Include LDFLAGS when linking system emulator.
[qemu/mini2440.git] / vl.c
blobefa0d617233cf6c97a71aec21010374d375c5665
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2007 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "vl.h"
26 #include <unistd.h>
27 #include <fcntl.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <errno.h>
31 #include <sys/time.h>
32 #include <zlib.h>
34 #ifndef _WIN32
35 #include <sys/times.h>
36 #include <sys/wait.h>
37 #include <termios.h>
38 #include <sys/poll.h>
39 #include <sys/mman.h>
40 #include <sys/ioctl.h>
41 #include <sys/socket.h>
42 #include <netinet/in.h>
43 #include <dirent.h>
44 #include <netdb.h>
45 #ifdef _BSD
46 #include <sys/stat.h>
47 #ifndef __APPLE__
48 #include <libutil.h>
49 #endif
50 #else
51 #ifndef __sun__
52 #include <linux/if.h>
53 #include <linux/if_tun.h>
54 #include <pty.h>
55 #include <malloc.h>
56 #include <linux/rtc.h>
57 #include <linux/ppdev.h>
58 #include <linux/parport.h>
59 #else
60 #include <sys/stat.h>
61 #include <sys/ethernet.h>
62 #include <sys/sockio.h>
63 #include <arpa/inet.h>
64 #include <netinet/arp.h>
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #include <netinet/ip_icmp.h> // must come after ip.h
69 #include <netinet/udp.h>
70 #include <netinet/tcp.h>
71 #include <net/if.h>
72 #include <syslog.h>
73 #include <stropts.h>
74 #endif
75 #endif
76 #endif
78 #if defined(CONFIG_SLIRP)
79 #include "libslirp.h"
80 #endif
82 #ifdef _WIN32
83 #include <malloc.h>
84 #include <sys/timeb.h>
85 #include <windows.h>
86 #define getopt_long_only getopt_long
87 #define memalign(align, size) malloc(size)
88 #endif
90 #include "qemu_socket.h"
92 #ifdef CONFIG_SDL
93 #ifdef __APPLE__
94 #include <SDL/SDL.h>
95 #endif
96 #endif /* CONFIG_SDL */
98 #ifdef CONFIG_COCOA
99 #undef main
100 #define main qemu_main
101 #endif /* CONFIG_COCOA */
103 #include "disas.h"
105 #include "exec-all.h"
107 #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
108 #ifdef __sun__
109 #define SMBD_COMMAND "/usr/sfw/sbin/smbd"
110 #else
111 #define SMBD_COMMAND "/usr/sbin/smbd"
112 #endif
114 //#define DEBUG_UNUSED_IOPORT
115 //#define DEBUG_IOPORT
117 #define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
119 #ifdef TARGET_PPC
120 #define DEFAULT_RAM_SIZE 144
121 #else
122 #define DEFAULT_RAM_SIZE 128
123 #endif
124 /* in ms */
125 #define GUI_REFRESH_INTERVAL 30
127 /* Max number of USB devices that can be specified on the commandline. */
128 #define MAX_USB_CMDLINE 8
130 /* XXX: use a two level table to limit memory usage */
131 #define MAX_IOPORTS 65536
133 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
134 char phys_ram_file[1024];
135 void *ioport_opaque[MAX_IOPORTS];
136 IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
137 IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
138 /* Note: bs_table[MAX_DISKS] is a dummy block driver if none available
139 to store the VM snapshots */
140 BlockDriverState *bs_table[MAX_DISKS + 1], *fd_table[MAX_FD];
141 /* point to the block driver where the snapshots are managed */
142 BlockDriverState *bs_snapshots;
143 int vga_ram_size;
144 static DisplayState display_state;
145 int nographic;
146 const char* keyboard_layout = NULL;
147 int64_t ticks_per_sec;
148 int boot_device = 'c';
149 int ram_size;
150 int pit_min_timer_count = 0;
151 int nb_nics;
152 NICInfo nd_table[MAX_NICS];
153 QEMUTimer *gui_timer;
154 int vm_running;
155 int rtc_utc = 1;
156 int cirrus_vga_enabled = 1;
157 #ifdef TARGET_SPARC
158 int graphic_width = 1024;
159 int graphic_height = 768;
160 #else
161 int graphic_width = 800;
162 int graphic_height = 600;
163 #endif
164 int graphic_depth = 15;
165 int full_screen = 0;
166 int no_frame = 0;
167 int no_quit = 0;
168 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
169 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
170 #ifdef TARGET_I386
171 int win2k_install_hack = 0;
172 #endif
173 int usb_enabled = 0;
174 static VLANState *first_vlan;
175 int smp_cpus = 1;
176 const char *vnc_display;
177 #if defined(TARGET_SPARC)
178 #define MAX_CPUS 16
179 #elif defined(TARGET_I386)
180 #define MAX_CPUS 255
181 #else
182 #define MAX_CPUS 1
183 #endif
184 int acpi_enabled = 1;
185 int fd_bootchk = 1;
186 int no_reboot = 0;
187 int daemonize = 0;
188 const char *option_rom[MAX_OPTION_ROMS];
189 int nb_option_roms;
190 int semihosting_enabled = 0;
191 int autostart = 1;
193 /***********************************************************/
194 /* x86 ISA bus support */
196 target_phys_addr_t isa_mem_base = 0;
197 PicState2 *isa_pic;
199 uint32_t default_ioport_readb(void *opaque, uint32_t address)
201 #ifdef DEBUG_UNUSED_IOPORT
202 fprintf(stderr, "inb: port=0x%04x\n", address);
203 #endif
204 return 0xff;
207 void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
209 #ifdef DEBUG_UNUSED_IOPORT
210 fprintf(stderr, "outb: port=0x%04x data=0x%02x\n", address, data);
211 #endif
214 /* default is to make two byte accesses */
215 uint32_t default_ioport_readw(void *opaque, uint32_t address)
217 uint32_t data;
218 data = ioport_read_table[0][address](ioport_opaque[address], address);
219 address = (address + 1) & (MAX_IOPORTS - 1);
220 data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
221 return data;
224 void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
226 ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
227 address = (address + 1) & (MAX_IOPORTS - 1);
228 ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
231 uint32_t default_ioport_readl(void *opaque, uint32_t address)
233 #ifdef DEBUG_UNUSED_IOPORT
234 fprintf(stderr, "inl: port=0x%04x\n", address);
235 #endif
236 return 0xffffffff;
239 void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
241 #ifdef DEBUG_UNUSED_IOPORT
242 fprintf(stderr, "outl: port=0x%04x data=0x%02x\n", address, data);
243 #endif
246 void init_ioports(void)
248 int i;
250 for(i = 0; i < MAX_IOPORTS; i++) {
251 ioport_read_table[0][i] = default_ioport_readb;
252 ioport_write_table[0][i] = default_ioport_writeb;
253 ioport_read_table[1][i] = default_ioport_readw;
254 ioport_write_table[1][i] = default_ioport_writew;
255 ioport_read_table[2][i] = default_ioport_readl;
256 ioport_write_table[2][i] = default_ioport_writel;
260 /* size is the word size in byte */
261 int register_ioport_read(int start, int length, int size,
262 IOPortReadFunc *func, void *opaque)
264 int i, bsize;
266 if (size == 1) {
267 bsize = 0;
268 } else if (size == 2) {
269 bsize = 1;
270 } else if (size == 4) {
271 bsize = 2;
272 } else {
273 hw_error("register_ioport_read: invalid size");
274 return -1;
276 for(i = start; i < start + length; i += size) {
277 ioport_read_table[bsize][i] = func;
278 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
279 hw_error("register_ioport_read: invalid opaque");
280 ioport_opaque[i] = opaque;
282 return 0;
285 /* size is the word size in byte */
286 int register_ioport_write(int start, int length, int size,
287 IOPortWriteFunc *func, void *opaque)
289 int i, bsize;
291 if (size == 1) {
292 bsize = 0;
293 } else if (size == 2) {
294 bsize = 1;
295 } else if (size == 4) {
296 bsize = 2;
297 } else {
298 hw_error("register_ioport_write: invalid size");
299 return -1;
301 for(i = start; i < start + length; i += size) {
302 ioport_write_table[bsize][i] = func;
303 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
304 hw_error("register_ioport_write: invalid opaque");
305 ioport_opaque[i] = opaque;
307 return 0;
310 void isa_unassign_ioport(int start, int length)
312 int i;
314 for(i = start; i < start + length; i++) {
315 ioport_read_table[0][i] = default_ioport_readb;
316 ioport_read_table[1][i] = default_ioport_readw;
317 ioport_read_table[2][i] = default_ioport_readl;
319 ioport_write_table[0][i] = default_ioport_writeb;
320 ioport_write_table[1][i] = default_ioport_writew;
321 ioport_write_table[2][i] = default_ioport_writel;
325 /***********************************************************/
327 void cpu_outb(CPUState *env, int addr, int val)
329 #ifdef DEBUG_IOPORT
330 if (loglevel & CPU_LOG_IOPORT)
331 fprintf(logfile, "outb: %04x %02x\n", addr, val);
332 #endif
333 ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
334 #ifdef USE_KQEMU
335 if (env)
336 env->last_io_time = cpu_get_time_fast();
337 #endif
340 void cpu_outw(CPUState *env, int addr, int val)
342 #ifdef DEBUG_IOPORT
343 if (loglevel & CPU_LOG_IOPORT)
344 fprintf(logfile, "outw: %04x %04x\n", addr, val);
345 #endif
346 ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
347 #ifdef USE_KQEMU
348 if (env)
349 env->last_io_time = cpu_get_time_fast();
350 #endif
353 void cpu_outl(CPUState *env, int addr, int val)
355 #ifdef DEBUG_IOPORT
356 if (loglevel & CPU_LOG_IOPORT)
357 fprintf(logfile, "outl: %04x %08x\n", addr, val);
358 #endif
359 ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
360 #ifdef USE_KQEMU
361 if (env)
362 env->last_io_time = cpu_get_time_fast();
363 #endif
366 int cpu_inb(CPUState *env, int addr)
368 int val;
369 val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
370 #ifdef DEBUG_IOPORT
371 if (loglevel & CPU_LOG_IOPORT)
372 fprintf(logfile, "inb : %04x %02x\n", addr, val);
373 #endif
374 #ifdef USE_KQEMU
375 if (env)
376 env->last_io_time = cpu_get_time_fast();
377 #endif
378 return val;
381 int cpu_inw(CPUState *env, int addr)
383 int val;
384 val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
385 #ifdef DEBUG_IOPORT
386 if (loglevel & CPU_LOG_IOPORT)
387 fprintf(logfile, "inw : %04x %04x\n", addr, val);
388 #endif
389 #ifdef USE_KQEMU
390 if (env)
391 env->last_io_time = cpu_get_time_fast();
392 #endif
393 return val;
396 int cpu_inl(CPUState *env, int addr)
398 int val;
399 val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
400 #ifdef DEBUG_IOPORT
401 if (loglevel & CPU_LOG_IOPORT)
402 fprintf(logfile, "inl : %04x %08x\n", addr, val);
403 #endif
404 #ifdef USE_KQEMU
405 if (env)
406 env->last_io_time = cpu_get_time_fast();
407 #endif
408 return val;
411 /***********************************************************/
412 void hw_error(const char *fmt, ...)
414 va_list ap;
415 CPUState *env;
417 va_start(ap, fmt);
418 fprintf(stderr, "qemu: hardware error: ");
419 vfprintf(stderr, fmt, ap);
420 fprintf(stderr, "\n");
421 for(env = first_cpu; env != NULL; env = env->next_cpu) {
422 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
423 #ifdef TARGET_I386
424 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
425 #else
426 cpu_dump_state(env, stderr, fprintf, 0);
427 #endif
429 va_end(ap);
430 abort();
433 /***********************************************************/
434 /* keyboard/mouse */
436 static QEMUPutKBDEvent *qemu_put_kbd_event;
437 static void *qemu_put_kbd_event_opaque;
438 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
439 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
441 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
443 qemu_put_kbd_event_opaque = opaque;
444 qemu_put_kbd_event = func;
447 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
448 void *opaque, int absolute,
449 const char *name)
451 QEMUPutMouseEntry *s, *cursor;
453 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
454 if (!s)
455 return NULL;
457 s->qemu_put_mouse_event = func;
458 s->qemu_put_mouse_event_opaque = opaque;
459 s->qemu_put_mouse_event_absolute = absolute;
460 s->qemu_put_mouse_event_name = qemu_strdup(name);
461 s->next = NULL;
463 if (!qemu_put_mouse_event_head) {
464 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
465 return s;
468 cursor = qemu_put_mouse_event_head;
469 while (cursor->next != NULL)
470 cursor = cursor->next;
472 cursor->next = s;
473 qemu_put_mouse_event_current = s;
475 return s;
478 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
480 QEMUPutMouseEntry *prev = NULL, *cursor;
482 if (!qemu_put_mouse_event_head || entry == NULL)
483 return;
485 cursor = qemu_put_mouse_event_head;
486 while (cursor != NULL && cursor != entry) {
487 prev = cursor;
488 cursor = cursor->next;
491 if (cursor == NULL) // does not exist or list empty
492 return;
493 else if (prev == NULL) { // entry is head
494 qemu_put_mouse_event_head = cursor->next;
495 if (qemu_put_mouse_event_current == entry)
496 qemu_put_mouse_event_current = cursor->next;
497 qemu_free(entry->qemu_put_mouse_event_name);
498 qemu_free(entry);
499 return;
502 prev->next = entry->next;
504 if (qemu_put_mouse_event_current == entry)
505 qemu_put_mouse_event_current = prev;
507 qemu_free(entry->qemu_put_mouse_event_name);
508 qemu_free(entry);
511 void kbd_put_keycode(int keycode)
513 if (qemu_put_kbd_event) {
514 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
518 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
520 QEMUPutMouseEvent *mouse_event;
521 void *mouse_event_opaque;
523 if (!qemu_put_mouse_event_current) {
524 return;
527 mouse_event =
528 qemu_put_mouse_event_current->qemu_put_mouse_event;
529 mouse_event_opaque =
530 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
532 if (mouse_event) {
533 mouse_event(mouse_event_opaque, dx, dy, dz, buttons_state);
537 int kbd_mouse_is_absolute(void)
539 if (!qemu_put_mouse_event_current)
540 return 0;
542 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
545 void do_info_mice(void)
547 QEMUPutMouseEntry *cursor;
548 int index = 0;
550 if (!qemu_put_mouse_event_head) {
551 term_printf("No mouse devices connected\n");
552 return;
555 term_printf("Mouse devices available:\n");
556 cursor = qemu_put_mouse_event_head;
557 while (cursor != NULL) {
558 term_printf("%c Mouse #%d: %s\n",
559 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
560 index, cursor->qemu_put_mouse_event_name);
561 index++;
562 cursor = cursor->next;
566 void do_mouse_set(int index)
568 QEMUPutMouseEntry *cursor;
569 int i = 0;
571 if (!qemu_put_mouse_event_head) {
572 term_printf("No mouse devices connected\n");
573 return;
576 cursor = qemu_put_mouse_event_head;
577 while (cursor != NULL && index != i) {
578 i++;
579 cursor = cursor->next;
582 if (cursor != NULL)
583 qemu_put_mouse_event_current = cursor;
584 else
585 term_printf("Mouse at given index not found\n");
588 /* compute with 96 bit intermediate result: (a*b)/c */
589 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
591 union {
592 uint64_t ll;
593 struct {
594 #ifdef WORDS_BIGENDIAN
595 uint32_t high, low;
596 #else
597 uint32_t low, high;
598 #endif
599 } l;
600 } u, res;
601 uint64_t rl, rh;
603 u.ll = a;
604 rl = (uint64_t)u.l.low * (uint64_t)b;
605 rh = (uint64_t)u.l.high * (uint64_t)b;
606 rh += (rl >> 32);
607 res.l.high = rh / c;
608 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
609 return res.ll;
612 /***********************************************************/
613 /* real time host monotonic timer */
615 #define QEMU_TIMER_BASE 1000000000LL
617 #ifdef WIN32
619 static int64_t clock_freq;
621 static void init_get_clock(void)
623 LARGE_INTEGER freq;
624 int ret;
625 ret = QueryPerformanceFrequency(&freq);
626 if (ret == 0) {
627 fprintf(stderr, "Could not calibrate ticks\n");
628 exit(1);
630 clock_freq = freq.QuadPart;
633 static int64_t get_clock(void)
635 LARGE_INTEGER ti;
636 QueryPerformanceCounter(&ti);
637 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
640 #else
642 static int use_rt_clock;
644 static void init_get_clock(void)
646 use_rt_clock = 0;
647 #if defined(__linux__)
649 struct timespec ts;
650 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
651 use_rt_clock = 1;
654 #endif
657 static int64_t get_clock(void)
659 #if defined(__linux__)
660 if (use_rt_clock) {
661 struct timespec ts;
662 clock_gettime(CLOCK_MONOTONIC, &ts);
663 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
664 } else
665 #endif
667 /* XXX: using gettimeofday leads to problems if the date
668 changes, so it should be avoided. */
669 struct timeval tv;
670 gettimeofday(&tv, NULL);
671 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
675 #endif
677 /***********************************************************/
678 /* guest cycle counter */
680 static int64_t cpu_ticks_prev;
681 static int64_t cpu_ticks_offset;
682 static int64_t cpu_clock_offset;
683 static int cpu_ticks_enabled;
685 /* return the host CPU cycle counter and handle stop/restart */
686 int64_t cpu_get_ticks(void)
688 if (!cpu_ticks_enabled) {
689 return cpu_ticks_offset;
690 } else {
691 int64_t ticks;
692 ticks = cpu_get_real_ticks();
693 if (cpu_ticks_prev > ticks) {
694 /* Note: non increasing ticks may happen if the host uses
695 software suspend */
696 cpu_ticks_offset += cpu_ticks_prev - ticks;
698 cpu_ticks_prev = ticks;
699 return ticks + cpu_ticks_offset;
703 /* return the host CPU monotonic timer and handle stop/restart */
704 static int64_t cpu_get_clock(void)
706 int64_t ti;
707 if (!cpu_ticks_enabled) {
708 return cpu_clock_offset;
709 } else {
710 ti = get_clock();
711 return ti + cpu_clock_offset;
715 /* enable cpu_get_ticks() */
716 void cpu_enable_ticks(void)
718 if (!cpu_ticks_enabled) {
719 cpu_ticks_offset -= cpu_get_real_ticks();
720 cpu_clock_offset -= get_clock();
721 cpu_ticks_enabled = 1;
725 /* disable cpu_get_ticks() : the clock is stopped. You must not call
726 cpu_get_ticks() after that. */
727 void cpu_disable_ticks(void)
729 if (cpu_ticks_enabled) {
730 cpu_ticks_offset = cpu_get_ticks();
731 cpu_clock_offset = cpu_get_clock();
732 cpu_ticks_enabled = 0;
736 /***********************************************************/
737 /* timers */
739 #define QEMU_TIMER_REALTIME 0
740 #define QEMU_TIMER_VIRTUAL 1
742 struct QEMUClock {
743 int type;
744 /* XXX: add frequency */
747 struct QEMUTimer {
748 QEMUClock *clock;
749 int64_t expire_time;
750 QEMUTimerCB *cb;
751 void *opaque;
752 struct QEMUTimer *next;
755 QEMUClock *rt_clock;
756 QEMUClock *vm_clock;
758 static QEMUTimer *active_timers[2];
759 #ifdef _WIN32
760 static MMRESULT timerID;
761 static HANDLE host_alarm = NULL;
762 static unsigned int period = 1;
763 #else
764 /* frequency of the times() clock tick */
765 static int timer_freq;
766 #endif
768 QEMUClock *qemu_new_clock(int type)
770 QEMUClock *clock;
771 clock = qemu_mallocz(sizeof(QEMUClock));
772 if (!clock)
773 return NULL;
774 clock->type = type;
775 return clock;
778 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
780 QEMUTimer *ts;
782 ts = qemu_mallocz(sizeof(QEMUTimer));
783 ts->clock = clock;
784 ts->cb = cb;
785 ts->opaque = opaque;
786 return ts;
789 void qemu_free_timer(QEMUTimer *ts)
791 qemu_free(ts);
794 /* stop a timer, but do not dealloc it */
795 void qemu_del_timer(QEMUTimer *ts)
797 QEMUTimer **pt, *t;
799 /* NOTE: this code must be signal safe because
800 qemu_timer_expired() can be called from a signal. */
801 pt = &active_timers[ts->clock->type];
802 for(;;) {
803 t = *pt;
804 if (!t)
805 break;
806 if (t == ts) {
807 *pt = t->next;
808 break;
810 pt = &t->next;
814 /* modify the current timer so that it will be fired when current_time
815 >= expire_time. The corresponding callback will be called. */
816 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
818 QEMUTimer **pt, *t;
820 qemu_del_timer(ts);
822 /* add the timer in the sorted list */
823 /* NOTE: this code must be signal safe because
824 qemu_timer_expired() can be called from a signal. */
825 pt = &active_timers[ts->clock->type];
826 for(;;) {
827 t = *pt;
828 if (!t)
829 break;
830 if (t->expire_time > expire_time)
831 break;
832 pt = &t->next;
834 ts->expire_time = expire_time;
835 ts->next = *pt;
836 *pt = ts;
839 int qemu_timer_pending(QEMUTimer *ts)
841 QEMUTimer *t;
842 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
843 if (t == ts)
844 return 1;
846 return 0;
849 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
851 if (!timer_head)
852 return 0;
853 return (timer_head->expire_time <= current_time);
856 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
858 QEMUTimer *ts;
860 for(;;) {
861 ts = *ptimer_head;
862 if (!ts || ts->expire_time > current_time)
863 break;
864 /* remove timer from the list before calling the callback */
865 *ptimer_head = ts->next;
866 ts->next = NULL;
868 /* run the callback (the timer list can be modified) */
869 ts->cb(ts->opaque);
873 int64_t qemu_get_clock(QEMUClock *clock)
875 switch(clock->type) {
876 case QEMU_TIMER_REALTIME:
877 return get_clock() / 1000000;
878 default:
879 case QEMU_TIMER_VIRTUAL:
880 return cpu_get_clock();
884 static void init_timers(void)
886 init_get_clock();
887 ticks_per_sec = QEMU_TIMER_BASE;
888 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
889 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
892 /* save a timer */
893 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
895 uint64_t expire_time;
897 if (qemu_timer_pending(ts)) {
898 expire_time = ts->expire_time;
899 } else {
900 expire_time = -1;
902 qemu_put_be64(f, expire_time);
905 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
907 uint64_t expire_time;
909 expire_time = qemu_get_be64(f);
910 if (expire_time != -1) {
911 qemu_mod_timer(ts, expire_time);
912 } else {
913 qemu_del_timer(ts);
917 static void timer_save(QEMUFile *f, void *opaque)
919 if (cpu_ticks_enabled) {
920 hw_error("cannot save state if virtual timers are running");
922 qemu_put_be64s(f, &cpu_ticks_offset);
923 qemu_put_be64s(f, &ticks_per_sec);
924 qemu_put_be64s(f, &cpu_clock_offset);
927 static int timer_load(QEMUFile *f, void *opaque, int version_id)
929 if (version_id != 1 && version_id != 2)
930 return -EINVAL;
931 if (cpu_ticks_enabled) {
932 return -EINVAL;
934 qemu_get_be64s(f, &cpu_ticks_offset);
935 qemu_get_be64s(f, &ticks_per_sec);
936 if (version_id == 2) {
937 qemu_get_be64s(f, &cpu_clock_offset);
939 return 0;
942 #ifdef _WIN32
943 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
944 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
945 #else
946 static void host_alarm_handler(int host_signum)
947 #endif
949 #if 0
950 #define DISP_FREQ 1000
952 static int64_t delta_min = INT64_MAX;
953 static int64_t delta_max, delta_cum, last_clock, delta, ti;
954 static int count;
955 ti = qemu_get_clock(vm_clock);
956 if (last_clock != 0) {
957 delta = ti - last_clock;
958 if (delta < delta_min)
959 delta_min = delta;
960 if (delta > delta_max)
961 delta_max = delta;
962 delta_cum += delta;
963 if (++count == DISP_FREQ) {
964 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
965 muldiv64(delta_min, 1000000, ticks_per_sec),
966 muldiv64(delta_max, 1000000, ticks_per_sec),
967 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
968 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
969 count = 0;
970 delta_min = INT64_MAX;
971 delta_max = 0;
972 delta_cum = 0;
975 last_clock = ti;
977 #endif
978 if (qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
979 qemu_get_clock(vm_clock)) ||
980 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
981 qemu_get_clock(rt_clock))) {
982 #ifdef _WIN32
983 SetEvent(host_alarm);
984 #endif
985 CPUState *env = cpu_single_env;
986 if (env) {
987 /* stop the currently executing cpu because a timer occured */
988 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
989 #ifdef USE_KQEMU
990 if (env->kqemu_enabled) {
