_OUTPUT */
2876 diff = (s->outputs ^ value) & ~s->dir;
2877 s->outputs = value;
2878 while ((ln = ffs(diff))) {
2879 ln --;
2880 if (s->handler[ln])
2881 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2882 diff &= ~(1 << ln);
2884 break;
2886 case 0x08: /* DIRECTION_CONTROL */
2887 diff = s->outputs & (s->dir ^ value);
2888 s->dir = value;
2890 value = s->outputs & ~s->dir;
2891 while ((ln = ffs(diff))) {
2892 ln --;
2893 if (s->handler[ln])
2894 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2895 diff &= ~(1 << ln);
2897 break;
2899 case 0x0c: /* INTERRUPT_CONTROL */
2900 s->edge = value;
2901 break;
2903 case 0x10: /* INTERRUPT_MASK */
2904 s->mask = value;
2905 break;
2907 case 0x14: /* INTERRUPT_STATUS */
2908 s->ints &= ~value;
2909 if (!s->ints)
2910 qemu_irq_lower(s->irq);
2911 break;
2913 case 0x18: /* PIN_CONTROL (not in OMAP310 TRM) */
2914 OMAP_BAD_REG(addr);
2915 s->pins = value;
2916 break;
2918 default:
2919 OMAP_BAD_REG(addr);
2920 return;
2924 /* *Some* sources say the memory region is 32-bit. */
2925 static CPUReadMemoryFunc *omap_gpio_readfn[] = {
2926 omap_badwidth_read16,
2927 omap_gpio_read,
2928 omap_badwidth_read16,
2931 static CPUWriteMemoryFunc *omap_gpio_writefn[] = {
2932 omap_badwidth_write16,
2933 omap_gpio_write,
2934 omap_badwidth_write16,
2937 static void omap_gpio_reset(struct omap_gpio_s *s)
2939 s->inputs = 0;
2940 s->outputs = ~0;
2941 s->dir = ~0;
2942 s->edge = ~0;
2943 s->mask = ~0;
2944 s->ints = 0;
2945 s->pins = ~0;
2948 struct omap_gpio_s *omap_gpio_init(target_phys_addr_t base,
2949 qemu_irq irq, omap_clk clk)
2951 int iomemtype;
2952 struct omap_gpio_s *s = (struct omap_gpio_s *)
2953 qemu_mallocz(sizeof(struct omap_gpio_s));
2955 s->irq = irq;
2956 s->in = qemu_allocate_irqs(omap_gpio_set, s, 16);
2957 omap_gpio_reset(s);
2959 iomemtype = cpu_register_io_memory(0, omap_gpio_readfn,
2960 omap_gpio_writefn, s);
2961 cpu_register_physical_memory(base, 0x1000, iomemtype);
2963 return s;
2966 qemu_irq *omap_gpio_in_get(struct omap_gpio_s *s)
2968 return s->in;
2971 void omap_gpio_out_set(struct omap_gpio_s *s, int line, qemu_irq handler)
2973 if (line >= 16 || line < 0)
2974 cpu_abort(cpu_single_env, "%s: No GPIO line %i\n", __FUNCTION__, line);
2975 s->handler[line] = handler;
2978 /* MicroWire Interface */
2979 struct omap_uwire_s {
2980 qemu_irq txirq;
2981 qemu_irq rxirq;
2982 qemu_irq txdrq;
2984 uint16_t txbuf;
2985 uint16_t rxbuf;
2986 uint16_t control;
2987 uint16_t setup[5];
2989 struct uwire_slave_s *chip[4];
2992 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2994 int chipselect = (s->control >> 10) & 3; /* INDEX */
2995 struct uwire_slave_s *slave = s->chip[chipselect];
2997 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
2998 if (s->control & (1 << 12)) /* CS_CMD */
2999 if (slave && slave->send)
3000 slave->send(slave->opaque,
3001 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
3002 s->control &= ~(1 << 14); /* CSRB */
3003 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
3004 * a DRQ. When is the level IRQ supposed to be reset? */
3007 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
3008 if (s->control & (1 << 12)) /* CS_CMD */
3009 if (slave && slave->receive)
3010 s->rxbuf = slave->receive(slave->opaque);
3011 s->control |= 1 << 15; /* RDRB */
3012 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
3013 * a DRQ. When is the level IRQ supposed to be reset? */
3017 static uint32_t omap_uwire_read(void *opaque, target_phys_addr_t addr)
3019 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
3020 int offset = addr & OMAP_MPUI_REG_MASK;
3022 switch (offset) {
3023 case 0x00: /* RDR */
3024 s->control &= ~(1 << 15); /* RDRB */
3025 return s->rxbuf;
3027 case 0x04: /* CSR */
3028 return s->control;
3030 case 0x08: /* SR1 */
3031 return s->setup[0];
3032 case 0x0c: /* SR2 */
3033 return s->setup[1];
3034 case 0x10: /* SR3 */
3035 return s->setup[2];
3036 case 0x14: /* SR4 */
3037 return s->setup[3];
3038 case 0x18: /* SR5 */
3039 return s->setup[4];
3042 OMAP_BAD_REG(addr);
3043 return 0;
3046 static void omap_uwire_write(void *opaque, target_phys_addr_t addr,
3047 uint32_t value)
3049 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
3050 int offset = addr & OMAP_MPUI_REG_MASK;
3052 switch (offset) {
3053 case 0x00: /* TDR */
3054 s->txbuf = value; /* TD */
3055 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
3056 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
3057 (s->control & (1 << 12)))) { /* CS_CMD */
3058 s->control |= 1 << 14; /* CSRB */
3059 omap_uwire_transfer_start(s);
3061 break;
3063 case 0x04: /* CSR */
3064 s->control = value & 0x1fff;
3065 if (value & (1 << 13)) /* START */
3066 omap_uwire_transfer_start(s);
3067 break;
3069 case 0x08: /* SR1 */
3070 s->setup[0] = value & 0x003f;
3071 break;
3073 case 0x0c: /* SR2 */
3074 s->setup[1] = value & 0x0fc0;
3075 break;
3077 case 0x10: /* SR3 */
3078 s->setup[2] = value & 0x0003;
3079 break;
3081 case 0x14: /* SR4 */
3082 s->setup[3] = value & 0x0001;
3083 break;
3085 case 0x18: /* SR5 */
3086 s->setup[4] = value & 0x000f;
3087 break;
3089 default:
3090 OMAP_BAD_REG(addr);
3091 return;
3095 static CPUReadMemoryFunc *omap_uwire_readfn[] = {
3096 omap_badwidth_read16,
3097 omap_uwire_read,
3098 omap_badwidth_read16,
3101 static CPUWriteMemoryFunc *omap_uwire_writefn[] = {
3102 omap_badwidth_write16,
3103 omap_uwire_write,
3104 omap_badwidth_write16,
3107 static void omap_uwire_reset(struct omap_uwire_s *s)
3109 s->control = 0;
3110 s->setup[0] = 0;
3111 s->setup[1] = 0;
3112 s->setup[2] = 0;
3113 s->setup[3] = 0;
3114 s->setup[4] = 0;
3117 struct omap_uwire_s *omap_uwire_init(target_phys_addr_t base,
3118 qemu_irq *irq, qemu_irq dma, omap_clk clk)
3120 int iomemtype;
3121 struct omap_uwire_s *s = (struct omap_uwire_s *)
3122 qemu_mallocz(sizeof(struct omap_uwire_s));
3124 s->txirq = irq[0];
3125 s->rxirq = irq[1];
3126 s->txdrq = dma;
3127 omap_uwire_reset(s);
3129 iomemtype = cpu_register_io_memory(0, omap_uwire_readfn,
3130 omap_uwire_writefn, s);
3131 cpu_register_physical_memory(base, 0x800, iomemtype);
3133 return s;
3136 void omap_uwire_attach(struct omap_uwire_s *s,
3137 struct uwire_slave_s *slave, int chipselect)
3139 if (chipselect < 0 || chipselect > 3) {
3140 fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
3141 exit(-1);
3144 s->chip[chipselect] = slave;
3147 /* Pseudonoise Pulse-Width Light Modulator */
3148 static void omap_pwl_update(struct omap_mpu_state_s *s)
3150 int output = (s->pwl.clk && s->pwl.enable) ? s->pwl.level : 0;
3152 if (output != s->pwl.output) {
3153 s->pwl.output = output;
3154 printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
3158 static uint32_t omap_pwl_read(void *opaque, target_phys_addr_t addr)