991 kqemu_cpu_interrupt(env);
993 #endif
998 #ifndef _WIN32
1000 #if defined(__linux__)
1002 #define RTC_FREQ 1024
1004 static int rtc_fd;
1006 static int start_rtc_timer(void)
1008 rtc_fd = open("/dev/rtc", O_RDONLY);
1009 if (rtc_fd < 0)
1010 return -1;
1011 if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1012 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1013 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1014 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1015 goto fail;
1017 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1018 fail:
1019 close(rtc_fd);
1020 return -1;
1022 pit_min_timer_count = PIT_FREQ / RTC_FREQ;
1023 return 0;
1026 #else
1028 static int start_rtc_timer(void)
1030 return -1;
1033 #endif /* !defined(__linux__) */
1035 #endif /* !defined(_WIN32) */
1037 static void init_timer_alarm(void)
1039 #ifdef _WIN32
1041 int count=0;
1042 TIMECAPS tc;
1044 ZeroMemory(&tc, sizeof(TIMECAPS));
1045 timeGetDevCaps(&tc, sizeof(TIMECAPS));
1046 if (period < tc.wPeriodMin)
1047 period = tc.wPeriodMin;
1048 timeBeginPeriod(period);
1049 timerID = timeSetEvent(1, // interval (ms)
1050 period, // resolution
1051 host_alarm_handler, // function
1052 (DWORD)&count, // user parameter
1053 TIME_PERIODIC | TIME_CALLBACK_FUNCTION);
1054 if( !timerID ) {
1055 perror("failed timer alarm");
1056 exit(1);
1058 host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1059 if (!host_alarm) {
1060 perror("failed CreateEvent");
1061 exit(1);
1063 qemu_add_wait_object(host_alarm, NULL, NULL);
1065 pit_min_timer_count = ((uint64_t)10000 * PIT_FREQ) / 1000000;
1066 #else
1068 struct sigaction act;
1069 struct itimerval itv;
1071 /* get times() syscall frequency */
1072 timer_freq = sysconf(_SC_CLK_TCK);
1074 /* timer signal */
1075 sigfillset(&act.sa_mask);
1076 act.sa_flags = 0;
1077 #if defined (TARGET_I386) && defined(USE_CODE_COPY)
1078 act.sa_flags |= SA_ONSTACK;
1079 #endif
1080 act.sa_handler = host_alarm_handler;
1081 sigaction(SIGALRM, &act, NULL);
1083 itv.it_interval.tv_sec = 0;
1084 itv.it_interval.tv_usec = 999; /* for i386 kernel 2.6 to get 1 ms */
1085 itv.it_value.tv_sec = 0;
1086 itv.it_value.tv_usec = 10 * 1000;
1087 setitimer(ITIMER_REAL, &itv, NULL);
1088 /* we probe the tick duration of the kernel to inform the user if
1089 the emulated kernel requested a too high timer frequency */
1090 getitimer(ITIMER_REAL, &itv);
1092 #if defined(__linux__)
1093 /* XXX: force /dev/rtc usage because even 2.6 kernels may not
1094 have timers with 1 ms resolution. The correct solution will
1095 be to use the POSIX real time timers available in recent
1096 2.6 kernels */
1097 if (itv.it_interval.tv_usec > 1000 || 1) {
1098 /* try to use /dev/rtc to have a faster timer */
1099 if (start_rtc_timer() < 0)
1100 goto use_itimer;
1101 /* disable itimer */
1102 itv.it_interval.tv_sec = 0;
1103 itv.it_interval.tv_usec = 0;
1104 itv.it_value.tv_sec = 0;
1105 itv.it_value.tv_usec = 0;
1106 setitimer(ITIMER_REAL, &itv, NULL);
1108 /* use the RTC */
1109 sigaction(SIGIO, &act, NULL);
1110 fcntl(rtc_fd, F_SETFL, O_ASYNC);
1111 fcntl(rtc_fd, F_SETOWN, getpid());
1112 } else
1113 #endif /* defined(__linux__) */
1115 use_itimer:
1116 pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec *
1117 PIT_FREQ) / 1000000;
1120 #endif
1123 void quit_timers(void)
1125 #ifdef _WIN32
1126 timeKillEvent(timerID);
1127 timeEndPeriod(period);
1128 if (host_alarm) {
1129 CloseHandle(host_alarm);
1130 host_alarm = NULL;
1132 #endif
1135 /***********************************************************/
1136 /* character device */
1138 static void qemu_chr_event(CharDriverState *s, int event)
1140 if (!s->chr_event)
1141 return;
1142 s->chr_event(s->handler_opaque, event);
1145 static void qemu_chr_reset_bh(void *opaque)
1147 CharDriverState *s = opaque;
1148 qemu_chr_event(s, CHR_EVENT_RESET);
1149 qemu_bh_delete(s->bh);
1150 s->bh = NULL;
1153 void qemu_chr_reset(CharDriverState *s)
1155 if (s->bh == NULL) {
1156 s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1157 qemu_bh_schedule(s->bh);
1161 int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1163 return s->chr_write(s, buf, len);
1166 int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1168 if (!s->chr_ioctl)
1169 return -ENOTSUP;
1170 return s->chr_ioctl(s, cmd, arg);
1173 int qemu_chr_can_read(CharDriverState *s)
1175 if (!s->chr_can_read)
1176 return 0;
1177 return s->chr_can_read(s->handler_opaque);
1180 void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1182 s->chr_read(s->handler_opaque, buf, len);
1186 void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1188 char buf[4096];
1189 va_list ap;
1190 va_start(ap, fmt);
1191 vsnprintf(buf, sizeof(buf), fmt, ap);
1192 qemu_chr_write(s, buf, strlen(buf));
1193 va_end(ap);
1196 void qemu_chr_send_event(CharDriverState *s, int event)
1198 if (s->chr_send_event)
1199 s->chr_send_event(s, event);
1202 void qemu_chr_add_handlers(CharDriverState *s,
1203 IOCanRWHandler *fd_can_read,
1204 IOReadHandler *fd_read,
1205 IOEventHandler *fd_event,
1206 void *opaque)
1208 s->chr_can_read = fd_can_read;
1209 s->chr_read = fd_read;
1210 s->chr_event = fd_event;
1211 s->handler_opaque = opaque;
1212 if (s->chr_update_read_handler)
1213 s->chr_update_read_handler(s);
1216 static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1218 return len;
1221 static CharDriverState *qemu_chr_open_null(void)
1223 CharDriverState *chr;
1225 chr = qemu_mallocz(sizeof(CharDriverState));
1226 if (!chr)
1227 return NULL;
1228 chr->chr_write = null_chr_write;
1229 return chr;
1232 /* MUX driver for serial I/O splitting */
1233 static int term_timestamps;
1234 static int64_t term_timestamps_start;
1235 #define MAX_MUX 4
1236 typedef struct {
1237 IOCanRWHandler *chr_can_read[MAX_MUX];
1238 IOReadHandler *chr_read[MAX_MUX];
1239 IOEventHandler *chr_event[MAX_MUX];
1240 void *ext_opaque[MAX_MUX];
1241 CharDriverState *drv;
1242 int mux_cnt;
1243 int term_got_escape;
1244 int max_size;
1245 } MuxDriver;
1248 static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1250 MuxDriver *d = chr->opaque;
1251 int ret;
1252 if (!term_timestamps) {
1253 ret = d->drv->chr_write(d->drv, buf, len);
1254 } else {
1255 int i;
1257 ret = 0;
1258 for(i = 0; i < len; i++) {
1259 ret += d->drv->chr_write(d->drv, buf+i, 1);
1260 if (buf[i] == '\n') {
1261 char buf1[64];
1262 int64_t ti;
1263 int secs;
1265 ti = get_clock();
1266 if (term_timestamps_start == -1)
1267 term_timestamps_start = ti;
1268 ti -= term_timestamps_start;
1269 secs = ti / 1000000000;
1270 snprintf(buf1, sizeof(buf1),
1271 "[%02d:%02d:%02d.%03d] ",
1272 secs / 3600,
1273 (secs / 60) % 60,
1274 secs % 60,
1275 (int)((ti / 1000000) % 1000));
1276 d->drv->chr_write(d->drv, buf1, strlen(buf1));
1280 return ret;
1283 static char *mux_help[] = {
1284 "% h print this help\n\r",
1285 "% x exit emulator\n\r",
1286 "% s save disk data back to file (if -snapshot)\n\r",
1287 "% t toggle console timestamps\n\r"
1288 "% b send break (magic sysrq)\n\r",
1289 "% c switch between console and monitor\n\r",
1290 "% % sends %\n\r",
1291 NULL
1294 static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1295 static void mux_print_help(CharDriverState *chr)
1297 int i, j;
1298 char ebuf[15] = "Escape-Char";
1299 char cbuf[50] = "\n\r";
1301 if (term_escape_char > 0 && term_escape_char < 26) {
1302 sprintf(cbuf,"\n\r");
1303 sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1304 } else {
1305 sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r", term_escape_char);
1307 chr->chr_write(chr, cbuf, strlen(cbuf));
1308 for (i = 0; mux_help[i] != NULL; i++) {
1309 for (j=0; mux_help[i][j] != '\0'; j++) {
1310 if (mux_help[i][j] == '%')
1311 chr->chr_write(chr, ebuf, strlen(ebuf));
1312 else
1313 chr->chr_write(chr, &mux_help[i][j], 1);
1318 static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1320 if (d->term_got_escape) {
1321 d->term_got_escape = 0;
1322 if (ch == term_escape_char)
1323 goto send_char;
1324 switch(ch) {
1325 case '?':
1326 case 'h':
1327 mux_print_help(chr);
1328 break;
1329 case 'x':
1331 char *term = "QEMU: Terminated\n\r";
1332 chr->chr_write(chr,term,strlen(term));
1333 exit(0);
1334 break;
1336 case 's':
1338 int i;
1339 for (i = 0; i < MAX_DISKS; i++) {
1340 if (bs_table[i])
1341 bdrv_commit(bs_table[i]);
1344 break;
1345 case 'b':
1346 if (chr->chr_event)
1347 chr->chr_event(chr->opaque, CHR_EVENT_BREAK);
1348 break;
1349 case 'c':
1350 /* Switch to the next registered device */
1351 chr->focus++;
1352 if (chr->focus >= d->mux_cnt)
1353 chr->focus = 0;
1354 break;
1355 case 't':
1356 term_timestamps = !term_timestamps;
1357 term_timestamps_start = -1;
1358 break;
1360 } else if (ch == term_escape_char) {
1361 d->term_got_escape = 1;
1362 } else {
1363 send_char:
1364 return 1;
1366 return 0;
1369 static int mux_chr_can_read(void *opaque)
1371 CharDriverState *chr = opaque;
1372 MuxDriver *d = chr->opaque;
1373 if (d->chr_can_read[chr->focus])
1374 return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1375 return 0;
1378 static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1380 CharDriverState *chr = opaque;
1381 MuxDriver *d = chr->opaque;
1382 int i;
1383 for(i = 0; i < size; i++)
1384 if (mux_proc_byte(chr, d, buf[i]))
1385 d->chr_read[chr->focus](d->ext_opaque[chr->focus], &buf[i], 1);
1388 static void mux_chr_event(void *opaque, int event)
1390 CharDriverState *chr = opaque;
1391 MuxDriver *d = chr->opaque;
1392 int i;
1394 /* Send the event to all registered listeners */
1395 for (i = 0; i < d->mux_cnt; i++)
1396 if (d->chr_event[i])
1397 d->chr_event[i](d->ext_opaque[i], event);
1400 static void mux_chr_update_read_handler(CharDriverState *chr)
1402 MuxDriver *d = chr->opaque;
1404 if (d->mux_cnt >= MAX_MUX) {
1405 fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1406 return;
1408 d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1409 d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1410 d->chr_read[d->mux_cnt] = chr->chr_read;
1411 d->chr_event[d->mux_cnt] = chr->chr_event;
1412 /* Fix up the real driver with mux routines */
1413 if (d->mux_cnt == 0) {
1414 qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1415 mux_chr_event, chr);
1417 chr->focus = d->mux_cnt;
1418 d->mux_cnt++;
1421 CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1423 CharDriverState *chr;
1424 MuxDriver *d;
1426 chr = qemu_mallocz(sizeof(CharDriverState));
1427 if (!chr)
1428 return NULL;
1429 d = qemu_mallocz(sizeof(MuxDriver));
1430 if (!d) {
1431 free(chr);
1432 return NULL;
1435 chr->opaque = d;
1436 d->drv = drv;
1437 chr->focus = -1;
1438 chr->chr_write = mux_chr_write;
1439 chr->chr_update_read_handler = mux_chr_update_read_handler;
1440 return chr;
1444 #ifdef _WIN32
1446 static void socket_cleanup(void)
1448 WSACleanup();
1451 static int socket_init(void)
1453 WSADATA Data;
1454 int ret, err;
1456 ret = WSAStartup(MAKEWORD(2,2), &Data);
1457 if (ret != 0) {
1458 err = WSAGetLastError();
1459 fprintf(stderr, "WSAStartup: %d\n", err);
1460 return -1;
1462 atexit(socket_cleanup);
1463 return 0;
1466 static int send_all(int fd, const uint8_t *buf, int len1)
1468 int ret, len;
1470 len = len1;
1471 while (len > 0) {
1472 ret = send(fd, buf, len, 0);
1473 if (ret < 0) {
1474 int errno;
1475 errno = WSAGetLastError();
1476 if (errno != WSAEWOULDBLOCK) {
1477 return -1;
1479 } else if (ret == 0) {
1480 break;
1481 } else {
1482 buf += ret;
1483 len -= ret;
1486 return len1 - len;
1489 void socket_set_nonblock(int fd)
1491 unsigned long opt = 1;
1492 ioctlsocket(fd, FIONBIO, &opt);
1495 #else
1497 static int unix_write(int fd, const uint8_t *buf, int len1)
1499 int ret, len;
1501 len = len1;
1502 while (len > 0) {
1503 ret = write(fd, buf, len);
1504 if (ret < 0) {
1505 if (errno != EINTR && errno != EAGAIN)
1506 return -1;
1507 } else if (ret == 0) {
1508 break;
1509 } else {
1510 buf += ret;
1511 len -= ret;
1514 return len1 - len;
1517 static inline int send_all(int fd, const uint8_t *buf, int len1)
1519 return unix_write(fd, buf, len1);
1522 void socket_set_nonblock(int fd)
1524 fcntl(fd, F_SETFL, O_NONBLOCK);
1526 #endif /* !_WIN32 */
1528 #ifndef _WIN32
1530 typedef struct {
1531 int fd_in, fd_out;
1532 int max_size;
1533 } FDCharDriver;
1535 #define STDIO_MAX_CLIENTS 1
1536 static int stdio_nb_clients = 0;
1538 static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1540 FDCharDriver *s = chr->opaque;
1541 return unix_write(s->fd_out, buf, len);
1544 static int fd_chr_read_poll(void *opaque)
1546 CharDriverState *chr = opaque;
1547 FDCharDriver *s = chr->opaque;
1549 s->max_size = qemu_chr_can_read(chr);
1550 return s->max_size;
1553 static void fd_chr_read(void *opaque)
1555 CharDriverState *chr = opaque;
1556 FDCharDriver *s = chr->opaque;
1557 int size, len;
1558 uint8_t buf[1024];
1560 len = sizeof(buf);
1561 if (len > s->max_size)
1562 len = s->max_size;
1563 if (len == 0)
1564 return;
1565 size = read(s->fd_in, buf, len);
1566 if (size == 0) {
1567 /* FD has been closed. Remove it from the active list. */
1568 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
1569 return;
1571 if (size > 0) {
1572 qemu_chr_read(chr, buf, size);
1576 static void fd_chr_update_read_handler(CharDriverState *chr)
1578 FDCharDriver *s = chr->opaque;
1580 if (s->fd_in >= 0) {
1581 if (nographic && s->fd_in == 0) {
1582 } else {
1583 qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
1584 fd_chr_read, NULL, chr);
1589 /* open a character device to a unix fd */
1590 static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
1592 CharDriverState *chr;
1593 FDCharDriver *s;
1595 chr = qemu_mallocz(sizeof(CharDriverState));
1596 if (!chr)
1597 return NULL;
1598 s = qemu_mallocz(sizeof(FDCharDriver));
1599 if (!s) {
1600 free(chr);
1601 return NULL;
1603 s->fd_in = fd_in;
1604 s->fd_out = fd_out;
1605 chr->opaque = s;
1606 chr->chr_write = fd_chr_write;
1607 chr->chr_update_read_handler = fd_chr_update_read_handler;
1609 qemu_chr_reset(chr);
1611 return chr;
1614 static CharDriverState *qemu_chr_open_file_out(const char *file_out)
1616 int fd_out;
1618 fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666);
1619 if (fd_out < 0)
1620 return NULL;
1621 return qemu_chr_open_fd(-1, fd_out);
1624 static CharDriverState *qemu_chr_open_pipe(const char *filename)
1626 int fd_in, fd_out;
1627 char filename_in[256], filename_out[256];
1629 snprintf(filename_in, 256, "%s.in", filename);
1630 snprintf(filename_out, 256, "%s.out", filename);
1631 fd_in = open(filename_in, O_RDWR | O_BINARY);
1632 fd_out = open(filename_out, O_RDWR | O_BINARY);
1633 if (fd_in < 0 || fd_out < 0) {
1634 if (fd_in >= 0)
1635 close(fd_in);
1636 if (fd_out >= 0)
1637 close(fd_out);
1638 fd_in = fd_out = open(filename, O_RDWR | O_BINARY);
1639 if (fd_in < 0)
1640 return NULL;
1642 return qemu_chr_open_fd(fd_in, fd_out);
1646 /* for STDIO, we handle the case where several clients use it
1647 (nographic mode) */
1649 #define TERM_FIFO_MAX_SIZE 1
1651 static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
1652 static int term_fifo_size;
1654 static int stdio_read_poll(void *opaque)
1656 CharDriverState *chr = opaque;
1658 /* try to flush the queue if needed */
1659 if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
1660 qemu_chr_read(chr, term_fifo, 1);
1661 term_fifo_size = 0;
1663 /* see if we can absorb more chars */
1664 if (term_fifo_size == 0)
1665 return 1;
1666 else
1667 return 0;
1670 static void stdio_read(void *opaque)
1672 int size;
1673 uint8_t buf[1];
1674 CharDriverState *chr = opaque;
1676 size = read(0, buf, 1);
1677 if (size == 0) {
1678 /* stdin has been closed. Remove it from the active list. */
1679 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
1680 return;
1682 if (size > 0) {
1683 if (qemu_chr_can_read(chr) > 0) {
1684 qemu_chr_read(chr, buf, 1);
1685 } else if (term_fifo_size == 0) {
1686 term_fifo[term_fifo_size++] = buf[0];
1691 /* init terminal so that we can grab keys */
1692 static struct termios oldtty;
1693 static int old_fd0_flags;
1695 static void term_exit(void)
1697 tcsetattr (0, TCSANOW, &oldtty);
1698 fcntl(0, F_SETFL, old_fd0_flags);
1701 static void term_init(void)
1703 struct termios tty;
1705 tcgetattr (0, &tty);
1706 oldtty = tty;
1707 old_fd0_flags = fcntl(0, F_GETFL);
1709 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1710 |INLCR|IGNCR|ICRNL|IXON);
1711 tty.c_oflag |= OPOST;
1712 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
1713 /* if graphical mode, we allow Ctrl-C handling */
1714 if (nographic)
1715 tty.c_lflag &= ~ISIG;
1716 tty.c_cflag &= ~(CSIZE|PARENB);
1717 tty.c_cflag |= CS8;
1718 tty.c_cc[VMIN] = 1;
1719 tty.c_cc[VTIME] = 0;
1721 tcsetattr (0, TCSANOW, &tty);
1723 atexit(term_exit);
1725 fcntl(0, F_SETFL, O_NONBLOCK);
1728 static CharDriverState *qemu_chr_open_stdio(void)
1730 CharDriverState *chr;
1732 if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
1733 return NULL;
1734 chr = qemu_chr_open_fd(0, 1);
1735 qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
1736 stdio_nb_clients++;
1737 term_init();
1739 return chr;
1742 #if defined(__linux__)
1743 static CharDriverState *qemu_chr_open_pty(void)
1745 struct termios tty;
1746 char slave_name[1024];
1747 int master_fd, slave_fd;
1749 /* Not satisfying */
1750 if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
1751 return NULL;
1754 /* Disabling local echo and line-buffered output */
1755 tcgetattr (master_fd, &tty);
1756 tty.c_lflag &= ~(ECHO|ICANON|ISIG);
1757 tty.c_cc[VMIN] = 1;
1758 tty.c_cc[VTIME] = 0;
1759 tcsetattr (master_fd, TCSAFLUSH, &tty);
1761 fprintf(stderr, "char device redirected to %s\n", slave_name);
1762 return qemu_chr_open_fd(master_fd, master_fd);
1765 static void tty_serial_init(int fd, int speed,
1766 int parity, int data_bits, int stop_bits)
1768 struct termios tty;
1769 speed_t spd;
1771 #if 0
1772 printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
1773 speed, parity, data_bits, stop_bits);
1774 #endif
1775 tcgetattr (fd, &tty);
1777 switch(speed) {
1778 case 50:
1779 spd = B50;
1780 break;
1781 case 75:
1782 spd = B75;
1783 break;
1784 case 300:
1785 spd = B300;
1786 break;
1787 case 600:
1788 spd = B600;
1789 break;
1790 case 1200:
1791 spd = B1200;
1792 break;
1793 case 2400:
1794 spd = B2400;
1795 break;
1796 case 4800:
1797 spd = B4800;
1798 break;
1799 case 9600:
1800 spd = B9600;
1801 break;
1802 case 19200:
1803 spd = B19200;
1804 break;
1805 case 38400:
1806 spd = B38400;
1807 break;
1808 case 57600:
1809 spd = B57600;
1810 break;
1811 default:
1812 case 115200:
1813 spd = B115200;
1814 break;
1817 cfsetispeed(&tty, spd);
1818 cfsetospeed(&tty, spd);
1820 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1821 |INLCR|IGNCR|ICRNL|IXON);
1822 tty.c_oflag |= OPOST;
1823 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
1824 tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
1825 switch(data_bits) {
1826 default:
1827 case 8:
1828 tty.c_cflag |= CS8;
1829 break;
1830 case 7:
1831 tty.c_cflag |= CS7;
1832 break;
1833 case 6:
1834 tty.c_cflag |= CS6;
1835 break;
1836 case 5:
1837 tty.c_cflag |= CS5;
1838 break;
1840 switch(parity) {
1841 default:
1842 case 'N':
1843 break;
1844 case 'E':
1845 tty.c_cflag |= PARENB;
1846 break;
1847 case 'O':
1848 tty.c_cflag |= PARENB | PARODD;
1849 break;
1851 if (stop_bits == 2)
1852 tty.c_cflag |= CSTOPB;
1854 tcsetattr (fd, TCSANOW, &tty);
1857 static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
1859 FDCharDriver *s = chr->opaque;
1861 switch(cmd) {
1862 case CHR_IOCTL_SERIAL_SET_PARAMS:
1864 QEMUSerialSetParams *ssp = arg;
1865 tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
1866 ssp->data_bits, ssp->stop_bits);
1868 break;
1869 case CHR_IOCTL_SERIAL_SET_BREAK:
1871 int enable = *(int *)arg;
1872 if (enable)
1873 tcsendbreak(s->fd_in, 1);
1875 break;
1876 default:
1877 return -ENOTSUP;
1879 return 0;
1882 static CharDriverState *qemu_chr_open_tty(const char *filename)
1884 CharDriverState *chr;
1885 int fd;
1887 fd = open(filename, O_RDWR | O_NONBLOCK);
1888 if (fd < 0)
1889 return NULL;
1890 fcntl(fd, F_SETFL, O_NONBLOCK);
1891 tty_serial_init(fd, 115200, 'N', 8, 1);
1892 chr = qemu_chr_open_fd(fd, fd);
1893 if (!chr)
1894 return NULL;
1895 chr->chr_ioctl = tty_serial_ioctl;
1896 qemu_chr_reset(chr);
1897 return chr;
1900 typedef struct {
1901 int fd;
1902 int mode;
1903 } ParallelCharDriver;
1905 static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
1907 if (s->mode != mode) {
1908 int m = mode;
1909 if (ioctl(s->fd, PPSETMODE, &m) < 0)
1910 return 0;
1911 s->mode = mode;
1913 return 1;
1916 static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
1918 ParallelCharDriver *drv = chr->opaque;
1919 int fd = drv->fd;
1920 uint8_t b;
1922 switch(cmd) {
1923 case CHR_IOCTL_PP_READ_DATA:
1924 if (ioctl(fd, PPRDATA, &b) < 0)
1925 return -ENOTSUP;
1926 *(uint8_t *)arg = b;
1927 break;
1928 case CHR_IOCTL_PP_WRITE_DATA:
1929 b = *(uint8_t *)arg;
1930 if (ioctl(fd, PPWDATA, &b) < 0)
1931 return -ENOTSUP;
1932 break;
1933 case CHR_IOCTL_PP_READ_CONTROL:
1934 if (ioctl(fd, PPRCONTROL, &b) < 0)
1935 return -ENOTSUP;
1936 /* Linux gives only the lowest bits, and no way to know data
1937 direction! For better compatibility set the fixed upper
1938 bits. */
1939 *(uint8_t *)arg = b | 0xc0;
1940 break;
1941 case CHR_IOCTL_PP_WRITE_CONTROL:
1942 b = *(uint8_t *)arg;
1943 if (ioctl(fd, PPWCONTROL, &b) < 0)
1944 return -ENOTSUP;
1945 break;
1946 case CHR_IOCTL_PP_READ_STATUS:
1947 if (ioctl(fd, PPRSTATUS, &b) < 0)
1948 return -ENOTSUP;
1949 *(uint8_t *)arg = b;
1950 break;
1951 case CHR_IOCTL_PP_EPP_READ_ADDR:
1952 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
1953 struct ParallelIOArg *parg = arg;
1954 int n = read(fd, parg->buffer, parg->count);
1955 if (n != parg->count) {
1956 return -EIO;
1959 break;
1960 case CHR_IOCTL_PP_EPP_READ:
1961 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
1962 struct ParallelIOArg *parg = arg;
1963 int n = read(fd, parg->buffer, parg->count);
1964 if (n != parg->count) {
1965 return -EIO;
1968 break;
1969 case CHR_IOCTL_PP_EPP_WRITE_ADDR:
1970 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
1971 struct ParallelIOArg *parg = arg;
1972 int n = write(fd, parg->buffer, parg->count);
1973 if (n != parg->count) {
1974 return -EIO;
1977 break;
1978 case CHR_IOCTL_PP_EPP_WRITE:
1979 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
1980 struct ParallelIOArg *parg = arg;
1981 int n = write(fd, parg->buffer, parg->count);
1982 if (n != parg->count) {
1983 return -EIO;
1986 break;
1987 default:
1988 return -ENOTSUP;
1990 return 0;
1993 static void pp_close(CharDriverState *chr)
1995 ParallelCharDriver *drv = chr->opaque;
1996 int fd = drv->fd;
1998 pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
1999 ioctl(fd, PPRELEASE);
2000 close(fd);
2001 qemu_free(drv);
2004 static CharDriverState *qemu_chr_open_pp(const char *filename)
2006 CharDriverState *chr;
2007 ParallelCharDriver *drv;
2008 int fd;
2010 fd = open(filename, O_RDWR);
2011 if (fd < 0)
2012 return NULL;
2014 if (ioctl(fd, PPCLAIM) < 0) {
2015 close(fd);
2016 return NULL;
2019 drv = qemu_mallocz(sizeof(ParallelCharDriver));
2020 if (!drv) {
2021 close(fd);
2022 return NULL;
2024 drv->fd = fd;
2025 drv->mode = IEEE1284_MODE_COMPAT;
2027 chr = qemu_mallocz(sizeof(CharDriverState));
2028 if (!chr) {
2029 qemu_free(drv);
2030 close(fd);
2031 return NULL;
2033 chr->chr_write = null_chr_write;
2034 chr->chr_ioctl = pp_ioctl;
2035 chr->chr_close = pp_close;
2036 chr->opaque = drv;
2038 qemu_chr_reset(chr);
2040 return chr;
2043 #else
2044 static CharDriverState *qemu_chr_open_pty(void)
2046 return NULL;
2048 #endif
2050 #endif /* !defined(_WIN32) */
2052 #ifdef _WIN32
2053 typedef struct {
2054 int max_size;
2055 HANDLE hcom, hrecv, hsend;
2056 OVERLAPPED orecv, osend;
2057 BOOL fpipe;
2058 DWORD len;
2059 } WinCharState;
2061 #define NSENDBUF 2048
2062 #define NRECVBUF 2048
2063 #define MAXCONNECT 1
2064 #define NTIMEOUT 5000
2066 static int win_chr_poll(void *opaque);
2067 static int win_chr_pipe_poll(void *opaque);
2069 static void win_chr_close(CharDriverState *chr)
2071 WinCharState *s = chr->opaque;
2073 if (s->hsend) {
2074 CloseHandle(s->hsend);
2075 s->hsend = NULL;
2077 if (s->hrecv) {
2078 CloseHandle(s->hrecv);
2079 s->hrecv = NULL;
2081 if (s->hcom) {
2082 CloseHandle(s->hcom);
2083 s->hcom = NULL;
2085 if (s->fpipe)
2086 qemu_del_polling_cb(win_chr_pipe_poll, chr);
2087 else
2088 qemu_del_polling_cb(win_chr_poll, chr);
2091 static int win_chr_init(CharDriverState *chr, const char *filename)
2093 WinCharState *s = chr->opaque;
2094 COMMCONFIG comcfg;
2095 COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2096 COMSTAT comstat;
2097 DWORD size;
2098 DWORD err;
2100 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2101 if (!s->hsend) {
2102 fprintf(stderr, "Failed CreateEvent\n");
2103 goto fail;
2105 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2106 if (!s->hrecv) {
2107 fprintf(stderr, "Failed CreateEvent\n");
2108 goto fail;
2111 s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2112 OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2113 if (s->hcom == INVALID_HANDLE_VALUE) {
2114 fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2115 s->hcom = NULL;
2116 goto fail;
2119 if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2120 fprintf(stderr, "Failed SetupComm\n");
2121 goto fail;
2124 ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2125 size = sizeof(COMMCONFIG);
2126 GetDefaultCommConfig(filename, &comcfg, &size);
2127 comcfg.dcb.DCBlength = sizeof(DCB);
2128 CommConfigDialog(filename, NULL, &comcfg);
2130 if (!SetCommState(s->hcom, &comcfg.dcb)) {
2131 fprintf(stderr, "Failed SetCommState\n");
2132 goto fail;
2135 if (!SetCommMask(s->hcom, EV_ERR)) {
2136 fprintf(stderr, "Failed SetCommMask\n");
2137 goto fail;
2140 cto.ReadIntervalTimeout = MAXDWORD;
2141 if (!SetCommTimeouts(s->hcom, &cto)) {
2142 fprintf(stderr, "Failed SetCommTimeouts\n");
2143 goto fail;
2146 if (!ClearCommError(s->hcom, &err, &comstat)) {
2147 fprintf(stderr, "Failed ClearCommError\n");
2148 goto fail;
2150 qemu_add_polling_cb(win_chr_poll, chr);
2151 return 0;
2153 fail:
2154 win_chr_close(chr);
2155 return -1;
2158 static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2160 WinCharState *s = chr->opaque;
2161 DWORD len, ret, size, err;
2163 len = len1;
2164 ZeroMemory(&s->osend, sizeof(s->osend));
2165 s->osend.hEvent = s->hsend;
2166 while (len > 0) {
2167 if (s->hsend)
2168 ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2169 else
2170 ret = WriteFile(s->hcom, buf, len, &size, NULL);
2171 if (!ret) {
2172 err = GetLastError();
2173 if (err == ERROR_IO_PENDING) {
2174 ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2175 if (ret) {
2176 buf += size;
2177 len -= size;
2178 } else {
2179 break;
2181 } else {
2182 break;
2184 } else {
2185 buf += size;
2186 len -= size;
2189 return len1 - len;
2192 static int win_chr_read_poll(CharDriverState *chr)
2194 WinCharState *s = chr->opaque;
2196 s->max_size = qemu_chr_can_read(chr);
2197 return s->max_size;
2200 static void win_chr_readfile(CharDriverState *chr)
2202 WinCharState *s = chr->opaque;
2203 int ret, err;
2204 uint8_t buf[1024];
2205 DWORD size;
2207 ZeroMemory(&s->orecv, sizeof(s->orecv));
2208 s->orecv.hEvent = s->hrecv;
2209 ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2210 if (!ret) {
2211 err = GetLastError();
2212 if (err == ERROR_IO_PENDING) {
2213 ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2217 if (size > 0) {
2218 qemu_chr_read(chr, buf, size);
2222 static void win_chr_read(CharDriverState *chr)
2224 WinCharState *s = chr->opaque;
2226 if (s->len > s->max_size)
2227 s->len = s->max_size;
2228 if (s->len == 0)
2229 return;
2231 win_chr_readfile(chr);
2234 static int win_chr_poll(void *opaque)
2236 CharDriverState *chr = opaque;
2237 WinCharState *s = chr->opaque;
2238 COMSTAT status;
2239 DWORD comerr;
2241 ClearCommError(s->hcom, &comerr, &status);
2242 if (status.cbInQue > 0) {
2243 s->len = status.cbInQue;
2244 win_chr_read_poll(chr);
2245 win_chr_read(chr);
2246 return 1;
2248 return 0;
2251 static CharDriverState *qemu_chr_open_win(const char *filename)
2253 CharDriverState *chr;
2254 WinCharState *s;
2256 chr = qemu_mallocz(sizeof(CharDriverState));
2257 if (!chr)
2258 return NULL;
2259 s = qemu_mallocz(sizeof(WinCharState));
2260 if (!s) {
2261 free(chr);
2262 return NULL;
2264 chr->opaque = s;
2265 chr->chr_write = win_chr_write;
2266 chr->chr_close = win_chr_close;
2268 if (win_chr_init(chr, filename) < 0) {
2269 free(s);
2270 free(chr);
2271 return NULL;
2273 qemu_chr_reset(chr);
2274 return chr;
2277 static int win_chr_pipe_poll(void *opaque)
2279 CharDriverState *chr = opaque;
2280 WinCharState *s = chr->opaque;
2281 DWORD size;
2283 PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2284 if (size > 0) {
2285 s->len = size;
2286 win_chr_read_poll(chr);
2287 win_chr_read(chr);
2288 return 1;
2290 return 0;
2293 static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2295 WinCharState *s = chr->opaque;
2296 OVERLAPPED ov;
2297 int ret;
2298 DWORD size;
2299 char openname[256];
2301 s->fpipe = TRUE;
2303 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2304 if (!s->hsend) {
2305 fprintf(stderr, "Failed CreateEvent\n");
2306 goto fail;
2308 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2309 if (!s->hrecv) {
2310 fprintf(stderr, "Failed CreateEvent\n");
2311 goto fail;
2314 snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2315 s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2316 PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2317 PIPE_WAIT,
2318 MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2319 if (s->hcom == INVALID_HANDLE_VALUE) {
2320 fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2321 s->hcom = NULL;
2322 goto fail;
2325 ZeroMemory(&ov, sizeof(ov));
2326 ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2327 ret = ConnectNamedPipe(s->hcom, &ov);
2328 if (ret) {
2329 fprintf(stderr, "Failed ConnectNamedPipe\n");
2330 goto fail;
2333 ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2334 if (!ret) {
2335 fprintf(stderr, "Failed GetOverlappedResult\n");
2336 if (ov.hEvent) {
2337 CloseHandle(ov.hEvent);
2338 ov.hEvent = NULL;
2340 goto fail;
2343 if (ov.hEvent) {
2344 CloseHandle(ov.hEvent);
2345 ov.hEvent = NULL;
2347 qemu_add_polling_cb(win_chr_pipe_poll, chr);
2348 return 0;
2350 fail:
2351 win_chr_close(chr);
2352 return -1;
2356 static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2358 CharDriverState *chr;
2359 WinCharState *s;
2361 chr = qemu_mallocz(sizeof(CharDriverState));
2362 if (!chr)
2363 return NULL;
2364 s = qemu_mallocz(sizeof(WinCharState));
2365 if (!s) {
2366 free(chr);
2367 return NULL;
2369 chr->opaque = s;
2370 chr->chr_write = win_chr_write;
2371 chr->chr_close = win_chr_close;
2373 if (win_chr_pipe_init(chr, filename) < 0) {
2374 free(s);
2375 free(chr);
2376 return NULL;
2378 qemu_chr_reset(chr);
2379 return chr;
2382 static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2384 CharDriverState *chr;
2385 WinCharState *s;
2387 chr = qemu_mallocz(sizeof(CharDriverState));
2388 if (!chr)
2389 return NULL;
2390 s = qemu_mallocz(sizeof(WinCharState));
2391 if (!s) {
2392 free(chr);
2393 return NULL;
2395 s->hcom = fd_out;
2396 chr->opaque = s;
2397 chr->chr_write = win_chr_write;
2398 qemu_chr_reset(chr);
2399 return chr;
2402 static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2404 HANDLE fd_out;
2406 fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2407 OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2408 if (fd_out == INVALID_HANDLE_VALUE)
2409 return NULL;
2411 return qemu_chr_open_win_file(fd_out);
2413 #endif
2415 /***********************************************************/
2416 /* UDP Net console */
2418 typedef struct {
2419 int fd;
2420 struct sockaddr_in daddr;
2421 char buf[1024];
2422 int bufcnt;
2423 int bufptr;
2424 int max_size;
2425 } NetCharDriver;
2427 static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2429 NetCharDriver *s = chr->opaque;
2431 return sendto(s->fd, buf, len, 0,
2432 (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2435 static int udp_chr_read_poll(void *opaque)
2437 CharDriverState *chr = opaque;
2438 NetCharDriver *s = chr->opaque;
2440 s->max_size = qemu_chr_can_read(chr);
2442 /* If there were any stray characters in the queue process them
2443 * first
2445 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2446 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2447 s->bufptr++;
2448 s->max_size = qemu_chr_can_read(chr);
2450 return s->max_size;
2453 static void udp_chr_read(void *opaque)
2455 CharDriverState *chr = opaque;
2456 NetCharDriver *s = chr->opaque;
2458 if (s->max_size == 0)
2459 return;
2460 s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2461 s->bufptr = s->bufcnt;
2462 if (s->bufcnt <= 0)
2463 return;
2465 s->bufptr = 0;
2466 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2467 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2468 s->bufptr++;
2469 s->max_size = qemu_chr_can_read(chr);
2473 static void udp_chr_update_read_handler(CharDriverState *chr)
2475 NetCharDriver *s = chr->opaque;
2477 if (s->fd >= 0) {
2478 qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
2479 udp_chr_read, NULL, chr);
2483 int parse_host_port(struct sockaddr_in *saddr, const char *str);
2484 #ifndef _WIN32
2485 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
2486 #endif
2487 int parse_host_src_port(struct sockaddr_in *haddr,
2488 struct sockaddr_in *saddr,
2489 const char *str);
2491 static CharDriverState *qemu_chr_open_udp(const char *def)
2493 CharDriverState *chr = NULL;
2494 NetCharDriver *s = NULL;
2495 int fd = -1;
2496 struct sockaddr_in saddr;
2498 chr = qemu_mallocz(sizeof(CharDriverState));
2499 if (!chr)
2500 goto return_err;
2501 s = qemu_mallocz(sizeof(NetCharDriver));
2502 if (!s)
2503 goto return_err;
2505 fd = socket(PF_INET, SOCK_DGRAM, 0);
2506 if (fd < 0) {
2507 perror("socket(PF_INET, SOCK_DGRAM)");
2508 goto return_err;
2511 if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
2512 printf("Could not parse: %s\n", def);
2513 goto return_err;
2516 if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
2518 perror("bind");
2519 goto return_err;
2522 s->fd = fd;
2523 s->bufcnt = 0;
2524 s->bufptr = 0;
2525 chr->opaque = s;
2526 chr->chr_write = udp_chr_write;
2527 chr->chr_update_read_handler = udp_chr_update_read_handler;
2528 return chr;
2530 return_err:
2531 if (chr)
2532 free(chr);
2533 if (s)
2534 free(s);
2535 if (fd >= 0)
2536 closesocket(fd);
2537 return NULL;
2540 /***********************************************************/
2541 /* TCP Net console */
2543 typedef struct {
2544 int fd, listen_fd;
2545 int connected;
2546 int max_size;
2547 int do_telnetopt;
2548 int do_nodelay;
2549 int is_unix;
2550 } TCPCharDriver;
2552 static void tcp_chr_accept(void *opaque);
2554 static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2556 TCPCharDriver *s = chr->opaque;
2557 if (s->connected) {
2558 return send_all(s->fd, buf, len);
2559 } else {
2560 /* XXX: indicate an error ? */
2561 return len;
2565 static int tcp_chr_read_poll(void *opaque)
2567 CharDriverState *chr = opaque;
2568 TCPCharDriver *s = chr->opaque;
2569 if (!s->connected)
2570 return 0;
2571 s->max_size = qemu_chr_can_read(chr);
2572 return s->max_size;
2575 #define IAC 255
2576 #define IAC_BREAK 243
2577 static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
2578 TCPCharDriver *s,
2579 char *buf, int *size)
2581 /* Handle any telnet client's basic IAC options to satisfy char by
2582 * char mode with no echo. All IAC options will be removed from
2583 * the buf and the do_telnetopt variable will be used to track the
2584 * state of the width of the IAC information.
2586 * IAC commands come in sets of 3 bytes with the exception of the
2587 * "IAC BREAK" command and the double IAC.
2590 int i;
2591 int j = 0;
2593 for (i = 0; i < *size; i++) {
2594 if (s->do_telnetopt > 1) {
2595 if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
2596 /* Double IAC means send an IAC */
2597 if (j != i)
2598 buf[j] = buf[i];
2599 j++;
2600 s->do_telnetopt = 1;
2601 } else {
2602 if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
2603 /* Handle IAC break commands by sending a serial break */
2604 qemu_chr_event(chr, CHR_EVENT_BREAK);
2605 s->do_telnetopt++;
2607 s->do_telnetopt++;
2609 if (s->do_telnetopt >= 4) {
2610 s->do_telnetopt = 1;
2612 } else {
2613 if ((unsigned char)buf[i] == IAC) {
2614 s->do_telnetopt = 2;
2615 } else {
2616 if (j != i)
2617 buf[j] = buf[i];
2618 j++;
2622 *size = j;
2625 static void tcp_chr_read(void *opaque)
2627 CharDriverState *chr = opaque;
2628 TCPCharDriver *s = chr->opaque;
2629 uint8_t buf[1024];
2630 int len, size;
2632 if (!s->connected || s->max_size <= 0)
2633 return;
2634 len = sizeof(buf);
2635 if (len > s->max_size)
2636 len = s->max_size;
2637 size = recv(s->fd, buf, len, 0);
2638 if (size == 0) {
2639 /* connection closed */
2640 s->connected = 0;
2641 if (s->listen_fd >= 0) {
2642 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
2644 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
2645 closesocket(s->fd);
2646 s->fd = -1;
2647 } else if (size > 0) {
2648 if (s->do_telnetopt)
2649 tcp_chr_process_IAC_bytes(chr, s, buf, &size);
2650 if (size > 0)
2651 qemu_chr_read(chr, buf, size);
2655 static void tcp_chr_connect(void *opaque)
2657 CharDriverState *chr = opaque;
2658 TCPCharDriver *s = chr->opaque;
2660 s->connected = 1;
2661 qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
2662 tcp_chr_read, NULL, chr);
2663 qemu_chr_reset(chr);
2666 #define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
2667 static void tcp_chr_telnet_init(int fd)
2669 char buf[3];
2670 /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
2671 IACSET(buf, 0xff, 0xfb, 0x01); /* IAC WILL ECHO */
2672 send(fd, (char *)buf, 3, 0);
2673 IACSET(buf, 0xff, 0xfb, 0x03); /* IAC WILL Suppress go ahead */
2674 send(fd, (char *)buf, 3, 0);
2675 IACSET(buf, 0xff, 0xfb, 0x00); /* IAC WILL Binary */
2676 send(fd, (char *)buf, 3, 0);
2677 IACSET(buf, 0xff, 0xfd, 0x00); /* IAC DO Binary */
2678 send(fd, (char *)buf, 3, 0);
2681 static void socket_set_nodelay(int fd)
2683 int val = 1;
2684 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2687 static void tcp_chr_accept(void *opaque)
2689 CharDriverState *chr = opaque;
2690 TCPCharDriver *s = chr->opaque;
2691 struct sockaddr_in saddr;
2692 #ifndef _WIN32
2693 struct sockaddr_un uaddr;
2694 #endif
2695 struct sockaddr *addr;
2696 socklen_t len;
2697 int fd;
2699 for(;;) {
2700 #ifndef _WIN32
2701 if (s->is_unix) {
2702 len = sizeof(uaddr);
2703 addr = (struct sockaddr *)&uaddr;
2704 } else
2705 #endif
2707 len = sizeof(saddr);
2708 addr = (struct sockaddr *)&saddr;
2710 fd = accept(s->listen_fd, addr, &len);
2711 if (fd < 0 && errno != EINTR) {
2712 return;
2713 } else if (fd >= 0) {
2714 if (s->do_telnetopt)
2715 tcp_chr_telnet_init(fd);
2716 break;
2719 socket_set_nonblock(fd);
2720 if (s->do_nodelay)
2721 socket_set_nodelay(fd);
2722 s->fd = fd;
2723 qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
2724 tcp_chr_connect(chr);
2727 static void tcp_chr_close(CharDriverState *chr)
2729 TCPCharDriver *s = chr->opaque;
2730 if (s->fd >= 0)
2731 closesocket(s->fd);
2732 if (s->listen_fd >= 0)
2733 closesocket(s->listen_fd);
2734 qemu_free(s);
2737 static CharDriverState *qemu_chr_open_tcp(const char *host_str,
2738 int is_telnet,
2739 int is_unix)
2741 CharDriverState *chr = NULL;
2742 TCPCharDriver *s = NULL;
2743 int fd = -1, ret, err, val;
2744 int is_listen = 0;
2745 int is_waitconnect = 1;
2746 int do_nodelay = 0;
2747 const char *ptr;
2748 struct sockaddr_in saddr;
2749 #ifndef _WIN32
2750 struct sockaddr_un uaddr;
2751 #endif
2752 struct sockaddr *addr;
2753 socklen_t addrlen;
2755 #ifndef _WIN32
2756 if (is_unix) {
2757 addr = (struct sockaddr *)&uaddr;
2758 addrlen = sizeof(uaddr);
2759 if (parse_unix_path(&uaddr, host_str) < 0)
2760 goto fail;
2761 } else
2762 #endif
2764 addr = (struct sockaddr *)&saddr;
2765 addrlen = sizeof(saddr);
2766 if (parse_host_port(&saddr, host_str) < 0)
2767 goto fail;
2770 ptr = host_str;
2771 while((ptr = strchr(ptr,','))) {
2772 ptr++;
2773 if (!strncmp(ptr,"server",6)) {
2774 is_listen = 1;
2775 } else if (!strncmp(ptr,"nowait",6)) {
2776 is_waitconnect = 0;
2777 } else if (!strncmp(ptr,"nodelay",6)) {
2778 do_nodelay = 1;
2779 } else {
2780 printf("Unknown option: %s\n", ptr);
2781 goto fail;
2784 if (!is_listen)
2785 is_waitconnect = 0;
2787 chr = qemu_mallocz(sizeof(CharDriverState));
2788 if (!chr)
2789 goto fail;
2790 s = qemu_mallocz(sizeof(TCPCharDriver));
2791 if (!s)
2792 goto fail;
2794 #ifndef _WIN32
2795 if (is_unix)
2796 fd = socket(PF_UNIX, SOCK_STREAM, 0);
2797 else
2798 #endif
2799 fd = socket(PF_INET, SOCK_STREAM, 0);
2801 if (fd < 0)
2802 goto fail;
2804 if (!is_waitconnect)
2805 socket_set_nonblock(fd);
2807 s->connected = 0;
2808 s->fd = -1;
2809 s->listen_fd = -1;
2810 s->is_unix = is_unix;
2811 s->do_nodelay = do_nodelay && !is_unix;
2813 chr->opaque = s;
2814 chr->chr_write = tcp_chr_write;
2815 chr->chr_close = tcp_chr_close;
2817 if (is_listen) {
2818 /* allow fast reuse */
2819 #ifndef _WIN32
2820 if (is_unix) {
2821 char path[109];
2822 strncpy(path, uaddr.sun_path, 108);
2823 path[108] = 0;
2824 unlink(path);
2825 } else
2826 #endif
2828 val = 1;
2829 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
2832 ret = bind(fd, addr, addrlen);
2833 if (ret < 0)
2834 goto fail;
2836 ret = listen(fd, 0);
2837 if (ret < 0)
2838 goto fail;
2840 s->listen_fd = fd;
2841 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
2842 if (is_telnet)
2843 s->do_telnetopt = 1;
2844 } else {
2845 for(;;) {
2846 ret = connect(fd, addr, addrlen);
2847 if (ret < 0) {
2848 err = socket_error();
2849 if (err == EINTR || err == EWOULDBLOCK) {
2850 } else if (err == EINPROGRESS) {
2851 break;
2852 } else {
2853 goto fail;
2855 } else {
2856 s->connected = 1;
2857 break;
2860 s->fd = fd;
2861 socket_set_nodelay(fd);
2862 if (s->connected)
2863 tcp_chr_connect(chr);
2864 else
2865 qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
2868 if (is_listen && is_waitconnect) {
2869 printf("QEMU waiting for connection on: %s\n", host_str);
2870 tcp_chr_accept(chr);
2871 socket_set_nonblock(s->listen_fd);
2874 return chr;
2875 fail:
2876 if (fd >= 0)
2877 closesocket(fd);
2878 qemu_free(s);
2879 qemu_free(chr);
2880 return NULL;
2883 CharDriverState *qemu_chr_open(const char *filename)
2885 const char *p;
2887 if (!strcmp(filename, "vc")) {
2888 return text_console_init(&display_state);
2889 } else if (!strcmp(filename, "null")) {
2890 return qemu_chr_open_null();
2891 } else
2892 if (strstart(filename, "tcp:", &p)) {
2893 return qemu_chr_open_tcp(p, 0, 0);
2894 } else
2895 if (strstart(filename, "telnet:", &p)) {
2896 return qemu_chr_open_tcp(p, 1, 0);
2897 } else
2898 if (strstart(filename, "udp:", &p)) {
2899 return qemu_chr_open_udp(p);
2900 } else
2901 if (strstart(filename, "mon:", &p)) {
2902 CharDriverState *drv = qemu_chr_open(p);
2903 if (drv) {
2904 drv = qemu_chr_open_mux(drv);
2905 monitor_init(drv, !nographic);
2906 return drv;
2908 printf("Unable to open driver: %s\n", p);
2909 return 0;
2910 } else
2911 #ifndef _WIN32
2912 if (strstart(filename, "unix:", &p)) {
2913 return qemu_chr_open_tcp(p, 0, 1);
2914 } else if (strstart(filename, "file:", &p)) {
2915 return qemu_chr_open_file_out(p);
2916 } else if (strstart(filename, "pipe:", &p)) {
2917 return qemu_chr_open_pipe(p);
2918 } else if (!strcmp(filename, "pty")) {
2919 return qemu_chr_open_pty();
2920 } else if (!strcmp(filename, "stdio")) {
2921 return qemu_chr_open_stdio();
2922 } else
2923 #endif
2924 #if defined(__linux__)
2925 if (strstart(filename, "/dev/parport", NULL)) {
2926 return qemu_chr_open_pp(filename);
2927 } else
2928 if (strstart(filename, "/dev/", NULL)) {
2929 return qemu_chr_open_tty(filename);
2930 } else
2931 #endif
2932 #ifdef _WIN32
2933 if (strstart(filename, "COM", NULL)) {
2934 return qemu_chr_open_win(filename);
2935 } else
2936 if (strstart(filename, "pipe:", &p)) {
2937 return qemu_chr_open_win_pipe(p);
2938 } else
2939 if (strstart(filename, "file:", &p)) {
2940 return qemu_chr_open_win_file_out(p);
2942 #endif
2944 return NULL;
2948 void qemu_chr_close(CharDriverState *chr)
2950 if (chr->chr_close)
2951 chr->chr_close(chr);
2954 /***********************************************************/
2955 /* network device redirectors */
2957 void hex_dump(FILE *f, const uint8_t *buf, int size)
2959 int len, i, j, c;
2961 for(i=0;i<size;i+=16) {
2962 len = size - i;
2963 if (len > 16)
2964 len = 16;
2965 fprintf(f, "%08x ", i);
2966 for(j=0;j<16;j++) {
2967 if (j < len)
2968 fprintf(f, " %02x", buf[i+j]);
2969 else
2970 fprintf(f, " ");
2972 fprintf(f, " ");
2973 for(j=0;j<len;j++) {
2974 c = buf[i+j];
2975 if (c < ' ' || c > '~')
2976 c = '.';
2977 fprintf(f, "%c", c);
2979 fprintf(f, "\n");
2983 static int parse_macaddr(uint8_t *macaddr, const char *p)
2985 int i;
2986 for(i = 0; i < 6; i++) {
2987 macaddr[i] = strtol(p, (char **)&p, 16);
2988 if (i == 5) {
2989 if (*p != '\0')
2990 return -1;
2991 } else {
2992 if (*p != ':')
2993 return -1;
2994 p++;
2997 return 0;
3000 static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3002 const char *p, *p1;
3003 int len;
3004 p = *pp;
3005 p1 = strchr(p, sep);
3006 if (!p1)
3007 return -1;
3008 len = p1 - p;
3009 p1++;
3010 if (buf_size > 0) {
3011 if (len > buf_size - 1)
3012 len = buf_size - 1;
3013 memcpy(buf, p, len);
3014 buf[len] = '\0';
3016 *pp = p1;
3017 return 0;
3020 int parse_host_src_port(struct sockaddr_in *haddr,
3021 struct sockaddr_in *saddr,
3022 const char *input_str)
3024 char *str = strdup(input_str);
3025 char *host_str = str;
3026 char *src_str;
3027 char *ptr;
3030 * Chop off any extra arguments at the end of the string which
3031 * would start with a comma, then fill in the src port information
3032 * if it was provided else use the "any address" and "any port".