3160 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3161 int offset = addr & OMAP_MPUI_REG_MASK;
3163 switch (offset) {
3164 case 0x00: /* PWL_LEVEL */
3165 return s->pwl.level;
3166 case 0x04: /* PWL_CTRL */
3167 return s->pwl.enable;
3169 OMAP_BAD_REG(addr);
3170 return 0;
3173 static void omap_pwl_write(void *opaque, target_phys_addr_t addr,
3174 uint32_t value)
3176 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3177 int offset = addr & OMAP_MPUI_REG_MASK;
3179 switch (offset) {
3180 case 0x00: /* PWL_LEVEL */
3181 s->pwl.level = value;
3182 omap_pwl_update(s);
3183 break;
3184 case 0x04: /* PWL_CTRL */
3185 s->pwl.enable = value & 1;
3186 omap_pwl_update(s);
3187 break;
3188 default:
3189 OMAP_BAD_REG(addr);
3190 return;
3194 static CPUReadMemoryFunc *omap_pwl_readfn[] = {
3195 omap_pwl_read,
3196 omap_badwidth_read8,
3197 omap_badwidth_read8,
3200 static CPUWriteMemoryFunc *omap_pwl_writefn[] = {
3201 omap_pwl_write,
3202 omap_badwidth_write8,
3203 omap_badwidth_write8,
3206 static void omap_pwl_reset(struct omap_mpu_state_s *s)
3208 s->pwl.output = 0;
3209 s->pwl.level = 0;
3210 s->pwl.enable = 0;
3211 s->pwl.clk = 1;
3212 omap_pwl_update(s);
3215 static void omap_pwl_clk_update(void *opaque, int line, int on)
3217 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3219 s->pwl.clk = on;
3220 omap_pwl_update(s);
3223 static void omap_pwl_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
3224 omap_clk clk)
3226 int iomemtype;
3228 omap_pwl_reset(s);
3230 iomemtype = cpu_register_io_memory(0, omap_pwl_readfn,
3231 omap_pwl_writefn, s);
3232 cpu_register_physical_memory(base, 0x800, iomemtype);
3234 omap_clk_adduser(clk, qemu_allocate_irqs(omap_pwl_clk_update, s, 1)[0]);
3237 /* Pulse-Width Tone module */
3238 static uint32_t omap_pwt_read(void *opaque, target_phys_addr_t addr)
3240 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3241 int offset = addr & OMAP_MPUI_REG_MASK;
3243 switch (offset) {
3244 case 0x00: /* FRC */
3245 return s->pwt.frc;
3246 case 0x04: /* VCR */
3247 return s->pwt.vrc;
3248 case 0x08: /* GCR */
3249 return s->pwt.gcr;
3251 OMAP_BAD_REG(addr);
3252 return 0;
3255 static void omap_pwt_write(void *opaque, target_phys_addr_t addr,
3256 uint32_t value)
3258 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3259 int offset = addr & OMAP_MPUI_REG_MASK;
3261 switch (offset) {
3262 case 0x00: /* FRC */
3263 s->pwt.frc = value & 0x3f;
3264 break;
3265 case 0x04: /* VRC */
3266 if ((value ^ s->pwt.vrc) & 1) {
3267 if (value & 1)
3268 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
3269 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
3270 ((omap_clk_getrate(s->pwt.clk) >> 3) /
3271 /* Pre-multiplexer divider */
3272 ((s->pwt.gcr & 2) ? 1 : 154) /
3273 /* Octave multiplexer */
3274 (2 << (value & 3)) *
3275 /* 101/107 divider */
3276 ((value & (1 << 2)) ? 101 : 107) *
3277 /* 49/55 divider */
3278 ((value & (1 << 3)) ? 49 : 55) *
3279 /* 50/63 divider */
3280 ((value & (1 << 4)) ? 50 : 63) *
3281 /* 80/127 divider */
3282 ((value & (1 << 5)) ? 80 : 127) /
3283 (107 * 55 * 63 * 127)));
3284 else
3285 printf("%s: silence!\n", __FUNCTION__);
3287 s->pwt.vrc = value & 0x7f;
3288 break;
3289 case 0x08: /* GCR */
3290 s->pwt.gcr = value & 3;
3291 break;
3292 default:
3293 OMAP_BAD_REG(addr);
3294 return;
3298 static CPUReadMemoryFunc *omap_pwt_readfn[] = {
3299 omap_pwt_read,
3300 omap_badwidth_read8,
3301 omap_badwidth_read8,
3304 static CPUWriteMemoryFunc *omap_pwt_writefn[] = {
3305 omap_pwt_write,
3306 omap_badwidth_write8,
3307 omap_badwidth_write8,
3310 static void omap_pwt_reset(struct omap_mpu_state_s *s)
3312 s->pwt.frc = 0;
3313 s->pwt.vrc = 0;
3314 s->pwt.gcr = 0;
3317 static void omap_pwt_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
3318 omap_clk clk)
3320 int iomemtype;
3322 s->pwt.clk = clk;
3323 omap_pwt_reset(s);
3325 iomemtype = cpu_register_io_memory(0, omap_pwt_readfn,
3326 omap_pwt_writefn, s);
3327 cpu_register_physical_memory(base, 0x800, iomemtype);
3330 /* Real-time Clock module */
3331 struct omap_rtc_s {
3332 qemu_irq irq;
3333 qemu_irq alarm;
3334 QEMUTimer *clk;
3336 uint8_t interrupts;
3337 uint8_t status;
3338 int16_t comp_reg;
3339 int running;
3340 int pm_am;
3341 int auto_comp;
3342 int round;
3343 struct tm alarm_tm;
3344 time_t alarm_ti;
3346 struct tm current_tm;
3347 time_t ti;
3348 uint64_t tick;
3351 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
3353 /* s->alarm is level-triggered */
3354 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
3357 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
3359 s->alarm_ti = mktimegm(&s->alarm_tm);
3360 if (s->alarm_ti == -1)
3361 printf("%s: conversion failed\n", __FUNCTION__);
3364 static inline uint8_t omap_rtc_bcd(int num)
3366 return ((num / 10) << 4) | (num % 10);
3369 static inline int omap_rtc_bin(uint8_t num)
3371 return (num & 15) + 10 * (num >> 4);
3374 static uint32_t omap_rtc_read(void *opaque, target_phys_addr_t addr)
3376 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
3377 int offset = addr & OMAP_MPUI_REG_MASK;
3378 uint8_t i;
3380 switch (offset) {
3381 case 0x00: /* SECONDS_REG */
3382 return omap_rtc_bcd(s->current_tm.tm_sec);
3384 case 0x04: /* MINUTES_REG */
3385 return omap_rtc_bcd(s->current_tm.tm_min);
3387 case 0x08: /* HOURS_REG */
3388 if (s->pm_am)
3389 return ((s->current_tm.tm_hour > 11) << 7) |
3390 omap_rtc_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
3391 else
3392 return omap_rtc_bcd(s->current_tm.tm_hour);
3394 case 0x0c: /* DAYS_REG */
3395 return omap_rtc_bcd(s->current_tm.tm_mday);
3397 case 0x10: /* MONTHS_REG */
3398 return omap_rtc_bcd(s->current_tm.tm_mon + 1);
3400 case 0x14: /* YEARS_REG */
3401 return omap_rtc_bcd(s->current_tm.tm_year % 100);
3403 case 0x18: /* WEEK_REG */
3404 return s->current_tm.tm_wday;
3406 case 0x20: /* ALARM_SECONDS_REG */
3407 return omap_rtc_bcd(s->alarm_tm.tm_sec);
3409 case 0x24: /* ALARM_MINUTES_REG */
3410 return omap_rtc_bcd(s->alarm_tm.tm_min);
3412 case 0x28: /* ALARM_HOURS_REG */
3413 if (s->pm_am)
3414 return ((s->alarm_tm.tm_hour > 11) << 7) |
3415 omap_rtc_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
3416 else
3417 return omap_rtc_bcd(s->alarm_tm.tm_hour);
3419 case 0x2c: /* ALARM_DAYS_REG */
3420 return omap_rtc_bcd(s->alarm_tm.tm_mday);
3422 case 0x30: /* ALARM_MONTHS_REG */
3423 return omap_rtc_bcd(s->alarm_tm.tm_mon + 1);
3425 case 0x34: /* ALARM_YEARS_REG */
3426 return omap_rtc_bcd(s->alarm_tm.tm_year % 100);
3428 case 0x40: /* RTC_CTRL_REG */
3429 return (s->pm_am << 3) | (s->auto_comp << 2) |
3430 (s->round << 1) | s->running;
3432 case 0x44: /* RTC_STATUS_REG */
3433 i = s->status;