3034 if ((ptr = strchr(str,',')))
3035 *ptr = '\0';
3037 if ((src_str = strchr(input_str,'@'))) {
3038 *src_str = '\0';
3039 src_str++;
3042 if (parse_host_port(haddr, host_str) < 0)
3043 goto fail;
3045 if (!src_str || *src_str == '\0')
3046 src_str = ":0";
3048 if (parse_host_port(saddr, src_str) < 0)
3049 goto fail;
3051 free(str);
3052 return(0);
3054 fail:
3055 free(str);
3056 return -1;
3059 int parse_host_port(struct sockaddr_in *saddr, const char *str)
3061 char buf[512];
3062 struct hostent *he;
3063 const char *p, *r;
3064 int port;
3066 p = str;
3067 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3068 return -1;
3069 saddr->sin_family = AF_INET;
3070 if (buf[0] == '\0') {
3071 saddr->sin_addr.s_addr = 0;
3072 } else {
3073 if (isdigit(buf[0])) {
3074 if (!inet_aton(buf, &saddr->sin_addr))
3075 return -1;
3076 } else {
3077 if ((he = gethostbyname(buf)) == NULL)
3078 return - 1;
3079 saddr->sin_addr = *(struct in_addr *)he->h_addr;
3082 port = strtol(p, (char **)&r, 0);
3083 if (r == p)
3084 return -1;
3085 saddr->sin_port = htons(port);
3086 return 0;
3089 #ifndef _WIN32
3090 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3092 const char *p;
3093 int len;
3095 len = MIN(108, strlen(str));
3096 p = strchr(str, ',');
3097 if (p)
3098 len = MIN(len, p - str);
3100 memset(uaddr, 0, sizeof(*uaddr));
3102 uaddr->sun_family = AF_UNIX;
3103 memcpy(uaddr->sun_path, str, len);
3105 return 0;
3107 #endif
3109 /* find or alloc a new VLAN */
3110 VLANState *qemu_find_vlan(int id)
3112 VLANState **pvlan, *vlan;
3113 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3114 if (vlan->id == id)
3115 return vlan;
3117 vlan = qemu_mallocz(sizeof(VLANState));
3118 if (!vlan)
3119 return NULL;
3120 vlan->id = id;
3121 vlan->next = NULL;
3122 pvlan = &first_vlan;
3123 while (*pvlan != NULL)
3124 pvlan = &(*pvlan)->next;
3125 *pvlan = vlan;
3126 return vlan;
3129 VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3130 IOReadHandler *fd_read,
3131 IOCanRWHandler *fd_can_read,
3132 void *opaque)
3134 VLANClientState *vc, **pvc;
3135 vc = qemu_mallocz(sizeof(VLANClientState));
3136 if (!vc)
3137 return NULL;
3138 vc->fd_read = fd_read;
3139 vc->fd_can_read = fd_can_read;
3140 vc->opaque = opaque;
3141 vc->vlan = vlan;
3143 vc->next = NULL;
3144 pvc = &vlan->first_client;
3145 while (*pvc != NULL)
3146 pvc = &(*pvc)->next;
3147 *pvc = vc;
3148 return vc;
3151 int qemu_can_send_packet(VLANClientState *vc1)
3153 VLANState *vlan = vc1->vlan;
3154 VLANClientState *vc;
3156 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3157 if (vc != vc1) {
3158 if (vc->fd_can_read && !vc->fd_can_read(vc->opaque))
3159 return 0;
3162 return 1;
3165 void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3167 VLANState *vlan = vc1->vlan;
3168 VLANClientState *vc;
3170 #if 0
3171 printf("vlan %d send:\n", vlan->id);
3172 hex_dump(stdout, buf, size);
3173 #endif
3174 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3175 if (vc != vc1) {
3176 vc->fd_read(vc->opaque, buf, size);
3181 #if defined(CONFIG_SLIRP)
3183 /* slirp network adapter */
3185 static int slirp_inited;
3186 static VLANClientState *slirp_vc;
3188 int slirp_can_output(void)
3190 return !slirp_vc || qemu_can_send_packet(slirp_vc);
3193 void slirp_output(const uint8_t *pkt, int pkt_len)
3195 #if 0
3196 printf("slirp output:\n");
3197 hex_dump(stdout, pkt, pkt_len);
3198 #endif
3199 if (!slirp_vc)
3200 return;
3201 qemu_send_packet(slirp_vc, pkt, pkt_len);
3204 static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3206 #if 0
3207 printf("slirp input:\n");
3208 hex_dump(stdout, buf, size);
3209 #endif
3210 slirp_input(buf, size);
3213 static int net_slirp_init(VLANState *vlan)
3215 if (!slirp_inited) {
3216 slirp_inited = 1;
3217 slirp_init();
3219 slirp_vc = qemu_new_vlan_client(vlan,
3220 slirp_receive, NULL, NULL);
3221 snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3222 return 0;
3225 static void net_slirp_redir(const char *redir_str)
3227 int is_udp;
3228 char buf[256], *r;
3229 const char *p;
3230 struct in_addr guest_addr;
3231 int host_port, guest_port;
3233 if (!slirp_inited) {
3234 slirp_inited = 1;
3235 slirp_init();
3238 p = redir_str;
3239 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3240 goto fail;
3241 if (!strcmp(buf, "tcp")) {
3242 is_udp = 0;
3243 } else if (!strcmp(buf, "udp")) {
3244 is_udp = 1;
3245 } else {
3246 goto fail;
3249 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3250 goto fail;
3251 host_port = strtol(buf, &r, 0);
3252 if (r == buf)
3253 goto fail;
3255 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3256 goto fail;
3257 if (buf[0] == '\0') {
3258 pstrcpy(buf, sizeof(buf), "10.0.2.15");
3260 if (!inet_aton(buf, &guest_addr))
3261 goto fail;
3263 guest_port = strtol(p, &r, 0);
3264 if (r == p)
3265 goto fail;
3267 if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3268 fprintf(stderr, "qemu: could not set up redirection\n");
3269 exit(1);
3271 return;
3272 fail:
3273 fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3274 exit(1);
3277 #ifndef _WIN32
3279 char smb_dir[1024];
3281 static void smb_exit(void)
3283 DIR *d;
3284 struct dirent *de;
3285 char filename[1024];
3287 /* erase all the files in the directory */
3288 d = opendir(smb_dir);
3289 for(;;) {
3290 de = readdir(d);
3291 if (!de)
3292 break;
3293 if (strcmp(de->d_name, ".") != 0 &&
3294 strcmp(de->d_name, "..") != 0) {
3295 snprintf(filename, sizeof(filename), "%s/%s",
3296 smb_dir, de->d_name);
3297 unlink(filename);
3300 closedir(d);
3301 rmdir(smb_dir);
3304 /* automatic user mode samba server configuration */
3305 void net_slirp_smb(const char *exported_dir)
3307 char smb_conf[1024];
3308 char smb_cmdline[1024];
3309 FILE *f;
3311 if (!slirp_inited) {
3312 slirp_inited = 1;
3313 slirp_init();
3316 /* XXX: better tmp dir construction */
3317 snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3318 if (mkdir(smb_dir, 0700) < 0) {
3319 fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3320 exit(1);
3322 snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3324 f = fopen(smb_conf, "w");
3325 if (!f) {
3326 fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3327 exit(1);
3329 fprintf(f,
3330 "[global]\n"
3331 "private dir=%s\n"
3332 "smb ports=0\n"
3333 "socket address=127.0.0.1\n"
3334 "pid directory=%s\n"
3335 "lock directory=%s\n"
3336 "log file=%s/log.smbd\n"
3337 "smb passwd file=%s/smbpasswd\n"
3338 "security = share\n"
3339 "[qemu]\n"
3340 "path=%s\n"
3341 "read only=no\n"
3342 "guest ok=yes\n",
3343 smb_dir,
3344 smb_dir,
3345 smb_dir,
3346 smb_dir,
3347 smb_dir,
3348 exported_dir
3350 fclose(f);
3351 atexit(smb_exit);
3353 snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3354 SMBD_COMMAND, smb_conf);
3356 slirp_add_exec(0, smb_cmdline, 4, 139);
3359 #endif /* !defined(_WIN32) */
3361 #endif /* CONFIG_SLIRP */
3363 #if !defined(_WIN32)
3365 typedef struct TAPState {
3366 VLANClientState *vc;
3367 int fd;
3368 } TAPState;
3370 static void tap_receive(void *opaque, const uint8_t *buf, int size)
3372 TAPState *s = opaque;
3373 int ret;
3374 for(;;) {
3375 ret = write(s->fd, buf, size);
3376 if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3377 } else {
3378 break;
3383 static void tap_send(void *opaque)
3385 TAPState *s = opaque;
3386 uint8_t buf[4096];
3387 int size;
3389 #ifdef __sun__
3390 struct strbuf sbuf;
3391 int f = 0;
3392 sbuf.maxlen = sizeof(buf);
3393 sbuf.buf = buf;
3394 size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
3395 #else
3396 size = read(s->fd, buf, sizeof(buf));
3397 #endif
3398 if (size > 0) {
3399 qemu_send_packet(s->vc, buf, size);
3403 /* fd support */
3405 static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3407 TAPState *s;
3409 s = qemu_mallocz(sizeof(TAPState));
3410 if (!s)
3411 return NULL;
3412 s->fd = fd;
3413 s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3414 qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3415 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3416 return s;
3419 #ifdef _BSD
3420 static int tap_open(char *ifname, int ifname_size)
3422 int fd;
3423 char *dev;
3424 struct stat s;
3426 fd = open("/dev/tap", O_RDWR);
3427 if (fd < 0) {
3428 fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
3429 return -1;
3432 fstat(fd, &s);
3433 dev = devname(s.st_rdev, S_IFCHR);
3434 pstrcpy(ifname, ifname_size, dev);
3436 fcntl(fd, F_SETFL, O_NONBLOCK);
3437 return fd;
3439 #elif defined(__sun__)
3440 #define TUNNEWPPA (('T'<<16) | 0x0001)
3442 * Allocate TAP device, returns opened fd.
3443 * Stores dev name in the first arg(must be large enough).
3445 int tap_alloc(char *dev)
3447 int tap_fd, if_fd, ppa = -1;
3448 static int ip_fd = 0;
3449 char *ptr;
3451 static int arp_fd = 0;
3452 int ip_muxid, arp_muxid;
3453 struct strioctl strioc_if, strioc_ppa;
3454 int link_type = I_PLINK;;
3455 struct lifreq ifr;
3456 char actual_name[32] = "";
3458 memset(&ifr, 0x0, sizeof(ifr));
3460 if( *dev ){
3461 ptr = dev;
3462 while( *ptr && !isdigit((int)*ptr) ) ptr++;
3463 ppa = atoi(ptr);
3466 /* Check if IP device was opened */
3467 if( ip_fd )
3468 close(ip_fd);
3470 if( (ip_fd = open("/dev/udp", O_RDWR, 0)) < 0){
3471 syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
3472 return -1;
3475 if( (tap_fd = open("/dev/tap", O_RDWR, 0)) < 0){
3476 syslog(LOG_ERR, "Can't open /dev/tap");
3477 return -1;
3480 /* Assign a new PPA and get its unit number. */
3481 strioc_ppa.ic_cmd = TUNNEWPPA;
3482 strioc_ppa.ic_timout = 0;
3483 strioc_ppa.ic_len = sizeof(ppa);
3484 strioc_ppa.ic_dp = (char *)&ppa;
3485 if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
3486 syslog (LOG_ERR, "Can't assign new interface");
3488 if( (if_fd = open("/dev/tap", O_RDWR, 0)) < 0){
3489 syslog(LOG_ERR, "Can't open /dev/tap (2)");
3490 return -1;
3492 if(ioctl(if_fd, I_PUSH, "ip") < 0){
3493 syslog(LOG_ERR, "Can't push IP module");
3494 return -1;
3497 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
3498 syslog(LOG_ERR, "Can't get flags\n");
3500 snprintf (actual_name, 32, "tap%d", ppa);
3501 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3503 ifr.lifr_ppa = ppa;
3504 /* Assign ppa according to the unit number returned by tun device */
3506 if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
3507 syslog (LOG_ERR, "Can't set PPA %d", ppa);
3508 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
3509 syslog (LOG_ERR, "Can't get flags\n");
3510 /* Push arp module to if_fd */
3511 if (ioctl (if_fd, I_PUSH, "arp") < 0)
3512 syslog (LOG_ERR, "Can't push ARP module (2)");
3514 /* Push arp module to ip_fd */
3515 if (ioctl (ip_fd, I_POP, NULL) < 0)
3516 syslog (LOG_ERR, "I_POP failed\n");
3517 if (ioctl (ip_fd, I_PUSH, "arp") < 0)
3518 syslog (LOG_ERR, "Can't push ARP module (3)\n");
3519 /* Open arp_fd */
3520 if ((arp_fd = open ("/dev/tap", O_RDWR, 0)) < 0)
3521 syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
3523 /* Set ifname to arp */
3524 strioc_if.ic_cmd = SIOCSLIFNAME;
3525 strioc_if.ic_timout = 0;
3526 strioc_if.ic_len = sizeof(ifr);
3527 strioc_if.ic_dp = (char *)&ifr;
3528 if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
3529 syslog (LOG_ERR, "Can't set ifname to arp\n");
3532 if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
3533 syslog(LOG_ERR, "Can't link TAP device to IP");
3534 return -1;
3537 if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
3538 syslog (LOG_ERR, "Can't link TAP device to ARP");
3540 close (if_fd);
3542 memset(&ifr, 0x0, sizeof(ifr));
3543 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3544 ifr.lifr_ip_muxid = ip_muxid;
3545 ifr.lifr_arp_muxid = arp_muxid;
3547 if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
3549 ioctl (ip_fd, I_PUNLINK , arp_muxid);
3550 ioctl (ip_fd, I_PUNLINK, ip_muxid);
3551 syslog (LOG_ERR, "Can't set multiplexor id");
3554 sprintf(dev, "tap%d", ppa);
3555 return tap_fd;
3558 static int tap_open(char *ifname, int ifname_size)
3560 char dev[10]="";
3561 int fd;
3562 if( (fd = tap_alloc(dev)) < 0 ){
3563 fprintf(stderr, "Cannot allocate TAP device\n");
3564 return -1;
3566 pstrcpy(ifname, ifname_size, dev);
3567 fcntl(fd, F_SETFL, O_NONBLOCK);
3568 return fd;
3570 #else
3571 static int tap_open(char *ifname, int ifname_size)
3573 struct ifreq ifr;
3574 int fd, ret;
3576 fd = open("/dev/net/tun", O_RDWR);
3577 if (fd < 0) {
3578 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
3579 return -1;
3581 memset(&ifr, 0, sizeof(ifr));
3582 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
3583 if (ifname[0] != '\0')
3584 pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
3585 else
3586 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
3587 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
3588 if (ret != 0) {
3589 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
3590 close(fd);
3591 return -1;
3593 pstrcpy(ifname, ifname_size, ifr.ifr_name);
3594 fcntl(fd, F_SETFL, O_NONBLOCK);
3595 return fd;
3597 #endif
3599 static int net_tap_init(VLANState *vlan, const char *ifname1,
3600 const char *setup_script)
3602 TAPState *s;
3603 int pid, status, fd;
3604 char *args[3];
3605 char **parg;
3606 char ifname[128];
3608 if (ifname1 != NULL)
3609 pstrcpy(ifname, sizeof(ifname), ifname1);
3610 else
3611 ifname[0] = '\0';
3612 fd = tap_open(ifname, sizeof(ifname));
3613 if (fd < 0)
3614 return -1;
3616 if (!setup_script || !strcmp(setup_script, "no"))
3617 setup_script = "";
3618 if (setup_script[0] != '\0') {
3619 /* try to launch network init script */
3620 pid = fork();
3621 if (pid >= 0) {
3622 if (pid == 0) {
3623 parg = args;
3624 *parg++ = (char *)setup_script;
3625 *parg++ = ifname;
3626 *parg++ = NULL;
3627 execv(setup_script, args);
3628 _exit(1);
3630 while (waitpid(pid, &status, 0) != pid);
3631 if (!WIFEXITED(status) ||
3632 WEXITSTATUS(status) != 0) {
3633 fprintf(stderr, "%s: could not launch network script\n",
3634 setup_script);
3635 return -1;
3639 s = net_tap_fd_init(vlan, fd);
3640 if (!s)
3641 return -1;
3642 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3643 "tap: ifname=%s setup_script=%s", ifname, setup_script);
3644 return 0;
3647 #endif /* !_WIN32 */
3649 /* network connection */
3650 typedef struct NetSocketState {
3651 VLANClientState *vc;
3652 int fd;
3653 int state; /* 0 = getting length, 1 = getting data */
3654 int index;
3655 int packet_len;
3656 uint8_t buf[4096];
3657 struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
3658 } NetSocketState;
3660 typedef struct NetSocketListenState {
3661 VLANState *vlan;
3662 int fd;
3663 } NetSocketListenState;
3665 /* XXX: we consider we can send the whole packet without blocking */
3666 static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
3668 NetSocketState *s = opaque;
3669 uint32_t len;
3670 len = htonl(size);
3672 send_all(s->fd, (const uint8_t *)&len, sizeof(len));
3673 send_all(s->fd, buf, size);
3676 static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
3678 NetSocketState *s = opaque;
3679 sendto(s->fd, buf, size, 0,
3680 (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
3683 static void net_socket_send(void *opaque)
3685 NetSocketState *s = opaque;
3686 int l, size, err;
3687 uint8_t buf1[4096];
3688 const uint8_t *buf;
3690 size = recv(s->fd, buf1, sizeof(buf1), 0);
3691 if (size < 0) {
3692 err = socket_error();
3693 if (err != EWOULDBLOCK)
3694 goto eoc;
3695 } else if (size == 0) {
3696 /* end of connection */
3697 eoc:
3698 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3699 closesocket(s->fd);
3700 return;
3702 buf = buf1;
3703 while (size > 0) {
3704 /* reassemble a packet from the network */
3705 switch(s->state) {
3706 case 0:
3707 l = 4 - s->index;
3708 if (l > size)
3709 l = size;
3710 memcpy(s->buf + s->index, buf, l);
3711 buf += l;
3712 size -= l;
3713 s->index += l;
3714 if (s->index == 4) {
3715 /* got length */
3716 s->packet_len = ntohl(*(uint32_t *)s->buf);
3717 s->index = 0;
3718 s->state = 1;
3720 break;
3721 case 1:
3722 l = s->packet_len - s->index;
3723 if (l > size)
3724 l = size;
3725 memcpy(s->buf + s->index, buf, l);
3726 s->index += l;
3727 buf += l;
3728 size -= l;
3729 if (s->index >= s->packet_len) {
3730 qemu_send_packet(s->vc, s->buf, s->packet_len);
3731 s->index = 0;
3732 s->state = 0;
3734 break;
3739 static void net_socket_send_dgram(void *opaque)
3741 NetSocketState *s = opaque;
3742 int size;
3744 size = recv(s->fd, s->buf, sizeof(s->buf), 0);
3745 if (size < 0)
3746 return;
3747 if (size == 0) {
3748 /* end of connection */
3749 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3750 return;
3752 qemu_send_packet(s->vc, s->buf, size);
3755 static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
3757 struct ip_mreq imr;
3758 int fd;
3759 int val, ret;
3760 if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
3761 fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
3762 inet_ntoa(mcastaddr->sin_addr),
3763 (int)ntohl(mcastaddr->sin_addr.s_addr));
3764 return -1;
3767 fd = socket(PF_INET, SOCK_DGRAM, 0);
3768 if (fd < 0) {
3769 perror("socket(PF_INET, SOCK_DGRAM)");
3770 return -1;
3773 val = 1;
3774 ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
3775 (const char *)&val, sizeof(val));
3776 if (ret < 0) {
3777 perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
3778 goto fail;
3781 ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
3782 if (ret < 0) {
3783 perror("bind");
3784 goto fail;
3787 /* Add host to multicast group */
3788 imr.imr_multiaddr = mcastaddr->sin_addr;
3789 imr.imr_interface.s_addr = htonl(INADDR_ANY);
3791 ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
3792 (const char *)&imr, sizeof(struct ip_mreq));
3793 if (ret < 0) {
3794 perror("setsockopt(IP_ADD_MEMBERSHIP)");
3795 goto fail;
3798 /* Force mcast msgs to loopback (eg. several QEMUs in same host */
3799 val = 1;
3800 ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
3801 (const char *)&val, sizeof(val));
3802 if (ret < 0) {
3803 perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
3804 goto fail;
3807 socket_set_nonblock(fd);
3808 return fd;
3809 fail:
3810 if (fd >= 0)
3811 closesocket(fd);
3812 return -1;
3815 static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
3816 int is_connected)
3818 struct sockaddr_in saddr;
3819 int newfd;
3820 socklen_t saddr_len;
3821 NetSocketState *s;
3823 /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
3824 * Because this may be "shared" socket from a "master" process, datagrams would be recv()
3825 * by ONLY ONE process: we must "clone" this dgram socket --jjo
3828 if (is_connected) {
3829 if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
3830 /* must be bound */
3831 if (saddr.sin_addr.s_addr==0) {
3832 fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
3833 fd);
3834 return NULL;
3836 /* clone dgram socket */
3837 newfd = net_socket_mcast_create(&saddr);
3838 if (newfd < 0) {
3839 /* error already reported by net_socket_mcast_create() */
3840 close(fd);
3841 return NULL;
3843 /* clone newfd to fd, close newfd */
3844 dup2(newfd, fd);
3845 close(newfd);
3847 } else {
3848 fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
3849 fd, strerror(errno));
3850 return NULL;
3854 s = qemu_mallocz(sizeof(NetSocketState));
3855 if (!s)
3856 return NULL;
3857 s->fd = fd;
3859 s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
3860 qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
3862 /* mcast: save bound address as dst */
3863 if (is_connected) s->dgram_dst=saddr;
3865 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3866 "socket: fd=%d (%s mcast=%s:%d)",
3867 fd, is_connected? "cloned" : "",
3868 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
3869 return s;
3872 static void net_socket_connect(void *opaque)
3874 NetSocketState *s = opaque;
3875 qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
3878 static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
3879 int is_connected)
3881 NetSocketState *s;
3882 s = qemu_mallocz(sizeof(NetSocketState));
3883 if (!s)
3884 return NULL;
3885 s->fd = fd;
3886 s->vc = qemu_new_vlan_client(vlan,
3887 net_socket_receive, NULL, s);
3888 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3889 "socket: fd=%d", fd);
3890 if (is_connected) {
3891 net_socket_connect(s);
3892 } else {
3893 qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
3895 return s;
3898 static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
3899 int is_connected)
3901 int so_type=-1, optlen=sizeof(so_type);
3903 if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type, &optlen)< 0) {
3904 fprintf(stderr, "qemu: error: setsockopt(SO_TYPE) for fd=%d failed\n", fd);
3905 return NULL;
3907 switch(so_type) {
3908 case SOCK_DGRAM:
3909 return net_socket_fd_init_dgram(vlan, fd, is_connected);
3910 case SOCK_STREAM:
3911 return net_socket_fd_init_stream(vlan, fd, is_connected);
3912 default:
3913 /* who knows ... this could be a eg. a pty, do warn and continue as stream */
3914 fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
3915 return net_socket_fd_init_stream(vlan, fd, is_connected);
3917 return NULL;
3920 static void net_socket_accept(void *opaque)
3922 NetSocketListenState *s = opaque;
3923 NetSocketState *s1;
3924 struct sockaddr_in saddr;
3925 socklen_t len;
3926 int fd;
3928 for(;;) {
3929 len = sizeof(saddr);
3930 fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
3931 if (fd < 0 && errno != EINTR) {
3932 return;
3933 } else if (fd >= 0) {
3934 break;
3937 s1 = net_socket_fd_init(s->vlan, fd, 1);
3938 if (!s1) {
3939 closesocket(fd);
3940 } else {
3941 snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
3942 "socket: connection from %s:%d",
3943 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
3947 static int net_socket_listen_init(VLANState *vlan, const char *host_str)
3949 NetSocketListenState *s;
3950 int fd, val, ret;
3951 struct sockaddr_in saddr;