3434 s->status &= ~0x3d;
3435 return i;
3437 case 0x48: /* RTC_INTERRUPTS_REG */
3438 return s->interrupts;
3440 case 0x4c: /* RTC_COMP_LSB_REG */
3441 return ((uint16_t) s->comp_reg) & 0xff;
3443 case 0x50: /* RTC_COMP_MSB_REG */
3444 return ((uint16_t) s->comp_reg) >> 8;
3447 OMAP_BAD_REG(addr);
3448 return 0;
3451 static void omap_rtc_write(void *opaque, target_phys_addr_t addr,
3452 uint32_t value)
3454 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
3455 int offset = addr & OMAP_MPUI_REG_MASK;
3456 struct tm new_tm;
3457 time_t ti[2];
3459 switch (offset) {
3460 case 0x00: /* SECONDS_REG */
3461 #ifdef ALMDEBUG
3462 printf("RTC SEC_REG <-- %02x\n", value);
3463 #endif
3464 s->ti -= s->current_tm.tm_sec;
3465 s->ti += omap_rtc_bin(value);
3466 return;
3468 case 0x04: /* MINUTES_REG */
3469 #ifdef ALMDEBUG
3470 printf("RTC MIN_REG <-- %02x\n", value);
3471 #endif
3472 s->ti -= s->current_tm.tm_min * 60;
3473 s->ti += omap_rtc_bin(value) * 60;
3474 return;
3476 case 0x08: /* HOURS_REG */
3477 #ifdef ALMDEBUG
3478 printf("RTC HRS_REG <-- %02x\n", value);
3479 #endif
3480 s->ti -= s->current_tm.tm_hour * 3600;
3481 if (s->pm_am) {
3482 s->ti += (omap_rtc_bin(value & 0x3f) & 12) * 3600;
3483 s->ti += ((value >> 7) & 1) * 43200;
3484 } else
3485 s->ti += omap_rtc_bin(value & 0x3f) * 3600;
3486 return;
3488 case 0x0c: /* DAYS_REG */
3489 #ifdef ALMDEBUG
3490 printf("RTC DAY_REG <-- %02x\n", value);
3491 #endif
3492 s->ti -= s->current_tm.tm_mday * 86400;
3493 s->ti += omap_rtc_bin(value) * 86400;
3494 return;
3496 case 0x10: /* MONTHS_REG */
3497 #ifdef ALMDEBUG
3498 printf("RTC MTH_REG <-- %02x\n", value);
3499 #endif
3500 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
3501 new_tm.tm_mon = omap_rtc_bin(value);
3502 ti[0] = mktimegm(&s->current_tm);
3503 ti[1] = mktimegm(&new_tm);
3505 if (ti[0] != -1 && ti[1] != -1) {
3506 s->ti -= ti[0];
3507 s->ti += ti[1];
3508 } else {
3509 /* A less accurate version */
3510 s->ti -= s->current_tm.tm_mon * 2592000;
3511 s->ti += omap_rtc_bin(value) * 2592000;
3513 return;
3515 case 0x14: /* YEARS_REG */
3516 #ifdef ALMDEBUG
3517 printf("RTC YRS_REG <-- %02x\n", value);
3518 #endif
3519 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
3520 new_tm.tm_year += omap_rtc_bin(value) - (new_tm.tm_year % 100);
3521 ti[0] = mktimegm(&s->current_tm);
3522 ti[1] = mktimegm(&new_tm);
3524 if (ti[0] != -1 && ti[1] != -1) {
3525 s->ti -= ti[0];
3526 s->ti += ti[1];
3527 } else {
3528 /* A less accurate version */
3529 s->ti -= (s->current_tm.tm_year % 100) * 31536000;
3530 s->ti += omap_rtc_bin(value) * 31536000;
3532 return;
3534 case 0x18: /* WEEK_REG */
3535 return; /* Ignored */
3537 case 0x20: /* ALARM_SECONDS_REG */
3538 #ifdef ALMDEBUG
3539 printf("ALM SEC_REG <-- %02x\n", value);
3540 #endif
3541 s->alarm_tm.tm_sec = omap_rtc_bin(value);
3542 omap_rtc_alarm_update(s);
3543 return;
3545 case 0x24: /* ALARM_MINUTES_REG */
3546 #ifdef ALMDEBUG
3547 printf("ALM MIN_REG <-- %02x\n", value);
3548 #endif
3549 s->alarm_tm.tm_min = omap_rtc_bin(value);
3550 omap_rtc_alarm_update(s);
3551 return;
3553 case 0x28: /* ALARM_HOURS_REG */
3554 #ifdef ALMDEBUG
3555 printf("ALM HRS_REG <-- %02x\n", value);
3556 #endif
3557 if (s->pm_am)
3558 s->alarm_tm.tm_hour =
3559 ((omap_rtc_bin(value & 0x3f)) % 12) +
3560 ((value >> 7) & 1) * 12;
3561 else
3562 s->alarm_tm.tm_hour = omap_rtc_bin(value);
3563 omap_rtc_alarm_update(s);
3564 return;
3566 case 0x2c: /* ALARM_DAYS_REG */
3567 #ifdef ALMDEBUG
3568 printf("ALM DAY_REG <-- %02x\n", value);
3569 #endif
3570 s->alarm_tm.tm_mday = omap_rtc_bin(value);
3571 omap_rtc_alarm_update(s);
3572 return;
3574 case 0x30: /* ALARM_MONTHS_REG */
3575 #ifdef ALMDEBUG
3576 printf("ALM MON_REG <-- %02x\n", value);
3577 #endif
3578 s->alarm_tm.tm_mon = omap_rtc_bin(value);
3579 omap_rtc_alarm_update(s);
3580 return;
3582 case 0x34: /* ALARM_YEARS_REG */
3583 #ifdef ALMDEBUG
3584 printf("ALM YRS_REG <-- %02x\n", value);
3585 #endif
3586 s->alarm_tm.tm_year = omap_rtc_bin(value);
3587 omap_rtc_alarm_update(s);
3588 return;
3590 case 0x40: /* RTC_CTRL_REG */
3591 #ifdef ALMDEBUG
3592 printf("RTC CONTROL <-- %02x\n", value);
3593 #endif
3594 s->pm_am = (value >> 3) & 1;
3595 s->auto_comp = (value >> 2) & 1;
3596 s->round = (value >> 1) & 1;
3597 s->running = value & 1;
3598 s->status &= 0xfd;
3599 s->status |= s->running << 1;
3600 return;
3602 case 0x44: /* RTC_STATUS_REG */
3603 #ifdef ALMDEBUG
3604 printf("RTC STATUSL <-- %02x\n", value);
3605 #endif
3606 s->status &= ~((value & 0xc0) ^ 0x80);
3607 omap_rtc_interrupts_update(s);
3608 return;
3610 case 0x48: /* RTC_INTERRUPTS_REG */
3611 #ifdef ALMDEBUG
3612 printf("RTC INTRS <-- %02x\n", value);
3613 #endif
3614 s->interrupts = value;
3615 return;
3617 case 0x4c: /* RTC_COMP_LSB_REG */
3618 #ifdef ALMDEBUG
3619 printf("RTC COMPLSB <-- %02x\n", value);
3620 #endif
3621 s->comp_reg &= 0xff00;
3622 s->comp_reg |= 0x00ff & value;
3623 return;
3625 case 0x50: /* RTC_COMP_MSB_REG */
3626 #ifdef ALMDEBUG
3627 printf("RTC COMPMSB <-- %02x\n", value);
3628 #endif
3629 s->comp_reg &= 0x00ff;
3630 s->comp_reg |= 0xff00 & (value << 8);
3631 return;
3633 default:
3634 OMAP_BAD_REG(addr);
3635 return;
3639 static CPUReadMemoryFunc *omap_rtc_readfn[] = {
3640 omap_rtc_read,
3641 omap_badwidth_read8,
3642 omap_badwidth_read8,
3645 static CPUWriteMemoryFunc *omap_rtc_writefn[] = {
3646 omap_rtc_write,
3647 omap_badwidth_write8,
3648 omap_badwidth_write8,
3651 static void omap_rtc_tick(void *opaque)
3653 struct omap_rtc_s *s = opaque;
3655 if (s->round) {
3656 /* Round to nearest full minute. */
3657 if (s->current_tm.tm_sec < 30)
3658 s->ti -= s->current_tm.tm_sec;
3659 else
3660 s->ti += 60 - s->current_tm.tm_sec;
3662 s->round = 0;
3665 memcpy(&s->current_tm, localtime(&s->ti), sizeof(s->current_tm));
3667 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
3668 s->status |= 0x40;
3669 omap_rtc_interrupts_update(s);
3672 if (s->interrupts & 0x04)
3673 switch (s->interrupts & 3) {
3674 case 0:
3675 s->status |= 0x04;
3676 qemu_irq_pulse(s->irq);
3677 break;
3678 case 1:
3679 if (s->current_tm.tm_sec)
3680 break;
3681 s->status |= 0x08;
3682 qemu_irq_pulse(s->irq);
3683 break;
3684 case 2:
3685 if (s->current_tm.tm_sec || s->current_tm.tm_min)
3686 break;
3687 s->status |= 0x10;
3688 qemu_irq_pulse(s->irq);
3689 break;
3690 case 3:
3691 if (s->current_tm.tm_sec ||
3692 s->current_tm.tm_min || s->current_tm.tm_hour)
3693 break;
3694 s->status |= 0x20;
3695 qemu_irq_pulse(s->irq);
3696 break;
3699 /* Move on */
3700 if (s->running)
3701 s->ti ++;
3702 s->tick += 1000;
3705 * Every full hour add a rough approximation of the compensation
3706 * register to the 32kHz Timer (which drives the RTC) value.
3708 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
3709 s->tick += s->comp_reg * 1000 / 32768;
3711 qemu_mod_timer(s->clk, s->tick);
3714 static void omap_rtc_reset(struct omap_rtc_s *s)
3716 struct tm tm;
3718 s->interrupts = 0;
3719 s->comp_reg = 0;
3720 s->running = 0;
3721 s->pm_am = 0;
3722 s->auto_comp = 0;
3723 s->round = 0;
3724 s->tick = qemu_get_clock(rt_clock);
3725 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
3726 s->alarm_tm.tm_mday = 0x01;
3727 s->status = 1 << 7;
3728 qemu_get_timedate(&tm, 0);
3729 s->ti = mktimegm(&tm);
3731 omap_rtc_alarm_update(s);
3732 omap_rtc_tick(s);
3735 struct omap_rtc_s *omap_rtc_init(target_phys_addr_t base,
3736 qemu_irq *irq, omap_clk clk)
3738 int iomemtype;
3739 struct omap_rtc_s *s = (struct omap_rtc_s *)
3740 qemu_mallocz(sizeof(struct omap_rtc_s));
3742 s->irq = irq[0];
3743 s->alarm = irq[1];
3744 s->clk = qemu_new_timer(rt_clock, omap_rtc_tick, s);
3746 omap_rtc_reset(s);
3748 iomemtype = cpu_register_io_memory(0, omap_rtc_readfn,
3749 omap_rtc_writefn, s);
3750 cpu_register_physical_memory(base, 0x800, iomemtype);
3752 return s;
3755 /* Multi-channel Buffered Serial Port interfaces */
3756 struct omap_mcbsp_s {
3757 qemu_irq txirq;
3758 qemu_irq rxirq;
3759 qemu_irq txdrq;
3760 qemu_irq rxdrq;
3762 uint16_t spcr[2];
3763 uint16_t rcr[2];
3764 uint16_t xcr[2];
3765 uint16_t srgr[2];
3766 uint16_t mcr[2];
3767 uint16_t pcr;
3768 uint16_t rcer[8];
3769 uint16_t xcer[8];
3770 int tx_rate;
3771 int rx_rate;
3772 int tx_req;
3773 int rx_req;
3775 struct i2s_codec_s *codec;
3776 QEMUTimer *source_timer;
3777 QEMUTimer *sink_timer;
3780 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
3782 int irq;
3784 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
3785 case 0:
3786 irq = (s->spcr[0] >> 1) & 1; /* RRDY */
3787 break;
3788 case 3:
3789 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
3790 break;
3791 default:
3792 irq = 0;
3793 break;
3796 if (irq)
3797 qemu_irq_pulse(s->rxirq);
3799 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
3800 case 0:
3801 irq = (s->spcr[1] >> 1) & 1; /* XRDY */
3802 break;
3803 case 3:
3804 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
3805 break;
3806 default:
3807 irq = 0;
3808 break;
3811 if (irq)
3812 qemu_irq_pulse(s->txirq);
3815 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3817 if ((s->spcr[0] >> 1) & 1) /* RRDY */
3818 s->spcr[0] |= 1 << 2; /* RFULL */
3819 s->spcr[0] |= 1 << 1; /* RRDY */
3820 qemu_irq_raise(s->rxdrq);
3821 omap_mcbsp_intr_update(s);
3824 static void omap_mcbsp_source_tick(void *opaque)
3826 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3827 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3829 if (!s->rx_rate)
3830 return;
3831 if (s->rx_req)
3832 printf("%s: Rx FIFO overrun\n", __FUNCTION__);
3834 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3836 omap_mcbsp_rx_newdata(s);
3837 qemu_mod_timer(s->source_timer, qemu_get_clock(vm_clock) + ticks_per_sec);
3840 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3842 if (!s->codec || !s->codec->rts)
3843 omap_mcbsp_source_tick(s);
3844 else if (s->codec->in.len) {
3845 s->rx_req = s->codec->in.len;
3846 omap_mcbsp_rx_newdata(s);
3850 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3852 qemu_del_timer(s->source_timer);
3855 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3857 s->spcr[0] &= ~(1 << 1); /* RRDY */
3858 qemu_irq_lower(s->rxdrq);
3859 omap_mcbsp_intr_update(s);
3862 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3864 s->spcr[1] |= 1 << 1; /* XRDY */
3865 qemu_irq_raise(s->txdrq);
3866 omap_mcbsp_intr_update(s);
3869 static void omap_mcbsp_sink_tick(void *opaque)
3871 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3872 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3874 if (!s->tx_rate)
3875 return;
3876 if (s->tx_req)
3877 printf("%s: Tx FIFO underrun\n", __FUNCTION__);
3879 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3881 omap_mcbsp_tx_newdata(s);
3882 qemu_mod_timer(s->sink_timer, qemu_get_clock(vm_clock) + ticks_per_sec);
3885 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3887 if (!s->codec || !s->codec->cts)
3888 omap_mcbsp_sink_tick(s);
3889 else if (s->codec->out.size) {
3890 s->tx_req = s->codec->out.size;
3891 omap_mcbsp_tx_newdata(s);
3895 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3897 s->spcr[1] &= ~(1 << 1); /* XRDY */
3898 qemu_irq_lower(s->txdrq);
3899 omap_mcbsp_intr_update(s);
3900 if (s->codec && s->codec->cts)
3901 s->codec->tx_swallow(s->codec->opaque);
3904 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3906 s->tx_req = 0;
3907 omap_mcbsp_tx_done(s);
3908 qemu_del_timer(s->sink_timer);
3911 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3913 int prev_rx_rate, prev_tx_rate;
3914 int rx_rate = 0, tx_rate = 0;
3915 int cpu_rate = 1500000; /* XXX */
3917 /* TODO: check CLKSTP bit */
3918 if (s->spcr[1] & (1 << 6)) { /* GRST */
3919 if (s->spcr[0] & (1 << 0)) { /* RRST */
3920 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3921 (s->pcr & (1 << 8))) { /* CLKRM */
3922 if (~s->pcr & (1 << 7)) /* SCLKME */
3923 rx_rate = cpu_rate /
3924 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3925 } else
3926 if (s->codec)
3927 rx_rate = s->codec->rx_rate;
3930 if (s->spcr[1] & (1 << 0)) { /* XRST */
3931 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3932 (s->pcr & (1 << 9))) { /* CLKXM */
3933 if (~s->pcr & (1 << 7)) /* SCLKME */
3934 tx_rate = cpu_rate /
3935 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3936 } else
3937 if (s->codec)
3938 tx_rate = s->codec->tx_rate;
3941 prev_tx_rate = s->tx_rate;
3942 prev_rx_rate = s->rx_rate;
3943 s->tx_rate = tx_rate;
3944 s->rx_rate = rx_rate;
3946 if (s->codec)
3947 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3949 if (!prev_tx_rate && tx_rate)
3950 omap_mcbsp_tx_start(s);
3951 else if (s->tx_rate && !tx_rate)
3952 omap_mcbsp_tx_stop(s);
3954 if (!prev_rx_rate && rx_rate)
3955 omap_mcbsp_rx_start(s);
3956 else if (prev_tx_rate && !tx_rate)
3957 omap_mcbsp_rx_stop(s);
3960 static uint32_t omap_mcbsp_read(void *opaque, target_phys_addr_t addr)