3953 if (parse_host_port(&saddr, host_str) < 0)
3954 return -1;
3956 s = qemu_mallocz(sizeof(NetSocketListenState));
3957 if (!s)
3958 return -1;
3960 fd = socket(PF_INET, SOCK_STREAM, 0);
3961 if (fd < 0) {
3962 perror("socket");
3963 return -1;
3965 socket_set_nonblock(fd);
3967 /* allow fast reuse */
3968 val = 1;
3969 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3971 ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
3972 if (ret < 0) {
3973 perror("bind");
3974 return -1;
3976 ret = listen(fd, 0);
3977 if (ret < 0) {
3978 perror("listen");
3979 return -1;
3981 s->vlan = vlan;
3982 s->fd = fd;
3983 qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
3984 return 0;
3987 static int net_socket_connect_init(VLANState *vlan, const char *host_str)
3989 NetSocketState *s;
3990 int fd, connected, ret, err;
3991 struct sockaddr_in saddr;
3993 if (parse_host_port(&saddr, host_str) < 0)
3994 return -1;
3996 fd = socket(PF_INET, SOCK_STREAM, 0);
3997 if (fd < 0) {
3998 perror("socket");
3999 return -1;
4001 socket_set_nonblock(fd);
4003 connected = 0;
4004 for(;;) {
4005 ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4006 if (ret < 0) {
4007 err = socket_error();
4008 if (err == EINTR || err == EWOULDBLOCK) {
4009 } else if (err == EINPROGRESS) {
4010 break;
4011 } else {
4012 perror("connect");
4013 closesocket(fd);
4014 return -1;
4016 } else {
4017 connected = 1;
4018 break;
4021 s = net_socket_fd_init(vlan, fd, connected);
4022 if (!s)
4023 return -1;
4024 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4025 "socket: connect to %s:%d",
4026 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4027 return 0;
4030 static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4032 NetSocketState *s;
4033 int fd;
4034 struct sockaddr_in saddr;
4036 if (parse_host_port(&saddr, host_str) < 0)
4037 return -1;
4040 fd = net_socket_mcast_create(&saddr);
4041 if (fd < 0)
4042 return -1;
4044 s = net_socket_fd_init(vlan, fd, 0);
4045 if (!s)
4046 return -1;
4048 s->dgram_dst = saddr;
4050 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4051 "socket: mcast=%s:%d",
4052 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4053 return 0;
4057 static int get_param_value(char *buf, int buf_size,
4058 const char *tag, const char *str)
4060 const char *p;
4061 char *q;
4062 char option[128];
4064 p = str;
4065 for(;;) {
4066 q = option;
4067 while (*p != '\0' && *p != '=') {
4068 if ((q - option) < sizeof(option) - 1)
4069 *q++ = *p;
4070 p++;
4072 *q = '\0';
4073 if (*p != '=')
4074 break;
4075 p++;
4076 if (!strcmp(tag, option)) {
4077 q = buf;
4078 while (*p != '\0' && *p != ',') {
4079 if ((q - buf) < buf_size - 1)
4080 *q++ = *p;
4081 p++;
4083 *q = '\0';
4084 return q - buf;
4085 } else {
4086 while (*p != '\0' && *p != ',') {
4087 p++;
4090 if (*p != ',')
4091 break;
4092 p++;
4094 return 0;
4097 static int net_client_init(const char *str)
4099 const char *p;
4100 char *q;
4101 char device[64];
4102 char buf[1024];
4103 int vlan_id, ret;
4104 VLANState *vlan;
4106 p = str;
4107 q = device;
4108 while (*p != '\0' && *p != ',') {
4109 if ((q - device) < sizeof(device) - 1)
4110 *q++ = *p;
4111 p++;
4113 *q = '\0';
4114 if (*p == ',')
4115 p++;
4116 vlan_id = 0;
4117 if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4118 vlan_id = strtol(buf, NULL, 0);
4120 vlan = qemu_find_vlan(vlan_id);
4121 if (!vlan) {
4122 fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4123 return -1;
4125 if (!strcmp(device, "nic")) {
4126 NICInfo *nd;
4127 uint8_t *macaddr;
4129 if (nb_nics >= MAX_NICS) {
4130 fprintf(stderr, "Too Many NICs\n");
4131 return -1;
4133 nd = &nd_table[nb_nics];
4134 macaddr = nd->macaddr;
4135 macaddr[0] = 0x52;
4136 macaddr[1] = 0x54;
4137 macaddr[2] = 0x00;
4138 macaddr[3] = 0x12;
4139 macaddr[4] = 0x34;
4140 macaddr[5] = 0x56 + nb_nics;
4142 if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4143 if (parse_macaddr(macaddr, buf) < 0) {
4144 fprintf(stderr, "invalid syntax for ethernet address\n");
4145 return -1;
4148 if (get_param_value(buf, sizeof(buf), "model", p)) {
4149 nd->model = strdup(buf);
4151 nd->vlan = vlan;
4152 nb_nics++;
4153 ret = 0;
4154 } else
4155 if (!strcmp(device, "none")) {
4156 /* does nothing. It is needed to signal that no network cards
4157 are wanted */
4158 ret = 0;
4159 } else
4160 #ifdef CONFIG_SLIRP
4161 if (!strcmp(device, "user")) {
4162 if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4163 pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4165 ret = net_slirp_init(vlan);
4166 } else
4167 #endif
4168 #ifdef _WIN32
4169 if (!strcmp(device, "tap")) {
4170 char ifname[64];
4171 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4172 fprintf(stderr, "tap: no interface name\n");
4173 return -1;
4175 ret = tap_win32_init(vlan, ifname);
4176 } else
4177 #else
4178 if (!strcmp(device, "tap")) {
4179 char ifname[64];
4180 char setup_script[1024];
4181 int fd;
4182 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4183 fd = strtol(buf, NULL, 0);
4184 ret = -1;
4185 if (net_tap_fd_init(vlan, fd))
4186 ret = 0;
4187 } else {
4188 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4189 ifname[0] = '\0';
4191 if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4192 pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4194 ret = net_tap_init(vlan, ifname, setup_script);
4196 } else
4197 #endif
4198 if (!strcmp(device, "socket")) {
4199 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4200 int fd;
4201 fd = strtol(buf, NULL, 0);
4202 ret = -1;
4203 if (net_socket_fd_init(vlan, fd, 1))
4204 ret = 0;
4205 } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4206 ret = net_socket_listen_init(vlan, buf);
4207 } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4208 ret = net_socket_connect_init(vlan, buf);
4209 } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4210 ret = net_socket_mcast_init(vlan, buf);
4211 } else {
4212 fprintf(stderr, "Unknown socket options: %s\n", p);
4213 return -1;
4215 } else
4217 fprintf(stderr, "Unknown network device: %s\n", device);
4218 return -1;
4220 if (ret < 0) {
4221 fprintf(stderr, "Could not initialize device '%s'\n", device);
4224 return ret;
4227 void do_info_network(void)
4229 VLANState *vlan;
4230 VLANClientState *vc;
4232 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4233 term_printf("VLAN %d devices:\n", vlan->id);
4234 for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4235 term_printf(" %s\n", vc->info_str);
4239 /***********************************************************/
4240 /* USB devices */
4242 static USBPort *used_usb_ports;
4243 static USBPort *free_usb_ports;
4245 /* ??? Maybe change this to register a hub to keep track of the topology. */
4246 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
4247 usb_attachfn attach)
4249 port->opaque = opaque;
4250 port->index = index;
4251 port->attach = attach;
4252 port->next = free_usb_ports;
4253 free_usb_ports = port;
4256 static int usb_device_add(const char *devname)
4258 const char *p;
4259 USBDevice *dev;
4260 USBPort *port;
4262 if (!free_usb_ports)
4263 return -1;
4265 if (strstart(devname, "host:", &p)) {
4266 dev = usb_host_device_open(p);
4267 } else if (!strcmp(devname, "mouse")) {
4268 dev = usb_mouse_init();
4269 } else if (!strcmp(devname, "tablet")) {
4270 dev = usb_tablet_init();
4271 } else if (strstart(devname, "disk:", &p)) {
4272 dev = usb_msd_init(p);
4273 } else {
4274 return -1;
4276 if (!dev)
4277 return -1;
4279 /* Find a USB port to add the device to. */
4280 port = free_usb_ports;
4281 if (!port->next) {
4282 USBDevice *hub;
4284 /* Create a new hub and chain it on. */
4285 free_usb_ports = NULL;
4286 port->next = used_usb_ports;
4287 used_usb_ports = port;
4289 hub = usb_hub_init(VM_USB_HUB_SIZE);
4290 usb_attach(port, hub);
4291 port = free_usb_ports;
4294 free_usb_ports = port->next;
4295 port->next = used_usb_ports;
4296 used_usb_ports = port;
4297 usb_attach(port, dev);
4298 return 0;
4301 static int usb_device_del(const char *devname)
4303 USBPort *port;
4304 USBPort **lastp;
4305 USBDevice *dev;
4306 int bus_num, addr;
4307 const char *p;
4309 if (!used_usb_ports)
4310 return -1;
4312 p = strchr(devname, '.');
4313 if (!p)
4314 return -1;
4315 bus_num = strtoul(devname, NULL, 0);
4316 addr = strtoul(p + 1, NULL, 0);
4317 if (bus_num != 0)
4318 return -1;
4320 lastp = &used_usb_ports;
4321 port = used_usb_ports;
4322 while (port && port->dev->addr != addr) {
4323 lastp = &port->next;
4324 port = port->next;
4327 if (!port)
4328 return -1;
4330 dev = port->dev;
4331 *lastp = port->next;
4332 usb_attach(port, NULL);
4333 dev->handle_destroy(dev);
4334 port->next = free_usb_ports;
4335 free_usb_ports = port;
4336 return 0;
4339 void do_usb_add(const char *devname)
4341 int ret;
4342 ret = usb_device_add(devname);
4343 if (ret < 0)
4344 term_printf("Could not add USB device '%s'\n", devname);
4347 void do_usb_del(const char *devname)
4349 int ret;
4350 ret = usb_device_del(devname);
4351 if (ret < 0)
4352 term_printf("Could not remove USB device '%s'\n", devname);
4355 void usb_info(void)
4357 USBDevice *dev;
4358 USBPort *port;
4359 const char *speed_str;
4361 if (!usb_enabled) {
4362 term_printf("USB support not enabled\n");
4363 return;
4366 for (port = used_usb_ports; port; port = port->next) {
4367 dev = port->dev;
4368 if (!dev)
4369 continue;
4370 switch(dev->speed) {
4371 case USB_SPEED_LOW:
4372 speed_str = "1.5";
4373 break;
4374 case USB_SPEED_FULL:
4375 speed_str = "12";
4376 break;
4377 case USB_SPEED_HIGH:
4378 speed_str = "480";
4379 break;
4380 default:
4381 speed_str = "?";
4382 break;
4384 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
4385 0, dev->addr, speed_str, dev->devname);
4389 /***********************************************************/
4390 /* pid file */
4392 static char *pid_filename;
4394 /* Remove PID file. Called on normal exit */
4396 static void remove_pidfile(void)
4398 unlink (pid_filename);
4401 static void create_pidfile(const char *filename)
4403 struct stat pidstat;
4404 FILE *f;
4406 /* Try to write our PID to the named file */
4407 if (stat(filename, &pidstat) < 0) {
4408 if (errno == ENOENT) {
4409 if ((f = fopen (filename, "w")) == NULL) {
4410 perror("Opening pidfile");
4411 exit(1);
4413 fprintf(f, "%d\n", getpid());
4414 fclose(f);
4415 pid_filename = qemu_strdup(filename);
4416 if (!pid_filename) {
4417 fprintf(stderr, "Could not save PID filename");
4418 exit(1);
4420 atexit(remove_pidfile);
4422 } else {
4423 fprintf(stderr, "%s already exists. Remove it and try again.\n",
4424 filename);
4425 exit(1);
4429 /***********************************************************/
4430 /* dumb display */
4432 static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
4436 static void dumb_resize(DisplayState *ds, int w, int h)
4440 static void dumb_refresh(DisplayState *ds)
4442 vga_hw_update();
4445 void dumb_display_init(DisplayState *ds)
4447 ds->data = NULL;
4448 ds->linesize = 0;
4449 ds->depth = 0;
4450 ds->dpy_update = dumb_update;
4451 ds->dpy_resize = dumb_resize;
4452 ds->dpy_refresh = dumb_refresh;
4455 /***********************************************************/
4456 /* I/O handling */
4458 #define MAX_IO_HANDLERS 64
4460 typedef struct IOHandlerRecord {
4461 int fd;
4462 IOCanRWHandler *fd_read_poll;
4463 IOHandler *fd_read;
4464 IOHandler *fd_write;
4465 void *opaque;
4466 /* temporary data */
4467 struct pollfd *ufd;
4468 struct IOHandlerRecord *next;
4469 } IOHandlerRecord;
4471 static IOHandlerRecord *first_io_handler;
4473 /* XXX: fd_read_poll should be suppressed, but an API change is
4474 necessary in the character devices to suppress fd_can_read(). */
4475 int qemu_set_fd_handler2(int fd,
4476 IOCanRWHandler *fd_read_poll,
4477 IOHandler *fd_read,
4478 IOHandler *fd_write,
4479 void *opaque)
4481 IOHandlerRecord **pioh, *ioh;
4483 if (!fd_read && !fd_write) {
4484 pioh = &first_io_handler;
4485 for(;;) {
4486 ioh = *pioh;
4487 if (ioh == NULL)
4488 break;
4489 if (ioh->fd == fd) {
4490 *pioh = ioh->next;
4491 qemu_free(ioh);
4492 break;
4494 pioh = &ioh->next;
4496 } else {
4497 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4498 if (ioh->fd == fd)
4499 goto found;
4501 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
4502 if (!ioh)
4503 return -1;
4504 ioh->next = first_io_handler;
4505 first_io_handler = ioh;
4506 found:
4507 ioh->fd = fd;
4508 ioh->fd_read_poll = fd_read_poll;
4509 ioh->fd_read = fd_read;
4510 ioh->fd_write = fd_write;
4511 ioh->opaque = opaque;
4513 return 0;
4516 int qemu_set_fd_handler(int fd,
4517 IOHandler *fd_read,
4518 IOHandler *fd_write,
4519 void *opaque)
4521 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
4524 /***********************************************************/
4525 /* Polling handling */
4527 typedef struct PollingEntry {
4528 PollingFunc *func;
4529 void *opaque;
4530 struct PollingEntry *next;
4531 } PollingEntry;
4533 static PollingEntry *first_polling_entry;
4535 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
4537 PollingEntry **ppe, *pe;
4538 pe = qemu_mallocz(sizeof(PollingEntry));
4539 if (!pe)
4540 return -1;
4541 pe->func = func;
4542 pe->opaque = opaque;
4543 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
4544 *ppe = pe;
4545 return 0;
4548 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
4550 PollingEntry **ppe, *pe;
4551 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
4552 pe = *ppe;
4553 if (pe->func == func && pe->opaque == opaque) {
4554 *ppe = pe->next;
4555 qemu_free(pe);
4556 break;
4561 #ifdef _WIN32
4562 /***********************************************************/
4563 /* Wait objects support */
4564 typedef struct WaitObjects {
4565 int num;
4566 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
4567 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
4568 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
4569 } WaitObjects;
4571 static WaitObjects wait_objects = {0};
4573 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
4575 WaitObjects *w = &wait_objects;
4577 if (w->num >= MAXIMUM_WAIT_OBJECTS)
4578 return -1;
4579 w->events[w->num] = handle;
4580 w->func[w->num] = func;
4581 w->opaque[w->num] = opaque;
4582 w->num++;
4583 return 0;
4586 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
4588 int i, found;
4589 WaitObjects *w = &wait_objects;
4591 found = 0;
4592 for (i = 0; i < w->num; i++) {
4593 if (w->events[i] == handle)
4594 found = 1;
4595 if (found) {
4596 w->events[i] = w->events[i + 1];
4597 w->func[i] = w->func[i + 1];
4598 w->opaque[i] = w->opaque[i + 1];
4601 if (found)
4602 w->num--;
4604 #endif
4606 /***********************************************************/
4607 /* savevm/loadvm support */
4609 #define IO_BUF_SIZE 32768
4611 struct QEMUFile {
4612 FILE *outfile;
4613 BlockDriverState *bs;
4614 int is_file;
4615 int is_writable;
4616 int64_t base_offset;
4617 int64_t buf_offset; /* start of buffer when writing, end of buffer
4618 when reading */
4619 int buf_index;
4620 int buf_size; /* 0 when writing */
4621 uint8_t buf[IO_BUF_SIZE];
4624 QEMUFile *qemu_fopen(const char *filename, const char *mode)
4626 QEMUFile *f;
4628 f = qemu_mallocz(sizeof(QEMUFile));
4629 if (!f)
4630 return NULL;
4631 if (!strcmp(mode, "wb")) {
4632 f->is_writable = 1;
4633 } else if (!strcmp(mode, "rb")) {
4634 f->is_writable = 0;
4635 } else {
4636 goto fail;
4638 f->outfile = fopen(filename, mode);
4639 if (!f->outfile)
4640 goto fail;
4641 f->is_file = 1;
4642 return f;
4643 fail:
4644 if (f->outfile)
4645 fclose(f->outfile);
4646 qemu_free(f);
4647 return NULL;
4650 QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
4652 QEMUFile *f;
4654 f = qemu_mallocz(sizeof(QEMUFile));
4655 if (!f)
4656 return NULL;
4657 f->is_file = 0;
4658 f->bs = bs;
4659 f->is_writable = is_writable;
4660 f->base_offset = offset;
4661 return f;
4664 void qemu_fflush(QEMUFile *f)
4666 if (!f->is_writable)
4667 return;
4668 if (f->buf_index > 0) {
4669 if (f->is_file) {
4670 fseek(f->outfile, f->buf_offset, SEEK_SET);
4671 fwrite(f->buf, 1, f->buf_index, f->outfile);
4672 } else {
4673 bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
4674 f->buf, f->buf_index);
4676 f->buf_offset += f->buf_index;
4677 f->buf_index = 0;
4681 static void qemu_fill_buffer(QEMUFile *f)
4683 int len;
4685 if (f->is_writable)
4686 return;
4687 if (f->is_file) {
4688 fseek(f->outfile, f->buf_offset, SEEK_SET);
4689 len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
4690 if (len < 0)
4691 len = 0;
4692 } else {
4693 len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
4694 f->buf, IO_BUF_SIZE);
4695 if (len < 0)
4696 len = 0;
4698 f->buf_index = 0;
4699 f->buf_size = len;
4700 f->buf_offset += len;
4703 void qemu_fclose(QEMUFile *f)
4705 if (f->is_writable)
4706 qemu_fflush(f);
4707 if (f->is_file) {
4708 fclose(f->outfile);
4710 qemu_free(f);
4713 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
4715 int l;
4716 while (size > 0) {
4717 l = IO_BUF_SIZE - f->buf_index;
4718 if (l > size)
4719 l = size;
4720 memcpy(f->buf + f->buf_index, buf, l);
4721 f->buf_index += l;
4722 buf += l;
4723 size -= l;
4724 if (f->buf_index >= IO_BUF_SIZE)
4725 qemu_fflush(f);
4729 void qemu_put_byte(QEMUFile *f, int v)
4731 f->buf[f->buf_index++] = v;
4732 if (f->buf_index >= IO_BUF_SIZE)
4733 qemu_fflush(f);
4736 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
4738 int size, l;
4740 size = size1;
4741 while (size > 0) {
4742 l = f->buf_size - f->buf_index;
4743 if (l == 0) {
4744 qemu_fill_buffer(f);
4745 l = f->buf_size - f->buf_index;
4746 if (l == 0)
4747 break;
4749 if (l > size)
4750 l = size;
4751 memcpy(buf, f->buf + f->buf_index, l);
4752 f->buf_index += l;
4753 buf += l;
4754 size -= l;
4756 return size1 - size;
4759 int qemu_get_byte(QEMUFile *f)
4761 if (f->buf_index >= f->buf_size) {
4762 qemu_fill_buffer(f);
4763 if (f->buf_index >= f->buf_size)
4764 return 0;
4766 return f->buf[f->buf_index++];
4769 int64_t qemu_ftell(QEMUFile *f)
4771 return f->buf_offset - f->buf_size + f->buf_index;
4774 int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
4776 if (whence == SEEK_SET) {
4777 /* nothing to do */
4778 } else if (whence == SEEK_CUR) {
4779 pos += qemu_ftell(f);
4780 } else {
4781 /* SEEK_END not supported */
4782 return -1;
4784 if (f->is_writable) {
4785 qemu_fflush(f);
4786 f->buf_offset = pos;
4787 } else {
4788 f->buf_offset = pos;
4789 f->buf_index = 0;
4790 f->buf_size = 0;
4792 return pos;
4795 void qemu_put_be16(QEMUFile *f, unsigned int v)
4797 qemu_put_byte(f, v >> 8);
4798 qemu_put_byte(f, v);
4801 void qemu_put_be32(QEMUFile *f, unsigned int v)
4803 qemu_put_byte(f, v >> 24);
4804 qemu_put_byte(f, v >> 16);
4805 qemu_put_byte(f, v >> 8);
4806 qemu_put_byte(f, v);
4809 void qemu_put_be64(QEMUFile *f, uint64_t v)
4811 qemu_put_be32(f, v >> 32);
4812 qemu_put_be32(f, v);
4815 unsigned int qemu_get_be16(QEMUFile *f)
4817 unsigned int v;
4818 v = qemu_get_byte(f) << 8;
4819 v |= qemu_get_byte(f);
4820 return v;
4823 unsigned int qemu_get_be32(QEMUFile *f)
4825 unsigned int v;
4826 v = qemu_get_byte(f) << 24;
4827 v |= qemu_get_byte(f) << 16;
4828 v |= qemu_get_byte(f) << 8;
4829 v |= qemu_get_byte(f);
4830 return v;
4833 uint64_t qemu_get_be64(QEMUFile *f)
4835 uint64_t v;
4836 v = (uint64_t)qemu_get_be32(f) << 32;
4837 v |= qemu_get_be32(f);
4838 return v;
4841 typedef struct SaveStateEntry {
4842 char idstr[256];
4843 int instance_id;
4844 int version_id;
4845 SaveStateHandler *save_state;
4846 LoadStateHandler *load_state;
4847 void *opaque;
4848 struct SaveStateEntry *next;
4849 } SaveStateEntry;
4851 static SaveStateEntry *first_se;
4853 int register_savevm(const char *idstr,
4854 int instance_id,
4855 int version_id,
4856 SaveStateHandler *save_state,
4857 LoadStateHandler *load_state,
4858 void *opaque)
4860 SaveStateEntry *se, **pse;
4862 se = qemu_malloc(sizeof(SaveStateEntry));
4863 if (!se)
4864 return -1;
4865 pstrcpy(se->idstr, sizeof(se->idstr), idstr);
4866 se->instance_id = instance_id;
4867 se->version_id = version_id;
4868 se->save_state = save_state;
4869 se->load_state = load_state;
4870 se->opaque = opaque;
4871 se->next = NULL;
4873 /* add at the end of list */
4874 pse = &first_se;
4875 while (*pse != NULL)
4876 pse = &(*pse)->next;
4877 *pse = se;
4878 return 0;
4881 #define QEMU_VM_FILE_MAGIC 0x5145564d
4882 #define QEMU_VM_FILE_VERSION 0x00000002
4884 int qemu_savevm_state(QEMUFile *f)
4886 SaveStateEntry *se;
4887 int len, ret;
4888 int64_t cur_pos, len_pos, total_len_pos;
4890 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
4891 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
4892 total_len_pos = qemu_ftell(f);
4893 qemu_put_be64(f, 0); /* total size */
4895 for(se = first_se; se != NULL; se = se->next) {
4896 /* ID string */
4897 len = strlen(se->idstr);
4898 qemu_put_byte(f, len);
4899 qemu_put_buffer(f, se->idstr, len);
4901 qemu_put_be32(f, se->instance_id);
4902 qemu_put_be32(f, se->version_id);
4904 /* record size: filled later */
4905 len_pos = qemu_ftell(f);
4906 qemu_put_be32(f, 0);
4908 se->save_state(f, se->opaque);
4910 /* fill record size */
4911 cur_pos = qemu_ftell(f);
4912 len = cur_pos - len_pos - 4;
4913 qemu_fseek(f, len_pos, SEEK_SET);
4914 qemu_put_be32(f, len);
4915 qemu_fseek(f, cur_pos, SEEK_SET);
4917 cur_pos = qemu_ftell(f);
4918 qemu_fseek(f, total_len_pos, SEEK_SET);
4919 qemu_put_be64(f, cur_pos - total_len_pos - 8);
4920 qemu_fseek(f, cur_pos, SEEK_SET);
4922 ret = 0;
4923 return ret;
4926 static SaveStateEntry *find_se(const char *idstr, int instance_id)
4928 SaveStateEntry *se;
4930 for(se = first_se; se != NULL; se = se->next) {
4931 if (!strcmp(se->idstr, idstr) &&
4932 instance_id == se->instance_id)
4933 return se;
4935 return NULL;
4938 int qemu_loadvm_state(QEMUFile *f)
4940 SaveStateEntry *se;
4941 int len, ret, instance_id, record_len, version_id;