3962 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3963 int offset = addr & OMAP_MPUI_REG_MASK;
3964 uint16_t ret;
3966 switch (offset) {
3967 case 0x00: /* DRR2 */
3968 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
3969 return 0x0000;
3970 /* Fall through. */
3971 case 0x02: /* DRR1 */
3972 if (s->rx_req < 2) {
3973 printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3974 omap_mcbsp_rx_done(s);
3975 } else {
3976 s->tx_req -= 2;
3977 if (s->codec && s->codec->in.len >= 2) {
3978 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3979 ret |= s->codec->in.fifo[s->codec->in.start ++];
3980 s->codec->in.len -= 2;
3981 } else
3982 ret = 0x0000;
3983 if (!s->tx_req)
3984 omap_mcbsp_rx_done(s);
3985 return ret;
3987 return 0x0000;
3989 case 0x04: /* DXR2 */
3990 case 0x06: /* DXR1 */
3991 return 0x0000;
3993 case 0x08: /* SPCR2 */
3994 return s->spcr[1];
3995 case 0x0a: /* SPCR1 */
3996 return s->spcr[0];
3997 case 0x0c: /* RCR2 */
3998 return s->rcr[1];
3999 case 0x0e: /* RCR1 */
4000 return s->rcr[0];
4001 case 0x10: /* XCR2 */
4002 return s->xcr[1];
4003 case 0x12: /* XCR1 */
4004 return s->xcr[0];
4005 case 0x14: /* SRGR2 */
4006 return s->srgr[1];
4007 case 0x16: /* SRGR1 */
4008 return s->srgr[0];
4009 case 0x18: /* MCR2 */
4010 return s->mcr[1];
4011 case 0x1a: /* MCR1 */
4012 return s->mcr[0];
4013 case 0x1c: /* RCERA */
4014 return s->rcer[0];
4015 case 0x1e: /* RCERB */
4016 return s->rcer[1];
4017 case 0x20: /* XCERA */
4018 return s->xcer[0];
4019 case 0x22: /* XCERB */
4020 return s->xcer[1];
4021 case 0x24: /* PCR0 */
4022 return s->pcr;
4023 case 0x26: /* RCERC */
4024 return s->rcer[2];
4025 case 0x28: /* RCERD */
4026 return s->rcer[3];
4027 case 0x2a: /* XCERC */
4028 return s->xcer[2];
4029 case 0x2c: /* XCERD */
4030 return s->xcer[3];
4031 case 0x2e: /* RCERE */
4032 return s->rcer[4];
4033 case 0x30: /* RCERF */
4034 return s->rcer[5];
4035 case 0x32: /* XCERE */
4036 return s->xcer[4];
4037 case 0x34: /* XCERF */
4038 return s->xcer[5];
4039 case 0x36: /* RCERG */
4040 return s->rcer[6];
4041 case 0x38: /* RCERH */
4042 return s->rcer[7];
4043 case 0x3a: /* XCERG */
4044 return s->xcer[6];
4045 case 0x3c: /* XCERH */
4046 return s->xcer[7];
4049 OMAP_BAD_REG(addr);
4050 return 0;
4053 static void omap_mcbsp_writeh(void *opaque, target_phys_addr_t addr,
4054 uint32_t value)
4056 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4057 int offset = addr & OMAP_MPUI_REG_MASK;
4059 switch (offset) {
4060 case 0x00: /* DRR2 */
4061 case 0x02: /* DRR1 */
4062 OMAP_RO_REG(addr);
4063 return;
4065 case 0x04: /* DXR2 */
4066 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
4067 return;
4068 /* Fall through. */
4069 case 0x06: /* DXR1 */
4070 if (s->tx_req > 1) {
4071 s->tx_req -= 2;
4072 if (s->codec && s->codec->cts) {
4073 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
4074 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
4076 if (s->tx_req < 2)
4077 omap_mcbsp_tx_done(s);
4078 } else
4079 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
4080 return;
4082 case 0x08: /* SPCR2 */
4083 s->spcr[1] &= 0x0002;
4084 s->spcr[1] |= 0x03f9 & value;
4085 s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
4086 if (~value & 1) /* XRST */
4087 s->spcr[1] &= ~6;
4088 omap_mcbsp_req_update(s);
4089 return;
4090 case 0x0a: /* SPCR1 */
4091 s->spcr[0] &= 0x0006;
4092 s->spcr[0] |= 0xf8f9 & value;
4093 if (value & (1 << 15)) /* DLB */
4094 printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
4095 if (~value & 1) { /* RRST */
4096 s->spcr[0] &= ~6;
4097 s->rx_req = 0;
4098 omap_mcbsp_rx_done(s);
4100 omap_mcbsp_req_update(s);
4101 return;
4103 case 0x0c: /* RCR2 */
4104 s->rcr[1] = value & 0xffff;
4105 return;
4106 case 0x0e: /* RCR1 */
4107 s->rcr[0] = value & 0x7fe0;
4108 return;
4109 case 0x10: /* XCR2 */
4110 s->xcr[1] = value & 0xffff;
4111 return;
4112 case 0x12: /* XCR1 */
4113 s->xcr[0] = value & 0x7fe0;
4114 return;
4115 case 0x14: /* SRGR2 */
4116 s->srgr[1] = value & 0xffff;
4117 omap_mcbsp_req_update(s);
4118 return;
4119 case 0x16: /* SRGR1 */
4120 s->srgr[0] = value & 0xffff;
4121 omap_mcbsp_req_update(s);
4122 return;
4123 case 0x18: /* MCR2 */
4124 s->mcr[1] = value & 0x03e3;
4125 if (value & 3) /* XMCM */
4126 printf("%s: Tx channel selection mode enable attempt\n",
4127 __FUNCTION__);
4128 return;
4129 case 0x1a: /* MCR1 */
4130 s->mcr[0] = value & 0x03e1;
4131 if (value & 1) /* RMCM */
4132 printf("%s: Rx channel selection mode enable attempt\n",
4133 __FUNCTION__);
4134 return;
4135 case 0x1c: /* RCERA */
4136 s->rcer[0] = value & 0xffff;
4137 return;
4138 case 0x1e: /* RCERB */
4139 s->rcer[1] = value & 0xffff;
4140 return;
4141 case 0x20: /* XCERA */
4142 s->xcer[0] = value & 0xffff;
4143 return;
4144 case 0x22: /* XCERB */
4145 s->xcer[1] = value & 0xffff;
4146 return;
4147 case 0x24: /* PCR0 */
4148 s->pcr = value & 0x7faf;
4149 return;
4150 case 0x26: /* RCERC */
4151 s->rcer[2] = value & 0xffff;
4152 return;
4153 case 0x28: /* RCERD */
4154 s->rcer[3] = value & 0xffff;
4155 return;
4156 case 0x2a: /* XCERC */
4157 s->xcer[2] = value & 0xffff;
4158 return;
4159 case 0x2c: /* XCERD */
4160 s->xcer[3] = value & 0xffff;
4161 return;
4162 case 0x2e: /* RCERE */
4163 s->rcer[4] = value & 0xffff;
4164 return;
4165 case 0x30: /* RCERF */
4166 s->rcer[5] = value & 0xffff;
4167 return;
4168 case 0x32: /* XCERE */
4169 s->xcer[4] = value & 0xffff;
4170 return;
4171 case 0x34: /* XCERF */
4172 s->xcer[5] = value & 0xffff;
4173 return;
4174 case 0x36: /* RCERG */
4175 s->rcer[6] = value & 0xffff;
4176 return;
4177 case 0x38: /* RCERH */
4178 s->rcer[7] = value & 0xffff;
4179 return;
4180 case 0x3a: /* XCERG */
4181 s->xcer[6] = value & 0xffff;
4182 return;
4183 case 0x3c: /* XCERH */
4184 s->xcer[7] = value & 0xffff;
4185 return;
4188 OMAP_BAD_REG(addr);
4191 static void omap_mcbsp_writew(void *opaque, target_phys_addr_t addr,
4192 uint32_t value)
4194 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4195 int offset = addr & OMAP_MPUI_REG_MASK;
4197 if (offset == 0x04) { /* DXR */
4198 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
4199 return;
4200 if (s->tx_req > 3) {
4201 s->tx_req -= 4;
4202 if (s->codec && s->codec->cts) {
4203 s->codec->out.fifo[s->codec->out.len ++] =
4204 (value >> 24) & 0xff;
4205 s->codec->out.fifo[s->codec->out.len ++] =
4206 (value >> 16) & 0xff;
4207 s->codec->out.fifo[s->codec->out.len ++] =
4208 (value >> 8) & 0xff;
4209 s->codec->out.fifo[s->codec->out.len ++] =
4210 (value >> 0) & 0xff;
4212 if (s->tx_req < 4)
4213 omap_mcbsp_tx_done(s);
4214 } else
4215 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
4216 return;
4219 omap_badwidth_write16(opaque, addr, value);
4222 static CPUReadMemoryFunc *omap_mcbsp_readfn[] = {
4223 omap_badwidth_read16,
4224 omap_mcbsp_read,
4225 omap_badwidth_read16,
4228 static CPUWriteMemoryFunc *omap_mcbsp_writefn[] = {
4229 omap_badwidth_write16,
4230 omap_mcbsp_writeh,
4231 omap_mcbsp_writew,
4234 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
4236 memset(&s->spcr, 0, sizeof(s->spcr));
4237 memset(&s->rcr, 0, sizeof(s->rcr));
4238 memset(&s->xcr, 0, sizeof(s->xcr));
4239 s->srgr[0] = 0x0001;
4240 s->srgr[1] = 0x2000;
4241 memset(&s->mcr, 0, sizeof(s->mcr));
4242 memset(&s->pcr, 0, sizeof(s->pcr));
4243 memset(&s->rcer, 0, sizeof(s->rcer));
4244 memset(&s->xcer, 0, sizeof(s->xcer));
4245 s->tx_req = 0;
4246 s->rx_req = 0;
4247 s->tx_rate = 0;
4248 s->rx_rate = 0;
4249 qemu_del_timer(s->source_timer);
4250 qemu_del_timer(s->sink_timer);
4253 struct omap_mcbsp_s *omap_mcbsp_init(target_phys_addr_t base,
4254 qemu_irq *irq, qemu_irq *dma, omap_clk clk)
4256 int iomemtype;
4257 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *)
4258 qemu_mallocz(sizeof(struct omap_mcbsp_s));
4260 s->txirq = irq[0];
4261 s->rxirq = irq[1];
4262 s->txdrq = dma[0];
4263 s->rxdrq = dma[1];
4264 s->sink_timer = qemu_new_timer(vm_clock, omap_mcbsp_sink_tick, s);
4265 s->source_timer = qemu_new_timer(vm_clock, omap_mcbsp_source_tick, s);
4266 omap_mcbsp_reset(s);
4268 iomemtype = cpu_register_io_memory(0, omap_mcbsp_readfn,
4269 omap_mcbsp_writefn, s);
4270 cpu_register_physical_memory(base, 0x800, iomemtype);
4272 return s;
4275 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
4277 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4279 if (s->rx_rate) {
4280 s->rx_req = s->codec->in.len;
4281 omap_mcbsp_rx_newdata(s);
4285 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
4287 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4289 if (s->tx_rate) {
4290 s->tx_req = s->codec->out.size;
4291 omap_mcbsp_tx_newdata(s);
4295 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, struct i2s_codec_s *slave)
4297 s->codec = slave;
4298 slave->rx_swallow = qemu_allocate_irqs(omap_mcbsp_i2s_swallow, s, 1)[0];
4299 slave->tx_start = qemu_allocate_irqs(omap_mcbsp_i2s_start, s, 1)[0];
4302 /* LED Pulse Generators */
4303 struct omap_lpg_s {
4304 QEMUTimer *tm;
4306 uint8_t control;
4307 uint8_t power;
4308 int64_t on;
4309 int64_t period;
4310 int clk;
4311 int cycle;
4314 static void omap_lpg_tick(void *opaque)
4316 struct omap_lpg_s *s = opaque;
4318 if (s->cycle)
4319 qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->period - s->on);
4320 else
4321 qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->on);
4323 s->cycle = !s->cycle;
4324 printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
4327 static void omap_lpg_update(struct omap_lpg_s *s)
4329 int64_t on, period = 1, ticks = 1000;
4330 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
4332 if (~s->control & (1 << 6)) /* LPGRES */
4333 on = 0;
4334 else if (s->control & (1 << 7)) /* PERM_ON */
4335 on = period;
4336 else {
4337 period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
4338 256 / 32);
4339 on = (s->clk && s->power) ? muldiv64(ticks,
4340 per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
4343 qemu_del_timer(s->tm);
4344 if (on == period && s->on < s->period)
4345 printf("%s: LED is on\n", __FUNCTION__);
4346 else if (on == 0 && s->on)
4347 printf("%s: LED is off\n", __FUNCTION__);
4348 else if (on && (on != s->on || period != s->period)) {
4349 s->cycle = 0;
4350 s->on = on;
4351 s->period = period;
4352 omap_lpg_tick(s);
4353 return;
4356 s->on = on;
4357 s->period = period;
4360 static void omap_lpg_reset(struct omap_lpg_s *s)
4362 s->control = 0x00;
4363 s->power = 0x00;
4364 s->clk = 1;
4365 omap_lpg_update(s);
4368 static uint32_t omap_lpg_read(void *opaque, target_phys_addr_t addr)
4370 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
4371 int offset = addr & OMAP_MPUI_REG_MASK;
4373 switch (offset) {
4374 case 0x00: /* LCR */
4375 return s->control;
4377 case 0x04: /* PMR */
4378 return s->power;
4381 OMAP_BAD_REG(addr);
4382 return 0;
4385 static void omap_lpg_write(void *opaque, target_phys_addr_t addr,
4386 uint32_t value)
4388 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
4389 int offset = addr & OMAP_MPUI_REG_MASK;
4391 switch (offset) {
4392 case 0x00: /* LCR */
4393 if (~value & (1 << 6)) /* LPGRES */
4394 omap_lpg_reset(s);
4395 s->control = value & 0xff;
4396 omap_lpg_update(s);
4397 return;
4399 case 0x04: /* PMR */
4400 s->power = value & 0x01;
4401 omap_lpg_update(s);
4402 return;
4404 default:
4405 OMAP_BAD_REG(addr);
4406 return;
4410 static CPUReadMemoryFunc *omap_lpg_readfn[] = {
4411 omap_lpg_read,
4412 omap_badwidth_read8,
4413 omap_badwidth_read8,
4416 static CPUWriteMemoryFunc *omap_lpg_writefn[] = {
4417 omap_lpg_write,
4418 omap_badwidth_write8,
4419 omap_badwidth_write8,
4422 static void omap_lpg_clk_update(void *opaque, int line, int on)
4424 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
4426 s->clk = on;
4427 omap_lpg_update(s);
4430 struct omap_lpg_s *omap_lpg_init(target_phys_addr_t base, omap_clk clk)
4432 int iomemtype;
4433 struct omap_lpg_s *s = (struct omap_lpg_s *)
4434 qemu_mallocz(sizeof(struct omap_lpg_s));
4436 s->tm = qemu_new_timer(rt_clock, omap_lpg_tick, s);
4438 omap_lpg_reset(s);
4440 iomemtype = cpu_register_io_memory(0, omap_lpg_readfn,
4441 omap_lpg_writefn, s);
4442 cpu_register_physical_memory(base, 0x800, iomemtype);