4942 int64_t total_len, end_pos, cur_pos;
4943 unsigned int v;
4944 char idstr[256];
4946 v = qemu_get_be32(f);
4947 if (v != QEMU_VM_FILE_MAGIC)
4948 goto fail;
4949 v = qemu_get_be32(f);
4950 if (v != QEMU_VM_FILE_VERSION) {
4951 fail:
4952 ret = -1;
4953 goto the_end;
4955 total_len = qemu_get_be64(f);
4956 end_pos = total_len + qemu_ftell(f);
4957 for(;;) {
4958 if (qemu_ftell(f) >= end_pos)
4959 break;
4960 len = qemu_get_byte(f);
4961 qemu_get_buffer(f, idstr, len);
4962 idstr[len] = '\0';
4963 instance_id = qemu_get_be32(f);
4964 version_id = qemu_get_be32(f);
4965 record_len = qemu_get_be32(f);
4966 #if 0
4967 printf("idstr=%s instance=0x%x version=%d len=%d\n",
4968 idstr, instance_id, version_id, record_len);
4969 #endif
4970 cur_pos = qemu_ftell(f);
4971 se = find_se(idstr, instance_id);
4972 if (!se) {
4973 fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
4974 instance_id, idstr);
4975 } else {
4976 ret = se->load_state(f, se->opaque, version_id);
4977 if (ret < 0) {
4978 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
4979 instance_id, idstr);
4982 /* always seek to exact end of record */
4983 qemu_fseek(f, cur_pos + record_len, SEEK_SET);
4985 ret = 0;
4986 the_end:
4987 return ret;
4990 /* device can contain snapshots */
4991 static int bdrv_can_snapshot(BlockDriverState *bs)
4993 return (bs &&
4994 !bdrv_is_removable(bs) &&
4995 !bdrv_is_read_only(bs));
4998 /* device must be snapshots in order to have a reliable snapshot */
4999 static int bdrv_has_snapshot(BlockDriverState *bs)
5001 return (bs &&
5002 !bdrv_is_removable(bs) &&
5003 !bdrv_is_read_only(bs));
5006 static BlockDriverState *get_bs_snapshots(void)
5008 BlockDriverState *bs;
5009 int i;
5011 if (bs_snapshots)
5012 return bs_snapshots;
5013 for(i = 0; i <= MAX_DISKS; i++) {
5014 bs = bs_table[i];
5015 if (bdrv_can_snapshot(bs))
5016 goto ok;
5018 return NULL;
5020 bs_snapshots = bs;
5021 return bs;
5024 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
5025 const char *name)
5027 QEMUSnapshotInfo *sn_tab, *sn;
5028 int nb_sns, i, ret;
5030 ret = -ENOENT;
5031 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5032 if (nb_sns < 0)
5033 return ret;
5034 for(i = 0; i < nb_sns; i++) {
5035 sn = &sn_tab[i];
5036 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
5037 *sn_info = *sn;
5038 ret = 0;
5039 break;
5042 qemu_free(sn_tab);
5043 return ret;
5046 void do_savevm(const char *name)
5048 BlockDriverState *bs, *bs1;
5049 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
5050 int must_delete, ret, i;
5051 BlockDriverInfo bdi1, *bdi = &bdi1;
5052 QEMUFile *f;
5053 int saved_vm_running;
5054 #ifdef _WIN32
5055 struct _timeb tb;
5056 #else
5057 struct timeval tv;
5058 #endif
5060 bs = get_bs_snapshots();
5061 if (!bs) {
5062 term_printf("No block device can accept snapshots\n");
5063 return;
5066 /* ??? Should this occur after vm_stop? */
5067 qemu_aio_flush();
5069 saved_vm_running = vm_running;
5070 vm_stop(0);
5072 must_delete = 0;
5073 if (name) {
5074 ret = bdrv_snapshot_find(bs, old_sn, name);
5075 if (ret >= 0) {
5076 must_delete = 1;
5079 memset(sn, 0, sizeof(*sn));
5080 if (must_delete) {
5081 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
5082 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
5083 } else {
5084 if (name)
5085 pstrcpy(sn->name, sizeof(sn->name), name);
5088 /* fill auxiliary fields */
5089 #ifdef _WIN32
5090 _ftime(&tb);
5091 sn->date_sec = tb.time;
5092 sn->date_nsec = tb.millitm * 1000000;
5093 #else
5094 gettimeofday(&tv, NULL);
5095 sn->date_sec = tv.tv_sec;
5096 sn->date_nsec = tv.tv_usec * 1000;
5097 #endif
5098 sn->vm_clock_nsec = qemu_get_clock(vm_clock);
5100 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5101 term_printf("Device %s does not support VM state snapshots\n",
5102 bdrv_get_device_name(bs));
5103 goto the_end;
5106 /* save the VM state */
5107 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
5108 if (!f) {
5109 term_printf("Could not open VM state file\n");
5110 goto the_end;
5112 ret = qemu_savevm_state(f);
5113 sn->vm_state_size = qemu_ftell(f);
5114 qemu_fclose(f);
5115 if (ret < 0) {
5116 term_printf("Error %d while writing VM\n", ret);
5117 goto the_end;
5120 /* create the snapshots */
5122 for(i = 0; i < MAX_DISKS; i++) {
5123 bs1 = bs_table[i];
5124 if (bdrv_has_snapshot(bs1)) {
5125 if (must_delete) {
5126 ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
5127 if (ret < 0) {
5128 term_printf("Error while deleting snapshot on '%s'\n",
5129 bdrv_get_device_name(bs1));
5132 ret = bdrv_snapshot_create(bs1, sn);
5133 if (ret < 0) {
5134 term_printf("Error while creating snapshot on '%s'\n",
5135 bdrv_get_device_name(bs1));
5140 the_end:
5141 if (saved_vm_running)
5142 vm_start();
5145 void do_loadvm(const char *name)
5147 BlockDriverState *bs, *bs1;
5148 BlockDriverInfo bdi1, *bdi = &bdi1;
5149 QEMUFile *f;
5150 int i, ret;
5151 int saved_vm_running;
5153 bs = get_bs_snapshots();
5154 if (!bs) {
5155 term_printf("No block device supports snapshots\n");
5156 return;
5159 /* Flush all IO requests so they don't interfere with the new state. */
5160 qemu_aio_flush();
5162 saved_vm_running = vm_running;
5163 vm_stop(0);
5165 for(i = 0; i <= MAX_DISKS; i++) {
5166 bs1 = bs_table[i];
5167 if (bdrv_has_snapshot(bs1)) {
5168 ret = bdrv_snapshot_goto(bs1, name);
5169 if (ret < 0) {
5170 if (bs != bs1)
5171 term_printf("Warning: ");
5172 switch(ret) {
5173 case -ENOTSUP:
5174 term_printf("Snapshots not supported on device '%s'\n",
5175 bdrv_get_device_name(bs1));
5176 break;
5177 case -ENOENT:
5178 term_printf("Could not find snapshot '%s' on device '%s'\n",
5179 name, bdrv_get_device_name(bs1));
5180 break;
5181 default:
5182 term_printf("Error %d while activating snapshot on '%s'\n",
5183 ret, bdrv_get_device_name(bs1));
5184 break;
5186 /* fatal on snapshot block device */
5187 if (bs == bs1)
5188 goto the_end;
5193 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5194 term_printf("Device %s does not support VM state snapshots\n",
5195 bdrv_get_device_name(bs));
5196 return;
5199 /* restore the VM state */
5200 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
5201 if (!f) {
5202 term_printf("Could not open VM state file\n");
5203 goto the_end;
5205 ret = qemu_loadvm_state(f);
5206 qemu_fclose(f);
5207 if (ret < 0) {
5208 term_printf("Error %d while loading VM state\n", ret);
5210 the_end:
5211 if (saved_vm_running)
5212 vm_start();
5215 void do_delvm(const char *name)
5217 BlockDriverState *bs, *bs1;
5218 int i, ret;
5220 bs = get_bs_snapshots();
5221 if (!bs) {
5222 term_printf("No block device supports snapshots\n");
5223 return;
5226 for(i = 0; i <= MAX_DISKS; i++) {
5227 bs1 = bs_table[i];
5228 if (bdrv_has_snapshot(bs1)) {
5229 ret = bdrv_snapshot_delete(bs1, name);
5230 if (ret < 0) {
5231 if (ret == -ENOTSUP)
5232 term_printf("Snapshots not supported on device '%s'\n",
5233 bdrv_get_device_name(bs1));
5234 else
5235 term_printf("Error %d while deleting snapshot on '%s'\n",
5236 ret, bdrv_get_device_name(bs1));
5242 void do_info_snapshots(void)
5244 BlockDriverState *bs, *bs1;
5245 QEMUSnapshotInfo *sn_tab, *sn;
5246 int nb_sns, i;
5247 char buf[256];
5249 bs = get_bs_snapshots();
5250 if (!bs) {
5251 term_printf("No available block device supports snapshots\n");
5252 return;
5254 term_printf("Snapshot devices:");
5255 for(i = 0; i <= MAX_DISKS; i++) {
5256 bs1 = bs_table[i];
5257 if (bdrv_has_snapshot(bs1)) {
5258 if (bs == bs1)
5259 term_printf(" %s", bdrv_get_device_name(bs1));
5262 term_printf("\n");
5264 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5265 if (nb_sns < 0) {
5266 term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
5267 return;
5269 term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
5270 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
5271 for(i = 0; i < nb_sns; i++) {
5272 sn = &sn_tab[i];
5273 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
5275 qemu_free(sn_tab);
5278 /***********************************************************/
5279 /* cpu save/restore */
5281 #if defined(TARGET_I386)
5283 static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
5285 qemu_put_be32(f, dt->selector);
5286 qemu_put_betl(f, dt->base);
5287 qemu_put_be32(f, dt->limit);
5288 qemu_put_be32(f, dt->flags);
5291 static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
5293 dt->selector = qemu_get_be32(f);
5294 dt->base = qemu_get_betl(f);
5295 dt->limit = qemu_get_be32(f);
5296 dt->flags = qemu_get_be32(f);
5299 void cpu_save(QEMUFile *f, void *opaque)
5301 CPUState *env = opaque;
5302 uint16_t fptag, fpus, fpuc, fpregs_format;
5303 uint32_t hflags;
5304 int i;
5306 for(i = 0; i < CPU_NB_REGS; i++)
5307 qemu_put_betls(f, &env->regs[i]);
5308 qemu_put_betls(f, &env->eip);
5309 qemu_put_betls(f, &env->eflags);
5310 hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
5311 qemu_put_be32s(f, &hflags);
5313 /* FPU */
5314 fpuc = env->fpuc;
5315 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
5316 fptag = 0;
5317 for(i = 0; i < 8; i++) {
5318 fptag |= ((!env->fptags[i]) << i);
5321 qemu_put_be16s(f, &fpuc);
5322 qemu_put_be16s(f, &fpus);
5323 qemu_put_be16s(f, &fptag);
5325 #ifdef USE_X86LDOUBLE
5326 fpregs_format = 0;
5327 #else
5328 fpregs_format = 1;
5329 #endif
5330 qemu_put_be16s(f, &fpregs_format);
5332 for(i = 0; i < 8; i++) {
5333 #ifdef USE_X86LDOUBLE
5335 uint64_t mant;
5336 uint16_t exp;
5337 /* we save the real CPU data (in case of MMX usage only 'mant'
5338 contains the MMX register */
5339 cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
5340 qemu_put_be64(f, mant);
5341 qemu_put_be16(f, exp);
5343 #else
5344 /* if we use doubles for float emulation, we save the doubles to
5345 avoid losing information in case of MMX usage. It can give
5346 problems if the image is restored on a CPU where long
5347 doubles are used instead. */
5348 qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
5349 #endif
5352 for(i = 0; i < 6; i++)
5353 cpu_put_seg(f, &env->segs[i]);
5354 cpu_put_seg(f, &env->ldt);
5355 cpu_put_seg(f, &env->tr);
5356 cpu_put_seg(f, &env->gdt);
5357 cpu_put_seg(f, &env->idt);
5359 qemu_put_be32s(f, &env->sysenter_cs);
5360 qemu_put_be32s(f, &env->sysenter_esp);
5361 qemu_put_be32s(f, &env->sysenter_eip);
5363 qemu_put_betls(f, &env->cr[0]);
5364 qemu_put_betls(f, &env->cr[2]);
5365 qemu_put_betls(f, &env->cr[3]);
5366 qemu_put_betls(f, &env->cr[4]);
5368 for(i = 0; i < 8; i++)
5369 qemu_put_betls(f, &env->dr[i]);
5371 /* MMU */
5372 qemu_put_be32s(f, &env->a20_mask);
5374 /* XMM */
5375 qemu_put_be32s(f, &env->mxcsr);
5376 for(i = 0; i < CPU_NB_REGS; i++) {
5377 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5378 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5381 #ifdef TARGET_X86_64
5382 qemu_put_be64s(f, &env->efer);
5383 qemu_put_be64s(f, &env->star);
5384 qemu_put_be64s(f, &env->lstar);
5385 qemu_put_be64s(f, &env->cstar);
5386 qemu_put_be64s(f, &env->fmask);
5387 qemu_put_be64s(f, &env->kernelgsbase);
5388 #endif
5389 qemu_put_be32s(f, &env->smbase);
5392 #ifdef USE_X86LDOUBLE
5393 /* XXX: add that in a FPU generic layer */
5394 union x86_longdouble {
5395 uint64_t mant;
5396 uint16_t exp;
5399 #define MANTD1(fp) (fp & ((1LL << 52) - 1))
5400 #define EXPBIAS1 1023
5401 #define EXPD1(fp) ((fp >> 52) & 0x7FF)
5402 #define SIGND1(fp) ((fp >> 32) & 0x80000000)
5404 static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
5406 int e;
5407 /* mantissa */
5408 p->mant = (MANTD1(temp) << 11) | (1LL << 63);
5409 /* exponent + sign */
5410 e = EXPD1(temp) - EXPBIAS1 + 16383;
5411 e |= SIGND1(temp) >> 16;
5412 p->exp = e;
5414 #endif
5416 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5418 CPUState *env = opaque;
5419 int i, guess_mmx;
5420 uint32_t hflags;
5421 uint16_t fpus, fpuc, fptag, fpregs_format;
5423 if (version_id != 3 && version_id != 4)
5424 return -EINVAL;
5425 for(i = 0; i < CPU_NB_REGS; i++)
5426 qemu_get_betls(f, &env->regs[i]);
5427 qemu_get_betls(f, &env->eip);
5428 qemu_get_betls(f, &env->eflags);
5429 qemu_get_be32s(f, &hflags);
5431 qemu_get_be16s(f, &fpuc);
5432 qemu_get_be16s(f, &fpus);
5433 qemu_get_be16s(f, &fptag);
5434 qemu_get_be16s(f, &fpregs_format);
5436 /* NOTE: we cannot always restore the FPU state if the image come
5437 from a host with a different 'USE_X86LDOUBLE' define. We guess
5438 if we are in an MMX state to restore correctly in that case. */
5439 guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
5440 for(i = 0; i < 8; i++) {
5441 uint64_t mant;
5442 uint16_t exp;
5444 switch(fpregs_format) {
5445 case 0:
5446 mant = qemu_get_be64(f);
5447 exp = qemu_get_be16(f);
5448 #ifdef USE_X86LDOUBLE
5449 env->fpregs[i].d = cpu_set_fp80(mant, exp);
5450 #else
5451 /* difficult case */
5452 if (guess_mmx)
5453 env->fpregs[i].mmx.MMX_Q(0) = mant;
5454 else
5455 env->fpregs[i].d = cpu_set_fp80(mant, exp);
5456 #endif
5457 break;
5458 case 1:
5459 mant = qemu_get_be64(f);
5460 #ifdef USE_X86LDOUBLE
5462 union x86_longdouble *p;
5463 /* difficult case */
5464 p = (void *)&env->fpregs[i];
5465 if (guess_mmx) {
5466 p->mant = mant;
5467 p->exp = 0xffff;
5468 } else {
5469 fp64_to_fp80(p, mant);
5472 #else
5473 env->fpregs[i].mmx.MMX_Q(0) = mant;
5474 #endif
5475 break;
5476 default:
5477 return -EINVAL;
5481 env->fpuc = fpuc;
5482 /* XXX: restore FPU round state */
5483 env->fpstt = (fpus >> 11) & 7;
5484 env->fpus = fpus & ~0x3800;
5485 fptag ^= 0xff;
5486 for(i = 0; i < 8; i++) {
5487 env->fptags[i] = (fptag >> i) & 1;
5490 for(i = 0; i < 6; i++)
5491 cpu_get_seg(f, &env->segs[i]);
5492 cpu_get_seg(f, &env->ldt);
5493 cpu_get_seg(f, &env->tr);
5494 cpu_get_seg(f, &env->gdt);
5495 cpu_get_seg(f, &env->idt);
5497 qemu_get_be32s(f, &env->sysenter_cs);
5498 qemu_get_be32s(f, &env->sysenter_esp);
5499 qemu_get_be32s(f, &env->sysenter_eip);
5501 qemu_get_betls(f, &env->cr[0]);
5502 qemu_get_betls(f, &env->cr[2]);
5503 qemu_get_betls(f, &env->cr[3]);
5504 qemu_get_betls(f, &env->cr[4]);
5506 for(i = 0; i < 8; i++)
5507 qemu_get_betls(f, &env->dr[i]);
5509 /* MMU */
5510 qemu_get_be32s(f, &env->a20_mask);
5512 qemu_get_be32s(f, &env->mxcsr);
5513 for(i = 0; i < CPU_NB_REGS; i++) {
5514 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5515 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5518 #ifdef TARGET_X86_64
5519 qemu_get_be64s(f, &env->efer);
5520 qemu_get_be64s(f, &env->star);
5521 qemu_get_be64s(f, &env->lstar);
5522 qemu_get_be64s(f, &env->cstar);
5523 qemu_get_be64s(f, &env->fmask);
5524 qemu_get_be64s(f, &env->kernelgsbase);
5525 #endif
5526 if (version_id >= 4)
5527 qemu_get_be32s(f, &env->smbase);
5529 /* XXX: compute hflags from scratch, except for CPL and IIF */
5530 env->hflags = hflags;
5531 tlb_flush(env, 1);
5532 return 0;
5535 #elif defined(TARGET_PPC)
5536 void cpu_save(QEMUFile *f, void *opaque)
5540 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5542 return 0;
5545 #elif defined(TARGET_MIPS)
5546 void cpu_save(QEMUFile *f, void *opaque)
5550 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5552 return 0;
5555 #elif defined(TARGET_SPARC)
5556 void cpu_save(QEMUFile *f, void *opaque)
5558 CPUState *env = opaque;
5559 int i;
5560 uint32_t tmp;
5562 for(i = 0; i < 8; i++)
5563 qemu_put_betls(f, &env->gregs[i]);
5564 for(i = 0; i < NWINDOWS * 16; i++)
5565 qemu_put_betls(f, &env->regbase[i]);
5567 /* FPU */
5568 for(i = 0; i < TARGET_FPREGS; i++) {
5569 union {
5570 float32 f;
5571 uint32_t i;
5572 } u;
5573 u.f = env->fpr[i];
5574 qemu_put_be32(f, u.i);
5577 qemu_put_betls(f, &env->pc);
5578 qemu_put_betls(f, &env->npc);
5579 qemu_put_betls(f, &env->y);
5580 tmp = GET_PSR(env);
5581 qemu_put_be32(f, tmp);
5582 qemu_put_betls(f, &env->fsr);
5583 qemu_put_betls(f, &env->tbr);
5584 #ifndef TARGET_SPARC64
5585 qemu_put_be32s(f, &env->wim);
5586 /* MMU */
5587 for(i = 0; i < 16; i++)
5588 qemu_put_be32s(f, &env->mmuregs[i]);
5589 #endif
5592 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5594 CPUState *env = opaque;
5595 int i;
5596 uint32_t tmp;
5598 for(i = 0; i < 8; i++)
5599 qemu_get_betls(f, &env->gregs[i]);
5600 for(i = 0; i < NWINDOWS * 16; i++)
5601 qemu_get_betls(f, &env->regbase[i]);
5603 /* FPU */
5604 for(i = 0; i < TARGET_FPREGS; i++) {
5605 union {
5606 float32 f;
5607 uint32_t i;
5608 } u;
5609 u.i = qemu_get_be32(f);
5610 env->fpr[i] = u.f;
5613 qemu_get_betls(f, &env->pc);
5614 qemu_get_betls(f, &env->npc);
5615 qemu_get_betls(f, &env->y);
5616 tmp = qemu_get_be32(f);
5617 env->cwp = 0; /* needed to ensure that the wrapping registers are
5618 correctly updated */
5619 PUT_PSR(env, tmp);
5620 qemu_get_betls(f, &env->fsr);
5621 qemu_get_betls(f, &env->tbr);
5622 #ifndef TARGET_SPARC64
5623 qemu_get_be32s(f, &env->wim);
5624 /* MMU */
5625 for(i = 0; i < 16; i++)
5626 qemu_get_be32s(f, &env->mmuregs[i]);
5627 #endif
5628 tlb_flush(env, 1);
5629 return 0;
5632 #elif defined(TARGET_ARM)
5634 /* ??? Need to implement these. */
5635 void cpu_save(QEMUFile *f, void *opaque)
5639 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5641 return 0;
5644 #else
5646 #warning No CPU save/restore functions
5648 #endif
5650 /***********************************************************/
5651 /* ram save/restore */
5653 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
5655 int v;
5657 v = qemu_get_byte(f);
5658 switch(v) {
5659 case 0:
5660 if (qemu_get_buffer(f, buf, len) != len)
5661 return -EIO;
5662 break;
5663 case 1:
5664 v = qemu_get_byte(f);
5665 memset(buf, v, len);
5666 break;
5667 default:
5668 return -EINVAL;
5670 return 0;
5673 static int ram_load_v1(QEMUFile *f, void *opaque)
5675 int i, ret;
5677 if (qemu_get_be32(f) != phys_ram_size)
5678 return -EINVAL;
5679 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
5680 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
5681 if (ret)
5682 return ret;
5684 return 0;
5687 #define BDRV_HASH_BLOCK_SIZE 1024
5688 #define IOBUF_SIZE 4096
5689 #define RAM_CBLOCK_MAGIC 0xfabe
5691 typedef struct RamCompressState {
5692 z_stream zstream;
5693 QEMUFile *f;
5694 uint8_t buf[IOBUF_SIZE];
5695 } RamCompressState;
5697 static int ram_compress_open(RamCompressState *s, QEMUFile *f)
5699 int ret;
5700 memset(s, 0, sizeof(*s));
5701 s->f = f;
5702 ret = deflateInit2(&s->zstream, 1,
5703 Z_DEFLATED, 15,
5704 9, Z_DEFAULT_STRATEGY);
5705 if (ret != Z_OK)
5706 return -1;
5707 s->zstream.avail_out = IOBUF_SIZE;
5708 s->zstream.next_out = s->buf;
5709 return 0;
5712 static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
5714 qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
5715 qemu_put_be16(s->f, len);
5716 qemu_put_buffer(s->f, buf, len);
5719 static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
5721 int ret;
5723 s->zstream.avail_in = len;
5724 s->zstream.next_in = (uint8_t *)buf;
5725 while (s->zstream.avail_in > 0) {
5726 ret = deflate(&s->zstream, Z_NO_FLUSH);
5727 if (ret != Z_OK)
5728 return -1;
5729 if (s->zstream.avail_out == 0) {
5730 ram_put_cblock(s, s->buf, IOBUF_SIZE);
5731 s->zstream.avail_out = IOBUF_SIZE;
5732 s->zstream.next_out = s->buf;
5735 return 0;
5738 static void ram_compress_close(RamCompressState *s)
5740 int len, ret;
5742 /* compress last bytes */
5743 for(;;) {
5744 ret = deflate(&s->zstream, Z_FINISH);
5745 if (ret == Z_OK || ret == Z_STREAM_END) {
5746 len = IOBUF_SIZE - s->zstream.avail_out;
5747 if (len > 0) {
5748 ram_put_cblock(s, s->buf, len);
5750 s->zstream.avail_out = IOBUF_SIZE;
5751 s->zstream.next_out = s->buf;
5752 if (ret == Z_STREAM_END)
5753 break;
5754 } else {
5755 goto fail;
5758 fail:
5759 deflateEnd(&s->zstream);
5762 typedef struct RamDecompressState {
5763 z_stream zstream;
5764 QEMUFile *f;
5765 uint8_t buf[IOBUF_SIZE];
5766 } RamDecompressState;
5768 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
5770 int ret;
5771 memset(s, 0, sizeof(*s));
5772 s->f = f;
5773 ret = inflateInit(&s->zstream);
5774 if (ret != Z_OK)
5775 return -1;
5776 return 0;
5779 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
5781 int ret, clen;
5783 s->zstream.avail_out = len;
5784 s->zstream.next_out = buf;
5785 while (s->zstream.avail_out > 0) {
5786 if (s->zstream.avail_in == 0) {
5787 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
5788 return -1;
5789 clen = qemu_get_be16(s->f);
5790 if (clen > IOBUF_SIZE)
5791 return -1;
5792 qemu_get_buffer(s->f, s->buf, clen);
5793 s->zstream.avail_in = clen;
5794 s->zstream.next_in = s->buf;
5796 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
5797 if (ret != Z_OK && ret != Z_STREAM_END) {
5798 return -1;
5801 return 0;
5804 static void ram_decompress_close(RamDecompressState *s)
5806 inflateEnd(&s->zstream);
5809 static void ram_save(QEMUFile *f, void *opaque)
5811 int i;
5812 RamCompressState s1, *s = &s1;
5813 uint8_t buf[10];
5815 qemu_put_be32(f, phys_ram_size);
5816 if (ram_compress_open(s, f) < 0)
5817 return;
5818 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
5819 #if 0
5820 if (tight_savevm_enabled) {
5821 int64_t sector_num;
5822 int j;
5824 /* find if the memory block is available on a virtual
5825 block device */
5826 sector_num = -1;
5827 for(j = 0; j < MAX_DISKS; j++) {
5828 if (bs_table[j]) {
5829 sector_num = bdrv_hash_find(bs_table[j],
5830 phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
5831 if (sector_num >= 0)
5832 break;
5835 if (j == MAX_DISKS)
5836 goto normal_compress;
5837 buf[0] = 1;
5838 buf[1] = j;
5839 cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
5840 ram_compress_buf(s, buf, 10);
5841 } else
5842 #endif
5844 // normal_compress:
5845 buf[0] = 0;
5846 ram_compress_buf(s, buf, 1);
5847 ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
5850 ram_compress_close(s);
5853 static int ram_load(QEMUFile *f, void *opaque, int version_id)
5855 RamDecompressState s1, *s = &s1;
5856 uint8_t buf[10];
5857 int i;
5859 if (version_id == 1)
5860 return ram_load_v1(f, opaque);
5861 if (version_id != 2)