4444 omap_clk_adduser(clk, qemu_allocate_irqs(omap_lpg_clk_update, s, 1)[0]);
4446 return s;
4449 /* MPUI Peripheral Bridge configuration */
4450 static uint32_t omap_mpui_io_read(void *opaque, target_phys_addr_t addr)
4452 if (addr == OMAP_MPUI_BASE) /* CMR */
4453 return 0xfe4d;
4455 OMAP_BAD_REG(addr);
4456 return 0;
4459 static CPUReadMemoryFunc *omap_mpui_io_readfn[] = {
4460 omap_badwidth_read16,
4461 omap_mpui_io_read,
4462 omap_badwidth_read16,
4465 static CPUWriteMemoryFunc *omap_mpui_io_writefn[] = {
4466 omap_badwidth_write16,
4467 omap_badwidth_write16,
4468 omap_badwidth_write16,
4471 static void omap_setup_mpui_io(struct omap_mpu_state_s *mpu)
4473 int iomemtype = cpu_register_io_memory(0, omap_mpui_io_readfn,
4474 omap_mpui_io_writefn, mpu);
4475 cpu_register_physical_memory(OMAP_MPUI_BASE, 0x7fff, iomemtype);
4478 /* General chip reset */
4479 static void omap1_mpu_reset(void *opaque)
4481 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
4483 omap_inth_reset(mpu->ih[0]);
4484 omap_inth_reset(mpu->ih[1]);
4485 omap_dma_reset(mpu->dma);
4486 omap_mpu_timer_reset(mpu->timer[0]);
4487 omap_mpu_timer_reset(mpu->timer[1]);
4488 omap_mpu_timer_reset(mpu->timer[2]);
4489 omap_wd_timer_reset(mpu->wdt);
4490 omap_os_timer_reset(mpu->os_timer);
4491 omap_lcdc_reset(mpu->lcd);
4492 omap_ulpd_pm_reset(mpu);
4493 omap_pin_cfg_reset(mpu);
4494 omap_mpui_reset(mpu);
4495 omap_tipb_bridge_reset(mpu->private_tipb);
4496 omap_tipb_bridge_reset(mpu->public_tipb);
4497 omap_dpll_reset(&mpu->dpll[0]);
4498 omap_dpll_reset(&mpu->dpll[1]);
4499 omap_dpll_reset(&mpu->dpll[2]);
4500 omap_uart_reset(mpu->uart[0]);
4501 omap_uart_reset(mpu->uart[1]);
4502 omap_uart_reset(mpu->uart[2]);
4503 omap_mmc_reset(mpu->mmc);
4504 omap_mpuio_reset(mpu->mpuio);
4505 omap_gpio_reset(mpu->gpio);
4506 omap_uwire_reset(mpu->microwire);
4507 omap_pwl_reset(mpu);
4508 omap_pwt_reset(mpu);
4509 omap_i2c_reset(mpu->i2c[0]);
4510 omap_rtc_reset(mpu->rtc);
4511 omap_mcbsp_reset(mpu->mcbsp1);
4512 omap_mcbsp_reset(mpu->mcbsp2);
4513 omap_mcbsp_reset(mpu->mcbsp3);
4514 omap_lpg_reset(mpu->led[0]);
4515 omap_lpg_reset(mpu->led[1]);
4516 omap_clkm_reset(mpu);
4517 cpu_reset(mpu->env);
4520 static const struct omap_map_s {
4521 target_phys_addr_t phys_dsp;
4522 target_phys_addr_t phys_mpu;
4523 uint32_t size;
4524 const char *name;
4525 } omap15xx_dsp_mm[] = {
4526 /* Strobe 0 */
4527 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
4528 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
4529 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
4530 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
4531 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
4532 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
4533 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
4534 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
4535 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
4536 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
4537 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
4538 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
4539 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
4540 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
4541 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
4542 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
4543 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
4544 /* Strobe 1 */
4545 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
4547 { 0 }
4550 static void omap_setup_dsp_mapping(const struct omap_map_s *map)
4552 int io;
4554 for (; map->phys_dsp; map ++) {
4555 io = cpu_get_physical_page_desc(map->phys_mpu);
4557 cpu_register_physical_memory(map->phys_dsp, map->size, io);
4561 void omap_mpu_wakeup(void *opaque, int irq, int req)
4563 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
4565 if (mpu->env->halted)
4566 cpu_interrupt(mpu->env, CPU_INTERRUPT_EXITTB);
4569 static const struct dma_irq_map omap1_dma_irq_map[] = {
4570 { 0, OMAP_INT_DMA_CH0_6 },
4571 { 0, OMAP_INT_DMA_CH1_7 },
4572 { 0, OMAP_INT_DMA_CH2_8 },
4573 { 0, OMAP_INT_DMA_CH3 },
4574 { 0, OMAP_INT_DMA_CH4 },
4575 { 0, OMAP_INT_DMA_CH5 },
4576 { 1, OMAP_INT_1610_DMA_CH6 },
4577 { 1, OMAP_INT_1610_DMA_CH7 },
4578 { 1, OMAP_INT_1610_DMA_CH8 },
4579 { 1, OMAP_INT_1610_DMA_CH9 },
4580 { 1, OMAP_INT_1610_DMA_CH10 },
4581 { 1, OMAP_INT_1610_DMA_CH11 },
4582 { 1, OMAP_INT_1610_DMA_CH12 },
4583 { 1, OMAP_INT_1610_DMA_CH13 },
4584 { 1, OMAP_INT_1610_DMA_CH14 },
4585 { 1, OMAP_INT_1610_DMA_CH15 }
4588 /* DMA ports for OMAP1 */
4589 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
4590 target_phys_addr_t addr)
4592 return addr >= OMAP_EMIFF_BASE && addr < OMAP_EMIFF_BASE + s->sdram_size;
4595 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
4596 target_phys_addr_t addr)
4598 return addr >= OMAP_EMIFS_BASE && addr < OMAP_EMIFF_BASE;
4601 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
4602 target_phys_addr_t addr)
4604 return addr >= OMAP_IMIF_BASE && addr < OMAP_IMIF_BASE + s->sram_size;
4607 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
4608 target_phys_addr_t addr)
4610 return addr >= 0xfffb0000 && addr < 0xffff0000;
4613 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
4614 target_phys_addr_t addr)
4616 return addr >= OMAP_LOCALBUS_BASE && addr < OMAP_LOCALBUS_BASE + 0x1000000;
4619 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
4620 target_phys_addr_t addr)
4622 return addr >= 0xe1010000 && addr < 0xe1020004;
4625 struct omap_mpu_state_s *omap310_mpu_init(unsigned long sdram_size,
4626 DisplayState *ds, const char *core)
4628 int i;
4629 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
4630 qemu_mallocz(sizeof(struct omap_mpu_state_s));
4631 ram_addr_t imif_base, emiff_base;
4632 qemu_irq *cpu_irq;
4633 qemu_irq dma_irqs[6];
4634 int sdindex;
4636 if (!core)
4637 core = "ti925t";
4639 /* Core */
4640 s->mpu_model = omap310;
4641 s->env = cpu_init(core);
4642 if (!s->env) {
4643 fprintf(stderr, "Unable to find CPU definition\n");
4644 exit(1);
4646 s->sdram_size = sdram_size;
4647 s->sram_size = OMAP15XX_SRAM_SIZE;