5862 return -EINVAL;
5863 if (qemu_get_be32(f) != phys_ram_size)
5864 return -EINVAL;
5865 if (ram_decompress_open(s, f) < 0)
5866 return -EINVAL;
5867 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
5868 if (ram_decompress_buf(s, buf, 1) < 0) {
5869 fprintf(stderr, "Error while reading ram block header\n");
5870 goto error;
5872 if (buf[0] == 0) {
5873 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
5874 fprintf(stderr, "Error while reading ram block address=0x%08x", i);
5875 goto error;
5877 } else
5878 #if 0
5879 if (buf[0] == 1) {
5880 int bs_index;
5881 int64_t sector_num;
5883 ram_decompress_buf(s, buf + 1, 9);
5884 bs_index = buf[1];
5885 sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
5886 if (bs_index >= MAX_DISKS || bs_table[bs_index] == NULL) {
5887 fprintf(stderr, "Invalid block device index %d\n", bs_index);
5888 goto error;
5890 if (bdrv_read(bs_table[bs_index], sector_num, phys_ram_base + i,
5891 BDRV_HASH_BLOCK_SIZE / 512) < 0) {
5892 fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
5893 bs_index, sector_num);
5894 goto error;
5896 } else
5897 #endif
5899 error:
5900 printf("Error block header\n");
5901 return -EINVAL;
5904 ram_decompress_close(s);
5905 return 0;
5908 /***********************************************************/
5909 /* bottom halves (can be seen as timers which expire ASAP) */
5911 struct QEMUBH {
5912 QEMUBHFunc *cb;
5913 void *opaque;
5914 int scheduled;
5915 QEMUBH *next;
5918 static QEMUBH *first_bh = NULL;
5920 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
5922 QEMUBH *bh;
5923 bh = qemu_mallocz(sizeof(QEMUBH));
5924 if (!bh)
5925 return NULL;
5926 bh->cb = cb;
5927 bh->opaque = opaque;
5928 return bh;
5931 int qemu_bh_poll(void)
5933 QEMUBH *bh, **pbh;
5934 int ret;
5936 ret = 0;
5937 for(;;) {
5938 pbh = &first_bh;
5939 bh = *pbh;
5940 if (!bh)
5941 break;
5942 ret = 1;
5943 *pbh = bh->next;
5944 bh->scheduled = 0;
5945 bh->cb(bh->opaque);
5947 return ret;
5950 void qemu_bh_schedule(QEMUBH *bh)
5952 CPUState *env = cpu_single_env;
5953 if (bh->scheduled)
5954 return;
5955 bh->scheduled = 1;
5956 bh->next = first_bh;
5957 first_bh = bh;
5959 /* stop the currently executing CPU to execute the BH ASAP */
5960 if (env) {
5961 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
5965 void qemu_bh_cancel(QEMUBH *bh)
5967 QEMUBH **pbh;
5968 if (bh->scheduled) {
5969 pbh = &first_bh;
5970 while (*pbh != bh)
5971 pbh = &(*pbh)->next;
5972 *pbh = bh->next;
5973 bh->scheduled = 0;
5977 void qemu_bh_delete(QEMUBH *bh)
5979 qemu_bh_cancel(bh);
5980 qemu_free(bh);
5983 /***********************************************************/
5984 /* machine registration */
5986 QEMUMachine *first_machine = NULL;
5988 int qemu_register_machine(QEMUMachine *m)
5990 QEMUMachine **pm;
5991 pm = &first_machine;
5992 while (*pm != NULL)
5993 pm = &(*pm)->next;
5994 m->next = NULL;
5995 *pm = m;
5996 return 0;
5999 QEMUMachine *find_machine(const char *name)
6001 QEMUMachine *m;
6003 for(m = first_machine; m != NULL; m = m->next) {
6004 if (!strcmp(m->name, name))
6005 return m;
6007 return NULL;
6010 /***********************************************************/
6011 /* main execution loop */
6013 void gui_update(void *opaque)
6015 display_state.dpy_refresh(&display_state);
6016 qemu_mod_timer(gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
6019 struct vm_change_state_entry {
6020 VMChangeStateHandler *cb;
6021 void *opaque;
6022 LIST_ENTRY (vm_change_state_entry) entries;
6025 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
6027 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
6028 void *opaque)
6030 VMChangeStateEntry *e;
6032 e = qemu_mallocz(sizeof (*e));
6033 if (!e)
6034 return NULL;
6036 e->cb = cb;
6037 e->opaque = opaque;
6038 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
6039 return e;
6042 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
6044 LIST_REMOVE (e, entries);
6045 qemu_free (e);
6048 static void vm_state_notify(int running)
6050 VMChangeStateEntry *e;
6052 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
6053 e->cb(e->opaque, running);
6057 /* XXX: support several handlers */
6058 static VMStopHandler *vm_stop_cb;
6059 static void *vm_stop_opaque;
6061 int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
6063 vm_stop_cb = cb;
6064 vm_stop_opaque = opaque;
6065 return 0;
6068 void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
6070 vm_stop_cb = NULL;
6073 void vm_start(void)
6075 if (!vm_running) {
6076 cpu_enable_ticks();
6077 vm_running = 1;
6078 vm_state_notify(1);
6082 void vm_stop(int reason)
6084 if (vm_running) {
6085 cpu_disable_ticks();
6086 vm_running = 0;
6087 if (reason != 0) {
6088 if (vm_stop_cb) {
6089 vm_stop_cb(vm_stop_opaque, reason);
6092 vm_state_notify(0);
6096 /* reset/shutdown handler */
6098 typedef struct QEMUResetEntry {
6099 QEMUResetHandler *func;
6100 void *opaque;
6101 struct QEMUResetEntry *next;
6102 } QEMUResetEntry;
6104 static QEMUResetEntry *first_reset_entry;
6105 static int reset_requested;
6106 static int shutdown_requested;
6107 static int powerdown_requested;
6109 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
6111 QEMUResetEntry **pre, *re;
6113 pre = &first_reset_entry;
6114 while (*pre != NULL)
6115 pre = &(*pre)->next;
6116 re = qemu_mallocz(sizeof(QEMUResetEntry));
6117 re->func = func;
6118 re->opaque = opaque;
6119 re->next = NULL;
6120 *pre = re;
6123 static void qemu_system_reset(void)
6125 QEMUResetEntry *re;
6127 /* reset all devices */
6128 for(re = first_reset_entry; re != NULL; re = re->next) {
6129 re->func(re->opaque);
6133 void qemu_system_reset_request(void)
6135 if (no_reboot) {
6136 shutdown_requested = 1;
6137 } else {
6138 reset_requested = 1;
6140 if (cpu_single_env)
6141 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6144 void qemu_system_shutdown_request(void)
6146 shutdown_requested = 1;
6147 if (cpu_single_env)
6148 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6151 void qemu_system_powerdown_request(void)
6153 powerdown_requested = 1;
6154 if (cpu_single_env)
6155 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6158 void main_loop_wait(int timeout)
6160 IOHandlerRecord *ioh, *ioh_next;
6161 fd_set rfds, wfds, xfds;
6162 int ret, nfds;
6163 struct timeval tv;
6164 PollingEntry *pe;
6167 /* XXX: need to suppress polling by better using win32 events */
6168 ret = 0;
6169 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
6170 ret |= pe->func(pe->opaque);
6172 #ifdef _WIN32
6173 if (ret == 0 && timeout > 0) {
6174 int err;
6175 WaitObjects *w = &wait_objects;
6177 ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
6178 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
6179 if (w->func[ret - WAIT_OBJECT_0])
6180 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
6181 } else if (ret == WAIT_TIMEOUT) {
6182 } else {
6183 err = GetLastError();
6184 fprintf(stderr, "Wait error %d %d\n", ret, err);
6187 #endif
6188 /* poll any events */
6189 /* XXX: separate device handlers from system ones */
6190 nfds = -1;
6191 FD_ZERO(&rfds);
6192 FD_ZERO(&wfds);
6193 FD_ZERO(&xfds);
6194 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6195 if (ioh->fd_read &&
6196 (!ioh->fd_read_poll ||
6197 ioh->fd_read_poll(ioh->opaque) != 0)) {
6198 FD_SET(ioh->fd, &rfds);
6199 if (ioh->fd > nfds)
6200 nfds = ioh->fd;
6202 if (ioh->fd_write) {
6203 FD_SET(ioh->fd, &wfds);
6204 if (ioh->fd > nfds)
6205 nfds = ioh->fd;
6209 tv.tv_sec = 0;
6210 #ifdef _WIN32
6211 tv.tv_usec = 0;
6212 #else
6213 tv.tv_usec = timeout * 1000;
6214 #endif
6215 #if defined(CONFIG_SLIRP)
6216 if (slirp_inited) {
6217 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
6219 #endif
6220 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
6221 if (ret > 0) {
6222 /* XXX: better handling of removal */
6223 for(ioh = first_io_handler; ioh != NULL; ioh = ioh_next) {
6224 ioh_next = ioh->next;
6225 if (FD_ISSET(ioh->fd, &rfds)) {
6226 ioh->fd_read(ioh->opaque);
6228 if (FD_ISSET(ioh->fd, &wfds)) {
6229 ioh->fd_write(ioh->opaque);
6233 #if defined(CONFIG_SLIRP)
6234 if (slirp_inited) {
6235 if (ret < 0) {
6236 FD_ZERO(&rfds);
6237 FD_ZERO(&wfds);
6238 FD_ZERO(&xfds);
6240 slirp_select_poll(&rfds, &wfds, &xfds);
6242 #endif
6243 qemu_aio_poll();
6244 qemu_bh_poll();
6246 if (vm_running) {
6247 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
6248 qemu_get_clock(vm_clock));
6249 /* run dma transfers, if any */
6250 DMA_run();
6253 /* real time timers */
6254 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
6255 qemu_get_clock(rt_clock));
6258 static CPUState *cur_cpu;
6260 int main_loop(void)
6262 int ret, timeout;
6263 #ifdef CONFIG_PROFILER
6264 int64_t ti;
6265 #endif
6266 CPUState *env;
6268 cur_cpu = first_cpu;
6269 for(;;) {
6270 if (vm_running) {
6272 env = cur_cpu;
6273 for(;;) {
6274 /* get next cpu */
6275 env = env->next_cpu;
6276 if (!env)
6277 env = first_cpu;
6278 #ifdef CONFIG_PROFILER
6279 ti = profile_getclock();
6280 #endif
6281 ret = cpu_exec(env);
6282 #ifdef CONFIG_PROFILER
6283 qemu_time += profile_getclock() - ti;
6284 #endif
6285 if (ret != EXCP_HALTED)
6286 break;
6287 /* all CPUs are halted ? */
6288 if (env == cur_cpu) {
6289 ret = EXCP_HLT;
6290 break;
6293 cur_cpu = env;
6295 if (shutdown_requested) {
6296 ret = EXCP_INTERRUPT;
6297 break;
6299 if (reset_requested) {
6300 reset_requested = 0;
6301 qemu_system_reset();
6302 ret = EXCP_INTERRUPT;
6304 if (powerdown_requested) {
6305 powerdown_requested = 0;
6306 qemu_system_powerdown();
6307 ret = EXCP_INTERRUPT;
6309 if (ret == EXCP_DEBUG) {
6310 vm_stop(EXCP_DEBUG);
6312 /* if hlt instruction, we wait until the next IRQ */
6313 /* XXX: use timeout computed from timers */
6314 if (ret == EXCP_HLT)
6315 timeout = 10;
6316 else
6317 timeout = 0;
6318 } else {
6319 timeout = 10;
6321 #ifdef CONFIG_PROFILER
6322 ti = profile_getclock();
6323 #endif
6324 main_loop_wait(timeout);
6325 #ifdef CONFIG_PROFILER
6326 dev_time += profile_getclock() - ti;
6327 #endif
6329 cpu_disable_ticks();
6330 return ret;
6333 void help(void)
6335 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2007 Fabrice Bellard\n"
6336 "usage: %s [options] [disk_image]\n"
6337 "\n"
6338 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
6339 "\n"
6340 "Standard options:\n"
6341 "-M machine select emulated machine (-M ? for list)\n"
6342 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
6343 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
6344 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
6345 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
6346 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
6347 "-snapshot write to temporary files instead of disk image files\n"
6348 #ifdef CONFIG_SDL
6349 "-no-frame open SDL window without a frame and window decorations\n"
6350 "-no-quit disable SDL window close capability\n"
6351 #endif
6352 #ifdef TARGET_I386
6353 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
6354 #endif
6355 "-m megs set virtual RAM size to megs MB [default=%d]\n"
6356 "-smp n set the number of CPUs to 'n' [default=1]\n"
6357 "-nographic disable graphical output and redirect serial I/Os to console\n"
6358 #ifndef _WIN32
6359 "-k language use keyboard layout (for example \"fr\" for French)\n"
6360 #endif
6361 #ifdef HAS_AUDIO
6362 "-audio-help print list of audio drivers and their options\n"
6363 "-soundhw c1,... enable audio support\n"
6364 " and only specified sound cards (comma separated list)\n"
6365 " use -soundhw ? to get the list of supported cards\n"
6366 " use -soundhw all to enable all of them\n"
6367 #endif
6368 "-localtime set the real time clock to local time [default=utc]\n"
6369 "-full-screen start in full screen\n"
6370 #ifdef TARGET_I386
6371 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
6372 #endif
6373 "-usb enable the USB driver (will be the default soon)\n"
6374 "-usbdevice name add the host or guest USB device 'name'\n"
6375 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
6376 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
6377 #endif
6378 "\n"
6379 "Network options:\n"
6380 "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
6381 " create a new Network Interface Card and connect it to VLAN 'n'\n"
6382 #ifdef CONFIG_SLIRP
6383 "-net user[,vlan=n][,hostname=host]\n"
6384 " connect the user mode network stack to VLAN 'n' and send\n"
6385 " hostname 'host' to DHCP clients\n"
6386 #endif
6387 #ifdef _WIN32
6388 "-net tap[,vlan=n],ifname=name\n"
6389 " connect the host TAP network interface to VLAN 'n'\n"
6390 #else
6391 "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file]\n"
6392 " connect the host TAP network interface to VLAN 'n' and use\n"
6393 " the network script 'file' (default=%s);\n"
6394 " use 'script=no' to disable script execution;\n"
6395 " use 'fd=h' to connect to an already opened TAP interface\n"
6396 #endif
6397 "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
6398 " connect the vlan 'n' to another VLAN using a socket connection\n"
6399 "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
6400 " connect the vlan 'n' to multicast maddr and port\n"
6401 "-net none use it alone to have zero network devices; if no -net option\n"
6402 " is provided, the default is '-net nic -net user'\n"
6403 "\n"
6404 #ifdef CONFIG_SLIRP
6405 "-tftp dir allow tftp access to files in dir [-net user]\n"
6406 "-bootp file advertise file in BOOTP replies\n"
6407 #ifndef _WIN32
6408 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
6409 #endif
6410 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
6411 " redirect TCP or UDP connections from host to guest [-net user]\n"
6412 #endif
6413 "\n"
6414 "Linux boot specific:\n"
6415 "-kernel bzImage use 'bzImage' as kernel image\n"
6416 "-append cmdline use 'cmdline' as kernel command line\n"
6417 "-initrd file use 'file' as initial ram disk\n"
6418 "\n"
6419 "Debug/Expert options:\n"
6420 "-monitor dev redirect the monitor to char device 'dev'\n"
6421 "-serial dev redirect the serial port to char device 'dev'\n"
6422 "-parallel dev redirect the parallel port to char device 'dev'\n"
6423 "-pidfile file Write PID to 'file'\n"
6424 "-S freeze CPU at startup (use 'c' to start execution)\n"
6425 "-s wait gdb connection to port\n"
6426 "-p port set gdb connection port [default=%s]\n"
6427 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
6428 "-hdachs c,h,s[,t] force hard disk 0 physical geometry and the optional BIOS\n"
6429 " translation (t=none or lba) (usually qemu can guess them)\n"
6430 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
6431 #ifdef USE_KQEMU
6432 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
6433 "-no-kqemu disable KQEMU kernel module usage\n"
6434 #endif
6435 #ifdef USE_CODE_COPY
6436 "-no-code-copy disable code copy acceleration\n"
6437 #endif
6438 #ifdef TARGET_I386
6439 "-std-vga simulate a standard VGA card with VESA Bochs Extensions\n"
6440 " (default is CL-GD5446 PCI VGA)\n"
6441 "-no-acpi disable ACPI\n"
6442 #endif
6443 "-no-reboot exit instead of rebooting\n"
6444 "-loadvm file start right away with a saved state (loadvm in monitor)\n"
6445 "-vnc display start a VNC server on display\n"
6446 #ifndef _WIN32
6447 "-daemonize daemonize QEMU after initializing\n"
6448 #endif
6449 "-option-rom rom load a file, rom, into the option ROM space\n"
6450 "\n"
6451 "During emulation, the following keys are useful:\n"
6452 "ctrl-alt-f toggle full screen\n"
6453 "ctrl-alt-n switch to virtual console 'n'\n"
6454 "ctrl-alt toggle mouse and keyboard grab\n"
6455 "\n"
6456 "When using -nographic, press 'ctrl-a h' to get some help.\n"
6458 "qemu",
6459 DEFAULT_RAM_SIZE,
6460 #ifndef _WIN32
6461 DEFAULT_NETWORK_SCRIPT,
6462 #endif
6463 DEFAULT_GDBSTUB_PORT,
6464 "/tmp/qemu.log");
6465 exit(1);
6468 #define HAS_ARG 0x0001
6470 enum {
6471 QEMU_OPTION_h,
6473 QEMU_OPTION_M,
6474 QEMU_OPTION_fda,
6475 QEMU_OPTION_fdb,
6476 QEMU_OPTION_hda,
6477 QEMU_OPTION_hdb,
6478 QEMU_OPTION_hdc,
6479 QEMU_OPTION_hdd,
6480 QEMU_OPTION_cdrom,
6481 QEMU_OPTION_boot,
6482 QEMU_OPTION_snapshot,
6483 #ifdef TARGET_I386
6484 QEMU_OPTION_no_fd_bootchk,
6485 #endif
6486 QEMU_OPTION_m,
6487 QEMU_OPTION_nographic,
6488 #ifdef HAS_AUDIO
6489 QEMU_OPTION_audio_help,
6490 QEMU_OPTION_soundhw,
6491 #endif
6493 QEMU_OPTION_net,
6494 QEMU_OPTION_tftp,
6495 QEMU_OPTION_bootp,
6496 QEMU_OPTION_smb,
6497 QEMU_OPTION_redir,
6499 QEMU_OPTION_kernel,
6500 QEMU_OPTION_append,
6501 QEMU_OPTION_initrd,
6503 QEMU_OPTION_S,
6504 QEMU_OPTION_s,
6505 QEMU_OPTION_p,
6506 QEMU_OPTION_d,
6507 QEMU_OPTION_hdachs,
6508 QEMU_OPTION_L,
6509 QEMU_OPTION_no_code_copy,
6510 QEMU_OPTION_k,
6511 QEMU_OPTION_localtime,
6512 QEMU_OPTION_cirrusvga,
6513 QEMU_OPTION_g,
6514 QEMU_OPTION_std_vga,
6515 QEMU_OPTION_echr,
6516 QEMU_OPTION_monitor,
6517 QEMU_OPTION_serial,
6518 QEMU_OPTION_parallel,
6519 QEMU_OPTION_loadvm,
6520 QEMU_OPTION_full_screen,
6521 QEMU_OPTION_no_frame,
6522 QEMU_OPTION_no_quit,
6523 QEMU_OPTION_pidfile,
6524 QEMU_OPTION_no_kqemu,
6525 QEMU_OPTION_kernel_kqemu,
6526 QEMU_OPTION_win2k_hack,
6527 QEMU_OPTION_usb,
6528 QEMU_OPTION_usbdevice,
6529 QEMU_OPTION_smp,
6530 QEMU_OPTION_vnc,
6531 QEMU_OPTION_no_acpi,
6532 QEMU_OPTION_no_reboot,
6533 QEMU_OPTION_daemonize,
6534 QEMU_OPTION_option_rom,
6535 QEMU_OPTION_semihosting
6538 typedef struct QEMUOption {
6539 const char *name;
6540 int flags;
6541 int index;
6542 } QEMUOption;
6544 const QEMUOption qemu_options[] = {
6545 { "h", 0, QEMU_OPTION_h },
6546 { "help", 0, QEMU_OPTION_h },
6548 { "M", HAS_ARG, QEMU_OPTION_M },
6549 { "fda", HAS_ARG, QEMU_OPTION_fda },
6550 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
6551 { "hda", HAS_ARG, QEMU_OPTION_hda },
6552 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
6553 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
6554 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
6555 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
6556 { "boot", HAS_ARG, QEMU_OPTION_boot },
6557 { "snapshot", 0, QEMU_OPTION_snapshot },
6558 #ifdef TARGET_I386
6559 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
6560 #endif
6561 { "m", HAS_ARG, QEMU_OPTION_m },
6562 { "nographic", 0, QEMU_OPTION_nographic },
6563 { "k", HAS_ARG, QEMU_OPTION_k },
6564 #ifdef HAS_AUDIO
6565 { "audio-help", 0, QEMU_OPTION_audio_help },
6566 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
6567 #endif
6569 { "net", HAS_ARG, QEMU_OPTION_net},
6570 #ifdef CONFIG_SLIRP
6571 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
6572 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
6573 #ifndef _WIN32
6574 { "smb", HAS_ARG, QEMU_OPTION_smb },
6575 #endif
6576 { "redir", HAS_ARG, QEMU_OPTION_redir },
6577 #endif
6579 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
6580 { "append", HAS_ARG, QEMU_OPTION_append },
6581 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
6583 { "S", 0, QEMU_OPTION_S },
6584 { "s", 0, QEMU_OPTION_s },
6585 { "p", HAS_ARG, QEMU_OPTION_p },
6586 { "d", HAS_ARG, QEMU_OPTION_d },
6587 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
6588 { "L", HAS_ARG, QEMU_OPTION_L },
6589 { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
6590 #ifdef USE_KQEMU
6591 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
6592 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
6593 #endif
6594 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
6595 { "g", 1, QEMU_OPTION_g },
6596 #endif
6597 { "localtime", 0, QEMU_OPTION_localtime },
6598 { "std-vga", 0, QEMU_OPTION_std_vga },
6599 { "echr", 1, QEMU_OPTION_echr },
6600 { "monitor", 1, QEMU_OPTION_monitor },
6601 { "serial", 1, QEMU_OPTION_serial },
6602 { "parallel", 1, QEMU_OPTION_parallel },
6603 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
6604 { "full-screen", 0, QEMU_OPTION_full_screen },
6605 #ifdef CONFIG_SDL
6606 { "no-frame", 0, QEMU_OPTION_no_frame },
6607 { "no-quit", 0, QEMU_OPTION_no_quit },
6608 #endif
6609 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
6610 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
6611 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
6612 { "smp", HAS_ARG, QEMU_OPTION_smp },
6613 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
6615 /* temporary options */
6616 { "usb", 0, QEMU_OPTION_usb },
6617 { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
6618 { "no-acpi", 0, QEMU_OPTION_no_acpi },
6619 { "no-reboot", 0, QEMU_OPTION_no_reboot },
6620 { "daemonize", 0, QEMU_OPTION_daemonize },
6621 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
6622 #if defined(TARGET_ARM)
6623 { "semihosting", 0, QEMU_OPTION_semihosting },
6624 #endif
6625 { NULL },
6628 #if defined (TARGET_I386) && defined(USE_CODE_COPY)
6630 /* this stack is only used during signal handling */
6631 #define SIGNAL_STACK_SIZE 32768
6633 static uint8_t *signal_stack;
6635 #endif
6637 /* password input */
6639 static BlockDriverState *get_bdrv(int index)
6641 BlockDriverState *bs;
6643 if (index < 4) {
6644 bs = bs_table[index];
6645 } else if (index < 6) {
6646 bs = fd_table[index - 4];
6647 } else {
6648 bs = NULL;
6650 return bs;
6653 static void read_passwords(void)
6655 BlockDriverState *bs;
6656 int i, j;
6657 char password[256];
6659 for(i = 0; i < 6; i++) {
6660 bs = get_bdrv(i);
6661 if (bs && bdrv_is_encrypted(bs)) {
6662 term_printf("%s is encrypted.\n", bdrv_get_device_name(bs));
6663 for(j = 0; j < 3; j++) {
6664 monitor_readline("Password: ",
6665 1, password, sizeof(password));
6666 if (bdrv_set_key(bs, password) == 0)
6667 break;
6668 term_printf("invalid password\n");
6674 /* XXX: currently we cannot use simultaneously different CPUs */
6675 void register_machines(void)
6677 #if defined(TARGET_I386)
6678 qemu_register_machine(&pc_machine);
6679 qemu_register_machine(&isapc_machine);
6680 #elif defined(TARGET_PPC)
6681 qemu_register_machine(&heathrow_machine);
6682 qemu_register_machine(&core99_machine);
6683 qemu_register_machine(&prep_machine);
6684 #elif defined(TARGET_MIPS)
6685 qemu_register_machine(&mips_machine);
6686 qemu_register_machine(&mips_malta_machine);
6687 #elif defined(TARGET_SPARC)
6688 #ifdef TARGET_SPARC64
6689 qemu_register_machine(&sun4u_machine);
6690 #else
6691 qemu_register_machine(&sun4m_machine);
6692 #endif
6693 #elif defined(TARGET_ARM)
6694 qemu_register_machine(&integratorcp926_machine);
6695 qemu_register_machine(&integratorcp1026_machine);
6696 qemu_register_machine(&versatilepb_machine);
6697 qemu_register_machine(&versatileab_machine);
6698 qemu_register_machine(&realview_machine);
6699 #elif defined(TARGET_SH4)
6700 qemu_register_machine(&shix_machine);
6701 #else
6702 #error unsupported CPU
6703 #endif
6706 #ifdef HAS_AUDIO
6707 struct soundhw soundhw[] = {
6708 #ifdef TARGET_I386
6710 "pcspk",
6711 "PC speaker",
6714 { .init_isa = pcspk_audio_init }
6716 #endif
6718 "sb16",
6719 "Creative Sound Blaster 16",
6722 { .init_isa = SB16_init }
6725 #ifdef CONFIG_ADLIB
6727 "adlib",
6728 #ifdef HAS_YMF262
6729 "Yamaha YMF262 (OPL3)",
6730 #else
6731 "Yamaha YM3812 (OPL2)",
6732 #endif
6735 { .init_isa = Adlib_init }
6737 #endif
6739 #ifdef CONFIG_GUS
6741 "gus",
6742 "Gravis Ultrasound GF1",
6745 { .init_isa = GUS_init }
6747 #endif
6750 "es1370",
6751 "ENSONIQ AudioPCI ES1370",
6754 { .init_pci = es1370_init }
6757 { NULL, NULL, 0, 0, { NULL } }
6760 static void select_soundhw (const char *optarg)
6762 struct soundhw *c;
6764 if (*optarg == '?') {
6765 show_valid_cards:
6767 printf ("Valid sound card names (comma separated):\n");
6768 for (c = soundhw; c->name; ++c) {
6769 printf ("%-11s %s\n", c->name, c->descr);
6771 printf ("\n-soundhw all will enable all of the above\n");
6772 exit (*optarg != '?');
6774 else {
6775 size_t l;
6776 const char *p;
6777 char *e;
6778 int bad_card = 0;
6780 if (!strcmp (optarg, "all")) {
6781 for (c = soundhw; c->name; ++c) {
6782 c->enabled = 1;
6784 return;
6787 p = optarg;
6788 while (*p) {
6789 e = strchr (p, ',');
6790 l = !e ? strlen (p) : (size_t) (e - p);
6792 for (c = soundhw; c->name; ++c) {
6793 if (!strncmp (c->name, p, l)) {
6794 c->enabled = 1;
6795 break;
6799 if (!c->name) {
6800 if (l > 80) {
6801 fprintf (stderr,
6802 "Unknown sound card name (too big to show)\n");
6804 else {
6805 fprintf (stderr, "Unknown sound card name `%.*s'\n",
6806 (int) l, p);
6808 bad_card = 1;
6810 p += l + (e != NULL);
6813 if (bad_card)
6814 goto show_valid_cards;
6817 #endif
6819 #ifdef _WIN32
6820 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
6822 exit(STATUS_CONTROL_C_EXIT);
6823 return TRUE;
6825 #endif
6827 #define MAX_NET_CLIENTS 32
6829 int main(int argc, char **argv)
6831 #ifdef CONFIG_GDBSTUB
6832 int use_gdbstub;
6833 const char *gdbstub_port;
6834 #endif
6835 int i, cdrom_index;
6836 int snapshot, linux_boot;
6837 const char *initrd_filename;
6838 const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
6839 const char *kernel_filename, *kernel_cmdline;
6840 DisplayState *ds = &display_state;
6841 int cyls, heads, secs, translation;
6842 char net_clients[MAX_NET_CLIENTS][256];
6843 int nb_net_clients;
6844 int optind;
6845 const char *r, *optarg;
6846 CharDriverState *monitor_hd;
6847 char monitor_device[128];
6848 char serial_devices[MAX_SERIAL_PORTS][128];
6849 int serial_device_index;
6850 char parallel_devices[MAX_PARALLEL_PORTS][128];
6851 int parallel_device_index;
6852 const char *loadvm = NULL;
6853 QEMUMachine *machine;
6854 char usb_devices[MAX_USB_CMDLINE][128];
6855 int usb_devices_index;
6856 int fds[2];
6858 LIST_INIT (&vm_change_state_head);
6859 #ifndef _WIN32
6861 struct sigaction act;
6862 sigfillset(&act.sa_mask);
6863 act.sa_flags = 0;
6864 act.sa_handler = SIG_IGN;
6865 sigaction(SIGPIPE, &act, NULL);
6867 #else
6868 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
6869 /* Note: cpu_interrupt() is currently not SMP safe, so we force
6870 QEMU to run on a single CPU */
6872 HANDLE h;
6873 DWORD mask, smask;
6874 int i;
6875 h = GetCurrentProcess();
6876 if (GetProcessAffinityMask(h, &mask, &smask)) {
6877 for(i = 0; i < 32; i++) {
6878 if (mask & (1 << i))
6879 break;
6881 if (i != 32) {
6882 mask = 1 << i;
6883 SetProcessAffinityMask(h, mask);
6887 #endif
6889 register_machines();
6890 machine = first_machine;
6891 initrd_filename = NULL;
6892 for(i = 0; i < MAX_FD; i++)
6893 fd_filename[i] = NULL;
6894 for(i = 0; i < MAX_DISKS; i++)
6895 hd_filename[i] = NULL;
6896 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
6897 vga_ram_size = VGA_RAM_SIZE;
6898 #ifdef CONFIG_GDBSTUB
6899 use_gdbstub = 0;
6900 gdbstub_port = DEFAULT_GDBSTUB_PORT;
6901 #endif
6902 snapshot = 0;
6903 nographic = 0;
6904 kernel_filename = NULL;
6905 kernel_cmdline = "";
6906 #ifdef TARGET_PPC
6907 cdrom_index = 1;
6908 #else
6909 cdrom_index = 2;
6910 #endif
6911 cyls = heads = secs = 0;
6912 translation = BIOS_ATA_TRANSLATION_AUTO;
6913 pstrcpy(monitor_device, sizeof(monitor_device), "vc");
6915 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "vc");
6916 for(i = 1; i < MAX_SERIAL_PORTS; i++)
6917 serial_devices[i][0] = '\0';
6918 serial_device_index = 0;
6920 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "vc");
6921 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
6922 parallel_devices[i][0] = '\0';
6923 parallel_device_index = 0;
6925 usb_devices_index = 0;
6927 nb_net_clients = 0;
6929 nb_nics = 0;
6930 /* default mac address of the first network interface */
6932 optind = 1;
6933 for(;;) {
6934 if (optind >= argc)
6935 break;
6936 r = argv[optind];
6937 if (r[0] != '-') {
6938 hd_filename[0] = argv[optind++];
6939 } else {
6940 const QEMUOption *popt;
6942 optind++;
6943 /* Treat --foo the same as -foo. */
6944 if (r[1] == '-')
6945 r++;
6946 popt = qemu_options;
6947 for(;;) {
6948 if (!popt->name) {
6949 fprintf(stderr, "%s: invalid option -- '%s'\n",
6950 argv[0], r);
6951 exit(1);
6953 if (!strcmp(popt->name, r + 1))
6954 break;
6955 popt++;
6957 if (popt->flags & HAS_ARG) {
6958 if (optind >= argc) {
6959 fprintf(stderr, "%s: option '%s' requires an argument\n",
6960 argv[0], r);
6961 exit(1);
6963 optarg = argv[optind++];
6964 } else {
6965 optarg = NULL;
6968 switch(popt->index) {
6969 case QEMU_OPTION_M:
6970 machine = find_machine(optarg);
6971 if (!machine) {
6972 QEMUMachine *m;
6973 printf("Supported machines are:\n");
6974 for(m = first_machine; m != NULL; m = m->next) {
6975 printf("%-10s %s%s\n",
6976 m->name, m->desc,
6977 m == first_machine ? " (default)" : "");
6979 exit(1);
6981 break;
6982 case QEMU_OPTION_initrd:
6983 initrd_filename = optarg;
6984 break;
6985 case QEMU_OPTION_hda:
6986 case QEMU_OPTION_hdb:
6987 case QEMU_OPTION_hdc:
6988 case QEMU_OPTION_hdd:
6990 int hd_index;
6991 hd_index = popt->index - QEMU_OPTION_hda;
6992 hd_filename[hd_index] = optarg;
6993 if (hd_index == cdrom_index)
6994 cdrom_index = -1;
6996 break;
6997 case QEMU_OPTION_snapshot:
6998 snapshot = 1;
6999 break;
7000 case QEMU_OPTION_hdachs:
7002 const char *p;
7003 p = optarg;
7004 cyls = strtol(p, (char **)&p, 0);
7005 if (cyls < 1 || cyls > 16383)
7006 goto chs_fail;
7007 if (*p != ',')
7008 goto chs_fail;
7009 p++;
7010 heads = strtol(p, (char **)&p, 0);
7011 if (heads < 1 || heads > 16)
7012 goto chs_fail;
7013 if (*p != ',')
7014 goto chs_fail;
7015 p++;
7016 secs = strtol(p, (char **)&p, 0);
7017 if (secs < 1 || secs > 63)
7018 goto chs_fail;
7019 if (*p == ',') {
7020 p++;
7021 if (!strcmp(p, "none"))
7022 translation = BIOS_ATA_TRANSLATION_NONE;
7023 else if (!strcmp(p, "lba"))
7024 translation = BIOS_ATA_TRANSLATION_LBA;
7025 else if (!strcmp(p, "auto"))
7026 translation = BIOS_ATA_TRANSLATION_AUTO;
7027 else
7028 goto chs_fail;
7029 } else if (*p != '\0') {
7030 chs_fail:
7031 fprintf(stderr, "qemu: invalid physical CHS format\n");
7032 exit(1);
7035 break;
7036 case QEMU_OPTION_nographic:
7037 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "stdio");
7038 pstrcpy(monitor_device, sizeof(monitor_device), "stdio");
7039 nographic = 1;
7040 break;
7041 case QEMU_OPTION_kernel:
7042 kernel_filename = optarg;
7043 break;
7044 case QEMU_OPTION_append:
7045 kernel_cmdline = optarg;
7046 break;
7047 case QEMU_OPTION_cdrom:
7048 if (cdrom_index >= 0) {
7049 hd_filename[cdrom_index] = optarg;
7051 break;
7052 case QEMU_OPTION_boot:
7053 boot_device = optarg[0];
7054 if (boot_device != 'a' &&
7055 #if defined(TARGET_SPARC) || defined(TARGET_I386)
7056 // Network boot
7057 boot_device != 'n' &&
7058 #endif
7059 boot_device != 'c' && boot_device != 'd') {
7060 fprintf(stderr, "qemu: invalid boot device '%c'\n", boot_device);
7061 exit(1);
7063 break;
7064 case QEMU_OPTION_fda:
7065 fd_filename[0] = optarg;
7066 break;
7067 case QEMU_OPTION_fdb:
7068 fd_filename[1] = optarg;
7069 break;
7070 #ifdef TARGET_I386
7071 case QEMU_OPTION_no_fd_bootchk:
7072 fd_bootchk = 0;
7073 break;
7074 #endif
7075 case QEMU_OPTION_no_code_copy:
7076 code_copy_enabled = 0;
7077 break;
7078 case QEMU_OPTION_net:
7079 if (nb_net_clients >= MAX_NET_CLIENTS) {
7080 fprintf(stderr, "qemu: too many network clients\n");
7081 exit(1);
7083 pstrcpy(net_clients[nb_net_clients],
7084 sizeof(net_clients[0]),
7085 optarg);
7086 nb_net_clients++;
7087 break;
7088 #ifdef CONFIG_SLIRP
7089 case QEMU_OPTION_tftp:
7090 tftp_prefix = optarg;
7091 break;
7092 case QEMU_OPTION_bootp:
7093 bootp_filename = optarg;
7094 break;
7095 #ifndef _WIN32
7096 case QEMU_OPTION_smb:
7097 net_slirp_smb(optarg);
7098 break;
7099 #endif
7100 case QEMU_OPTION_redir:
7101 net_slirp_redir(optarg);
7102 break;
7103 #endif
7104 #ifdef HAS_AUDIO
7105 case QEMU_OPTION_audio_help:
7106 AUD_help ();
7107 exit (0);
7108 break;
7109 case QEMU_OPTION_soundhw:
7110 select_soundhw (optarg);
7111 break;
7112 #endif
7113 case QEMU_OPTION_h:
7114 help();
7115 break;
7116 case QEMU_OPTION_m:
7117 ram_size = atoi(optarg) * 1024 * 1024;
7118 if (ram_size <= 0)
7119 help();
7120 if (ram_size > PHYS_RAM_MAX_SIZE) {
7121 fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
7122 PHYS_RAM_MAX_SIZE / (1024 * 1024));
7123 exit(1);
7125 break;
7126 case QEMU_OPTION_d:
7128 int mask;
7129 CPULogItem *item;
7131 mask = cpu_str_to_log_mask(optarg);
7132 if (!mask) {
7133 printf("Log items (comma separated):\n");
7134 for(item = cpu_log_items; item->mask != 0; item++) {
7135 printf("%-10s %s\n", item->name, item->help);
7137 exit(1);
7139 cpu_set_log(mask);
7141 break;
7142 #ifdef CONFIG_GDBSTUB
7143 case QEMU_OPTION_s:
7144 use_gdbstub = 1;
7145 break;
7146 case QEMU_OPTION_p:
7147 gdbstub_port = optarg;
7148 break;
7149 #endif
7150 case QEMU_OPTION_L:
7151 bios_dir = optarg;
7152 break;
7153 case QEMU_OPTION_S:
7154 autostart = 0;
7155 break;
7156 case QEMU_OPTION_k:
7157 keyboard_layout = optarg;
7158 break;
7159 case QEMU_OPTION_localtime:
7160 rtc_utc = 0;
7161 break;
7162 case QEMU_OPTION_cirrusvga:
7163 cirrus_vga_enabled = 1;
7164 break;
7165 case QEMU_OPTION_std_vga:
7166 cirrus_vga_enabled = 0;
7167 break;
7168 case QEMU_OPTION_g:
7170 const char *p;
7171 int w, h, depth;
7172 p = optarg;
7173 w = strtol(p, (char **)&p, 10);
7174 if (w <= 0) {
7175 graphic_error:
7176 fprintf(stderr, "qemu: invalid resolution or depth\n");
7177 exit(1);
7179 if (*p != 'x')
7180 goto graphic_error;
7181 p++;
7182 h = strtol(p, (char **)&p, 10);
7183 if (h <= 0)
7184 goto graphic_error;
7185 if (*p == 'x') {
7186 p++;
7187 depth = strtol(p, (char **)&p, 10);
7188 if (depth != 8 && depth != 15 && depth != 16 &&
7189 depth != 24 && depth != 32)
7190 goto graphic_error;
7191 } else if (*p == '\0') {
7192 depth = graphic_depth;
7193 } else {
7194 goto graphic_error;
7197 graphic_width = w;
7198 graphic_height = h;
7199 graphic_depth = depth;
7201 break;
7202 case QEMU_OPTION_echr:
7204 char *r;
7205 term_escape_char = strtol(optarg, &r, 0);
7206 if (r == optarg)
7207 printf("Bad argument to echr\n");
7208 break;
7210 case QEMU_OPTION_monitor:
7211 pstrcpy(monitor_device, sizeof(monitor_device), optarg);
7212 break;
7213 case QEMU_OPTION_serial:
7214 if (serial_device_index >= MAX_SERIAL_PORTS) {
7215 fprintf(stderr, "qemu: too many serial ports\n");
7216 exit(1);
7218 pstrcpy(serial_devices[serial_device_index],
7219 sizeof(serial_devices[0]), optarg);
7220 serial_device_index++;
7221 break;
7222 case QEMU_OPTION_parallel:
7223 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
7224 fprintf(stderr, "qemu: too many parallel ports\n");
7225 exit(1);
7227 pstrcpy(parallel_devices[parallel_device_index],
7228 sizeof(parallel_devices[0]), optarg);
7229 parallel_device_index++;
7230 break;
7231 case QEMU_OPTION_loadvm:
7232 loadvm = optarg;
7233 break;
7234 case QEMU_OPTION_full_screen:
7235 full_screen = 1;
7236 break;
7237 #ifdef CONFIG_SDL
7238 case QEMU_OPTION_no_frame:
7239 no_frame = 1;
7240 break;
7241 case QEMU_OPTION_no_quit:
7242 no_quit = 1;
7243 break;
7244 #endif
7245 case QEMU_OPTION_pidfile:
7246 create_pidfile(optarg);
7247 break;
7248 #ifdef TARGET_I386
7249 case QEMU_OPTION_win2k_hack:
7250 win2k_install_hack = 1;
7251 break;
7252 #endif
7253 #ifdef USE_KQEMU
7254 case QEMU_OPTION_no_kqemu:
7255 kqemu_allowed = 0;
7256 break;
7257 case QEMU_OPTION_kernel_kqemu:
7258 kqemu_allowed = 2;
7259 break;
7260 #endif
7261 case QEMU_OPTION_usb:
7262 usb_enabled = 1;
7263 break;
7264 case QEMU_OPTION_usbdevice:
7265 usb_enabled = 1;
7266 if (usb_devices_index >= MAX_USB_CMDLINE) {
7267 fprintf(stderr, "Too many USB devices\n");
7268 exit(1);
7270 pstrcpy(usb_devices[usb_devices_index],
7271 sizeof(usb_devices[usb_devices_index]),
7272 optarg);
7273 usb_devices_index++;
7274 break;
7275 case QEMU_OPTION_smp:
7276 smp_cpus = atoi(optarg);
7277 if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
7278 fprintf(stderr, "Invalid number of CPUs\n");
7279 exit(1);
7281 break;
7282 case QEMU_OPTION_vnc:
7283 vnc_display = optarg;
7284 break;
7285 case QEMU_OPTION_no_acpi:
7286 acpi_enabled = 0;
7287 break;
7288 case QEMU_OPTION_no_reboot:
7289 no_reboot = 1;
7290 break;
7291 case QEMU_OPTION_daemonize:
7292 daemonize = 1;
7293 break;
7294 case QEMU_OPTION_option_rom:
7295 if (nb_option_roms >= MAX_OPTION_ROMS) {
7296 fprintf(stderr, "Too many option ROMs\n");
7297 exit(1);
7299 option_rom[nb_option_roms] = optarg;
7300 nb_option_roms++;
7301 break;
7302 case QEMU_OPTION_semihosting:
7303 semihosting_enabled = 1;
7304 break;
7309 #ifndef _WIN32
7310 if (daemonize && !nographic && vnc_display == NULL) {
7311 fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
7312 daemonize = 0;
7315 if (daemonize) {
7316 pid_t pid;
7318 if (pipe(fds) == -1)
7319 exit(1);
7321 pid = fork();
7322 if (pid > 0) {
7323 uint8_t status;
7324 ssize_t len;
7326 close(fds[1]);
7328 again:
7329 len = read(fds[0], &status, 1);
7330 if (len == -1 && (errno == EINTR))
7331 goto again;
7333 if (len != 1 || status != 0)
7334 exit(1);
7335 else
7336 exit(0);
7337 } else if (pid < 0)
7338 exit(1);
7340 setsid();
7342 pid = fork();
7343 if (pid > 0)
7344 exit(0);
7345 else if (pid < 0)
7346 exit(1);
7348 umask(027);
7349 chdir("/");
7351 signal(SIGTSTP, SIG_IGN);
7352 signal(SIGTTOU, SIG_IGN);
7353 signal(SIGTTIN, SIG_IGN);
7355 #endif
7357 #ifdef USE_KQEMU
7358 if (smp_cpus > 1)
7359 kqemu_allowed = 0;
7360 #endif
7361 linux_boot = (kernel_filename != NULL);
7363 if (!linux_boot &&
7364 boot_device != 'n' &&
7365 hd_filename[0] == '\0' &&
7366 (cdrom_index >= 0 && hd_filename[cdrom_index] == '\0') &&
7367 fd_filename[0] == '\0')
7368 help();
7370 /* boot to floppy or the default cd if no hard disk defined yet */
7371 if (hd_filename[0] == '\0' && boot_device == 'c') {
7372 if (fd_filename[0] != '\0')
7373 boot_device = 'a';
7374 else
7375 boot_device = 'd';
7378 setvbuf(stdout, NULL, _IOLBF, 0);
7380 init_timers();
7381 init_timer_alarm();
7382 qemu_aio_init();
7384 #ifdef _WIN32
7385 socket_init();
7386 #endif
7388 /* init network clients */
7389 if (nb_net_clients == 0) {
7390 /* if no clients, we use a default config */
7391 pstrcpy(net_clients[0], sizeof(net_clients[0]),
7392 "nic");
7393 pstrcpy(net_clients[1], sizeof(net_clients[0]),
7394 "user");
7395 nb_net_clients = 2;
7398 for(i = 0;i < nb_net_clients; i++) {
7399 if (net_client_init(net_clients[i]) < 0)
7400 exit(1);
7403 #ifdef TARGET_I386
7404 if (boot_device == 'n') {
7405 for (i = 0; i < nb_nics; i++) {
7406 const char *model = nd_table[i].model;
7407 char buf[1024];
7408 if (model == NULL)
7409 model = "ne2k_pci";
7410 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
7411 if (get_image_size(buf) > 0) {
7412 option_rom[nb_option_roms] = strdup(buf);
7413 nb_option_roms++;
7414 break;
7417 if (i == nb_nics) {
7418 fprintf(stderr, "No valid PXE rom found for network device\n");
7419 exit(1);
7421 boot_device = 'c'; /* to prevent confusion by the BIOS */
7423 #endif
7425 /* init the memory */
7426 phys_ram_size = ram_size + vga_ram_size + MAX_BIOS_SIZE;
7428 phys_ram_base = qemu_vmalloc(phys_ram_size);
7429 if (!phys_ram_base) {
7430 fprintf(stderr, "Could not allocate physical memory\n");
7431 exit(1);
7434 /* we always create the cdrom drive, even if no disk is there */
7435 bdrv_init();
7436 if (cdrom_index >= 0) {
7437 bs_table[cdrom_index] = bdrv_new("cdrom");
7438 bdrv_set_type_hint(bs_table[cdrom_index], BDRV_TYPE_CDROM);
7441 /* open the virtual block devices */
7442 for(i = 0; i < MAX_DISKS; i++) {
7443 if (hd_filename[i]) {
7444 if (!bs_table[i]) {
7445 char buf[64];
7446 snprintf(buf, sizeof(buf), "hd%c", i + 'a');
7447 bs_table[i] = bdrv_new(buf);
7449 if (bdrv_open(bs_table[i], hd_filename[i], snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7450 fprintf(stderr, "qemu: could not open hard disk image '%s'\n",
7451 hd_filename[i]);
7452 exit(1);
7454 if (i == 0 && cyls != 0) {
7455 bdrv_set_geometry_hint(bs_table[i], cyls, heads, secs);
7456 bdrv_set_translation_hint(bs_table[i], translation);
7461 /* we always create at least one floppy disk */
7462 fd_table[0] = bdrv_new("fda");
7463 bdrv_set_type_hint(fd_table[0], BDRV_TYPE_FLOPPY);
7465 for(i = 0; i < MAX_FD; i++) {
7466 if (fd_filename[i]) {
7467 if (!fd_table[i]) {
7468 char buf[64];
7469 snprintf(buf, sizeof(buf), "fd%c", i + 'a');
7470 fd_table[i] = bdrv_new(buf);
7471 bdrv_set_type_hint(fd_table[i], BDRV_TYPE_FLOPPY);
7473 if (fd_filename[i] != '\0') {
7474 if (bdrv_open(fd_table[i], fd_filename[i],
7475 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7476 fprintf(stderr, "qemu: could not open floppy disk image '%s'\n",
7477 fd_filename[i]);
7478 exit(1);
7484 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
7485 register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
7487 init_ioports();
7489 /* terminal init */
7490 if (nographic) {
7491 dumb_display_init(ds);
7492 } else if (vnc_display != NULL) {
7493 vnc_display_init(ds, vnc_display);
7494 } else {
7495 #if defined(CONFIG_SDL)
7496 sdl_display_init(ds, full_screen, no_frame);
7497 #elif defined(CONFIG_COCOA)
7498 cocoa_display_init(ds, full_screen);
7499 #else
7500 dumb_display_init(ds);
7501 #endif
7504 /* Maintain compatibility with multiple stdio monitors */
7505 if (!strcmp(monitor_device,"stdio")) {
7506 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
7507 if (!strcmp(serial_devices[i],"mon:stdio")) {
7508 monitor_device[0] = '\0';
7509 break;
7510 } else if (!strcmp(serial_devices[i],"stdio")) {
7511 monitor_device[0] = '\0';
7512 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "mon:stdio");
7513 break;
7517 if (monitor_device[0] != '\0') {
7518 monitor_hd = qemu_chr_open(monitor_device);
7519 if (!monitor_hd) {
7520 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
7521 exit(1);
7523 monitor_init(monitor_hd, !nographic);
7526 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
7527 const char *devname = serial_devices[i];
7528 if (devname[0] != '\0' && strcmp(devname, "none")) {
7529 serial_hds[i] = qemu_chr_open(devname);
7530 if (!serial_hds[i]) {
7531 fprintf(stderr, "qemu: could not open serial device '%s'\n",
7532 devname);
7533 exit(1);
7535 if (!strcmp(devname, "vc"))
7536 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
7540 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
7541 const char *devname = parallel_devices[i];
7542 if (devname[0] != '\0' && strcmp(devname, "none")) {
7543 parallel_hds[i] = qemu_chr_open(devname);
7544 if (!parallel_hds[i]) {
7545 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
7546 devname);
7547 exit(1);
7549 if (!strcmp(devname, "vc"))
7550 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
7554 machine->init(ram_size, vga_ram_size, boot_device,
7555 ds, fd_filename, snapshot,
7556 kernel_filename, kernel_cmdline, initrd_filename);
7558 /* init USB devices */
7559 if (usb_enabled) {
7560 for(i = 0; i < usb_devices_index; i++) {
7561 if (usb_device_add(usb_devices[i]) < 0) {
7562 fprintf(stderr, "Warning: could not add USB device %s\n",
7563 usb_devices[i]);
7568 gui_timer = qemu_new_timer(rt_clock, gui_update, NULL);
7569 qemu_mod_timer(gui_timer, qemu_get_clock(rt_clock));
7571 #ifdef CONFIG_GDBSTUB
7572 if (use_gdbstub) {
7573 /* XXX: use standard host:port notation and modify options
7574 accordingly. */
7575 if (gdbserver_start(gdbstub_port) < 0) {
7576 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
7577 gdbstub_port);
7578 exit(1);
7580 } else
7581 #endif
7582 if (loadvm)
7583 do_loadvm(loadvm);
7586 /* XXX: simplify init */
7587 read_passwords();
7588 if (autostart) {
7589 vm_start();
7593 if (daemonize) {
7594 uint8_t status = 0;
7595 ssize_t len;
7596 int fd;
7598 again1:
7599 len = write(fds[1], &status, 1);
7600 if (len == -1 && (errno == EINTR))
7601 goto again1;
7603 if (len != 1)
7604 exit(1);
7606 fd = open("/dev/null", O_RDWR);
7607 if (fd == -1)
7608 exit(1);
7610 dup2(fd, 0);
7611 dup2(fd, 1);
7612 dup2(fd, 2);
7614 close(fd);
7617 main_loop();
7618 quit_timers();
7619 return 0;