4649 s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0];
4651 /* Clocks */
4652 omap_clk_init(s);
4654 /* Memory-mapped stuff */
4655 cpu_register_physical_memory(OMAP_EMIFF_BASE, s->sdram_size,
4656 (emiff_base = qemu_ram_alloc(s->sdram_size)) | IO_MEM_RAM);
4657 cpu_register_physical_memory(OMAP_IMIF_BASE, s->sram_size,
4658 (imif_base = qemu_ram_alloc(s->sram_size)) | IO_MEM_RAM);
4660 omap_clkm_init(0xfffece00, 0xe1008000, s);
4662 cpu_irq = arm_pic_init_cpu(s->env);
4663 s->ih[0] = omap_inth_init(0xfffecb00, 0x100, 1, &s->irq[0],
4664 cpu_irq[ARM_PIC_CPU_IRQ], cpu_irq[ARM_PIC_CPU_FIQ],
4665 omap_findclk(s, "arminth_ck"));
4666 s->ih[1] = omap_inth_init(0xfffe0000, 0x800, 1, &s->irq[1],
4667 s->ih[0]->pins[OMAP_INT_15XX_IH2_IRQ], NULL,
4668 omap_findclk(s, "arminth_ck"));
4670 for (i = 0; i < 6; i ++)
4671 dma_irqs[i] =
4672 s->irq[omap1_dma_irq_map[i].ih][omap1_dma_irq_map[i].intr];
4673 s->dma = omap_dma_init(0xfffed800, dma_irqs, s->irq[0][OMAP_INT_DMA_LCD],
4674 s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
4676 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
4677 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
4678 s->port[imif ].addr_valid = omap_validate_imif_addr;
4679 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
4680 s->port[local ].addr_valid = omap_validate_local_addr;
4681 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
4683 /* Register SDRAM and SRAM DMA ports for fast transfers. */
4684 soc_dma_port_add_mem_ram(s->dma,
4685 emiff_base, OMAP_EMIFF_BASE, s->sdram_size);
4686 soc_dma_port_add_mem_ram(s->dma,
4687 imif_base, OMAP_IMIF_BASE, s->sram_size);
4689 s->timer[0] = omap_mpu_timer_init(0xfffec500,
4690 s->irq[0][OMAP_INT_TIMER1],
4691 omap_findclk(s, "mputim_ck"));
4692 s->timer[1] = omap_mpu_timer_init(0xfffec600,
4693 s->irq[0][OMAP_INT_TIMER2],
4694 omap_findclk(s, "mputim_ck"));
4695 s->timer[2] = omap_mpu_timer_init(0xfffec700,
4696 s->irq[0][OMAP_INT_TIMER3],
4697 omap_findclk(s, "mputim_ck"));
4699 s->wdt = omap_wd_timer_init(0xfffec800,
4700 s->irq[0][OMAP_INT_WD_TIMER],
4701 omap_findclk(s, "armwdt_ck"));
4703 s->os_timer = omap_os_timer_init(0xfffb9000,
4704 s->irq[1][OMAP_INT_OS_TIMER],
4705 omap_findclk(s, "clk32-kHz"));
4707 s->lcd = omap_lcdc_init(0xfffec000, s->irq[0][OMAP_INT_LCD_CTRL],
4708 omap_dma_get_lcdch(s->dma), ds, imif_base, emiff_base,
4709 omap_findclk(s, "lcd_ck"));
4711 omap_ulpd_pm_init(0xfffe0800, s);
4712 omap_pin_cfg_init(0xfffe1000, s);
4713 omap_id_init(s);
4715 omap_mpui_init(0xfffec900, s);
4717 s->private_tipb = omap_tipb_bridge_init(0xfffeca00,
4718 s->irq[0][OMAP_INT_BRIDGE_PRIV],
4719 omap_findclk(s, "tipb_ck"));
4720 s->public_tipb = omap_tipb_bridge_init(0xfffed300,
4721 s->irq[0][OMAP_INT_BRIDGE_PUB],
4722 omap_findclk(s, "tipb_ck"));
4724 omap_tcmi_init(0xfffecc00, s);
4726 s->uart[0] = omap_uart_init(0xfffb0000, s->irq[1][OMAP_INT_UART1],
4727 omap_findclk(s, "uart1_ck"),
4728 omap_findclk(s, "uart1_ck"),
4729 s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
4730 serial_hds[0]);
4731 s->uart[1] = omap_uart_init(0xfffb0800, s->irq[1][OMAP_INT_UART2],
4732 omap_findclk(s, "uart2_ck"),
4733 omap_findclk(s, "uart2_ck"),
4734 s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
4735 serial_hds[0] ? serial_hds[1] : 0);
4736 s->uart[2] = omap_uart_init(0xfffb9800, s->irq[0][OMAP_INT_UART3],
4737 omap_findclk(s, "uart3_ck"),
4738 omap_findclk(s, "uart3_ck"),
4739 s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
4740 serial_hds[0] && serial_hds[1] ? serial_hds[2] : 0);
4742 omap_dpll_init(&s->dpll[0], 0xfffecf00, omap_findclk(s, "dpll1"));
4743 omap_dpll_init(&s->dpll[1], 0xfffed000, omap_findclk(s, "dpll2"));
4744 omap_dpll_init(&s->dpll[2], 0xfffed100, omap_findclk(s, "dpll3"));
4746 sdindex = drive_get_index(IF_SD, 0, 0);
4747 if (sdindex == -1) {
4748 fprintf(stderr, "qemu: missing SecureDigital device\n");
4749 exit(1);
4751 s->mmc = omap_mmc_init(0xfffb7800, drives_table[sdindex].bdrv,
4752 s->irq[1][OMAP_INT_OQN], &s->drq[OMAP_DMA_MMC_TX],
4753 omap_findclk(s, "mmc_ck"));
4755 s->mpuio = omap_mpuio_init(0xfffb5000,
4756 s->irq[1][OMAP_INT_KEYBOARD], s->irq[1][OMAP_INT_MPUIO],
4757 s->wakeup, omap_findclk(s, "clk32-kHz"));
4759 s->gpio = omap_gpio_init(0xfffce000, s->irq[0][OMAP_INT_GPIO_BANK1],
4760 omap_findclk(s, "arm_gpio_ck"));
4762 s->microwire = omap_uwire_init(0xfffb3000, &s->irq[1][OMAP_INT_uWireTX],
4763 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4765 omap_pwl_init(0xfffb5800, s, omap_findclk(s, "armxor_ck"));
4766 omap_pwt_init(0xfffb6000, s, omap_findclk(s, "armxor_ck"));
4768 s->i2c[0] = omap_i2c_init(0xfffb3800, s->irq[1][OMAP_INT_I2C],
4769 &s->drq[OMAP_DMA_I2C_RX], omap_findclk(s, "mpuper_ck"));
4771 s->rtc = omap_rtc_init(0xfffb4800, &s->irq[1][OMAP_INT_RTC_TIMER],
4772 omap_findclk(s, "clk32-kHz"));
4774 s->mcbsp1 = omap_mcbsp_init(0xfffb1800, &s->irq[1][OMAP_INT_McBSP1TX],
4775 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4776 s->mcbsp2 = omap_mcbsp_init(0xfffb1000, &s->irq[0][OMAP_INT_310_McBSP2_TX],
4777 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4778 s->mcbsp3 = omap_mcbsp_init(0xfffb7000, &s->irq[1][OMAP_INT_McBSP3TX],
4779 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4781 s->led[0] = omap_lpg_init(0xfffbd000, omap_findclk(s, "clk32-kHz"));
4782 s->led[1] = omap_lpg_init(0xfffbd800, omap_findclk(s, "clk32-kHz"));
4784 /* Register mappings not currenlty implemented:
4785 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
4786 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
4787 * USB W2FC fffb4000 - fffb47ff
4788 * Camera Interface fffb6800 - fffb6fff
4789 * USB Host fffba000 - fffba7ff
4790 * FAC fffba800 - fffbafff
4791 * HDQ/1-Wire fffbc000 - fffbc7ff
4792 * TIPB switches fffbc800 - fffbcfff
4793 * Mailbox fffcf000 - fffcf7ff
4794 * Local bus IF fffec100 - fffec1ff
4795 * Local bus MMU fffec200 - fffec2ff
4796 * DSP MMU fffed200 - fffed2ff
4799 omap_setup_dsp_mapping(omap15xx_dsp_mm);
4800 omap_setup_mpui_io(s);
4802 qemu_register_reset(omap1_mpu_reset, s);
4804 return s;